Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
62.2 kB
/-
Copyright (c) 2021 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import order.well_founded_set
import algebra.big_operators.finprod
import ring_theory.valuation.basic
import algebra.module.pi
import ring_theory.power_series.basic
import data.finsupp.pwo
/-!
# Hahn Series
If `Γ` is ordered and `R` has zero, then `hahn_series Γ R` consists of formal series over `Γ` with
coefficients in `R`, whose supports are partially well-ordered. With further structure on `R` and
`Γ`, we can add further structure on `hahn_series Γ R`, with the most studied case being when `Γ` is
a linearly ordered abelian group and `R` is a field, in which case `hahn_series Γ R` is a
valued field, with value group `Γ`.
These generalize Laurent series (with value group `ℤ`), and Laurent series are implemented that way
in the file `ring_theory/laurent_series`.
## Main Definitions
* If `Γ` is ordered and `R` has zero, then `hahn_series Γ R` consists of
formal series over `Γ` with coefficients in `R`, whose supports are partially well-ordered.
* If `R` is a (commutative) additive monoid or group, then so is `hahn_series Γ R`.
* If `R` is a (comm_)(semi)ring, then so is `hahn_series Γ R`.
* `hahn_series.add_val Γ R` defines an `add_valuation` on `hahn_series Γ R` when `Γ` is linearly
ordered.
* A `hahn_series.summable_family` is a family of Hahn series such that the union of their supports
is well-founded and only finitely many are nonzero at any given coefficient. They have a formal
sum, `hahn_series.summable_family.hsum`, which can be bundled as a `linear_map` as
`hahn_series.summable_family.lsum`. Note that this is different from `summable` in the valuation
topology, because there are topologically summable families that do not satisfy the axioms of
`hahn_series.summable_family`, and formally summable families whose sums do not converge
topologically.
* Laurent series over `R` are implemented as `hahn_series ℤ R` in the file
`ring_theory/laurent_series`.
## TODO
* Build an API for the variable `X` (defined to be `single 1 1 : hahn_series Γ R`) in analogy to
`X : R[X]` and `X : power_series R`
## References
- [J. van der Hoeven, *Operators on Generalized Power Series*][van_der_hoeven]
-/
open finset function
open_locale big_operators classical pointwise polynomial
noncomputable theory
/-- If `Γ` is linearly ordered and `R` has zero, then `hahn_series Γ R` consists of
formal series over `Γ` with coefficients in `R`, whose supports are well-founded. -/
@[ext]
structure hahn_series (Γ : Type*) (R : Type*) [partial_order Γ] [has_zero R] :=
(coeff : Γ → R)
(is_pwo_support' : (support coeff).is_pwo)
variables {Γ : Type*} {R : Type*}
namespace hahn_series
section zero
variables [partial_order Γ] [has_zero R]
lemma coeff_injective : injective (coeff : hahn_series Γ R → (Γ → R)) := ext
@[simp] lemma coeff_inj {x y : hahn_series Γ R} : x.coeff = y.coeff ↔ x = y :=
coeff_injective.eq_iff
/-- The support of a Hahn series is just the set of indices whose coefficients are nonzero.
Notably, it is well-founded. -/
def support (x : hahn_series Γ R) : set Γ := support x.coeff
@[simp]
lemma is_pwo_support (x : hahn_series Γ R) : x.support.is_pwo := x.is_pwo_support'
@[simp]
lemma is_wf_support (x : hahn_series Γ R) : x.support.is_wf := x.is_pwo_support.is_wf
@[simp]
lemma mem_support (x : hahn_series Γ R) (a : Γ) : a ∈ x.support ↔ x.coeff a ≠ 0 := iff.refl _
instance : has_zero (hahn_series Γ R) :=
⟨{ coeff := 0,
is_pwo_support' := by simp }⟩
instance : inhabited (hahn_series Γ R) := ⟨0
instance [subsingleton R] : subsingleton (hahn_series Γ R) :=
⟨λ a b, a.ext b (subsingleton.elim _ _)⟩
@[simp] lemma zero_coeff {a : Γ} : (0 : hahn_series Γ R).coeff a = 0 := rfl
@[simp] lemma coeff_fun_eq_zero_iff {x : hahn_series Γ R} : x.coeff = 0 ↔ x = 0 :=
coeff_injective.eq_iff' rfl
lemma ne_zero_of_coeff_ne_zero {x : hahn_series Γ R} {g : Γ} (h : x.coeff g ≠ 0) :
x ≠ 0 :=
mt (λ x0, (x0.symm ▸ zero_coeff : x.coeff g = 0)) h
@[simp] lemma support_zero : support (0 : hahn_series Γ R) = ∅ := function.support_zero
@[simp] lemma support_nonempty_iff {x : hahn_series Γ R} : x.support.nonempty ↔ x ≠ 0 :=
by rw [support, support_nonempty_iff, ne.def, coeff_fun_eq_zero_iff]
@[simp] lemma support_eq_empty_iff {x : hahn_series Γ R} : x.support = ∅ ↔ x = 0 :=
support_eq_empty_iff.trans coeff_fun_eq_zero_iff
/-- `single a r` is the Hahn series which has coefficient `r` at `a` and zero otherwise. -/
def single (a : Γ) : zero_hom R (hahn_series Γ R) :=
{ to_fun := λ r, { coeff := pi.single a r,
is_pwo_support' := (set.is_pwo_singleton a).mono pi.support_single_subset },
map_zero' := ext _ _ (pi.single_zero _) }
variables {a b : Γ} {r : R}
@[simp]
theorem single_coeff_same (a : Γ) (r : R) : (single a r).coeff a = r := pi.single_eq_same a r
@[simp]
theorem single_coeff_of_ne (h : b ≠ a) : (single a r).coeff b = 0 := pi.single_eq_of_ne h r
theorem single_coeff : (single a r).coeff b = if (b = a) then r else 0 :=
by { split_ifs with h; simp [h] }
@[simp]
lemma support_single_of_ne (h : r ≠ 0) : support (single a r) = {a} :=
pi.support_single_of_ne h
lemma support_single_subset : support (single a r) ⊆ {a} :=
pi.support_single_subset
lemma eq_of_mem_support_single {b : Γ} (h : b ∈ support (single a r)) : b = a :=
support_single_subset h
@[simp]
lemma single_eq_zero : (single a (0 : R)) = 0 := (single a).map_zero
lemma single_injective (a : Γ) : function.injective (single a : R → hahn_series Γ R) :=
λ r s rs, by rw [← single_coeff_same a r, ← single_coeff_same a s, rs]
lemma single_ne_zero (h : r ≠ 0) : single a r ≠ 0 :=
λ con, h (single_injective a (con.trans single_eq_zero.symm))
@[simp] lemma single_eq_zero_iff {a : Γ} {r : R} :
single a r = 0 ↔ r = 0 :=
begin
split,
{ contrapose!,
exact single_ne_zero },
{ simp {contextual := tt} }
end
instance [nonempty Γ] [nontrivial R] : nontrivial (hahn_series Γ R) :=
⟨begin
obtain ⟨r, s, rs⟩ := exists_pair_ne R,
inhabit Γ,
refine ⟨single (arbitrary Γ) r, single (arbitrary Γ) s, λ con, rs _⟩,
rw [← single_coeff_same (arbitrary Γ) r, con, single_coeff_same],
end⟩
section order
variable [has_zero Γ]
/-- The order of a nonzero Hahn series `x` is a minimal element of `Γ` where `x` has a
nonzero coefficient, the order of 0 is 0. -/
def order (x : hahn_series Γ R) : Γ :=
if h : x = 0 then 0 else x.is_wf_support.min (support_nonempty_iff.2 h)
@[simp]
lemma order_zero : order (0 : hahn_series Γ R) = 0 := dif_pos rfl
lemma order_of_ne {x : hahn_series Γ R} (hx : x ≠ 0) :
order x = x.is_wf_support.min (support_nonempty_iff.2 hx) := dif_neg hx
lemma coeff_order_ne_zero {x : hahn_series Γ R} (hx : x ≠ 0) :
x.coeff x.order ≠ 0 :=
begin
rw order_of_ne hx,
exact x.is_wf_support.min_mem (support_nonempty_iff.2 hx)
end
lemma order_le_of_coeff_ne_zero {Γ} [linear_ordered_cancel_add_comm_monoid Γ]
{x : hahn_series Γ R} {g : Γ} (h : x.coeff g ≠ 0) :
x.order ≤ g :=
le_trans (le_of_eq (order_of_ne (ne_zero_of_coeff_ne_zero h)))
(set.is_wf.min_le _ _ ((mem_support _ _).2 h))
@[simp]
lemma order_single (h : r ≠ 0) : (single a r).order = a :=
(order_of_ne (single_ne_zero h)).trans (support_single_subset ((single a r).is_wf_support.min_mem
(support_nonempty_iff.2 (single_ne_zero h))))
lemma coeff_eq_zero_of_lt_order {x : hahn_series Γ R} {i : Γ} (hi : i < x.order) : x.coeff i = 0 :=
begin
rcases eq_or_ne x 0 with rfl|hx,
{ simp },
contrapose! hi,
rw [←ne.def, ←mem_support] at hi,
