Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Eric Wieser. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Eric Wieser | |
-/ | |
import control.equiv_functor | |
import logic.equiv.basic | |
/-! | |
# Equivalences for `option α` | |
We define | |
* `equiv.option_congr`: the `option α ≃ option β` constructed from `e : α ≃ β` by sending `none` to | |
`none`, and applying a `e` elsewhere. | |
* `equiv.remove_none`: the `α ≃ β` constructed from `option α ≃ option β` by removing `none` from | |
both sides. | |
-/ | |
namespace equiv | |
variables {α β γ : Type*} | |
section option_congr | |
/-- A universe-polymorphic version of `equiv_functor.map_equiv option e`. -/ | |
@[simps apply] | |
def option_congr (e : α ≃ β) : option α ≃ option β := | |
{ to_fun := option.map e, | |
inv_fun := option.map e.symm, | |
left_inv := λ x, (option.map_map _ _ _).trans $ | |
e.symm_comp_self.symm ▸ congr_fun option.map_id x, | |
right_inv := λ x, (option.map_map _ _ _).trans $ | |
e.self_comp_symm.symm ▸ congr_fun option.map_id x } | |
@[simp] lemma option_congr_refl : option_congr (equiv.refl α) = equiv.refl _ := | |
ext $ congr_fun option.map_id | |
@[simp] lemma option_congr_symm (e : α ≃ β) : (option_congr e).symm = option_congr e.symm := rfl | |
@[simp] lemma option_congr_trans (e₁ : α ≃ β) (e₂ : β ≃ γ) : | |
(option_congr e₁).trans (option_congr e₂) = option_congr (e₁.trans e₂) := | |
ext $ option.map_map _ _ | |
/-- When `α` and `β` are in the same universe, this is the same as the result of | |
`equiv_functor.map_equiv`. -/ | |
lemma option_congr_eq_equiv_function_map_equiv {α β : Type*} (e : α ≃ β) : | |
option_congr e = equiv_functor.map_equiv option e := rfl | |
end option_congr | |
section remove_none | |
variables (e : option α ≃ option β) | |
private def remove_none_aux (x : α) : β := | |
if h : (e (some x)).is_some | |
then option.get h | |
else option.get $ show (e none).is_some, from | |
begin | |
rw ←option.ne_none_iff_is_some, | |
intro hn, | |
rw [option.not_is_some_iff_eq_none, ←hn] at h, | |
simpa only using e.injective h, | |
end | |
private lemma remove_none_aux_some {x : α} (h : ∃ x', e (some x) = some x') : | |
some (remove_none_aux e x) = e (some x) := | |
by simp [remove_none_aux, option.is_some_iff_exists.mpr h] | |
private lemma remove_none_aux_none {x : α} (h : e (some x) = none) : | |
some (remove_none_aux e x) = e none := | |
by simp [remove_none_aux, option.not_is_some_iff_eq_none.mpr h] | |
private lemma remove_none_aux_inv (x : α) : remove_none_aux e.symm (remove_none_aux e x) = x := | |
option.some_injective _ begin | |
cases h1 : e.symm (some (remove_none_aux e x)); cases h2 : (e (some x)), | |
{ rw remove_none_aux_none _ h1, | |
exact (e.eq_symm_apply.mpr h2).symm }, | |
{ rw remove_none_aux_some _ ⟨_, h2⟩ at h1, | |
simpa using h1, }, | |
{ rw remove_none_aux_none _ h2 at h1, | |
simpa using h1, }, | |
{ rw remove_none_aux_some _ ⟨_, h1⟩, | |
rw remove_none_aux_some _ ⟨_, h2⟩, | |
simp }, | |
end | |
/-- Given an equivalence between two `option` types, eliminate `none` from that equivalence by | |
mapping `e.symm none` to `e none`. -/ | |
def remove_none : α ≃ β := | |
{ to_fun := remove_none_aux e, | |
inv_fun := remove_none_aux e.symm, | |
left_inv := remove_none_aux_inv e, | |
right_inv := remove_none_aux_inv e.symm, } | |
@[simp] | |
lemma remove_none_symm : (remove_none e).symm = remove_none e.symm := rfl | |
lemma remove_none_some {x : α} (h : ∃ x', e (some x) = some x') : | |
some (remove_none e x) = e (some x) := remove_none_aux_some e h | |
lemma remove_none_none {x : α} (h : e (some x) = none) : | |
some (remove_none e x) = e none := remove_none_aux_none e h | |
@[simp] lemma option_symm_apply_none_iff : e.symm none = none ↔ e none = none := | |
⟨λ h, by simpa using (congr_arg e h).symm, λ h, by simpa using (congr_arg e.symm h).symm⟩ | |
lemma some_remove_none_iff {x : α} : | |
some (remove_none e x) = e none ↔ e.symm none = some x := | |
begin | |
cases h : e (some x) with a, | |
{ rw remove_none_none _ h, | |
simpa using (congr_arg e.symm h).symm }, | |
{ rw remove_none_some _ ⟨a, h⟩, | |
have := (congr_arg e.symm h), | |
rw [symm_apply_apply] at this, | |
simp only [false_iff, apply_eq_iff_eq], | |
simp [this] } | |
end | |
@[simp] | |
lemma remove_none_option_congr (e : α ≃ β) : remove_none e.option_congr = e := | |
equiv.ext $ λ x, option.some_injective _ $ remove_none_some _ ⟨e x, by simp [equiv_functor.map]⟩ | |
end remove_none | |
lemma option_congr_injective : function.injective (option_congr : α ≃ β → option α ≃ option β) := | |
function.left_inverse.injective remove_none_option_congr | |
end equiv | |