Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Rémy Degenne. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Rémy Degenne | |
-/ | |
import probability.variance | |
/-! | |
# Moments and moment generating function | |
## Main definitions | |
* `probability_theory.moment X p μ`: `p`th moment of a real random variable `X` with respect to | |
measure `μ`, `μ[X^p]` | |
* `probability_theory.central_moment X p μ`:`p`th central moment of `X` with respect to measure `μ`, | |
`μ[(X - μ[X])^p]` | |
* `probability_theory.mgf X μ t`: moment generating function of `X` with respect to measure `μ`, | |
`μ[exp(t*X)]` | |
* `probability_theory.cgf X μ t`: cumulant generating function, logarithm of the moment generating | |
function | |
## Main results | |
* `probability_theory.indep_fun.mgf_add`: if two real random variables `X` and `Y` are independent | |
and their mgf are defined at `t`, then `mgf (X + Y) μ t = mgf X μ t * mgf Y μ t` | |
* `probability_theory.indep_fun.cgf_add`: if two real random variables `X` and `Y` are independent | |
and their mgf are defined at `t`, then `cgf (X + Y) μ t = cgf X μ t + cgf Y μ t` | |
* `probability_theory.measure_ge_le_exp_cgf` and `probability_theory.measure_le_le_exp_cgf`: | |
Chernoff bound on the upper (resp. lower) tail of a random variable. For `t` nonnegative such that | |
the cgf exists, `ℙ(ε ≤ X) ≤ exp(- t*ε + cgf X ℙ t)`. See also | |
`probability_theory.measure_ge_le_exp_mul_mgf` and | |
`probability_theory.measure_le_le_exp_mul_mgf` for versions of these results using `mgf` instead | |
of `cgf`. | |
-/ | |
open measure_theory filter finset real | |
noncomputable theory | |
open_locale big_operators measure_theory probability_theory ennreal nnreal | |
namespace probability_theory | |
variables {Ω ι : Type*} {m : measurable_space Ω} {X : Ω → ℝ} {p : ℕ} {μ : measure Ω} | |
include m | |
/-- Moment of a real random variable, `μ[X ^ p]`. -/ | |
def moment (X : Ω → ℝ) (p : ℕ) (μ : measure Ω) : ℝ := μ[X ^ p] | |
/-- Central moment of a real random variable, `μ[(X - μ[X]) ^ p]`. -/ | |
def central_moment (X : Ω → ℝ) (p : ℕ) (μ : measure Ω) : ℝ := μ[(X - (λ x, μ[X])) ^ p] | |
@[simp] lemma moment_zero (hp : p ≠ 0) : moment 0 p μ = 0 := | |
by simp only [moment, hp, zero_pow', ne.def, not_false_iff, pi.zero_apply, integral_const, | |
algebra.id.smul_eq_mul, mul_zero] | |
@[simp] lemma central_moment_zero (hp : p ≠ 0) : central_moment 0 p μ = 0 := | |
by simp only [central_moment, hp, pi.zero_apply, integral_const, algebra.id.smul_eq_mul, | |
mul_zero, zero_sub, pi.pow_apply, pi.neg_apply, neg_zero', zero_pow', ne.def, not_false_iff] | |
lemma central_moment_one' [is_finite_measure μ] (h_int : integrable X μ) : | |
central_moment X 1 μ = (1 - (μ set.univ).to_real) * μ[X] := | |
begin | |
simp only [central_moment, pi.sub_apply, pow_one], | |
rw integral_sub h_int (integrable_const _), | |
simp only [sub_mul, integral_const, algebra.id.smul_eq_mul, one_mul], | |
end | |
@[simp] lemma central_moment_one [is_probability_measure μ] : central_moment X 1 μ = 0 := | |
begin | |
by_cases h_int : integrable X μ, | |
{ rw central_moment_one' h_int, | |
simp only [measure_univ, ennreal.one_to_real, sub_self, zero_mul], }, | |
{ simp only [central_moment, pi.sub_apply, pow_one], | |
have : ¬ integrable (λ x, X x - integral μ X) μ, | |
{ refine λ h_sub, h_int _, | |
have h_add : X = (λ x, X x - integral μ X) + (λ x, integral μ X), | |
{ ext1 x, simp, }, | |
rw h_add, | |
exact h_sub.add (integrable_const _), }, | |
