Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Formal semantics of HOL inside itself. *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* Semantics of types. *) | |
(* ------------------------------------------------------------------------- *) | |
let typeset = new_recursive_definition type_RECURSION | |
`(typeset tau (Tyvar s) = tau(s)) /\ | |
(typeset tau Bool = boolset) /\ | |
(typeset tau Ind = indset) /\ | |
(typeset tau (Fun a b) = funspace (typeset tau a) (typeset tau b))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Semantics of terms. *) | |
(* ------------------------------------------------------------------------- *) | |
let semantics = new_recursive_definition term_RECURSION | |
`(semantics sigma tau (Var n ty) = sigma(n,ty)) /\ | |
(semantics sigma tau (Equal ty) = | |
abstract (typeset tau ty) (typeset tau (Fun ty Bool)) | |
(\x. abstract (typeset tau ty) (typeset tau Bool) | |
(\y. boolean(x = y)))) /\ | |
(semantics sigma tau (Select ty) = | |
abstract (typeset tau (Fun ty Bool)) (typeset tau ty) | |
(\s. if ?x. x <: ((typeset tau ty) suchthat (holds s)) | |
then ch ((typeset tau ty) suchthat (holds s)) | |
else ch (typeset tau ty))) /\ | |
(semantics sigma tau (Comb s t) = | |
apply (semantics sigma tau s) (semantics sigma tau t)) /\ | |
(semantics sigma tau (Abs n ty t) = | |
abstract (typeset tau ty) (typeset tau (typeof t)) | |
(\x. semantics (((n,ty) |-> x) sigma) tau t))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Valid type and term valuations. *) | |
(* ------------------------------------------------------------------------- *) | |
let type_valuation = new_definition | |
`type_valuation tau <=> !x. (?y. y <: tau x)`;; | |
let term_valuation = new_definition | |
`term_valuation tau sigma <=> !n ty. sigma(n,ty) <: typeset tau ty`;; | |
let TERM_VALUATION_VALMOD = prove | |
(`!sigma taut n ty x. | |
term_valuation tau sigma /\ x <: typeset tau ty | |
==> term_valuation tau (((n,ty) |-> x) sigma)`, | |
REWRITE_TAC[term_valuation; valmod; PAIR_EQ] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* All the typesets are nonempty. *) | |
(* ------------------------------------------------------------------------- *) | |
let TYPESET_INHABITED = prove | |
(`!tau ty. type_valuation tau ==> ?x. x <: typeset tau ty`, | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC type_INDUCT THEN REWRITE_TAC[typeset] THEN | |
CONJ_TAC THENL | |
[ASM_MESON_TAC[type_valuation]; | |
ASM_MESON_TAC[BOOLEAN_IN_BOOLSET; INDSET_INHABITED; FUNSPACE_INHABITED]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Semantics maps into the right place. *) | |
(* ------------------------------------------------------------------------- *) | |
let SEMANTICS_TYPESET_INDUCT = prove | |
(`!tm ty. tm has_type ty | |
==> tm has_type ty /\ | |
!sigma tau. type_valuation tau /\ term_valuation tau sigma | |
==> (semantics sigma tau tm) <: (typeset tau ty)`, | |
MATCH_MP_TAC has_type_INDUCT THEN | |
ASM_SIMP_TAC[semantics; typeset; has_type_RULES] THEN | |
CONJ_TAC THENL [MESON_TAC[term_valuation]; ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL | |
[MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN REWRITE_TAC[] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN | |
REWRITE_TAC[BOOLEAN_IN_BOOLSET]; | |
MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN | |
ASM_MESON_TAC[ch; SUCHTHAT; TYPESET_INHABITED]; | |
ASM_MESON_TAC[has_type_RULES]; | |
MATCH_MP_TAC APPLY_IN_RANSPACE THEN ASM_MESON_TAC[]; | |
FIRST_ASSUM(SUBST1_TAC o MATCH_MP WELLTYPED_LEMMA) THEN | |
MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD]]);; | |
let SEMANTICS_TYPESET = prove | |
(`!sigma tau tm ty. | |
type_valuation tau /\ term_valuation tau sigma /\ tm has_type ty | |
==> (semantics sigma tau tm) <: (typeset tau ty)`, | |
MESON_TAC[SEMANTICS_TYPESET_INDUCT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Semantics of equations. *) | |
(* ------------------------------------------------------------------------- *) | |
let SEMANTICS_EQUATION = prove | |
(`!sigma tau s t. | |
s has_type (typeof s) /\ t has_type (typeof s) /\ | |
type_valuation tau /\ term_valuation tau sigma | |
==> (semantics sigma tau (s === t) = | |
boolean(semantics sigma tau s = semantics sigma tau t))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[equation; semantics] THEN | |
ASM_SIMP_TAC[APPLY_ABSTRACT; typeset; SEMANTICS_TYPESET; | |
ABSTRACT_IN_FUNSPACE; BOOLEAN_IN_BOOLSET]);; | |
let SEMANTICS_EQUATION_ALT = prove | |
(`!sigma tau s t. | |
(s === t) has_type Bool /\ | |
type_valuation tau /\ term_valuation tau sigma | |
==> (semantics sigma tau (s === t) = | |
boolean(semantics sigma tau s = semantics sigma tau t))`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC SEMANTICS_EQUATION THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `welltyped(s === t)` MP_TAC THENL | |
[ASM_MESON_TAC[welltyped]; ALL_TAC] THEN | |
REWRITE_TAC[equation; WELLTYPED_CLAUSES; typeof; codomain] THEN | |
MESON_TAC[welltyped; type_INJ; WELLTYPED; WELLTYPED_CLAUSES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Quick sanity check. *) | |
(* ------------------------------------------------------------------------- *) | |
let SEMANTICS_SELECT = prove | |
(`p has_type (Fun ty Bool) /\ | |
type_valuation tau /\ term_valuation tau sigma | |
==> (semantics sigma tau (Comb (Select ty) p) = | |
if ?x. x <: (typeset tau ty) suchthat (holds (semantics sigma tau p)) | |
then ch((typeset tau ty) suchthat (holds (semantics sigma tau p))) | |
else ch(typeset tau ty))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[semantics] THEN | |
W(fun (asl,w) -> | |
let t = find_term (fun t -> | |
can (PART_MATCH (lhs o rand) APPLY_ABSTRACT) t) w in | |
MP_TAC(PART_MATCH (lhs o rand) APPLY_ABSTRACT t)) THEN | |
ANTS_TAC THENL | |
[CONJ_TAC THENL | |
[ASM_MESON_TAC[SEMANTICS_TYPESET; typeset]; | |
REWRITE_TAC[SUCHTHAT] THEN | |
ASM_MESON_TAC[ch; SUCHTHAT; TYPESET_INHABITED]]; | |
ALL_TAC] THEN | |
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Semantics of a sequent. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("|=",(11,"right"));; | |
let sequent = new_definition | |
`asms |= p <=> ALL (\a. a has_type Bool) (CONS p asms) /\ | |