rw [order_of_ne hx],
exact set.is_wf.not_lt_min _ _ hi
end
end order
section domain
variables {Γ' : Type*} [partial_order Γ']
/-- Extends the domain of a `hahn_series` by an `order_embedding`. -/
def emb_domain (f : Γ ↪o Γ') : hahn_series Γ R → hahn_series Γ' R :=
λ x, { coeff := λ (b : Γ'),
if h : b ∈ f '' x.support then x.coeff (classical.some h) else 0,
is_pwo_support' := (x.is_pwo_support.image_of_monotone f.monotone).mono (λ b hb, begin
contrapose! hb,
rw [function.mem_support, dif_neg hb, not_not],
end) }
@[simp]
lemma emb_domain_coeff {f : Γ ↪o Γ'} {x : hahn_series Γ R} {a : Γ} :
(emb_domain f x).coeff (f a) = x.coeff a :=
begin
rw emb_domain,
dsimp only,
by_cases ha : a ∈ x.support,
{ rw dif_pos (set.mem_image_of_mem f ha),
exact congr rfl (f.injective (classical.some_spec (set.mem_image_of_mem f ha)).2) },
{ rw [dif_neg, not_not.1 (λ c, ha ((mem_support _ _).2 c))],
contrapose! ha,
obtain ⟨b, hb1, hb2⟩ := (set.mem_image _ _ _).1 ha,
rwa f.injective hb2 at hb1 }
end
@[simp]
lemma emb_domain_mk_coeff {f : Γ → Γ'}
(hfi : function.injective f) (hf : ∀ g g' : Γ, f g ≤ f g' ↔ g ≤ g')
{x : hahn_series Γ R} {a : Γ} :
(emb_domain ⟨⟨f, hfi⟩, hf⟩ x).coeff (f a) = x.coeff a :=
emb_domain_coeff
lemma emb_domain_notin_image_support {f : Γ ↪o Γ'} {x : hahn_series Γ R} {b : Γ'}
(hb : b ∉ f '' x.support) : (emb_domain f x).coeff b = 0 :=
dif_neg hb
lemma support_emb_domain_subset {f : Γ ↪o Γ'} {x : hahn_series Γ R} :
support (emb_domain f x) ⊆ f '' x.support :=
begin
intros g hg,
contrapose! hg,
rw [mem_support, emb_domain_notin_image_support hg, not_not],
end
lemma emb_domain_notin_range {f : Γ ↪o Γ'} {x : hahn_series Γ R} {b : Γ'}
(hb : b ∉ set.range f) : (emb_domain f x).coeff b = 0 :=
emb_domain_notin_image_support (λ con, hb (set.image_subset_range _ _ con))
@[simp]
lemma emb_domain_zero {f : Γ ↪o Γ'} : emb_domain f (0 : hahn_series Γ R) = 0 :=
by { ext, simp [emb_domain_notin_image_support] }
@[simp]
lemma emb_domain_single {f : Γ ↪o Γ'} {g : Γ} {r : R} :
emb_domain f (single g r) = single (f g) r :=
begin
ext g',
by_cases h : g' = f g,
{ simp [h] },
rw [emb_domain_notin_image_support, single_coeff_of_ne h],
by_cases hr : r = 0,
{ simp [hr] },
rwa [support_single_of_ne hr, set.image_singleton, set.mem_singleton_iff],
end
lemma emb_domain_injective {f : Γ ↪o Γ'} :
function.injective (emb_domain f : hahn_series Γ R → hahn_series Γ' R) :=
λ x y xy, begin
ext g,
rw [ext_iff, function.funext_iff] at xy,
have xyg := xy (f g),
rwa [emb_domain_coeff, emb_domain_coeff] at xyg,
end
end domain
end zero
section addition
variable [partial_order Γ]
section add_monoid
variable [add_monoid R]
instance : has_add (hahn_series Γ R) :=
{ add := λ x y, { coeff := x.coeff + y.coeff,
is_pwo_support' := (x.is_pwo_support.union y.is_pwo_support).mono
(function.support_add _ _) } }
instance : add_monoid (hahn_series Γ R) :=
{ zero := 0,
add := (+),
add_assoc := λ x y z, by { ext, apply add_assoc },
zero_add := λ x, by { ext, apply zero_add },
add_zero := λ x, by { ext, apply add_zero } }
@[simp]
lemma add_coeff' {x y : hahn_series Γ R} :
(x + y).coeff = x.coeff + y.coeff := rfl
lemma add_coeff {x y : hahn_series Γ R} {a : Γ} :
(x + y).coeff a = x.coeff a + y.coeff a := rfl
lemma support_add_subset {x y : hahn_series Γ R} :
support (x + y) ⊆ support x ∪ support y :=
λ a ha, begin
rw [mem_support, add_coeff] at ha,
rw [set.mem_union, mem_support, mem_support],
contrapose! ha,
rw [ha.1, ha.2, add_zero],
end
lemma min_order_le_order_add {Γ} [linear_ordered_cancel_add_comm_monoid Γ] {x y : hahn_series Γ R}
(hxy : x + y ≠ 0) :
min x.order y.order ≤ (x + y).order :=
begin
by_cases hx : x = 0, { simp [hx], },
by_cases hy : y = 0, { simp [hy], },
rw [order_of_ne hx, order_of_ne hy, order_of_ne hxy],
refine le_trans _ (set.is_wf.min_le_min_of_subset support_add_subset),
{ exact x.is_wf_support.union y.is_wf_support },
{ exact set.nonempty.mono (set.subset_union_left _ _) (support_nonempty_iff.2 hx) },
rw set.is_wf.min_union,
end
/-- `single` as an additive monoid/group homomorphism -/
@[simps] def single.add_monoid_hom (a : Γ) : R →+ (hahn_series Γ R) :=
{ map_add' := λ x y, by { ext b, by_cases h : b = a; simp [h] },
..single a }
/-- `coeff g` as an additive monoid/group homomorphism -/
@[simps] def coeff.add_monoid_hom (g : Γ) : (hahn_series Γ R) →+ R :=
{ to_fun := λ f, f.coeff g,
map_zero' := zero_coeff,
map_add' := λ x y, add_coeff }
section domain
variables {Γ' : Type*} [partial_order Γ']
lemma emb_domain_add (f : Γ ↪o Γ') (x y : hahn_series Γ R) :
emb_domain f (x + y) = emb_domain f x + emb_domain f y :=
begin
ext g,
by_cases hg : g ∈ set.range f,
{ obtain ⟨a, rfl⟩ := hg,
simp },
{ simp [emb_domain_notin_range, hg] }
end
end domain
end add_monoid
instance [add_comm_monoid R] : add_comm_monoid (hahn_series Γ R) :=
{ add_comm := λ x y, by { ext, apply add_comm }
.. hahn_series.add_monoid }
section add_group
variable [add_group R]
instance : add_group (hahn_series Γ R) :=
{ neg := λ x, { coeff := λ a, - x.coeff a,
is_pwo_support' := by { rw function.support_neg,
exact x.is_pwo_support }, },
add_left_neg := λ x, by { ext, apply add_left_neg },
.. hahn_series.add_monoid }
@[simp]
lemma neg_coeff' {x : hahn_series Γ R} : (- x).coeff = - x.coeff := rfl
lemma neg_coeff {x : hahn_series Γ R} {a : Γ} : (- x).coeff a = - x.coeff a := rfl
@[simp]
lemma support_neg {x : hahn_series Γ R} : (- x).support = x.support :=
by { ext, simp }
@[simp]
lemma sub_coeff' {x y : hahn_series Γ R} :
(x - y).coeff = x.coeff - y.coeff := by { ext, simp [sub_eq_add_neg] }
lemma sub_coeff {x y : hahn_series Γ R} {a : Γ} :
(x - y).coeff a = x.coeff a - y.coeff a := by simp
end add_group
instance [add_comm_group R] : add_comm_group (hahn_series Γ R) :=
{ .. hahn_series.add_comm_monoid,
.. hahn_series.add_group }
end addition
section distrib_mul_action
variables [partial_order Γ] {V : Type*} [monoid R] [add_monoid V] [distrib_mul_action R V]
instance : has_smul R (hahn_series Γ V) :=
⟨λ r x, { coeff := r • x.coeff,
is_pwo_support' := x.is_pwo_support.mono (function.support_smul_subset_right r x.coeff) }⟩
@[simp]
lemma smul_coeff {r : R} {x : hahn_series Γ V} {a : Γ} : (r • x).coeff a = r • (x.coeff a) := rfl
instance : distrib_mul_action R (hahn_series Γ V) :=
{ smul := (•),
one_smul := λ _, by { ext, simp },
smul_zero := λ _, by { ext, simp },
smul_add := λ _ _ _, by { ext, simp [smul_add] },
mul_smul := λ _ _ _, by { ext, simp [mul_smul] } }
variables {S : Type*} [monoid S] [distrib_mul_action S V]
instance [has_smul R S] [is_scalar_tower R S V] :
is_scalar_tower R S (hahn_series Γ V) :=
⟨λ r s a, by { ext, simp }⟩
instance [smul_comm_class R S V] :
smul_comm_class R S (hahn_series Γ V) :=
⟨λ r s a, by { ext, simp [smul_comm] }⟩
end distrib_mul_action
section module
variables [partial_order Γ] [semiring R] {V : Type*} [add_comm_monoid V] [module R V]
instance : module R (hahn_series Γ V) :=
{ zero_smul := λ _, by { ext, simp },
add_smul := λ _ _ _, by { ext, simp [add_smul] },
.. hahn_series.distrib_mul_action }
/-- `single` as a linear map -/
@[simps] def single.linear_map (a : Γ) : R →ₗ[R] (hahn_series Γ R) :=
{ map_smul' := λ r s, by { ext b, by_cases h : b = a; simp [h] },
..single.add_monoid_hom a }
/-- `coeff g` as a linear map -/
@[simps] def coeff.linear_map (g : Γ) : (hahn_series Γ R) →ₗ[R] R :=
{ map_smul' := λ r s, rfl,
..coeff.add_monoid_hom g }
section domain
variables {Γ' : Type*} [partial_order Γ']