rw integral_undef this, }, | |
end | |
@[simp] lemma central_moment_two_eq_variance : central_moment X 2 μ = variance X μ := rfl | |
section moment_generating_function | |
variables {t : ℝ} | |
/-- Moment generating function of a real random variable `X`: `λ t, μ[exp(t*X)]`. -/ | |
def mgf (X : Ω → ℝ) (μ : measure Ω) (t : ℝ) : ℝ := μ[λ ω, exp (t * X ω)] | |
/-- Cumulant generating function of a real random variable `X`: `λ t, log μ[exp(t*X)]`. -/ | |
def cgf (X : Ω → ℝ) (μ : measure Ω) (t : ℝ) : ℝ := log (mgf X μ t) | |
@[simp] lemma mgf_zero_fun : mgf 0 μ t = (μ set.univ).to_real := | |
by simp only [mgf, pi.zero_apply, mul_zero, exp_zero, integral_const, algebra.id.smul_eq_mul, | |
mul_one] | |
@[simp] lemma cgf_zero_fun : cgf 0 μ t = log (μ set.univ).to_real := | |
by simp only [cgf, mgf_zero_fun] | |
@[simp] lemma mgf_zero_measure : mgf X (0 : measure Ω) t = 0 := | |
by simp only [mgf, integral_zero_measure] | |
@[simp] lemma cgf_zero_measure : cgf X (0 : measure Ω) t = 0 := | |
by simp only [cgf, log_zero, mgf_zero_measure] | |
@[simp] lemma mgf_const' (c : ℝ) : mgf (λ _, c) μ t = (μ set.univ).to_real * exp (t * c) := | |
by simp only [mgf, integral_const, algebra.id.smul_eq_mul] | |
@[simp] lemma mgf_const (c : ℝ) [is_probability_measure μ] : mgf (λ _, c) μ t = exp (t * c) := | |
by simp only [mgf_const', measure_univ, ennreal.one_to_real, one_mul] | |
@[simp] lemma cgf_const' [is_finite_measure μ] (hμ : μ ≠ 0) (c : ℝ) : | |
cgf (λ _, c) μ t = log (μ set.univ).to_real + t * c := | |
begin | |
simp only [cgf, mgf_const'], | |
rw log_mul _ (exp_pos _).ne', | |
{ rw log_exp _, }, | |
{ rw [ne.def, ennreal.to_real_eq_zero_iff, measure.measure_univ_eq_zero], | |
simp only [hμ, measure_ne_top μ set.univ, or_self, not_false_iff], }, | |
end | |
@[simp] lemma cgf_const [is_probability_measure μ] (c : ℝ) : cgf (λ _, c) μ t = t * c := | |
by simp only [cgf, mgf_const, log_exp] | |
@[simp] lemma mgf_zero' : mgf X μ 0 = (μ set.univ).to_real := | |
by simp only [mgf, zero_mul, exp_zero, integral_const, algebra.id.smul_eq_mul, mul_one] | |
@[simp] lemma mgf_zero [is_probability_measure μ] : mgf X μ 0 = 1 := | |
by simp only [mgf_zero', measure_univ, ennreal.one_to_real] | |
@[simp] lemma cgf_zero' : cgf X μ 0 = log (μ set.univ).to_real := | |
by simp only [cgf, mgf_zero'] | |
@[simp] lemma cgf_zero [is_probability_measure μ] : cgf X μ 0 = 0 := | |
by simp only [cgf_zero', measure_univ, ennreal.one_to_real, log_one] | |
lemma mgf_undef (hX : ¬ integrable (λ ω, exp (t * X ω)) μ) : mgf X μ t = 0 := | |
by simp only [mgf, integral_undef hX] | |
lemma cgf_undef (hX : ¬ integrable (λ ω, exp (t * X ω)) μ) : cgf X μ t = 0 := | |
by simp only [cgf, mgf_undef hX, log_zero] | |
lemma mgf_nonneg : 0 ≤ mgf X μ t := | |
begin | |
refine integral_nonneg _, | |
intro ω, | |
simp only [pi.zero_apply], | |
exact (exp_pos _).le, | |
end | |
lemma mgf_pos' (hμ : μ ≠ 0) (h_int_X : integrable (λ ω, exp (t * X ω)) μ) : 0 < mgf X μ t := | |
begin | |
simp_rw mgf, | |
have : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in set.univ, exp (t * X x) ∂μ, | |
{ simp only [measure.restrict_univ], }, | |
rw [this, set_integral_pos_iff_support_of_nonneg_ae _ _], | |
{ have h_eq_univ : function.support (λ (x : Ω), exp (t * X x)) = set.univ, | |
{ ext1 x, | |
simp only [function.mem_support, set.mem_univ, iff_true], | |
exact (exp_pos _).ne', }, | |
rw [h_eq_univ, set.inter_univ _], | |
refine ne.bot_lt _, | |