!sigma tau. type_valuation tau /\ | |
term_valuation tau sigma /\ | |
ALL (\a. semantics sigma tau a = true) asms | |
==> (semantics sigma tau p = true)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Invariance of semantics under alpha-conversion. *) | |
(* ------------------------------------------------------------------------- *) | |
let SEMANTICS_RACONV = prove | |
(`!env tp. | |
RACONV env tp | |
==> !sigma1 sigma2 tau. | |
type_valuation tau /\ | |
term_valuation tau sigma1 /\ term_valuation tau sigma2 /\ | |
(!x1 ty1 x2 ty2. | |
ALPHAVARS env (Var x1 ty1,Var x2 ty2) | |
==> (semantics sigma1 tau (Var x1 ty1) = | |
semantics sigma2 tau (Var x2 ty2))) | |
==> welltyped(FST tp) /\ welltyped(SND tp) | |
==> (semantics sigma1 tau (FST tp) = | |
semantics sigma2 tau (SND tp))`, | |
MATCH_MP_TAC RACONV_INDUCT THEN REWRITE_TAC[FORALL_PAIR_THM] THEN | |
REWRITE_TAC[semantics; WELLTYPED_CLAUSES] THEN REPEAT STRIP_TAC THENL | |
[ASM_MESON_TAC[]; | |
BINOP_TAC THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM SUBST_ALL_TAC THEN MATCH_MP_TAC ABSTRACT_EQ THEN | |
ASM_SIMP_TAC[TYPESET_INHABITED] THEN | |
X_GEN_TAC `x:V` THEN DISCH_TAC THEN REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC SEMANTICS_TYPESET THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD; GSYM WELLTYPED]; | |
MATCH_MP_TAC SEMANTICS_TYPESET THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD; GSYM WELLTYPED]; | |
ALL_TAC] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[IMP_IMP]) THEN | |
FIRST_X_ASSUM(fun th -> MATCH_MP_TAC th THEN CONJ_TAC) THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN | |
REWRITE_TAC[ALPHAVARS; PAIR_EQ; term_INJ] THEN | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[VALMOD; PAIR_EQ] THEN | |
ASM_MESON_TAC[]);; | |
let SEMANTICS_ACONV = prove | |
(`!sigma tau s t. | |
type_valuation tau /\ term_valuation tau sigma /\ | |
welltyped s /\ welltyped t /\ ACONV s t | |
==> (semantics sigma tau s = semantics sigma tau t)`, | |
REWRITE_TAC[ACONV] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_IMP; RIGHT_IMP_FORALL_THM; FORALL_PAIR_THM] | |
SEMANTICS_RACONV) THEN | |
EXISTS_TAC `[]:(term#term)list` THEN | |
ASM_SIMP_TAC[ALPHAVARS; term_INJ; PAIR_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* General semantic lemma about binary inference rules. *) | |
(* ------------------------------------------------------------------------- *) | |
let BINARY_INFERENCE_RULE = prove | |
(`(p1 has_type Bool /\ p2 has_type Bool | |
==> q has_type Bool /\ | |
!sigma tau. type_valuation tau /\ term_valuation tau sigma /\ | |
(semantics sigma tau p1 = true) /\ | |
(semantics sigma tau p2 = true) | |
==> (semantics sigma tau q = true)) | |
==> (asl1 |= p1 /\ asl2 |= p2 ==> TERM_UNION asl1 asl2 |= q)`, | |
REWRITE_TAC[sequent; ALL] THEN STRIP_TAC THEN STRIP_TAC THEN | |
ASM_SIMP_TAC[ALL_BOOL_TERM_UNION] THEN REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[] THEN UNDISCH_TAC | |
`ALL (\a. semantics sigma tau a = true) (TERM_UNION asl1 asl2)` THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALL_MEM])) THEN | |
REWRITE_TAC[] THEN STRIP_TAC THEN STRIP_TAC THEN | |
DISCH_THEN(fun th -> X_GEN_TAC `r:term` THEN DISCH_TAC THEN MP_TAC th) THEN | |
MP_TAC(SPECL [`asl1:term list`; `asl2:term list`; `r:term`] | |
TERM_UNION_THM) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `s:term`) THEN | |
DISCH_THEN(MP_TAC o SPEC `s:term`) THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[SEMANTICS_ACONV; welltyped; TERM_UNION_NONEW]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Semantics only depends on valuations of free variables. *) | |
(* ------------------------------------------------------------------------- *) | |
let TERM_VALUATION_VFREE_IN = prove | |
(`!tau sigma1 sigma2 t. | |
type_valuation tau /\ | |
term_valuation tau sigma1 /\ term_valuation tau sigma2 /\ | |
welltyped t /\ | |
(!x ty. VFREE_IN (Var x ty) t ==> (sigma1(x,ty) = sigma2(x,ty))) | |
==> (semantics sigma1 tau t = semantics sigma2 tau t)`, | |
GEN_TAC THEN GEN_REWRITE_TAC BINDER_CONV [SWAP_FORALL_THM] THEN | |
GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[semantics; VFREE_IN; term_DISTINCT; term_INJ] THEN | |
REPEAT STRIP_TAC THENL | |
[ASM_MESON_TAC[]; | |
BINOP_TAC THEN ASM_MESON_TAC[WELLTYPED_CLAUSES]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC ABSTRACT_EQ THEN ASM_SIMP_TAC[TYPESET_INHABITED] THEN | |
X_GEN_TAC `x:V` THEN DISCH_TAC THEN REPEAT(CONJ_TAC THENL | |
[ASM_MESON_TAC[TERM_VALUATION_VALMOD; WELLTYPED; WELLTYPED_CLAUSES; | |
SEMANTICS_TYPESET]; | |
ALL_TAC]) THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[WELLTYPED_CLAUSES]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`] THEN DISCH_TAC THEN | |
REWRITE_TAC[VALMOD; PAIR_EQ] THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Prove some inference rules correct. *) | |
(* ------------------------------------------------------------------------- *) | |
let ASSUME_correct = prove | |
(`!p. p has_type Bool ==> [p] |= p`, | |
SIMP_TAC[sequent; ALL]);; | |
let REFL_correct = prove | |
(`!t. welltyped t ==> [] |= t === t`, | |
SIMP_TAC[sequent; SEMANTICS_EQUATION; ALL; WELLTYPED] THEN | |
REWRITE_TAC[boolean; equation] THEN MESON_TAC[has_type_RULES]);; | |
let TRANS_correct = prove | |
(`!asl1 asl2 l m1 m2 r. | |
asl1 |= l === m1 /\ asl2 |= m2 === r /\ ACONV m1 m2 | |
==> TERM_UNION asl1 asl2 |= l === r`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
MATCH_MP_TAC BINARY_INFERENCE_RULE THEN STRIP_TAC THEN | |
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[EQUATION_HAS_TYPE_BOOL; ACONV_TYPE]; | |
ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; IMP_CONJ; boolean] THEN | |
ASM_MESON_TAC[SEMANTICS_ACONV; TRUE_NE_FALSE; EQUATION_HAS_TYPE_BOOL]]);; | |
let MK_COMB_correct = prove | |
(`!asl1 l1 r1 asl2 l2 r2. | |
asl1 |= l1 === r1 /\ asl2 |= l2 === r2 /\ | |
(?rty. typeof l1 = Fun (typeof l2) rty) | |
==> TERM_UNION asl1 asl2 |= Comb l1 l2 === Comb r1 r2`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
MATCH_MP_TAC BINARY_INFERENCE_RULE THEN STRIP_TAC THEN | |
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL | |
[POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
REWRITE_TAC[EQUATION_HAS_TYPE_BOOL; WELLTYPED_CLAUSES; typeof] THEN | |
