Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.54 kB
/-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import control.equiv_functor
import logic.equiv.basic
/-!
# Equivalences for `option α`
We define
* `equiv.option_congr`: the `option α ≃ option β` constructed from `e : α ≃ β` by sending `none` to
`none`, and applying a `e` elsewhere.
* `equiv.remove_none`: the `α ≃ β` constructed from `option α ≃ option β` by removing `none` from
both sides.
-/
namespace equiv
variables {α β γ : Type*}
section option_congr
/-- A universe-polymorphic version of `equiv_functor.map_equiv option e`. -/
@[simps apply]
def option_congr (e : α ≃ β) : option α ≃ option β :=
{ to_fun := option.map e,
inv_fun := option.map e.symm,
left_inv := λ x, (option.map_map _ _ _).trans $
e.symm_comp_self.symm ▸ congr_fun option.map_id x,
right_inv := λ x, (option.map_map _ _ _).trans $
e.self_comp_symm.symm ▸ congr_fun option.map_id x }
@[simp] lemma option_congr_refl : option_congr (equiv.refl α) = equiv.refl _ :=
ext $ congr_fun option.map_id
@[simp] lemma option_congr_symm (e : α ≃ β) : (option_congr e).symm = option_congr e.symm := rfl
@[simp] lemma option_congr_trans (e₁ : α ≃ β) (e₂ : β ≃ γ) :
(option_congr e₁).trans (option_congr e₂) = option_congr (e₁.trans e₂) :=
ext $ option.map_map _ _
/-- When `α` and `β` are in the same universe, this is the same as the result of
`equiv_functor.map_equiv`. -/
lemma option_congr_eq_equiv_function_map_equiv {α β : Type*} (e : α ≃ β) :
option_congr e = equiv_functor.map_equiv option e := rfl
end option_congr
section remove_none
variables (e : option α ≃ option β)
private def remove_none_aux (x : α) : β :=
if h : (e (some x)).is_some
then option.get h
else option.get $ show (e none).is_some, from
begin
rw ←option.ne_none_iff_is_some,
intro hn,
rw [option.not_is_some_iff_eq_none, ←hn] at h,
simpa only using e.injective h,
end
private lemma remove_none_aux_some {x : α} (h : ∃ x', e (some x) = some x') :
some (remove_none_aux e x) = e (some x) :=
by simp [remove_none_aux, option.is_some_iff_exists.mpr h]
private lemma remove_none_aux_none {x : α} (h : e (some x) = none) :
some (remove_none_aux e x) = e none :=
by simp [remove_none_aux, option.not_is_some_iff_eq_none.mpr h]
private lemma remove_none_aux_inv (x : α) : remove_none_aux e.symm (remove_none_aux e x) = x :=
option.some_injective _ begin
cases h1 : e.symm (some (remove_none_aux e x)); cases h2 : (e (some x)),
{ rw remove_none_aux_none _ h1,
exact (e.eq_symm_apply.mpr h2).symm },
{ rw remove_none_aux_some _ ⟨_, h2⟩ at h1,
simpa using h1, },
{ rw remove_none_aux_none _ h2 at h1,
simpa using h1, },
{ rw remove_none_aux_some _ ⟨_, h1⟩,
rw remove_none_aux_some _ ⟨_, h2⟩,
simp },
end
/-- Given an equivalence between two `option` types, eliminate `none` from that equivalence by
mapping `e.symm none` to `e none`. -/
def remove_none : α ≃ β :=
{ to_fun := remove_none_aux e,
inv_fun := remove_none_aux e.symm,
left_inv := remove_none_aux_inv e,
right_inv := remove_none_aux_inv e.symm, }
@[simp]
lemma remove_none_symm : (remove_none e).symm = remove_none e.symm := rfl
lemma remove_none_some {x : α} (h : ∃ x', e (some x) = some x') :
some (remove_none e x) = e (some x) := remove_none_aux_some e h
lemma remove_none_none {x : α} (h : e (some x) = none) :
some (remove_none e x) = e none := remove_none_aux_none e h
@[simp] lemma option_symm_apply_none_iff : e.symm none = none ↔ e none = none :=
⟨λ h, by simpa using (congr_arg e h).symm, λ h, by simpa using (congr_arg e.symm h).symm⟩
lemma some_remove_none_iff {x : α} :
some (remove_none e x) = e none ↔ e.symm none = some x :=
begin
cases h : e (some x) with a,
{ rw remove_none_none _ h,
simpa using (congr_arg e.symm h).symm },
{ rw remove_none_some _ ⟨a, h⟩,
have := (congr_arg e.symm h),
rw [symm_apply_apply] at this,
simp only [false_iff, apply_eq_iff_eq],
simp [this] }
end
@[simp]
lemma remove_none_option_congr (e : α ≃ β) : remove_none e.option_congr = e :=
equiv.ext $ λ x, option.some_injective _ $ remove_none_some _ ⟨e x, by simp [equiv_functor.map]⟩
end remove_none
lemma option_congr_injective : function.injective (option_congr : α ≃ β → option α ≃ option β) :=
function.left_inverse.injective remove_none_option_congr
end equiv