simp only [hμ, ennreal.bot_eq_zero, ne.def, measure.measure_univ_eq_zero, not_false_iff], }, | |
{ refine eventually_of_forall (λ x, _), | |
rw pi.zero_apply, | |
exact (exp_pos _).le, }, | |
{ rwa integrable_on_univ, }, | |
end | |
lemma mgf_pos [is_probability_measure μ] (h_int_X : integrable (λ ω, exp (t * X ω)) μ) : | |
0 < mgf X μ t := | |
mgf_pos' (is_probability_measure.ne_zero μ) h_int_X | |
lemma mgf_neg : mgf (-X) μ t = mgf X μ (-t) := | |
by simp_rw [mgf, pi.neg_apply, mul_neg, neg_mul] | |
lemma cgf_neg : cgf (-X) μ t = cgf X μ (-t) := by simp_rw [cgf, mgf_neg] | |
/-- This is a trivial application of `indep_fun.comp` but it will come up frequently. -/ | |
lemma indep_fun.exp_mul {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) (s t : ℝ) : | |
indep_fun (λ ω, exp (s * X ω)) (λ ω, exp (t * Y ω)) μ := | |
begin | |
have h_meas : ∀ t, measurable (λ x, exp (t * x)) := λ t, (measurable_id'.const_mul t).exp, | |
change indep_fun ((λ x, exp (s * x)) ∘ X) ((λ x, exp (t * x)) ∘ Y) μ, | |
exact indep_fun.comp h_indep (h_meas s) (h_meas t), | |
end | |
lemma indep_fun.mgf_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) | |
(h_int_X : integrable (λ ω, exp (t * X ω)) μ) | |
(h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) : | |
mgf (X + Y) μ t = mgf X μ t * mgf Y μ t := | |
begin | |
simp_rw [mgf, pi.add_apply, mul_add, exp_add], | |
exact (h_indep.exp_mul t t).integral_mul_of_integrable' h_int_X h_int_Y, | |
end | |
lemma indep_fun.cgf_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) | |
(h_int_X : integrable (λ ω, exp (t * X ω)) μ) | |
(h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) : | |
cgf (X + Y) μ t = cgf X μ t + cgf Y μ t := | |
begin | |
by_cases hμ : μ = 0, | |
{ simp [hμ], }, | |
simp only [cgf, h_indep.mgf_add h_int_X h_int_Y], | |
exact log_mul (mgf_pos' hμ h_int_X).ne' (mgf_pos' hμ h_int_Y).ne', | |
end | |
lemma indep_fun.integrable_exp_mul_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) | |
(h_int_X : integrable (λ ω, exp (t * X ω)) μ) | |
(h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) : | |
integrable (λ ω, exp (t * (X + Y) ω)) μ := | |
begin | |
simp_rw [pi.add_apply, mul_add, exp_add], | |
exact (h_indep.exp_mul t t).integrable_mul h_int_X h_int_Y, | |
end | |
lemma Indep_fun.integrable_exp_mul_sum [is_probability_measure μ] | |
{X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i)) | |
{s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) : | |
integrable (λ ω, exp (t * (∑ i in s, X i) ω)) μ := | |
begin | |
classical, | |
induction s using finset.induction_on with i s hi_notin_s h_rec h_int, | |
{ simp only [pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero], | |
exact integrable_const _, }, | |
{ have : ∀ (i : ι), i ∈ s → integrable (λ (ω : Ω), exp (t * X i ω)) μ, | |
from λ i hi, h_int i (mem_insert_of_mem hi), | |
specialize h_rec this, | |
rw sum_insert hi_notin_s, | |
refine indep_fun.integrable_exp_mul_add _ (h_int i (mem_insert_self _ _)) h_rec, | |
exact (h_indep.indep_fun_finset_sum_of_not_mem h_meas hi_notin_s).symm, }, | |
end | |
lemma Indep_fun.mgf_sum [is_probability_measure μ] | |
{X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i)) | |
{s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) : | |
mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t := | |
begin | |
classical, | |
induction s using finset.induction_on with i s hi_notin_s h_rec h_int, | |
{ simp only [sum_empty, mgf_zero_fun, measure_univ, ennreal.one_to_real, prod_empty], }, | |