MESON_TAC[codomain]; | |
ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; IMP_CONJ; boolean] THEN | |
REWRITE_TAC[semantics] THEN | |
ASM_MESON_TAC[SEMANTICS_ACONV; TRUE_NE_FALSE; EQUATION_HAS_TYPE_BOOL]]);; | |
let EQ_MP_correct = prove | |
(`!asl1 asl2 p q p'. | |
asl1 |= p === q /\ asl2 |= p' /\ ACONV p p' | |
==> TERM_UNION asl1 asl2 |= q`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
MATCH_MP_TAC BINARY_INFERENCE_RULE THEN STRIP_TAC THEN | |
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[EQUATION_HAS_TYPE_BOOL; WELLTYPED_LEMMA; WELLTYPED; | |
ACONV_TYPE]; | |
ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; IMP_CONJ; boolean] THEN | |
ASM_MESON_TAC[EQUATION_HAS_TYPE_BOOL; TRUE_NE_FALSE; SEMANTICS_ACONV; | |
welltyped]]);; | |
let BETA_correct = prove | |
(`!x ty t. welltyped t ==> [] |= Comb (Abs x ty t) (Var x ty) === t`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[sequent; ALL] THEN | |
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL | |
[REWRITE_TAC[EQUATION_HAS_TYPE_BOOL; typeof; WELLTYPED_CLAUSES] THEN | |
REWRITE_TAC[codomain; type_INJ] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
SIMP_TAC[SEMANTICS_EQUATION_ALT] THEN | |
DISCH_TAC THEN REPEAT GEN_TAC THEN STRIP_TAC THEN | |
REWRITE_TAC[BOOLEAN_EQ_TRUE; semantics] THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `semantics (((x,ty) |-> sigma(x,ty)) sigma) tau t` THEN | |
CONJ_TAC THENL [MATCH_MP_TAC APPLY_ABSTRACT; ALL_TAC] THEN | |
REWRITE_TAC[VALMOD_REPEAT] THEN | |
ASM_MESON_TAC[term_valuation; SEMANTICS_TYPESET; WELLTYPED]);; | |
let ABS_correct = prove | |
(`!asl x ty l r. | |
~(EX (VFREE_IN (Var x ty)) asl) /\ asl |= l === r | |
==> asl |= (Abs x ty l) === (Abs x ty r)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[sequent; ALL] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN | |
CONJ_TAC THENL | |
[UNDISCH_TAC `(l === r) has_type Bool` THEN | |
SIMP_TAC[EQUATION_HAS_TYPE_BOOL; WELLTYPED_CLAUSES; typeof]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; BOOLEAN_EQ_TRUE] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[semantics] THEN | |
SUBGOAL_THEN `typeof r = typeof l` SUBST1_TAC THENL | |
[ASM_MESON_TAC[EQUATION_HAS_TYPE_BOOL]; ALL_TAC] THEN | |
MATCH_MP_TAC ABSTRACT_EQ THEN ASM_SIMP_TAC[TYPESET_INHABITED] THEN | |
X_GEN_TAC `x:V` THEN DISCH_TAC THEN | |
REPEAT(CONJ_TAC THENL | |
[ASM_MESON_TAC[SEMANTICS_TYPESET; TERM_VALUATION_VALMOD; | |
WELLTYPED; EQUATION_HAS_TYPE_BOOL]; | |
ALL_TAC]) THEN | |
FIRST_X_ASSUM(MP_TAC o check (is_forall o concl)) THEN | |
ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; BOOLEAN_EQ_TRUE] THEN | |
DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN | |
SUBGOAL_THEN `ALL (\a. a has_type Bool) asl /\ | |
ALL (\a. ~(VFREE_IN (Var x ty) a)) asl /\ | |
ALL (\a. semantics sigma tau a = true) asl` | |
MP_TAC THENL [ASM_REWRITE_TAC[GSYM NOT_EX; ETA_AX]; ALL_TAC] THEN | |
REWRITE_TAC[AND_ALL] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN | |
X_GEN_TAC `p:term` THEN DISCH_TAC THEN REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN | |
MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[welltyped]; ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[VALMOD; PAIR_EQ] THEN ASM_MESON_TAC[]);; | |
let DEDUCT_ANTISYM_RULE_correct = prove | |
(`!asl1 asl2 p q. | |
asl1 |= c1 /\ asl2 |= c2 | |
==> let asl1' = FILTER((~) o ACONV c2) asl1 | |
and asl2' = FILTER((~) o ACONV c1) asl2 in | |
(TERM_UNION asl1' asl2') |= c1 === c2`, | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC[sequent; o_DEF; LET_DEF; LET_END_DEF; GSYM CONJ_ASSOC] THEN | |
MATCH_MP_TAC(TAUT ` | |
(a1 /\ b1 ==> c1) /\ (a1 /\ b1 /\ c1 ==> a2 /\ b2 ==> c2) | |
==> a1 /\ a2 /\ b1 /\ b2 ==> c1 /\ c2`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[GSYM ALL_MEM; MEM] THEN REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[EQUATION_HAS_TYPE_BOOL] THEN | |
ASM_MESON_TAC[MEM_FILTER; TERM_UNION_NONEW; welltyped; WELLTYPED_LEMMA]; | |
ALL_TAC] THEN | |
REWRITE_TAC[ALL; AND_FORALL_THM] THEN REWRITE_TAC[GSYM ALL_MEM] THEN | |
STRIP_TAC THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN | |
ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; BOOLEAN_EQ_TRUE] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC BOOLEAN_EQ THEN | |
REPEAT(CONJ_TAC THENL | |
[ASM_MESON_TAC[typeset; SEMANTICS_TYPESET]; ALL_TAC]) THEN | |
EQ_TAC THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN | |
X_GEN_TAC `a:term` THEN DISCH_TAC THENL | |
[ASM_CASES_TAC `ACONV c1 a` THENL | |
[ASM_MESON_TAC[SEMANTICS_ACONV; welltyped]; ALL_TAC]; | |
ASM_CASES_TAC `ACONV c2 a` THENL | |
[ASM_MESON_TAC[SEMANTICS_ACONV; welltyped]; ALL_TAC]] THEN | |
(SUBGOAL_THEN | |
`MEM a (FILTER (\x. ~ACONV c2 x) asl1) \/ | |
MEM a (FILTER (\x. ~ACONV c1 x) asl2)` | |
MP_TAC THENL | |
[REWRITE_TAC[MEM_FILTER] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP TERM_UNION_THM) THEN | |
ASM_MESON_TAC[SEMANTICS_ACONV; welltyped]));; | |
(* ------------------------------------------------------------------------- *) | |
(* Correct semantics for term substitution. *) | |
(* ------------------------------------------------------------------------- *) | |
let DEST_VAR = new_recursive_definition term_RECURSION | |
`DEST_VAR (Var x ty) = (x,ty)`;; | |
let TERM_VALUATION_ITLIST = prove | |
(`!ilist sigma tau. | |
type_valuation tau /\ term_valuation tau sigma /\ | |
(!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty) | |
==> term_valuation tau | |
(ITLIST (\(t,x). DEST_VAR x |-> semantics sigma tau t) ilist sigma)`, | |
MATCH_MP_TAC list_INDUCT THEN SIMP_TAC[ITLIST] THEN | |
REWRITE_TAC[FORALL_PAIR_THM; MEM; PAIR_EQ] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN | |
SIMP_TAC[LEFT_FORALL_IMP_THM; FORALL_AND_THM] THEN | |
REWRITE_TAC[LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[DEST_VAR] THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD; SEMANTICS_TYPESET]);; | |
let ITLIST_VALMOD_FILTER = prove | |
(`!ilist sigma sem x ty y yty. | |
(!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty) | |
==> (ITLIST (\(t,x). DEST_VAR x |-> sem x t) | |
(FILTER (\(s',s). ~(s = Var x ty)) ilist) sigma (y,yty) = | |
if (y = x) /\ (yty = ty) then sigma(y,yty) | |