lemma emb_domain_smul (f : Γ ↪o Γ') (r : R) (x : hahn_series Γ R) :
emb_domain f (r • x) = r • emb_domain f x :=
begin
ext g,
by_cases hg : g ∈ set.range f,
{ obtain ⟨a, rfl⟩ := hg,
simp },
{ simp [emb_domain_notin_range, hg] }
end
/-- Extending the domain of Hahn series is a linear map. -/
@[simps] def emb_domain_linear_map (f : Γ ↪o Γ') : hahn_series Γ R →ₗ[R] hahn_series Γ' R :=
{ to_fun := emb_domain f, map_add' := emb_domain_add f, map_smul' := emb_domain_smul f }
end domain
end module
section multiplication
variable [ordered_cancel_add_comm_monoid Γ]
instance [has_zero R] [has_one R] : has_one (hahn_series Γ R) :=
⟨single 0 1
@[simp]
lemma one_coeff [has_zero R] [has_one R] {a : Γ} :
(1 : hahn_series Γ R).coeff a = if a = 0 then 1 else 0 := single_coeff
@[simp]
lemma single_zero_one [has_zero R] [has_one R] : (single 0 (1 : R)) = 1 := rfl
@[simp]
lemma support_one [mul_zero_one_class R] [nontrivial R] :
support (1 : hahn_series Γ R) = {0} :=
support_single_of_ne one_ne_zero
@[simp]
lemma order_one [mul_zero_one_class R] :
order (1 : hahn_series Γ R) = 0 :=
begin
cases subsingleton_or_nontrivial R with h h; haveI := h,
{ rw [subsingleton.elim (1 : hahn_series Γ R) 0, order_zero] },
{ exact order_single one_ne_zero }
end
instance [non_unital_non_assoc_semiring R] : has_mul (hahn_series Γ R) :=
{ mul := λ x y, { coeff := λ a,
∑ ij in (add_antidiagonal x.is_pwo_support y.is_pwo_support a),
x.coeff ij.fst * y.coeff ij.snd,
is_pwo_support' := begin
have h : {a : Γ | ∑ (ij : Γ × Γ) in add_antidiagonal x.is_pwo_support
y.is_pwo_support a, x.coeff ij.fst * y.coeff ij.snd ≠ 0} ⊆
{a : Γ | (add_antidiagonal x.is_pwo_support y.is_pwo_support a).nonempty},
{ intros a ha,
contrapose! ha,
simp [not_nonempty_iff_eq_empty.1 ha] },
exact is_pwo_support_add_antidiagonal.mono h,
end, }, }
@[simp]
lemma mul_coeff [non_unital_non_assoc_semiring R] {x y : hahn_series Γ R} {a : Γ} :
(x * y).coeff a = ∑ ij in (add_antidiagonal x.is_pwo_support y.is_pwo_support a),
x.coeff ij.fst * y.coeff ij.snd := rfl
lemma mul_coeff_right' [non_unital_non_assoc_semiring R] {x y : hahn_series Γ R} {a : Γ} {s : set Γ}
(hs : s.is_pwo) (hys : y.support ⊆ s) :
(x * y).coeff a = ∑ ij in (add_antidiagonal x.is_pwo_support hs a),
x.coeff ij.fst * y.coeff ij.snd :=
begin
rw mul_coeff,
apply sum_subset_zero_on_sdiff (add_antidiagonal_mono_right hys) _ (λ _ _, rfl),
intros b hb,
simp only [not_and, not_not, mem_sdiff, mem_add_antidiagonal,
ne.def, set.mem_set_of_eq, mem_support] at hb,
rw [(hb.2 hb.1.1 hb.1.2.1), mul_zero]
end
lemma mul_coeff_left' [non_unital_non_assoc_semiring R] {x y : hahn_series Γ R} {a : Γ} {s : set Γ}
(hs : s.is_pwo) (hxs : x.support ⊆ s) :
(x * y).coeff a = ∑ ij in (add_antidiagonal hs y.is_pwo_support a),
x.coeff ij.fst * y.coeff ij.snd :=
begin
rw mul_coeff,
apply sum_subset_zero_on_sdiff (add_antidiagonal_mono_left hxs) _ (λ _ _, rfl),
intros b hb,
simp only [not_and, not_not, mem_sdiff, mem_add_antidiagonal,
ne.def, set.mem_set_of_eq, mem_support] at hb,
rw [not_not.1 (λ con, hb.1.2.2 (hb.2 hb.1.1 con)), zero_mul],
end
instance [non_unital_non_assoc_semiring R] : distrib (hahn_series Γ R) :=
{ left_distrib := λ x y z, begin
ext a,
have hwf := (y.is_pwo_support.union z.is_pwo_support),
rw [mul_coeff_right' hwf, add_coeff, mul_coeff_right' hwf (set.subset_union_right _ _),
mul_coeff_right' hwf (set.subset_union_left _ _)],
{ simp only [add_coeff, mul_add, sum_add_distrib] },
{ intro b,
simp only [add_coeff, ne.def, set.mem_union_eq, set.mem_set_of_eq, mem_support],
contrapose!,
intro h,
rw [h.1, h.2, add_zero], }
end,
right_distrib := λ x y z, begin
ext a,
have hwf := (x.is_pwo_support.union y.is_pwo_support),
rw [mul_coeff_left' hwf, add_coeff, mul_coeff_left' hwf (set.subset_union_right _ _),
mul_coeff_left' hwf (set.subset_union_left _ _)],
{ simp only [add_coeff, add_mul, sum_add_distrib] },
{ intro b,
simp only [add_coeff, ne.def, set.mem_union_eq, set.mem_set_of_eq, mem_support],
contrapose!,
intro h,
rw [h.1, h.2, add_zero], },
end,
.. hahn_series.has_mul,
.. hahn_series.has_add }
lemma single_mul_coeff_add [non_unital_non_assoc_semiring R] {r : R} {x : hahn_series Γ R} {a : Γ}
{b : Γ} :
((single b r) * x).coeff (a + b) = r * x.coeff a :=
begin
by_cases hr : r = 0,
{ simp [hr] },
simp only [hr, smul_coeff, mul_coeff, support_single_of_ne, ne.def, not_false_iff, smul_eq_mul],
by_cases hx : x.coeff a = 0,
{ simp only [hx, mul_zero],
rw [sum_congr _ (λ _ _, rfl), sum_empty],
ext ⟨a1, a2⟩,
simp only [not_mem_empty, not_and, set.mem_singleton_iff, not_not,
mem_add_antidiagonal, set.mem_set_of_eq, iff_false],
rintro h1 rfl h2,
rw add_comm at h1,
rw ← add_right_cancel h1 at hx,
exact h2 hx, },
transitivity ∑ (ij : Γ × Γ) in {(b, a)}, (single b r).coeff ij.fst * x.coeff ij.snd,
{ apply sum_congr _ (λ _ _, rfl),
ext ⟨a1, a2⟩,
simp only [set.mem_singleton_iff, prod.mk.inj_iff, mem_add_antidiagonal,
mem_singleton, set.mem_set_of_eq],
split,
{ rintro ⟨h1, rfl, h2⟩,
rw add_comm at h1,
refine ⟨rfl, add_right_cancel h1⟩ },
{ rintro ⟨rfl, rfl⟩,
refine ⟨add_comm _ _, _⟩,
simp [hx] } },
{ simp }
end
lemma mul_single_coeff_add [non_unital_non_assoc_semiring R] {r : R} {x : hahn_series Γ R} {a : Γ}
{b : Γ} :
(x * (single b r)).coeff (a + b) = x.coeff a * r :=
begin
by_cases hr : r = 0,
{ simp [hr] },
simp only [hr, smul_coeff, mul_coeff, support_single_of_ne, ne.def, not_false_iff, smul_eq_mul],
by_cases hx : x.coeff a = 0,
{ simp only [hx, zero_mul],
rw [sum_congr _ (λ _ _, rfl), sum_empty],
ext ⟨a1, a2⟩,
simp only [not_mem_empty, not_and, set.mem_singleton_iff, not_not,
mem_add_antidiagonal, set.mem_set_of_eq, iff_false],
rintro h1 h2 rfl,
rw ← add_right_cancel h1 at hx,
exact h2 hx, },
transitivity ∑ (ij : Γ × Γ) in {(a,b)}, x.coeff ij.fst * (single b r).coeff ij.snd,
{ apply sum_congr _ (λ _ _, rfl),
ext ⟨a1, a2⟩,
simp only [set.mem_singleton_iff, prod.mk.inj_iff, mem_add_antidiagonal,
mem_singleton, set.mem_set_of_eq],
split,
{ rintro ⟨h1, h2, rfl⟩,
refine ⟨add_right_cancel h1, rfl⟩ },
{ rintro ⟨rfl, rfl⟩,
simp [hx] } },
{ simp }
end
@[simp]
lemma mul_single_zero_coeff [non_unital_non_assoc_semiring R] {r : R} {x : hahn_series Γ R}
{a : Γ} :
(x * (single 0 r)).coeff a = x.coeff a * r :=
by rw [← add_zero a, mul_single_coeff_add, add_zero]
lemma single_zero_mul_coeff [non_unital_non_assoc_semiring R] {r : R} {x : hahn_series Γ R}
{a : Γ} :
((single 0 r) * x).coeff a = r * x.coeff a :=
by rw [← add_zero a, single_mul_coeff_add, add_zero]
@[simp]
lemma single_zero_mul_eq_smul [semiring R] {r : R} {x : hahn_series Γ R} :
(single 0 r) * x = r • x :=
by { ext, exact single_zero_mul_coeff }
theorem support_mul_subset_add_support [non_unital_non_assoc_semiring R] {x y : hahn_series Γ R} :
support (x * y) ⊆ support x + support y :=
begin
apply set.subset.trans (λ x hx, _) support_add_antidiagonal_subset_add,
{ exact x.is_pwo_support },
{ exact y.is_pwo_support },
contrapose! hx,
simp only [not_nonempty_iff_eq_empty, ne.def, set.mem_set_of_eq] at hx,
simp [hx],
end
lemma mul_coeff_order_add_order {Γ} [linear_ordered_cancel_add_comm_monoid Γ]
[non_unital_non_assoc_semiring R]
(x y : hahn_series Γ R) :
(x * y).coeff (x.order + y.order) = x.coeff x.order * y.coeff y.order :=
begin
by_cases hx : x = 0, { simp [hx], },
by_cases hy : y = 0, { simp [hy], },
rw [order_of_ne hx, order_of_ne hy, mul_coeff, finset.add_antidiagonal_min_add_min,
finset.sum_singleton],
end
private lemma mul_assoc' [non_unital_semiring R] (x y z : hahn_series Γ R) :