{ have h_int' : ∀ (i : ι), i ∈ s → integrable (λ (ω : Ω), exp (t * X i ω)) μ, | |
from λ i hi, h_int i (mem_insert_of_mem hi), | |
rw [sum_insert hi_notin_s, indep_fun.mgf_add | |
(h_indep.indep_fun_finset_sum_of_not_mem h_meas hi_notin_s).symm | |
(h_int i (mem_insert_self _ _)) (h_indep.integrable_exp_mul_sum h_meas h_int'), | |
h_rec h_int', prod_insert hi_notin_s], }, | |
end | |
lemma Indep_fun.cgf_sum [is_probability_measure μ] | |
{X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i)) | |
{s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) : | |
cgf (∑ i in s, X i) μ t = ∑ i in s, cgf (X i) μ t := | |
begin | |
simp_rw cgf, | |
rw ← log_prod _ _ (λ j hj, _), | |
{ rw h_indep.mgf_sum h_meas h_int, }, | |
{ exact (mgf_pos (h_int j hj)).ne', }, | |
end | |
/-- **Chernoff bound** on the upper tail of a real random variable. -/ | |
lemma measure_ge_le_exp_mul_mgf [is_finite_measure μ] (ε : ℝ) (ht : 0 ≤ t) | |
(h_int : integrable (λ ω, exp (t * X ω)) μ) : | |
(μ {ω | ε ≤ X ω}).to_real ≤ exp (- t * ε) * mgf X μ t := | |
begin | |
cases ht.eq_or_lt with ht_zero_eq ht_pos, | |
{ rw ht_zero_eq.symm, | |
simp only [neg_zero', zero_mul, exp_zero, mgf_zero', one_mul], | |
rw ennreal.to_real_le_to_real (measure_ne_top μ _) (measure_ne_top μ _), | |
exact measure_mono (set.subset_univ _), }, | |
calc (μ {ω | ε ≤ X ω}).to_real | |
= (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).to_real : | |
begin | |
congr' with ω, | |
simp only [exp_le_exp, eq_iff_iff], | |
exact ⟨λ h, mul_le_mul_of_nonneg_left h ht_pos.le, λ h, le_of_mul_le_mul_left h ht_pos⟩, | |
end | |
... ≤ (exp (t * ε))⁻¹ * μ[λ ω, exp (t * X ω)] : | |
begin | |
have : exp (t * ε) * (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).to_real | |
≤ μ[λ ω, exp (t * X ω)], | |
from mul_meas_ge_le_integral_of_nonneg (λ x, (exp_pos _).le) h_int _, | |
rwa [mul_comm (exp (t * ε))⁻¹, ← div_eq_mul_inv, le_div_iff' (exp_pos _)], | |
end | |
... = exp (- t * ε) * mgf X μ t : by { rw [neg_mul, exp_neg], refl, }, | |
end | |
/-- **Chernoff bound** on the lower tail of a real random variable. -/ | |
lemma measure_le_le_exp_mul_mgf [is_finite_measure μ] (ε : ℝ) (ht : t ≤ 0) | |
(h_int : integrable (λ ω, exp (t * X ω)) μ) : | |
(μ {ω | X ω ≤ ε}).to_real ≤ exp (- t * ε) * mgf X μ t := | |
begin | |
rw [← neg_neg t, ← mgf_neg, neg_neg, ← neg_mul_neg (-t)], | |
refine eq.trans_le _ (measure_ge_le_exp_mul_mgf (-ε) (neg_nonneg.mpr ht) _), | |
{ congr' with ω, | |
simp only [pi.neg_apply, neg_le_neg_iff], }, | |
{ simp_rw [pi.neg_apply, neg_mul_neg], | |
exact h_int, }, | |
end | |
/-- **Chernoff bound** on the upper tail of a real random variable. -/ | |
lemma measure_ge_le_exp_cgf [is_finite_measure μ] (ε : ℝ) (ht : 0 ≤ t) | |
(h_int : integrable (λ ω, exp (t * X ω)) μ) : | |
(μ {ω | ε ≤ X ω}).to_real ≤ exp (- t * ε + cgf X μ t) := | |
begin | |
refine (measure_ge_le_exp_mul_mgf ε ht h_int).trans _, | |
rw exp_add, | |
exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le, | |
end | |
/-- **Chernoff bound** on the lower tail of a real random variable. -/ | |
lemma measure_le_le_exp_cgf [is_finite_measure μ] (ε : ℝ) (ht : t ≤ 0) | |
(h_int : integrable (λ ω, exp (t * X ω)) μ) : | |
(μ {ω | X ω ≤ ε}).to_real ≤ exp (- t * ε + cgf X μ t) := | |
begin | |
refine (measure_le_le_exp_mul_mgf ε ht h_int).trans _, | |
rw exp_add, | |
exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le, | |
end | |
end moment_generating_function | |
end probability_theory | |