else ITLIST (\(t,x). DEST_VAR x |-> sem x t) ilist sigma (y,yty))`, | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[FILTER; ITLIST; COND_ID] THEN | |
REWRITE_TAC[FORALL_PAIR_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[MEM; TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN | |
SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; PAIR_EQ] THEN | |
REWRITE_TAC[WELLTYPED_CLAUSES; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
MAP_EVERY X_GEN_TAC [`t:term`; `pp:term`; `ilist:(term#term)list`] THEN | |
DISCH_TAC THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:string` MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `sty:type` MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RAND] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RATOR] THEN | |
ASM_REWRITE_TAC[ITLIST] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[DEST_VAR] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RATOR] THEN | |
REWRITE_TAC[VALMOD] THEN REWRITE_TAC[term_INJ] THEN | |
ASM_CASES_TAC `(s:string = x) /\ (sty:type = ty)` THEN | |
ASM_SIMP_TAC[PAIR_EQ] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; | |
let ITLIST_VALMOD_EQ = prove | |
(`!l. (!t x. MEM (t,x) l /\ (f x = a) ==> (g x t = h x t)) /\ (i a = j a) | |
==> (ITLIST (\(t,x). f(x) |-> g x t) l i a = | |
ITLIST (\(t,x). f(x) |-> h x t) l j a)`, | |
MATCH_MP_TAC list_INDUCT THEN SIMP_TAC[MEM; ITLIST; FORALL_PAIR_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[PAIR_EQ; VALMOD] THEN MESON_TAC[]);; | |
let SEMANTICS_VSUBST = prove | |
(`!tm sigma tau ilist. | |
welltyped tm /\ | |
(!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty) | |
==> !sigma tau. type_valuation tau /\ term_valuation tau sigma | |
==> (semantics sigma tau (VSUBST ilist tm) = | |
semantics | |
(ITLIST | |
(\(t,x). DEST_VAR x |-> semantics sigma tau t) | |
ilist sigma) | |
tau tm)`, | |
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[VSUBST; semantics] THEN | |
CONJ_TAC THENL | |
[MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`] THEN | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[MEM; REV_ASSOCD; ITLIST; semantics; FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`t:term`; `s:term`; `ilist:(term#term)list`] THEN | |
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN | |
SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; PAIR_EQ] THEN | |
REWRITE_TAC[WELLTYPED_CLAUSES; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
DISCH_THEN(fun th -> | |
DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN MP_TAC th) THEN | |
ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(X_CHOOSE_THEN `y:string` MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `tty:type` MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[DEST_VAR; VALMOD; term_INJ; PAIR_EQ] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[WELLTYPED_CLAUSES] THEN REPEAT STRIP_TAC THEN | |
BINOP_TAC THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `t:term`] THEN | |
REWRITE_TAC[WELLTYPED_CLAUSES] THEN | |
ASM_CASES_TAC `welltyped t` THEN ASM_REWRITE_TAC[] THEN | |
REPEAT STRIP_TAC THEN LET_TAC THEN LET_TAC THEN | |
SUBGOAL_THEN | |
`!s s'. MEM (s',s) ilist' ==> (?x ty. (s = Var x ty) /\ s' has_type ty)` | |
ASSUME_TAC THENL | |
[EXPAND_TAC "ilist'" THEN ASM_SIMP_TAC[MEM_FILTER]; ALL_TAC] THEN | |
COND_CASES_TAC THENL | |
[REPEAT LET_TAC THEN | |
SUBGOAL_THEN | |
`!s s'. MEM (s',s) ilist'' ==> (?x ty. (s = Var x ty) /\ s' has_type ty)` | |
ASSUME_TAC THENL | |
[EXPAND_TAC "ilist''" THEN REWRITE_TAC[MEM; PAIR_EQ] THEN | |
ASM_MESON_TAC[has_type_RULES]; | |
ALL_TAC]; | |
ALL_TAC] THEN | |
REWRITE_TAC[semantics] THEN | |
MATCH_MP_TAC ABSTRACT_EQ THEN ASM_SIMP_TAC[TYPESET_INHABITED] THEN | |
X_GEN_TAC `a:V` THEN DISCH_TAC THEN | |
REPEAT CONJ_TAC THEN TRY(MATCH_MP_TAC SEMANTICS_TYPESET) THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD; TERM_VALUATION_ITLIST] THEN | |
EXPAND_TAC "t'" THEN | |
ASM_SIMP_TAC[VSUBST_WELLTYPED; GSYM WELLTYPED; TERM_VALUATION_VALMOD] THEN | |
MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD; TERM_VALUATION_ITLIST] THEN | |
MAP_EVERY X_GEN_TAC [`u:string`; `uty:type`] THEN DISCH_TAC THENL | |
[EXPAND_TAC "ilist''" THEN REWRITE_TAC[ITLIST] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[DEST_VAR; VALMOD; PAIR_EQ] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[semantics; VALMOD]; | |
ALL_TAC] THEN | |
EXPAND_TAC "ilist'" THEN ASM_SIMP_TAC[ITLIST_VALMOD_FILTER] THEN | |
REWRITE_TAC[VALMOD] THENL | |
[ALL_TAC; | |
REWRITE_TAC[PAIR_EQ] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC ITLIST_VALMOD_EQ THEN ASM_REWRITE_TAC[VALMOD; PAIR_EQ] THEN | |
MAP_EVERY X_GEN_TAC [`s':term`; `s:term`] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o C MATCH_MP | |
(ASSUME `MEM (s':term,s:term) ilist`)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `w:string` MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `wty:type` MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN | |
UNDISCH_TAC `DEST_VAR (Var w wty) = u,uty` THEN | |
REWRITE_TAC[DEST_VAR; PAIR_EQ] THEN | |
DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN | |
MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[welltyped]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`v:string`; `vty:type`] THEN | |
DISCH_TAC THEN REWRITE_TAC[VALMOD; PAIR_EQ] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(CONJUNCTS_THEN SUBST_ALL_TAC) THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EX]) THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN | |
DISCH_THEN(MP_TAC o SPEC `(s':term,Var u uty)`) THEN | |
ASM_REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
ASM_REWRITE_TAC[] THEN EXPAND_TAC "ilist'" THEN | |
REWRITE_TAC[MEM_FILTER] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
ASM_REWRITE_TAC[term_INJ]] THEN | |
MP_TAC(ISPECL [`t':term`; `x:string`; `ty:type`] VARIANT) THEN | |
ASM_REWRITE_TAC[] THEN EXPAND_TAC "t'" THEN | |
REWRITE_TAC[VFREE_IN_VSUBST] THEN | |
REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(a /\ b) = b ==> ~a`] THEN | |
DISCH_THEN(MP_TAC o SPECL [`u:string`; `uty:type`]) THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN | |
`REV_ASSOCD (Var u uty) ilist' (Var u uty) = | |