x * y * z = x * (y * z) :=
begin
ext b,
rw [mul_coeff_left' (x.is_pwo_support.add y.is_pwo_support) support_mul_subset_add_support,
mul_coeff_right' (y.is_pwo_support.add z.is_pwo_support) support_mul_subset_add_support],
simp only [mul_coeff, add_coeff, sum_mul, mul_sum, sum_sigma'],
refine sum_bij_ne_zero (λ a has ha0, ⟨⟨a.2.1, a.2.2 + a.1.2⟩, ⟨a.2.2, a.1.2⟩⟩) _ _ _ _,
{ rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H1 H2,
simp only [true_and, set.image2_add, eq_self_iff_true, mem_add_antidiagonal, ne.def,
set.image_prod, mem_sigma, set.mem_set_of_eq] at H1 H2 ⊢,
obtain ⟨⟨rfl, ⟨H3, nz⟩⟩, ⟨rfl, nx, ny⟩⟩ := H1,
refine ⟨⟨(add_assoc _ _ _).symm, nx, set.add_mem_add ny nz⟩, ny, nz⟩ },
{ rintros ⟨⟨i1,j1⟩, ⟨k1,l1⟩⟩ ⟨⟨i2,j2⟩, ⟨k2,l2⟩⟩ H1 H2 H3 H4 H5,
simp only [set.image2_add, prod.mk.inj_iff, mem_add_antidiagonal, ne.def,
set.image_prod, mem_sigma, set.mem_set_of_eq, heq_iff_eq] at H1 H3 H5,
obtain ⟨⟨rfl, H⟩, rfl, rfl⟩ := H5,
simp only [and_true, prod.mk.inj_iff, eq_self_iff_true, heq_iff_eq],
exact add_right_cancel (H1.1.1.trans H3.1.1.symm) },
{ rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H1 H2,
simp only [exists_prop, set.image2_add, prod.mk.inj_iff, mem_add_antidiagonal,
sigma.exists, ne.def, set.image_prod, mem_sigma, set.mem_set_of_eq, heq_iff_eq,
prod.exists] at H1 H2 ⊢,
obtain ⟨⟨rfl, nx, H⟩, rfl, ny, nz⟩ := H1,
exact ⟨i + k, l, i, k, ⟨⟨add_assoc _ _ _, set.add_mem_add nx ny, nz⟩, rfl, nx, ny⟩,
λ con, H2 ((mul_assoc _ _ _).symm.trans con), ⟨rfl, rfl⟩, rfl, rfl⟩ },
{ rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H1 H2,
simp [mul_assoc], }
end
instance [non_unital_non_assoc_semiring R] : non_unital_non_assoc_semiring (hahn_series Γ R) :=
{ zero := 0,
add := (+),
mul := (*),
zero_mul := λ _, by { ext, simp },
mul_zero := λ _, by { ext, simp },
.. hahn_series.add_comm_monoid,
.. hahn_series.distrib }
instance [non_unital_semiring R] : non_unital_semiring (hahn_series Γ R) :=
{ zero := 0,
add := (+),
mul := (*),
mul_assoc := mul_assoc',
.. hahn_series.non_unital_non_assoc_semiring }
instance [non_assoc_semiring R] : non_assoc_semiring (hahn_series Γ R) :=
{ zero := 0,
one := 1,
add := (+),
mul := (*),
one_mul := λ x, by { ext, exact single_zero_mul_coeff.trans (one_mul _) },
mul_one := λ x, by { ext, exact mul_single_zero_coeff.trans (mul_one _) },
.. add_monoid_with_one.unary,
.. hahn_series.non_unital_non_assoc_semiring }
instance [semiring R] : semiring (hahn_series Γ R) :=
{ zero := 0,
one := 1,
add := (+),
mul := (*),
.. hahn_series.non_assoc_semiring,
.. hahn_series.non_unital_semiring }
instance [non_unital_comm_semiring R] : non_unital_comm_semiring (hahn_series Γ R) :=
{ mul_comm := λ x y, begin
ext,
simp_rw [mul_coeff, mul_comm],
refine sum_bij (λ a ha, ⟨a.2, a.1⟩) _ (λ a ha, by simp) _ _,
{ intros a ha,
simp only [mem_add_antidiagonal, ne.def, set.mem_set_of_eq] at ha ⊢,
obtain ⟨h1, h2, h3⟩ := ha,
refine ⟨_, h3, h2⟩,
rw [add_comm, h1], },
{ rintros ⟨a1, a2⟩ ⟨b1, b2⟩ ha hb hab,
rw prod.ext_iff at *,
refine ⟨hab.2, hab.1⟩, },
{ intros a ha,
refine ⟨a.swap, _, by simp⟩,
simp only [prod.fst_swap, mem_add_antidiagonal, prod.snd_swap,
ne.def, set.mem_set_of_eq] at ha ⊢,
exact ⟨(add_comm _ _).trans ha.1, ha.2.2, ha.2.1⟩ }
end,
.. hahn_series.non_unital_semiring }
instance [comm_semiring R] : comm_semiring (hahn_series Γ R) :=
{ .. hahn_series.non_unital_comm_semiring,
.. hahn_series.semiring }
instance [non_unital_non_assoc_ring R] : non_unital_non_assoc_ring (hahn_series Γ R) :=
{ .. hahn_series.non_unital_non_assoc_semiring,
.. hahn_series.add_group }
instance [non_unital_ring R] : non_unital_ring (hahn_series Γ R) :=
{ .. hahn_series.non_unital_non_assoc_ring,
.. hahn_series.non_unital_semiring }
instance [non_assoc_ring R] : non_assoc_ring (hahn_series Γ R) :=
{ .. hahn_series.non_unital_non_assoc_ring,
.. hahn_series.non_assoc_semiring }
instance [ring R] : ring (hahn_series Γ R) :=
{ .. hahn_series.semiring,
.. hahn_series.add_comm_group }
instance [non_unital_comm_ring R] : non_unital_comm_ring (hahn_series Γ R) :=
{ .. hahn_series.non_unital_comm_semiring,
.. hahn_series.non_unital_ring }
instance [comm_ring R] : comm_ring (hahn_series Γ R) :=
{ .. hahn_series.comm_semiring,
.. hahn_series.ring }
instance {Γ} [linear_ordered_cancel_add_comm_monoid Γ] [non_unital_non_assoc_semiring R]
[no_zero_divisors R] : no_zero_divisors (hahn_series Γ R) :=
{ eq_zero_or_eq_zero_of_mul_eq_zero := λ x y xy, begin
by_cases hx : x = 0,
{ left, exact hx },
right,
contrapose! xy,
rw [hahn_series.ext_iff, function.funext_iff, not_forall],
refine ⟨x.order + y.order, _⟩,
rw [mul_coeff_order_add_order x y, zero_coeff, mul_eq_zero],
simp [coeff_order_ne_zero, hx, xy],
end }
instance {Γ} [linear_ordered_cancel_add_comm_monoid Γ] [ring R] [is_domain R] :
is_domain (hahn_series Γ R) :=
{ .. hahn_series.no_zero_divisors,
.. hahn_series.nontrivial,
.. hahn_series.ring }
@[simp]
lemma order_mul {Γ} [linear_ordered_cancel_add_comm_monoid Γ] [non_unital_non_assoc_semiring R]
[no_zero_divisors R] {x y : hahn_series Γ R} (hx : x ≠ 0) (hy : y ≠ 0) :
(x * y).order = x.order + y.order :=
begin
apply le_antisymm,
{ apply order_le_of_coeff_ne_zero,
rw [mul_coeff_order_add_order x y],
exact mul_ne_zero (coeff_order_ne_zero hx) (coeff_order_ne_zero hy) },
{ rw [order_of_ne hx, order_of_ne hy, order_of_ne (mul_ne_zero hx hy), ← set.is_wf.min_add],
exact set.is_wf.min_le_min_of_subset (support_mul_subset_add_support) },
end
@[simp]
lemma order_pow {Γ} [linear_ordered_cancel_add_comm_monoid Γ] [semiring R] [no_zero_divisors R]
(x : hahn_series Γ R) (n : ℕ) : (x ^ n).order = n • x.order :=
begin
induction n with h IH,
{ simp },
rcases eq_or_ne x 0 with rfl|hx,
{ simp },
rw [pow_succ', order_mul (pow_ne_zero _ hx) hx, succ_nsmul', IH]
end
section non_unital_non_assoc_semiring
variables [non_unital_non_assoc_semiring R]
@[simp]
lemma single_mul_single {a b : Γ} {r s : R} :
single a r * single b s = single (a + b) (r * s) :=
begin
ext x,
by_cases h : x = a + b,
{ rw [h, mul_single_coeff_add],
simp },
{ rw [single_coeff_of_ne h, mul_coeff, sum_eq_zero],
rintros ⟨y1, y2⟩ hy,
obtain ⟨rfl, hy1, hy2⟩ := mem_add_antidiagonal.1 hy,
rw [eq_of_mem_support_single hy1, eq_of_mem_support_single hy2] at h,
exact (h rfl).elim }
end
end non_unital_non_assoc_semiring
section non_assoc_semiring
variables [non_assoc_semiring R]
/-- `C a` is the constant Hahn Series `a`. `C` is provided as a ring homomorphism. -/
@[simps] def C : R →+* (hahn_series Γ R) :=
{ to_fun := single 0,
map_zero' := single_eq_zero,
map_one' := rfl,
map_add' := λ x y, by { ext a, by_cases h : a = 0; simp [h] },
map_mul' := λ x y, by rw [single_mul_single, zero_add] }
@[simp]
lemma C_zero : C (0 : R) = (0 : hahn_series Γ R) := C.map_zero
@[simp]
lemma C_one : C (1 : R) = (1 : hahn_series Γ R) := C.map_one
lemma C_injective : function.injective (C : R → hahn_series Γ R) :=
begin
intros r s rs,
rw [ext_iff, function.funext_iff] at rs,
have h := rs 0,
rwa [C_apply, single_coeff_same, C_apply, single_coeff_same] at h,
end
lemma C_ne_zero {r : R} (h : r ≠ 0) : (C r : hahn_series Γ R) ≠ 0 :=
begin
contrapose! h,
rw ← C_zero at h,
exact C_injective h,
end
lemma order_C {r : R} : order (C r : hahn_series Γ R) = 0 :=
begin
by_cases h : r = 0,
{ rw [h, C_zero, order_zero] },
{ exact order_single h }
end
end non_assoc_semiring
section semiring
variables [semiring R]
lemma C_mul_eq_smul {r : R} {x : hahn_series Γ R} : C r * x = r • x :=
single_zero_mul_eq_smul