REV_ASSOCD (Var u uty) ilist (Var u uty)` | |
SUBST1_TAC THENL | |
[EXPAND_TAC "ilist'" THEN REWRITE_TAC[REV_ASSOCD_FILTER] THEN | |
ASM_REWRITE_TAC[term_INJ]; | |
ALL_TAC] THEN | |
UNDISCH_TAC | |
`!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty` THEN | |
SPEC_TAC(`ilist:(term#term)list`,`l:(term#term)list`) THEN | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[REV_ASSOCD; ITLIST; VFREE_IN; VALMOD; term_INJ] THEN | |
SIMP_TAC[PAIR_EQ] THEN REWRITE_TAC[FORALL_PAIR_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[VALMOD; REV_ASSOCD; MEM] THEN | |
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN | |
SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; PAIR_EQ] THEN | |
REWRITE_TAC[WELLTYPED_CLAUSES; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
MAP_EVERY X_GEN_TAC [`t1:term`; `t2:term`; `i:(term#term)list`] THEN | |
DISCH_THEN(fun th -> | |
DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN MP_TAC th) THEN | |
FIRST_X_ASSUM(X_CHOOSE_THEN `v:string` MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `vty:type` MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[DEST_VAR; term_INJ; PAIR_EQ] THEN | |
SUBGOAL_THEN `(v:string = u) /\ (vty:type = uty) <=> (u = v) /\ (uty = vty)` | |
SUBST1_TAC THENL [MESON_TAC[]; ALL_TAC] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD; VALMOD] THEN | |
REWRITE_TAC[PAIR_EQ] THEN ASM_MESON_TAC[welltyped; term_INJ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence correctness of INST. *) | |
(* ------------------------------------------------------------------------- *) | |
let INST_correct = prove | |
(`!ilist asl p. | |
(!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty) | |
==> asl |= p ==> MAP (VSUBST ilist) asl |= VSUBST ilist p`, | |
REWRITE_TAC[sequent] THEN REPEAT STRIP_TAC THENL | |
[UNDISCH_TAC `ALL (\a. a has_type Bool) (CONS p asl)` THEN | |
REWRITE_TAC[ALL; ALL_MAP] THEN MATCH_MP_TAC MONO_AND THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN | |
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[o_THM]] THEN | |
DISCH_TAC THEN MATCH_MP_TAC VSUBST_HAS_TYPE THEN ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `welltyped p` ASSUME_TAC THENL | |
[ASM_MESON_TAC[welltyped; ALL]; ALL_TAC] THEN | |
ASM_SIMP_TAC[SEMANTICS_VSUBST] THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN | |
ASM_SIMP_TAC[TERM_VALUATION_ITLIST] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL_MAP]) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN | |
X_GEN_TAC `a:term` THEN DISCH_TAC THEN | |
SUBGOAL_THEN `welltyped a` MP_TAC THENL | |
[ASM_MESON_TAC[ALL_MEM; MEM; welltyped]; ALL_TAC] THEN | |
ASM_SIMP_TAC[SEMANTICS_VSUBST; o_THM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemma about typesets to simplify some later goals. *) | |
(* ------------------------------------------------------------------------- *) | |
let TYPESET_LEMMA = prove | |
(`!ty tau tyin. | |
typeset (\s. typeset tau (REV_ASSOCD (Tyvar s) tyin (Tyvar s))) ty = | |
typeset tau (TYPE_SUBST tyin ty)`, | |
MATCH_MP_TAC type_INDUCT THEN SIMP_TAC[typeset; TYPE_SUBST]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Semantics of type instantiation core. *) | |
(* ------------------------------------------------------------------------- *) | |
let SEMANTICS_INST_CORE = prove | |
(`!n tm env tyin. | |
welltyped tm /\ (sizeof tm = n) /\ | |
(!s s'. MEM (s,s') env | |
==> ?x ty. (s = Var x ty) /\ | |
(s' = Var x (TYPE_SUBST tyin ty))) | |
==> (?x ty. (INST_CORE env tyin tm = | |
Clash(Var x (TYPE_SUBST tyin ty))) /\ | |
VFREE_IN (Var x ty) tm /\ | |
~(REV_ASSOCD (Var x (TYPE_SUBST tyin ty)) | |
env (Var x ty) = Var x ty)) \/ | |
(!x ty. VFREE_IN (Var x ty) tm | |
==> (REV_ASSOCD (Var x (TYPE_SUBST tyin ty)) | |
env (Var x ty) = Var x ty)) /\ | |
(?tm'. (INST_CORE env tyin tm = Result tm') /\ | |
tm' has_type (TYPE_SUBST tyin (typeof tm)) /\ | |
(!u uty. VFREE_IN (Var u uty) tm' <=> | |
?oty. VFREE_IN (Var u oty) tm /\ | |
(uty = TYPE_SUBST tyin oty)) /\ | |
!sigma tau. | |
type_valuation tau /\ term_valuation tau sigma | |
==> (semantics sigma tau tm' = | |
semantics | |
(\(x,ty). sigma(x,TYPE_SUBST tyin ty)) | |
(\s. typeset tau (TYPE_SUBST tyin (Tyvar s))) | |
tm))`, | |
MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC term_INDUCT THEN | |
ONCE_REWRITE_TAC[INST_CORE] THEN REWRITE_TAC[semantics] THEN | |
REPEAT CONJ_TAC THENL | |
[POP_ASSUM(K ALL_TAC) THEN | |
REWRITE_TAC[REV_ASSOCD; LET_DEF; LET_END_DEF] THEN | |
REPEAT GEN_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[result_DISTINCT; result_INJ; UNWIND_THM1] THEN | |
REWRITE_TAC[typeof; has_type_RULES] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[RESULT; semantics; VFREE_IN; term_INJ] THEN ASM_MESON_TAC[]; | |
POP_ASSUM(K ALL_TAC) THEN | |
REWRITE_TAC[TYPE_SUBST; RESULT; VFREE_IN; term_DISTINCT] THEN | |
ASM_REWRITE_TAC[result_DISTINCT; result_INJ; UNWIND_THM1] THEN | |
REWRITE_TAC[typeof; has_type_RULES; TYPE_SUBST; VFREE_IN] THEN | |
REWRITE_TAC[semantics; typeset; TYPESET_LEMMA; TYPE_SUBST; term_DISTINCT]; | |
POP_ASSUM(K ALL_TAC) THEN | |
REWRITE_TAC[TYPE_SUBST; RESULT; VFREE_IN; term_DISTINCT] THEN | |
ASM_REWRITE_TAC[result_DISTINCT; result_INJ; UNWIND_THM1] THEN | |
REWRITE_TAC[typeof; has_type_RULES; TYPE_SUBST; VFREE_IN] THEN | |
REWRITE_TAC[semantics; typeset; TYPESET_LEMMA; TYPE_SUBST; term_DISTINCT]; | |
MAP_EVERY X_GEN_TAC [`s:term`; `t:term`] THEN DISCH_THEN(K ALL_TAC) THEN | |
POP_ASSUM MP_TAC THEN ASM_CASES_TAC `n = sizeof(Comb s t)` THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(fun th -> MP_TAC(SPEC `sizeof t` th) THEN | |
MP_TAC(SPEC `sizeof s` th)) THEN | |
REWRITE_TAC[sizeof; ARITH_RULE `s < 1 + s + t /\ t < 1 + s + t`] THEN | |
DISCH_THEN(fun th -> DISCH_THEN(MP_TAC o SPEC `t:term`) THEN | |
MP_TAC(SPEC `s:term` th)) THEN | |
REWRITE_TAC[IMP_IMP; AND_FORALL_THM; WELLTYPED_CLAUSES] THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN | |
GEN_REWRITE_TAC I [IMP_CONJ] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[DISCH_THEN(fun th -> DISCH_THEN(K ALL_TAC) THEN MP_TAC th) THEN | |
DISCH_THEN(fun th -> DISJ1_TAC THEN MP_TAC th) THEN | |
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; IS_CLASH; VFREE_IN]; | |
ALL_TAC] THEN | |
REWRITE_TAC[TYPE_SUBST] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `s':term` STRIP_ASSUME_TAC) THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[DISCH_THEN(fun th -> DISJ1_TAC THEN MP_TAC th) THEN | |
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; IS_CLASH; VFREE_IN]; | |
ALL_TAC] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t':term` STRIP_ASSUME_TAC) THEN | |
DISJ2_TAC THEN CONJ_TAC THENL | |
[REWRITE_TAC[VFREE_IN] THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
EXISTS_TAC `Comb s' t'` THEN | |
ASM_SIMP_TAC[LET_DEF; LET_END_DEF; IS_CLASH; semantics; RESULT] THEN | |
ASM_REWRITE_TAC[VFREE_IN] THEN | |
ASM_REWRITE_TAC[typeof] THEN ONCE_REWRITE_TAC[has_type_CASES] THEN | |
REWRITE_TAC[term_DISTINCT; term_INJ; codomain] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `t:term`] THEN | |
DISCH_THEN(K ALL_TAC) THEN POP_ASSUM MP_TAC THEN | |
ASM_CASES_TAC `n = sizeof (Abs x ty t)` THEN ASM_REWRITE_TAC[] THEN | |
POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN REPEAT GEN_TAC THEN | |
REWRITE_TAC[WELLTYPED_CLAUSES] THEN STRIP_TAC THEN REPEAT LET_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `sizeof t`) THEN | |
REWRITE_TAC[sizeof; ARITH_RULE `t < 2 + t`] THEN | |
DISCH_THEN(MP_TAC o SPECL | |
[`t:term`; `env':(term#term)list`; `tyin:(type#type)list`]) THEN | |
ASM_REWRITE_TAC[] THEN | |
ANTS_TAC THENL | |
[EXPAND_TAC "env'" THEN REWRITE_TAC[MEM; PAIR_EQ] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[ALL_TAC; | |
FIRST_X_ASSUM(K ALL_TAC o SPEC `0`) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t':term` STRIP_ASSUME_TAC) THEN | |
DISJ2_TAC THEN ASM_REWRITE_TAC[IS_RESULT] THEN CONJ_TAC THENL | |
[FIRST_X_ASSUM(fun th -> | |
MP_TAC th THEN MATCH_MP_TAC MONO_FORALL THEN | |
GEN_TAC THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN | |
DISCH_THEN(MP_TAC o check (is_imp o concl))) THEN | |
EXPAND_TAC "env'" THEN | |
REWRITE_TAC[VFREE_IN; REV_ASSOCD; term_INJ] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[term_INJ] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[result_INJ; UNWIND_THM1; RESULT] THEN | |
MATCH_MP_TAC(TAUT `a /\ b /\ (b ==> c) ==> b /\ a /\ c`) THEN | |
CONJ_TAC THENL | |
[ASM_REWRITE_TAC[VFREE_IN; term_INJ] THEN | |
MAP_EVERY X_GEN_TAC [`u:string`; `uty:type`] THEN | |
ASM_CASES_TAC `u:string = x` THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_THEN `u:string = x` SUBST_ALL_TAC THEN | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `oty:type` THEN REWRITE_TAC[] THEN | |
ASM_CASES_TAC `uty = TYPE_SUBST tyin oty` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `VFREE_IN (Var x oty) t` THEN ASM_REWRITE_TAC[] THEN | |
EQ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[CONTRAPOS_THM] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN | |
FIRST_X_ASSUM(fun th -> | |
MP_TAC(SPECL [`x:string`; `oty:type`] th) THEN | |
ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN NO_TAC; ALL_TAC]) THEN | |
EXPAND_TAC "env'" THEN REWRITE_TAC[REV_ASSOCD] THEN | |
ASM_MESON_TAC[term_INJ]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[typeof; TYPE_SUBST] THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[has_type_RULES]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN REPEAT GEN_TAC THEN STRIP_TAC THEN | |
REWRITE_TAC[semantics] THEN | |
ASM_REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN | |
MATCH_MP_TAC ABSTRACT_EQ THEN | |
CONJ_TAC THENL [ASM_SIMP_TAC[TYPESET_INHABITED]; ALL_TAC] THEN | |
X_GEN_TAC `a:V` THEN REWRITE_TAC[] THEN DISCH_TAC THEN CONJ_TAC THENL | |
[MATCH_MP_TAC SEMANTICS_TYPESET THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN | |
ASM_MESON_TAC[welltyped; WELLTYPED]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(TAUT `(b ==> a) /\ b ==> a /\ b`) THEN CONJ_TAC THENL | |
[DISCH_THEN(SUBST1_TAC o SYM) THEN | |
MATCH_MP_TAC SEMANTICS_TYPESET THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL | |
[`(x,ty' |-> a) (sigma:(string#type)->V)`; `tau:string->V`]) THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN DISCH_TAC THEN | |
REWRITE_TAC[GSYM(CONJUNCT1 TYPE_SUBST)] THEN | |
MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN CONJ_TAC THENL | |
[REWRITE_TAC[type_valuation] THEN ASM_SIMP_TAC[TYPESET_INHABITED]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[term_valuation] THEN | |
MAP_EVERY X_GEN_TAC [`y:string`; `yty:type`] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[VALMOD; PAIR_EQ] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN | |
ASM_MESON_TAC[term_valuation]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[term_valuation] THEN | |
MAP_EVERY X_GEN_TAC [`y:string`; `yty:type`] THEN | |
REWRITE_TAC[VALMOD] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[VALMOD; PAIR_EQ] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN | |
ASM_MESON_TAC[term_valuation]; | |
ALL_TAC] THEN | |
UNDISCH_THEN | |
`!u uty. | |
VFREE_IN (Var u uty) t' <=> | |
(?oty. VFREE_IN (Var u oty) t /\ (uty = TYPE_SUBST tyin oty))` | |
(K ALL_TAC) THEN | |
ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`y:string`; `yty:type`] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[VALMOD] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
ASM_CASES_TAC `y:string = x` THEN ASM_REWRITE_TAC[PAIR_EQ] THEN | |
ASM_CASES_TAC `yty:type = ty` THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_THEN `y:string = x` SUBST_ALL_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`x:string`; `yty:type`]) THEN | |
ASM_REWRITE_TAC[] THEN EXPAND_TAC "env'" THEN | |
ASM_REWRITE_TAC[REV_ASSOCD; term_INJ]] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:string` (X_CHOOSE_THEN `zty:type` | |
(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC))) THEN | |
EXPAND_TAC "w" THEN REWRITE_TAC[CLASH; IS_RESULT; term_INJ] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL | |
[FIRST_X_ASSUM(K ALL_TAC o SPEC `0`) THEN | |
DISCH_THEN(fun th -> | |
DISJ1_TAC THEN REWRITE_TAC[result_INJ] THEN | |
MAP_EVERY EXISTS_TAC [`z:string`; `zty:type`] THEN | |
MP_TAC th) THEN | |
ASM_REWRITE_TAC[VFREE_IN; term_INJ] THEN | |
EXPAND_TAC "env'" THEN ASM_REWRITE_TAC[REV_ASSOCD; term_INJ] THEN | |
ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN STRIP_TAC THEN | |