end semiring
section domain
variables {Γ' : Type*} [ordered_cancel_add_comm_monoid Γ']
lemma emb_domain_mul [non_unital_non_assoc_semiring R]
(f : Γ ↪o Γ') (hf : ∀ x y, f (x + y) = f x + f y) (x y : hahn_series Γ R) :
emb_domain f (x * y) = emb_domain f x * emb_domain f y :=
begin
ext g,
by_cases hg : g ∈ set.range f,
{ obtain ⟨g, rfl⟩ := hg,
simp only [mul_coeff, emb_domain_coeff],
transitivity ∑ ij in (add_antidiagonal x.is_pwo_support y.is_pwo_support g).map
(function.embedding.prod_map f.to_embedding f.to_embedding),
(emb_domain f x).coeff (ij.1) *
(emb_domain f y).coeff (ij.2),
{ simp },
apply sum_subset,
{ rintro ⟨i, j⟩ hij,
simp only [exists_prop, mem_map, prod.mk.inj_iff,
mem_add_antidiagonal, ne.def, function.embedding.coe_prod_map, mem_support,
prod.exists] at hij,
obtain ⟨i, j, ⟨rfl, hx, hy⟩, rfl, rfl⟩ := hij,
simp [hx, hy, hf], },
{ rintro ⟨_, _⟩ h1 h2,
contrapose! h2,
obtain ⟨i, hi, rfl⟩ := support_emb_domain_subset (ne_zero_and_ne_zero_of_mul h2).1,
obtain ⟨j, hj, rfl⟩ := support_emb_domain_subset (ne_zero_and_ne_zero_of_mul h2).2,
simp only [exists_prop, mem_map, prod.mk.inj_iff,
mem_add_antidiagonal, ne.def, function.embedding.coe_prod_map, mem_support,
prod.exists],
simp only [mem_add_antidiagonal, emb_domain_coeff, ne.def, mem_support, ← hf] at h1,
exact ⟨i, j, ⟨f.injective h1.1, h1.2⟩, rfl⟩, } },
{ rw [emb_domain_notin_range hg, eq_comm],
contrapose! hg,
obtain ⟨_, _, hi, hj, rfl⟩ := support_mul_subset_add_support ((mem_support _ _).2 hg),
obtain ⟨i, hi, rfl⟩ := support_emb_domain_subset hi,
obtain ⟨j, hj, rfl⟩ := support_emb_domain_subset hj,
refine ⟨i + j, hf i j⟩, }
end
lemma emb_domain_one [non_assoc_semiring R] (f : Γ ↪o Γ') (hf : f 0 = 0):
emb_domain f (1 : hahn_series Γ R) = (1 : hahn_series Γ' R) :=
emb_domain_single.trans $ hf.symm ▸ rfl
/-- Extending the domain of Hahn series is a ring homomorphism. -/
@[simps] def emb_domain_ring_hom [non_assoc_semiring R] (f : Γ →+ Γ') (hfi : function.injective f)
(hf : ∀ g g' : Γ, f g ≤ f g' ↔ g ≤ g') :
hahn_series Γ R →+* hahn_series Γ' R :=
{ to_fun := emb_domain ⟨⟨f, hfi⟩, hf⟩,
map_one' := emb_domain_one _ f.map_zero,
map_mul' := emb_domain_mul _ f.map_add,
map_zero' := emb_domain_zero,
map_add' := emb_domain_add _}
lemma emb_domain_ring_hom_C [non_assoc_semiring R] {f : Γ →+ Γ'} {hfi : function.injective f}
{hf : ∀ g g' : Γ, f g ≤ f g' ↔ g ≤ g'} {r : R} :
emb_domain_ring_hom f hfi hf (C r) = C r :=
emb_domain_single.trans (by simp)
end domain
section algebra
variables [comm_semiring R] {A : Type*} [semiring A] [algebra R A]
instance : algebra R (hahn_series Γ A) :=
{ to_ring_hom := C.comp (algebra_map R A),
smul_def' := λ r x, by { ext, simp },
commutes' := λ r x, by { ext, simp only [smul_coeff, single_zero_mul_eq_smul, ring_hom.coe_comp,
ring_hom.to_fun_eq_coe, C_apply, function.comp_app, algebra_map_smul, mul_single_zero_coeff],
rw [← algebra.commutes, algebra.smul_def], }, }
theorem C_eq_algebra_map : C = (algebra_map R (hahn_series Γ R)) := rfl
theorem algebra_map_apply {r : R} :
algebra_map R (hahn_series Γ A) r = C (algebra_map R A r) := rfl
instance [nontrivial Γ] [nontrivial R] : nontrivial (subalgebra R (hahn_series Γ R)) :=
⟨⟨⊥, ⊤, begin
rw [ne.def, set_like.ext_iff, not_forall],
obtain ⟨a, ha⟩ := exists_ne (0 : Γ),
refine ⟨single a 1, _⟩,
simp only [algebra.mem_bot, not_exists, set.mem_range, iff_true, algebra.mem_top],
intros x,
rw [ext_iff, function.funext_iff, not_forall],
refine ⟨a, _⟩,
rw [single_coeff_same, algebra_map_apply, C_apply, single_coeff_of_ne ha],
exact zero_ne_one
end⟩⟩
section domain
variables {Γ' : Type*} [ordered_cancel_add_comm_monoid Γ']
/-- Extending the domain of Hahn series is an algebra homomorphism. -/
@[simps] def emb_domain_alg_hom (f : Γ →+ Γ') (hfi : function.injective f)
(hf : ∀ g g' : Γ, f g ≤ f g' ↔ g ≤ g') :
hahn_series Γ A →ₐ[R] hahn_series Γ' A :=
{ commutes' := λ r, emb_domain_ring_hom_C,
.. emb_domain_ring_hom f hfi hf }
end domain
end algebra
end multiplication
section semiring
variables [semiring R]
/-- The ring `hahn_series ℕ R` is isomorphic to `power_series R`. -/
@[simps] def to_power_series : (hahn_series ℕ R) ≃+* power_series R :=
{ to_fun := λ f, power_series.mk f.coeff,
inv_fun := λ f, ⟨λ n, power_series.coeff R n f, (nat.lt_wf.is_wf _).is_pwo⟩,
left_inv := λ f, by { ext, simp },
right_inv := λ f, by { ext, simp },
map_add' := λ f g, by { ext, simp },
map_mul' := λ f g, begin
ext n,
simp only [power_series.coeff_mul, power_series.coeff_mk, mul_coeff, is_pwo_support],
classical,
refine sum_filter_ne_zero.symm.trans
((sum_congr _ (λ _ _, rfl)).trans sum_filter_ne_zero),
ext m,
simp only [nat.mem_antidiagonal, and.congr_left_iff, mem_add_antidiagonal, ne.def,
and_iff_left_iff_imp, mem_filter, mem_support],
intros h1 h2,
contrapose h1,
rw ← decidable.or_iff_not_and_not at h1,
cases h1; simp [h1]
end }
lemma coeff_to_power_series {f : hahn_series ℕ R} {n : ℕ} :
power_series.coeff R n f.to_power_series = f.coeff n :=
power_series.coeff_mk _ _
lemma coeff_to_power_series_symm {f : power_series R} {n : ℕ} :
(hahn_series.to_power_series.symm f).coeff n = power_series.coeff R n f := rfl
variables (Γ) (R) [ordered_semiring Γ] [nontrivial Γ]
/-- Casts a power series as a Hahn series with coefficients from an `ordered_semiring`. -/
def of_power_series : (power_series R) →+* hahn_series Γ R :=
(hahn_series.emb_domain_ring_hom (nat.cast_add_monoid_hom Γ) nat.strict_mono_cast.injective
(λ _ _, nat.cast_le)).comp
(ring_equiv.to_ring_hom to_power_series.symm)
variables {Γ} {R}
lemma of_power_series_injective : function.injective (of_power_series Γ R) :=
emb_domain_injective.comp to_power_series.symm.injective
@[simp] lemma of_power_series_apply (x : power_series R) :
of_power_series Γ R x = hahn_series.emb_domain
⟨⟨(coe : ℕ → Γ), nat.strict_mono_cast.injective⟩, λ a b, begin
simp only [function.embedding.coe_fn_mk],
exact nat.cast_le,
end⟩ (to_power_series.symm x) := rfl
lemma of_power_series_apply_coeff (x : power_series R) (n : ℕ) :
(of_power_series Γ R x).coeff n = power_series.coeff R n x :=
by simp
@[simp] lemma of_power_series_C (r : R) :
of_power_series Γ R (power_series.C R r) = hahn_series.C r :=
begin
ext n,
simp only [C, single_coeff, of_power_series_apply, ring_hom.coe_mk],
split_ifs with hn hn,
{ subst hn,
convert @emb_domain_coeff _ _ _ _ _ _ _ _ 0; simp },
{ rw emb_domain_notin_image_support,
simp only [not_exists, set.mem_image, to_power_series_symm_apply_coeff, mem_support,
power_series.coeff_C],
intro,
simp [ne.symm hn] {contextual := tt} }
end
@[simp] lemma of_power_series_X :
of_power_series Γ R power_series.X = single 1 1 :=
begin
ext n,
simp only [single_coeff, of_power_series_apply, ring_hom.coe_mk],
split_ifs with hn hn,
{ rw hn,
convert @emb_domain_coeff _ _ _ _ _ _ _ _ 1;
simp },
{ rw emb_domain_notin_image_support,
simp only [not_exists, set.mem_image, to_power_series_symm_apply_coeff, mem_support,
power_series.coeff_X],
intro,
simp [ne.symm hn] {contextual := tt} }
end
@[simp] lemma of_power_series_X_pow {R} [comm_semiring R] (n : ℕ) :
of_power_series Γ R (power_series.X ^ n) = single (n : Γ) 1 :=
begin
rw ring_hom.map_pow,
induction n with n ih,
{ simp, refl },
rw [pow_succ, ih, of_power_series_X, mul_comm, single_mul_single, one_mul, nat.cast_succ]
end
-- Lemmas about converting hahn_series over fintype to and from mv_power_series
/-- The ring `hahn_series (σ →₀ ℕ) R` is isomorphic to `mv_power_series σ R` for a `fintype` `σ`.
We take the index set of the hahn series to be `finsupp` rather than `pi`,
even though we assume `fintype σ` as this is more natural for alignment with `mv_power_series`.
After importing `algebra.order.pi` the ring `hahn_series (σ → ℕ) R` could be constructed instead.
-/
@[simps] def to_mv_power_series {σ : Type*} [fintype σ] :
hahn_series (σ →₀ ℕ) R ≃+* mv_power_series σ R :=
{ to_fun := λ f, f.coeff,
inv_fun := λ f, ⟨(f : (σ →₀ ℕ) → R), finsupp.is_pwo _⟩,
left_inv := λ f, by { ext, simp },
right_inv := λ f, by { ext, simp },
map_add' := λ f g, by { ext, simp },
map_mul' := λ f g, begin
ext n,
simp only [mv_power_series.coeff_mul],
classical,
change (f * g).coeff n = _,
simp_rw [mul_coeff],
refine sum_filter_ne_zero.symm.trans ((sum_congr _ (λ _ _, rfl)).trans sum_filter_ne_zero),
ext m,
simp only [and.congr_left_iff, mem_add_antidiagonal, ne.def, and_iff_left_iff_imp, mem_filter,
mem_support, finsupp.mem_antidiagonal],
intros h1 h2,
contrapose h1,
rw ← decidable.or_iff_not_and_not at h1,
cases h1; simp [h1],
end }
variables {σ : Type*} [fintype σ]
lemma coeff_to_mv_power_series {f : hahn_series (σ →₀ ℕ) R} {n : σ →₀ ℕ} :
mv_power_series.coeff R n f.to_mv_power_series = f.coeff n :=
rfl
lemma coeff_to_mv_power_series_symm {f : mv_power_series σ R} {n : σ →₀ ℕ} :
(hahn_series.to_mv_power_series.symm f).coeff n = mv_power_series.coeff R n f := rfl
end semiring
section algebra
variables (R) [comm_semiring R] {A : Type*} [semiring A] [algebra R A]
/-- The `R`-algebra `hahn_series ℕ A` is isomorphic to `power_series A`. -/
@[simps] def to_power_series_alg : (hahn_series ℕ A) ≃ₐ[R] power_series A :=
{ commutes' := λ r, begin
ext n,
simp only [algebra_map_apply, power_series.algebra_map_apply, ring_equiv.to_fun_eq_coe, C_apply,
coeff_to_power_series],
cases n,
{ simp only [power_series.coeff_zero_eq_constant_coeff, single_coeff_same],
refl },
{ simp only [n.succ_ne_zero, ne.def, not_false_iff, single_coeff_of_ne],
rw [power_series.coeff_C, if_neg n.succ_ne_zero] }
end,
.. to_power_series }
variables (Γ) (R) [ordered_semiring Γ] [nontrivial Γ]
/-- Casting a power series as a Hahn series with coefficients from an `ordered_semiring`
is an algebra homomorphism. -/
@[simps] def of_power_series_alg : (power_series A) →ₐ[R] hahn_series Γ A :=
(hahn_series.emb_domain_alg_hom (nat.cast_add_monoid_hom Γ) nat.strict_mono_cast.injective
(λ _ _, nat.cast_le)).comp
(alg_equiv.to_alg_hom (to_power_series_alg R).symm)
instance power_series_algebra {S : Type*} [comm_semiring S] [algebra S (power_series R)] :
algebra S (hahn_series Γ R) :=
ring_hom.to_algebra $ (of_power_series Γ R).comp (algebra_map S (power_series R))
variables {R} {S : Type*} [comm_semiring S] [algebra S (power_series R)]
lemma algebra_map_apply' (x : S) :
algebra_map S (hahn_series Γ R) x = of_power_series Γ R (algebra_map S (power_series R) x) := rfl
@[simp] lemma _root_.polynomial.algebra_map_hahn_series_apply (f : R[X]) :
algebra_map R[X] (hahn_series Γ R) f = of_power_series Γ R f := rfl
lemma _root_.polynomial.algebra_map_hahn_series_injective :
function.injective (algebra_map R[X] (hahn_series Γ R)) :=
of_power_series_injective.comp (polynomial.coe_injective R)
end algebra
section valuation
variables (Γ R) [linear_ordered_add_comm_group Γ] [ring R] [is_domain R]
/-- The additive valuation on `hahn_series Γ R`, returning the smallest index at which
a Hahn Series has a nonzero coefficient, or `⊤` for the 0 series. -/
def add_val : add_valuation (hahn_series Γ R) (with_top Γ) :=
add_valuation.of (λ x, if x = (0 : hahn_series Γ R) then (⊤ : with_top Γ) else x.order)
(if_pos rfl)
((if_neg one_ne_zero).trans (by simp [order_of_ne]))
(λ x y, begin
by_cases hx : x = 0,
{ by_cases hy : y = 0; { simp [hx, hy] } },
{ by_cases hy : y = 0,
{ simp [hx, hy] },
{ simp only [hx, hy, support_nonempty_iff, if_neg, not_false_iff, is_wf_support],
by_cases hxy : x + y = 0,
{ simp [hxy] },
rw [if_neg hxy, ← with_top.coe_min, with_top.coe_le_coe],
exact min_order_le_order_add hxy } },
end)
(λ x y, begin
by_cases hx : x = 0,
{ simp [hx] },
by_cases hy : y = 0,
{ simp [hy] },
rw [if_neg hx, if_neg hy, if_neg (mul_ne_zero hx hy),
← with_top.coe_add, with_top.coe_eq_coe, order_mul hx hy],
end)
variables {Γ} {R}
lemma add_val_apply {x : hahn_series Γ R} :
add_val Γ R x = if x = (0 : hahn_series Γ R) then (⊤ : with_top Γ) else x.order :=
add_valuation.of_apply _
@[simp]
lemma add_val_apply_of_ne {x : hahn_series Γ R} (hx : x ≠ 0) :
add_val Γ R x = x.order :=
if_neg hx
lemma add_val_le_of_coeff_ne_zero {x : hahn_series Γ R} {g : Γ} (h : x.coeff g ≠ 0) :
add_val Γ R x ≤ g :=
begin
rw [add_val_apply_of_ne (ne_zero_of_coeff_ne_zero h), with_top.coe_le_coe],
exact order_le_of_coeff_ne_zero h
end
end valuation
lemma is_pwo_Union_support_powers
[linear_ordered_add_comm_group Γ] [ring R] [is_domain R]
{x : hahn_series Γ R} (hx : 0 < add_val Γ R x) :
(⋃ n : ℕ, (x ^ n).support).is_pwo :=
begin
apply (x.is_wf_support.is_pwo.add_submonoid_closure (λ g hg, _)).mono _,
{ exact with_top.coe_le_coe.1 (le_trans (le_of_lt hx) (add_val_le_of_coeff_ne_zero hg)) },
refine set.Union_subset (λ n, _),
induction n with n ih;
intros g hn,
{ simp only [exists_prop, and_true, set.mem_singleton_iff, set.set_of_eq_eq_singleton,
mem_support, ite_eq_right_iff, ne.def, not_false_iff, one_ne_zero,
pow_zero, not_forall, one_coeff] at hn,
rw [hn, set_like.mem_coe],
exact add_submonoid.zero_mem _ },
{ obtain ⟨i, j, hi, hj, rfl⟩ := support_mul_subset_add_support hn,
exact set_like.mem_coe.2 (add_submonoid.add_mem _ (add_submonoid.subset_closure hi) (ih hj)) }
end
section
variables (Γ) (R) [partial_order Γ] [add_comm_monoid R]
/-- An infinite family of Hahn series which has a formal coefficient-wise sum.