ONCE_REWRITE_TAC[INST_CORE] THEN ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[letlemma] THEN | |
ABBREV_TAC `env'' = CONS (Var x' ty,Var x' ty') env` THEN | |
ONCE_REWRITE_TAC[letlemma] THEN | |
ABBREV_TAC | |
`ures = INST_CORE env'' tyin (VSUBST[Var x' ty,Var x ty] t)` THEN | |
ONCE_REWRITE_TAC[letlemma] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `sizeof t`) THEN | |
REWRITE_TAC[sizeof; ARITH_RULE `t < 2 + t`] THEN | |
DISCH_THEN(fun th -> | |
MP_TAC(SPECL [`VSUBST [Var x' ty,Var x ty] t`; | |
`env'':(term#term)list`; `tyin:(type#type)list`] th) THEN | |
MP_TAC(SPECL [`t:term`; `[]:(term#term)list`; `tyin:(type#type)list`] | |
th)) THEN | |
REWRITE_TAC[MEM; REV_ASSOCD] THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t':term` MP_TAC) THEN STRIP_TAC THEN | |
UNDISCH_TAC `VARIANT (RESULT (INST_CORE [] tyin t)) x ty' = x'` THEN | |
ASM_REWRITE_TAC[RESULT] THEN DISCH_TAC THEN | |
MP_TAC(SPECL [`t':term`; `x:string`; `ty':type`] VARIANT) THEN | |
ASM_REWRITE_TAC[] THEN | |
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) | |
[NOT_EXISTS_THM; TAUT `~(a /\ b) <=> a ==> ~b`] THEN DISCH_TAC THEN | |
ANTS_TAC THENL | |
[ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC VSUBST_WELLTYPED THEN ASM_REWRITE_TAC[MEM; PAIR_EQ] THEN | |
ASM_MESON_TAC[has_type_RULES]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC SIZEOF_VSUBST THEN | |
ASM_REWRITE_TAC[MEM; PAIR_EQ] THEN ASM_MESON_TAC[has_type_RULES]; | |
ALL_TAC] THEN | |
EXPAND_TAC "env''" THEN REWRITE_TAC[MEM; PAIR_EQ] THEN | |
ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[DISCH_THEN(fun th -> DISJ1_TAC THEN MP_TAC th) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:string` THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `vty:type` THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN | |
ASM_REWRITE_TAC[IS_RESULT; CLASH] THEN | |
ONCE_REWRITE_TAC[letlemma] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL | |
[REWRITE_TAC[VFREE_IN_VSUBST] THEN EXPAND_TAC "env''" THEN | |
REWRITE_TAC[REV_ASSOCD] THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[term_INJ] THEN | |
DISCH_THEN(REPEAT_TCL CHOOSE_THEN MP_TAC) THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[VFREE_IN; term_INJ] THEN | |
ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [term_INJ]) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN | |
MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN | |
EXPAND_TAC "env''" THEN REWRITE_TAC[REV_ASSOCD] THEN | |
ASM_CASES_TAC `vty:type = ty` THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o CONJUNCT1) THEN | |
REWRITE_TAC[VFREE_IN_VSUBST; NOT_EXISTS_THM; REV_ASSOCD] THEN | |
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[VFREE_IN; term_INJ] THEN | |
MAP_EVERY X_GEN_TAC [`k:string`; `kty:type`] THEN | |
MP_TAC(SPECL [`t':term`; `x:string`; `ty':type`] VARIANT) THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t'':term` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[IS_RESULT; result_INJ; UNWIND_THM1; result_DISTINCT] THEN | |
REWRITE_TAC[RESULT] THEN | |
MATCH_MP_TAC(TAUT `b /\ (b ==> c /\ a /\ d) ==> a /\ b /\ c /\ d`) THEN | |
CONJ_TAC THENL | |
[ASM_REWRITE_TAC[typeof; TYPE_SUBST] THEN | |
MATCH_MP_TAC(last(CONJUNCTS has_type_RULES)) THEN | |
SUBGOAL_THEN `(VSUBST [Var x' ty,Var x ty] t) has_type (typeof t)` | |
(fun th -> ASM_MESON_TAC[th; WELLTYPED_LEMMA]) THEN | |
MATCH_MP_TAC VSUBST_HAS_TYPE THEN ASM_REWRITE_TAC[GSYM WELLTYPED] THEN | |
REWRITE_TAC[MEM; PAIR_EQ] THEN MESON_TAC[has_type_RULES]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN | |
CONJ_TAC THENL | |
[ASM_REWRITE_TAC[VFREE_IN] THEN | |
MAP_EVERY X_GEN_TAC [`k:string`; `kty:type`] THEN | |
ASM_REWRITE_TAC[VFREE_IN_VSUBST; REV_ASSOCD] THEN | |
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[VFREE_IN; term_INJ] THEN | |
SIMP_TAC[] THEN | |
REWRITE_TAC[TAUT `x /\ (if p then a /\ b else c /\ b) <=> | |
b /\ x /\ (if p then a else c)`] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN | |
REWRITE_TAC[TAUT `x /\ (if p /\ q then a else b) <=> | |
p /\ q /\ a /\ x \/ b /\ ~(p /\ q) /\ x`] THEN | |
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM1; UNWIND_THM2] THEN | |
ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN CONJ_TAC THENL | |
[MAP_EVERY X_GEN_TAC [`k:string`; `kty:type`] THEN | |
REWRITE_TAC[VFREE_IN] THEN STRIP_TAC THEN | |
UNDISCH_TAC `!x'' ty'. | |
VFREE_IN (Var x'' ty') (VSUBST [Var x' ty,Var x ty] t) | |
==> (REV_ASSOCD (Var x'' (TYPE_SUBST tyin ty')) env'' | |
(Var x'' ty') = Var x'' ty')` THEN | |
DISCH_THEN(MP_TAC o SPECL [`k:string`; `kty:type`]) THEN | |
REWRITE_TAC[VFREE_IN_VSUBST; REV_ASSOCD] THEN | |
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[VFREE_IN] THEN | |
REWRITE_TAC[VFREE_IN; term_INJ] THEN | |
SIMP_TAC[] THEN | |
REWRITE_TAC[TAUT `x /\ (if p then a /\ b else c /\ b) <=> | |
b /\ x /\ (if p then a else c)`] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN | |
REWRITE_TAC[TAUT `x /\ (if p /\ q then a else b) <=> | |
p /\ q /\ a /\ x \/ b /\ ~(p /\ q) /\ x`] THEN | |
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM1; UNWIND_THM2] THEN | |
UNDISCH_TAC `~(Var x ty = Var k kty)` THEN | |
REWRITE_TAC[term_INJ] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN | |
EXPAND_TAC "env''" THEN REWRITE_TAC[REV_ASSOCD] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[semantics] THEN | |
REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC ABSTRACT_EQ THEN | |
CONJ_TAC THENL [ASM_SIMP_TAC[TYPESET_INHABITED]; ALL_TAC] THEN | |
X_GEN_TAC `a:V` THEN REWRITE_TAC[] THEN DISCH_TAC THEN CONJ_TAC THENL | |
[MATCH_MP_TAC SEMANTICS_TYPESET THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN | |
ASM_MESON_TAC[welltyped; WELLTYPED]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(TAUT `(b ==> a) /\ b ==> a /\ b`) THEN CONJ_TAC THENL | |
[DISCH_THEN(SUBST1_TAC o SYM) THEN | |
MATCH_MP_TAC SEMANTICS_TYPESET THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN | |
SUBGOAL_THEN `(VSUBST [Var x' ty,Var x ty] t) has_type (typeof t)` | |
(fun th -> ASM_MESON_TAC[th; WELLTYPED_LEMMA]) THEN | |
MATCH_MP_TAC VSUBST_HAS_TYPE THEN ASM_REWRITE_TAC[GSYM WELLTYPED] THEN | |
REWRITE_TAC[MEM; PAIR_EQ] THEN MESON_TAC[has_type_RULES]; | |
ALL_TAC] THEN | |
W(fun (asl,w) -> FIRST_X_ASSUM(fun th -> | |
MP_TAC(PART_MATCH (lhand o rand) th (lhand w)))) THEN | |
ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN DISCH_TAC THEN | |
REWRITE_TAC[GSYM(CONJUNCT1 TYPE_SUBST)] THEN | |
MP_TAC SEMANTICS_VSUBST THEN | |
REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN | |
DISCH_THEN(fun th -> | |
W(fun (asl,w) -> MP_TAC(PART_MATCH (lhand o rand) th (lhand w)))) THEN | |
ANTS_TAC THENL | |
[ASM_REWRITE_TAC[MEM; PAIR_EQ] THEN CONJ_TAC THENL | |
[MESON_TAC[has_type_RULES]; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[type_valuation] THEN ASM_SIMP_TAC[TYPESET_INHABITED]; | |
ALL_TAC] THEN | |
REWRITE_TAC[term_valuation] THEN | |
MAP_EVERY X_GEN_TAC [`y:string`; `yty:type`] THEN | |
REWRITE_TAC[VALMOD] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[VALMOD; PAIR_EQ] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN | |
ASM_MESON_TAC[term_valuation]; | |
ALL_TAC] THEN | |
DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[GSYM(CONJUNCT1 TYPE_SUBST)] THEN | |
MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN CONJ_TAC THENL | |
[REWRITE_TAC[type_valuation] THEN ASM_SIMP_TAC[TYPESET_INHABITED]; | |
ALL_TAC] THEN | |
REWRITE_TAC[ITLIST] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[DEST_VAR] THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL | |
[ASM_REWRITE_TAC[] THEN CONJ_TAC THEN | |
REWRITE_TAC[term_valuation; semantics] THEN | |
MAP_EVERY X_GEN_TAC [`k:string`; `kty:type`] THEN | |
REWRITE_TAC[VALMOD] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[TYPESET_LEMMA; TYPE_SUBST] THEN | |
SIMP_TAC[PAIR_EQ] THEN ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[term_valuation]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`k:string`; `kty:type`] THEN DISCH_TAC THEN | |
REWRITE_TAC[VALMOD; semantics] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
SIMP_TAC[PAIR_EQ] THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* So in particular, we get key properties of INST itself. *) | |
(* ------------------------------------------------------------------------- *) | |
let SEMANTICS_INST = prove | |
(`!tyin tm. | |
welltyped tm | |
==> (INST tyin tm) has_type (TYPE_SUBST tyin (typeof tm)) /\ | |
(!u uty. VFREE_IN (Var u uty) (INST tyin tm) <=> | |
?oty. VFREE_IN (Var u oty) tm /\ | |
(uty = TYPE_SUBST tyin oty)) /\ | |
!sigma tau. | |
type_valuation tau /\ term_valuation tau sigma | |
==> (semantics sigma tau (INST tyin tm) = | |
semantics | |
(\(x,ty). sigma(x,TYPE_SUBST tyin ty)) | |
(\s. typeset tau (TYPE_SUBST tyin (Tyvar s))) tm)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
MP_TAC(SPECL [`sizeof tm`; `tm:term`; `[]:(term#term)list`; | |
`tyin:(type#type)list`] SEMANTICS_INST_CORE) THEN | |
ASM_REWRITE_TAC[MEM; INST_DEF; REV_ASSOCD] THEN MESON_TAC[RESULT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence soundness of the INST_TYPE rule. *) | |
(* ------------------------------------------------------------------------- *) | |
let INST_TYPE_correct = prove | |
(`!tyin asl p. asl |= p ==> MAP (INST tyin) asl |= INST tyin p`, | |
REWRITE_TAC[sequent] THEN REPEAT STRIP_TAC THENL | |
[UNDISCH_TAC `ALL (\a. a has_type Bool) (CONS p asl)` THEN | |
REWRITE_TAC[ALL; ALL_MAP] THEN MATCH_MP_TAC MONO_AND THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN | |
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[o_THM]] THEN | |
ASM_MESON_TAC[SEMANTICS_INST; TYPE_SUBST; welltyped; WELLTYPED; | |
WELLTYPED_LEMMA]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `welltyped p` ASSUME_TAC THENL | |
[ASM_MESON_TAC[welltyped; ALL]; ALL_TAC] THEN | |
ASM_SIMP_TAC[SEMANTICS_INST] THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL | |
[REWRITE_TAC[type_valuation] THEN ASM_MESON_TAC[TYPESET_INHABITED]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[term_valuation] THEN | |
REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN | |
ASM_MESON_TAC[term_valuation]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL_MAP]) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN | |
X_GEN_TAC `a:term` THEN DISCH_TAC THEN | |
SUBGOAL_THEN `welltyped a` MP_TAC THENL | |
[ASM_MESON_TAC[ALL_MEM; MEM; welltyped]; ALL_TAC] THEN | |
ASM_SIMP_TAC[SEMANTICS_INST; o_THM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Soundness. *) | |
(* ------------------------------------------------------------------------- *) | |
let HOL_IS_SOUND = prove | |
(`!asl p. asl |- p ==> asl |= p`, | |
MATCH_MP_TAC proves_INDUCT THEN | |
REWRITE_TAC[REFL_correct; TRANS_correct; ABS_correct; | |
BETA_correct; ASSUME_correct; EQ_MP_correct; INST_TYPE_correct; | |
REWRITE_RULE[LET_DEF; LET_END_DEF] DEDUCT_ANTISYM_RULE_correct; | |
REWRITE_RULE[IMP_IMP] INST_correct] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC MK_COMB_correct THEN | |
ASM_MESON_TAC[WELLTYPED_CLAUSES; MK_COMB_correct]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Consistency. *) | |
(* ------------------------------------------------------------------------- *) | |
let HOL_IS_CONSISTENT = prove | |
(`?p. p has_type Bool /\ ~([] |- p)`, | |
SUBGOAL_THEN `?p. p has_type Bool /\ ~([] |= p)` | |
(fun th -> MESON_TAC[th; HOL_IS_SOUND]) THEN | |
EXISTS_TAC `Var x Bool === Var (VARIANT (Var x Bool) x Bool) Bool` THEN | |
SIMP_TAC[EQUATION_HAS_TYPE_BOOL; WELLTYPED_CLAUSES; typeof; | |
sequent; ALL; SEMANTICS_EQUATION; has_type_RULES; semantics; | |
BOOLEAN_EQ_TRUE] THEN | |
MP_TAC(SPECL [`Var x Bool`; `x:string`; `Bool`] VARIANT) THEN | |
ABBREV_TAC `y = VARIANT (Var x Bool) x Bool` THEN | |
REWRITE_TAC[VFREE_IN; term_INJ; NOT_FORALL_THM] THEN DISCH_TAC THEN | |
EXISTS_TAC `((x:string,Bool) |-> false) (((y,Bool) |-> true) | |
(\(x,ty). @a. a <: typeset (\x. boolset) ty))` THEN | |
EXISTS_TAC `\x:string. boolset` THEN | |
ASM_REWRITE_TAC[type_valuation; VALMOD; PAIR_EQ; TRUE_NE_FALSE] THEN | |
CONJ_TAC THENL [MESON_TAC[IN_BOOL]; ALL_TAC] THEN | |
REWRITE_TAC[term_valuation] THEN REPEAT GEN_TAC THEN | |
REWRITE_TAC[VALMOD; PAIR_EQ] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[typeset; IN_BOOL]) THEN | |
CONV_TAC SELECT_CONV THEN MATCH_MP_TAC TYPESET_INHABITED THEN | |
REWRITE_TAC[type_valuation] THEN MESON_TAC[IN_BOOL]);; | |