The requirements for this are that the union of the supports of the series is well-founded,
and that only finitely many series are nonzero at any given coefficient. -/
structure summable_family (α : Type*) :=
(to_fun : α → hahn_series Γ R)
(is_pwo_Union_support' : set.is_pwo (⋃ (a : α), (to_fun a).support))
(finite_co_support' : ∀ (g : Γ), ({a | (to_fun a).coeff g ≠ 0}).finite)
end
namespace summable_family
section add_comm_monoid
variables [partial_order Γ] [add_comm_monoid R] {α : Type*}
instance : has_coe_to_fun (summable_family Γ R α) (λ _, α → hahn_series Γ R):=
⟨to_fun⟩
lemma is_pwo_Union_support (s : summable_family Γ R α) : set.is_pwo (⋃ (a : α), (s a).support) :=
s.is_pwo_Union_support'
lemma finite_co_support (s : summable_family Γ R α) (g : Γ) :
(function.support (λ a, (s a).coeff g)).finite :=
s.finite_co_support' g
lemma coe_injective : @function.injective (summable_family Γ R α) (α → hahn_series Γ R) coe_fn
| ⟨f1, hU1, hf1⟩ ⟨f2, hU2, hf2⟩ h :=
begin
change f1 = f2 at h,
subst h,
end
@[ext]
lemma ext {s t : summable_family Γ R α} (h : ∀ (a : α), s a = t a) : s = t :=
coe_injective $ funext h
instance : has_add (summable_family Γ R α) :=
⟨λ x y, { to_fun := x + y,
is_pwo_Union_support' := (x.is_pwo_Union_support.union y.is_pwo_Union_support).mono (begin
rw ← set.Union_union_distrib,
exact set.Union_mono (λ a, support_add_subset)
end),
finite_co_support' := λ g, ((x.finite_co_support g).union (y.finite_co_support g)).subset begin
intros a ha,
change (x a).coeff g + (y a).coeff g ≠ 0 at ha,
rw [set.mem_union, function.mem_support, function.mem_support],
contrapose! ha,
rw [ha.1, ha.2, add_zero]
end }⟩
instance : has_zero (summable_family Γ R α) :=
⟨⟨0, by simp, by simp⟩⟩
instance : inhabited (summable_family Γ R α) := ⟨0
@[simp]
lemma coe_add {s t : summable_family Γ R α} : ⇑(s + t) = s + t := rfl
lemma add_apply {s t : summable_family Γ R α} {a : α} : (s + t) a = s a + t a := rfl
@[simp]
lemma coe_zero : ((0 : summable_family Γ R α) : α → hahn_series Γ R) = 0 := rfl
lemma zero_apply {a : α} : (0 : summable_family Γ R α) a = 0 := rfl
instance : add_comm_monoid (summable_family Γ R α) :=
{ add := (+),
zero := 0,
zero_add := λ s, by { ext, apply zero_add },
add_zero := λ s, by { ext, apply add_zero },
add_comm := λ s t, by { ext, apply add_comm },
add_assoc := λ r s t, by { ext, apply add_assoc } }
/-- The infinite sum of a `summable_family` of Hahn series. -/
def hsum (s : summable_family Γ R α) :
hahn_series Γ R :=
{ coeff := λ g, ∑ᶠ i, (s i).coeff g,
is_pwo_support' := s.is_pwo_Union_support.mono (λ g, begin
contrapose,
rw [set.mem_Union, not_exists, function.mem_support, not_not],
simp_rw [mem_support, not_not],
intro h,
rw [finsum_congr h, finsum_zero],
end) }
@[simp]
lemma hsum_coeff {s : summable_family Γ R α} {g : Γ} :
s.hsum.coeff g = ∑ᶠ i, (s i).coeff g := rfl
lemma support_hsum_subset {s : summable_family Γ R α} :
s.hsum.support ⊆ ⋃ (a : α), (s a).support :=
λ g hg, begin
rw [mem_support, hsum_coeff, finsum_eq_sum _ (s.finite_co_support _)] at hg,
obtain ⟨a, h1, h2⟩ := exists_ne_zero_of_sum_ne_zero hg,
rw [set.mem_Union],
exact ⟨a, h2⟩,
end
@[simp]
lemma hsum_add {s t : summable_family Γ R α} : (s + t).hsum = s.hsum + t.hsum :=
begin
ext g,
simp only [hsum_coeff, add_coeff, add_apply],
exact finsum_add_distrib (s.finite_co_support _) (t.finite_co_support _)
end
end add_comm_monoid
section add_comm_group
variables [partial_order Γ] [add_comm_group R] {α : Type*} {s t : summable_family Γ R α} {a : α}
instance : add_comm_group (summable_family Γ R α) :=
{ neg := λ s, { to_fun := λ a, - s a,
is_pwo_Union_support' := by { simp_rw [support_neg], exact s.is_pwo_Union_support' },
finite_co_support' := λ g, by { simp only [neg_coeff', pi.neg_apply, ne.def, neg_eq_zero],
exact s.finite_co_support g } },
add_left_neg := λ a, by { ext, apply add_left_neg },
.. summable_family.add_comm_monoid }
@[simp]
lemma coe_neg : ⇑(-s) = - s := rfl
lemma neg_apply : (-s) a = - (s a) := rfl
@[simp]
lemma coe_sub : ⇑(s - t) = s - t := rfl
lemma sub_apply : (s - t) a = s a - t a := rfl
end add_comm_group
section semiring
variables [ordered_cancel_add_comm_monoid Γ] [semiring R] {α : Type*}
instance : has_smul (hahn_series Γ R) (summable_family Γ R α) :=
{ smul := λ x s, { to_fun := λ a, x * (s a),
is_pwo_Union_support' := begin
apply (x.is_pwo_support.add s.is_pwo_Union_support).mono,
refine set.subset.trans (set.Union_mono (λ a, support_mul_subset_add_support)) _,
intro g,
simp only [set.mem_Union, exists_imp_distrib],
exact λ a ha, (set.add_subset_add (set.subset.refl _) (set.subset_Union _ a)) ha,
end,
finite_co_support' := λ g, begin
refine ((add_antidiagonal x.is_pwo_support s.is_pwo_Union_support g).finite_to_set.bUnion'
(λ ij hij, _)).subset (λ a ha, _),
{ exact λ ij hij, function.support (λ a, (s a).coeff ij.2) },
{ apply s.finite_co_support },
{ obtain ⟨i, j, hi, hj, rfl⟩ := support_mul_subset_add_support ha,
simp only [exists_prop, set.mem_Union, mem_add_antidiagonal,
mul_coeff, ne.def, mem_support, is_pwo_support, prod.exists],
refine ⟨i, j, mem_coe.2 (mem_add_antidiagonal.2 ⟨rfl, hi, set.mem_Union.2 ⟨a, hj⟩⟩), hj⟩, }
end } }
@[simp]
lemma smul_apply {x : hahn_series Γ R} {s : summable_family Γ R α} {a : α} :
(x • s) a = x * (s a) := rfl
instance : module (hahn_series Γ R) (summable_family Γ R α) :=
{ smul := (•),
smul_zero := λ x, ext (λ a, mul_zero _),
zero_smul := λ x, ext (λ a, zero_mul _),
one_smul := λ x, ext (λ a, one_mul _),
add_smul := λ x y s, ext (λ a, add_mul _ _ _),
smul_add := λ x s t, ext (λ a, mul_add _ _ _),
mul_smul := λ x y s, ext (λ a, mul_assoc _ _ _) }
@[simp]
lemma hsum_smul {x : hahn_series Γ R} {s : summable_family Γ R α} :
(x • s).hsum = x * s.hsum :=
begin
ext g,
simp only [mul_coeff, hsum_coeff, smul_apply],
have h : ∀ i, (s i).support ⊆ ⋃ j, (s j).support := set.subset_Union _,
refine (eq.trans (finsum_congr (λ a, _))
(finsum_sum_comm (add_antidiagonal x.is_pwo_support s.is_pwo_Union_support g)
(λ i ij, x.coeff (prod.fst ij) * (s i).coeff ij.snd) _)).trans _,
{ refine sum_subset (add_antidiagonal_mono_right (set.subset_Union _ a)) _,
rintro ⟨i, j⟩ hU ha,
rw mem_add_antidiagonal at *,
rw [not_not.1 (λ con, ha ⟨hU.1, hU.2.1, con⟩), mul_zero] },
{ rintro ⟨i, j⟩ hij,
refine (s.finite_co_support j).subset _,
simp_rw [function.support_subset_iff', function.mem_support, not_not],
intros a ha,
rw [ha, mul_zero] },
{ refine (sum_congr rfl _).trans (sum_subset (add_antidiagonal_mono_right _) _).symm,
{ rintro ⟨i, j⟩ hij,
rw mul_finsum,
apply s.finite_co_support, },
{ intros x hx,
simp only [set.mem_Union, ne.def, mem_support],
contrapose! hx,
simp [hx] },
{ rintro ⟨i, j⟩ hU ha,
rw mem_add_antidiagonal at *,
rw [← hsum_coeff, not_not.1 (λ con, ha ⟨hU.1, hU.2.1, con⟩), mul_zero] } }
end
/-- The summation of a `summable_family` as a `linear_map`. -/
@[simps] def lsum : (summable_family Γ R α) →ₗ[hahn_series Γ R] (hahn_series Γ R) :=
{ to_fun := hsum, map_add' := λ _ _, hsum_add, map_smul' := λ _ _, hsum_smul }
@[simp]
lemma hsum_sub {R : Type*} [ring R] {s t : summable_family Γ R α} :
(s - t).hsum = s.hsum - t.hsum :=
by rw [← lsum_apply, linear_map.map_sub, lsum_apply, lsum_apply]
end semiring
section of_finsupp
variables [partial_order Γ] [add_comm_monoid R] {α : Type*}
/-- A family with only finitely many nonzero elements is summable. -/
def of_finsupp (f : α →₀ (hahn_series Γ R)) :
summable_family Γ R α :=
{ to_fun := f,
is_pwo_Union_support' := begin
apply (f.support.is_pwo_sup (λ a, (f a).support) (λ a ha, (f a).is_pwo_support)).mono,
intros g hg,
obtain ⟨a, ha⟩ := set.mem_Union.1 hg,
have haf : a ∈ f.support,
{ rw [finsupp.mem_support_iff, ← support_nonempty_iff],
exact ⟨g, ha⟩ },
have h : (λ i, (f i).support) a ≤ _ := le_sup haf,
exact h ha,
end,
finite_co_support' := λ g, begin
refine f.support.finite_to_set.subset (λ a ha, _),
simp only [coeff.add_monoid_hom_apply, mem_coe, finsupp.mem_support_iff,
ne.def, function.mem_support],
contrapose! ha,
simp [ha]
end }
@[simp]
lemma coe_of_finsupp {f : α →₀ (hahn_series Γ R)} : ⇑(summable_family.of_finsupp f) = f := rfl
@[simp]
lemma hsum_of_finsupp {f : α →₀ (hahn_series Γ R)} :
(of_finsupp f).hsum = f.sum (λ a, id) :=
begin
ext g,
simp only [hsum_coeff, coe_of_finsupp, finsupp.sum, ne.def],
simp_rw [← coeff.add_monoid_hom_apply, id.def],
rw [add_monoid_hom.map_sum, finsum_eq_sum_of_support_subset],
intros x h,
simp only [coeff.add_monoid_hom_apply, mem_coe, finsupp.mem_support_iff, ne.def],
contrapose! h,
simp [h]
end
end of_finsupp
section emb_domain
variables [partial_order Γ] [add_comm_monoid R] {α β : Type*}
/-- A summable family can be reindexed by an embedding without changing its sum. -/
def emb_domain (s : summable_family Γ R α) (f : α ↪ β) : summable_family Γ R β :=
{ to_fun := λ b, if h : b ∈ set.range f then s (classical.some h) else 0,
is_pwo_Union_support' := begin
refine s.is_pwo_Union_support.mono (set.Union_subset (λ b g h, _)),
by_cases hb : b ∈ set.range f,
{ rw dif_pos hb at h,
exact set.mem_Union.2 ⟨classical.some hb, h⟩ },
{ contrapose! h,
simp [hb] }
end,
finite_co_support' := λ g, ((s.finite_co_support g).image f).subset begin
intros b h,
by_cases hb : b ∈ set.range f,
{ simp only [ne.def, set.mem_set_of_eq, dif_pos hb] at h,
exact ⟨classical.some hb, h, classical.some_spec hb⟩ },
{ contrapose! h,
simp only [ne.def, set.mem_set_of_eq, dif_neg hb, not_not, zero_coeff] }
end }
variables (s : summable_family Γ R α) (f : α ↪ β) {a : α} {b : β}
lemma emb_domain_apply :
s.emb_domain f b = if h : b ∈ set.range f then s (classical.some h) else 0 := rfl
@[simp] lemma emb_domain_image : s.emb_domain f (f a) = s a :=
begin
rw [emb_domain_apply, dif_pos (set.mem_range_self a)],
exact congr rfl (f.injective (classical.some_spec (set.mem_range_self a)))
end
@[simp] lemma emb_domain_notin_range (h : b ∉ set.range f) : s.emb_domain f b = 0 :=
by rw [emb_domain_apply, dif_neg h]
@[simp] lemma hsum_emb_domain :
(s.emb_domain f).hsum = s.hsum :=
begin
ext g,
simp only [hsum_coeff, emb_domain_apply, apply_dite hahn_series.coeff, dite_apply, zero_coeff],
exact finsum_emb_domain f (λ a, (s a).coeff g)
end
end emb_domain
section powers
variables [linear_ordered_add_comm_group Γ] [comm_ring R] [is_domain R]
/-- The powers of an element of positive valuation form a summable family. -/
def powers (x : hahn_series Γ R) (hx : 0 < add_val Γ R x) :
summable_family Γ R ℕ :=
{ to_fun := λ n, x ^ n,
is_pwo_Union_support' := is_pwo_Union_support_powers hx,
finite_co_support' := λ g, begin
have hpwo := (is_pwo_Union_support_powers hx),
by_cases hg : g ∈ ⋃ n : ℕ, {g | (x ^ n).coeff g ≠ 0 },
swap, { exact set.finite_empty.subset (λ n hn, hg (set.mem_Union.2 ⟨n, hn⟩)) },
apply hpwo.is_wf.induction hg,
intros y ys hy,
refine ((((add_antidiagonal x.is_pwo_support hpwo y).finite_to_set.bUnion (λ ij hij,
hy ij.snd _ _)).image nat.succ).union (set.finite_singleton 0)).subset _,
{ exact (mem_add_antidiagonal.1 (mem_coe.1 hij)).2.2 },
{ obtain ⟨rfl, hi, hj⟩ := mem_add_antidiagonal.1 (mem_coe.1 hij),
rw [← zero_add ij.snd, ← add_assoc, add_zero],
exact add_lt_add_right (with_top.coe_lt_coe.1
(lt_of_lt_of_le hx (add_val_le_of_coeff_ne_zero hi))) _, },
{ intros n hn,
cases n,
{ exact set.mem_union_right _ (set.mem_singleton 0) },
{ obtain ⟨i, j, hi, hj, rfl⟩ := support_mul_subset_add_support hn,
refine set.mem_union_left _ ⟨n, set.mem_Union.2 ⟨⟨i, j⟩, set.mem_Union.2 ⟨_, hj⟩⟩, rfl⟩,
simp only [true_and, set.mem_Union, mem_add_antidiagonal, mem_coe, eq_self_iff_true,
ne.def, mem_support, set.mem_set_of_eq],
exact ⟨hi, ⟨n, hj⟩⟩ } }
end }
variables {x : hahn_series Γ R} (hx : 0 < add_val Γ R x)
@[simp] lemma coe_powers : ⇑(powers x hx) = pow x := rfl
lemma emb_domain_succ_smul_powers :
(x • powers x hx).emb_domain ⟨nat.succ, nat.succ_injective⟩ =
powers x hx - of_finsupp (finsupp.single 0 1) :=
begin
apply summable_family.ext (λ n, _),
cases n,
{ rw [emb_domain_notin_range, sub_apply, coe_powers, pow_zero, coe_of_finsupp,
finsupp.single_eq_same, sub_self],
rw [set.mem_range, not_exists],
exact nat.succ_ne_zero },
{ refine eq.trans (emb_domain_image _ ⟨nat.succ, nat.succ_injective⟩) _,
simp only [pow_succ, coe_powers, coe_sub, smul_apply, coe_of_finsupp, pi.sub_apply],
rw [finsupp.single_eq_of_ne (n.succ_ne_zero).symm, sub_zero] }
end
lemma one_sub_self_mul_hsum_powers :
(1 - x) * (powers x hx).hsum = 1 :=
begin
rw [← hsum_smul, sub_smul, one_smul, hsum_sub,
← hsum_emb_domain (x • powers x hx) ⟨nat.succ, nat.succ_injective⟩,
emb_domain_succ_smul_powers],
simp,
end
end powers
end summable_family
section inversion
variables [linear_ordered_add_comm_group Γ]
section is_domain
variables [comm_ring R] [is_domain R]
lemma unit_aux (x : hahn_series Γ R) {r : R} (hr : r * x.coeff x.order = 1) :
0 < add_val Γ R (1 - C r * (single (- x.order) 1) * x) :=
begin
have h10 : (1 : R) ≠ 0 := one_ne_zero,
have x0 : x ≠ 0 := ne_zero_of_coeff_ne_zero (right_ne_zero_of_mul_eq_one hr),
refine lt_of_le_of_ne ((add_val Γ R).map_le_sub (ge_of_eq (add_val Γ R).map_one) _) _,
{ simp only [add_valuation.map_mul],
rw [add_val_apply_of_ne x0, add_val_apply_of_ne (single_ne_zero h10),
add_val_apply_of_ne _, order_C, order_single h10, with_top.coe_zero, zero_add,
← with_top.coe_add, neg_add_self, with_top.coe_zero],
{ exact le_refl 0 },
{ exact C_ne_zero (left_ne_zero_of_mul_eq_one hr) } },
{ rw [add_val_apply, ← with_top.coe_zero],
split_ifs,
{ apply with_top.coe_ne_top },
rw [ne.def, with_top.coe_eq_coe],
intro con,
apply coeff_order_ne_zero h,
rw [← con, mul_assoc, sub_coeff, one_coeff, if_pos rfl, C_mul_eq_smul, smul_coeff, smul_eq_mul,
← add_neg_self x.order, single_mul_coeff_add, one_mul, hr, sub_self] }
end
lemma is_unit_iff {x : hahn_series Γ R} :
is_unit x ↔ is_unit (x.coeff x.order) :=
begin
split,
{ rintro ⟨⟨u, i, ui, iu⟩, rfl⟩,
refine is_unit_of_mul_eq_one (u.coeff u.order) (i.coeff i.order)
((mul_coeff_order_add_order u i).symm.trans _),
rw [ui, one_coeff, if_pos],
rw [← order_mul (left_ne_zero_of_mul_eq_one ui)
(right_ne_zero_of_mul_eq_one ui), ui, order_one] },
{ rintro ⟨⟨u, i, ui, iu⟩, h⟩,
rw [units.coe_mk] at h,
rw h at iu,
have h := summable_family.one_sub_self_mul_hsum_powers (unit_aux x iu),
rw [sub_sub_cancel] at h,
exact is_unit_of_mul_is_unit_right (is_unit_of_mul_eq_one _ _ h) },
end
end is_domain
instance [field R] : field (hahn_series Γ R) :=
{ inv := λ x, if x0 : x = 0 then 0 else (C (x.coeff x.order)⁻¹ * (single (-x.order)) 1 *
(summable_family.powers _ (unit_aux x (inv_mul_cancel (coeff_order_ne_zero x0)))).hsum),
inv_zero := dif_pos rfl,
mul_inv_cancel := λ x x0, begin
refine (congr rfl (dif_neg x0)).trans _,
have h := summable_family.one_sub_self_mul_hsum_powers
(unit_aux x (inv_mul_cancel (coeff_order_ne_zero x0))),
rw [sub_sub_cancel] at h,
rw [← mul_assoc, mul_comm x, h],
end,
.. hahn_series.is_domain,
.. hahn_series.comm_ring }
end inversion
end hahn_series