Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Invariants.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke | |
*) | |
section "Reachability and Invariance" | |
theory Invariants | |
imports Lib TransitionSystems | |
begin | |
subsection Reachability | |
text \<open> | |
A state is `reachable' under @{term I} if either it is the initial state, or it is the | |
destination of a transition whose action satisfies @{term I} from a reachable state. | |
The `standard' definition of reachability is recovered by setting @{term I} to @{term TT}. | |
\<close> | |
inductive_set reachable | |
for A :: "('s, 'a) automaton" | |
and I :: "'a \<Rightarrow> bool" | |
where | |
reachable_init: "s \<in> init A \<Longrightarrow> s \<in> reachable A I" | |
| reachable_step: "\<lbrakk> s \<in> reachable A I; (s, a, s') \<in> trans A; I a \<rbrakk> \<Longrightarrow> s' \<in> reachable A I" | |
inductive_cases reachable_icases: "s \<in> reachable A I" | |
lemma reachable_pair_induct [consumes, case_names init step]: | |
assumes "(\<xi>, p) \<in> reachable A I" | |
and "\<And>\<xi> p. (\<xi>, p) \<in> init A \<Longrightarrow> P \<xi> p" | |
and "(\<And>\<xi> p \<xi>' p' a. \<lbrakk> (\<xi>, p) \<in> reachable A I; P \<xi> p; | |
((\<xi>, p), a, (\<xi>', p')) \<in> trans A; I a \<rbrakk> \<Longrightarrow> P \<xi>' p')" | |
shows "P \<xi> p" | |
using assms(1) proof (induction "(\<xi>, p)" arbitrary: \<xi> p) | |
fix \<xi> p | |
assume "(\<xi>, p) \<in> init A" | |
with assms(2) show "P \<xi> p" . | |
next | |
fix s a \<xi>' p' | |
assume "s \<in> reachable A I" | |
and tr: "(s, a, (\<xi>', p')) \<in> trans A" | |
and "I a" | |
and IH: "\<And>\<xi> p. s = (\<xi>, p) \<Longrightarrow> P \<xi> p" | |
from this(1) obtain \<xi> p where "s = (\<xi>, p)" | |
and "(\<xi>, p) \<in> reachable A I" | |
by (metis prod.collapse) | |
note this(2) | |
moreover from IH and \<open>s = (\<xi>, p)\<close> have "P \<xi> p" . | |
moreover from tr and \<open>s = (\<xi>, p)\<close> have "((\<xi>, p), a, (\<xi>', p')) \<in> trans A" by simp | |
ultimately show "P \<xi>' p'" | |
using \<open>I a\<close> by (rule assms(3)) | |
qed | |
lemma reachable_weakenE [elim]: | |
assumes "s \<in> reachable A P" | |
and PQ: "\<And>a. P a \<Longrightarrow> Q a" | |
shows "s \<in> reachable A Q" | |
using assms(1) | |
proof (induction) | |
fix s assume "s \<in> init A" | |
thus "s \<in> reachable A Q" .. | |
next | |
fix s a s' | |
assume "s \<in> reachable A P" | |
and "s \<in> reachable A Q" | |
and "(s, a, s') \<in> trans A" | |
and "P a" | |
from \<open>P a\<close> have "Q a" by (rule PQ) | |
with \<open>s \<in> reachable A Q\<close> and \<open>(s, a, s') \<in> trans A\<close> show "s' \<in> reachable A Q" .. | |
qed | |
lemma reachable_weaken_TT [elim]: | |
assumes "s \<in> reachable A I" | |
shows "s \<in> reachable A TT" | |
using assms by rule simp | |
lemma init_empty_reachable_empty: | |
assumes "init A = {}" | |
shows "reachable A I = {}" | |
proof (rule ccontr) | |
assume "reachable A I \<noteq> {}" | |
then obtain s where "s \<in> reachable A I" by auto | |
thus False | |
proof (induction rule: reachable.induct) | |
fix s | |
assume "s \<in> init A" | |
with \<open>init A = {}\<close> show False by simp | |
qed | |
qed | |
subsection Invariance | |
definition invariant | |
:: "('s, 'a) automaton \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('s \<Rightarrow> bool) \<Rightarrow> bool" | |
("_ \<TTurnstile> (1'(_ \<rightarrow>')/ _)" [100, 0, 9] 8) | |
where | |
"(A \<TTurnstile> (I \<rightarrow>) P) = (\<forall>s\<in>reachable A I. P s)" | |
abbreviation | |
any_invariant | |
:: "('s, 'a) automaton \<Rightarrow> ('s \<Rightarrow> bool) \<Rightarrow> bool" | |
("_ \<TTurnstile> _" [100, 9] 8) | |
where | |
"(A \<TTurnstile> P) \<equiv> (A \<TTurnstile> (TT \<rightarrow>) P)" | |
lemma invariantI [intro]: | |
assumes init: "\<And>s. s \<in> init A \<Longrightarrow> P s" | |
and step: "\<And>s a s'. \<lbrakk> s \<in> reachable A I; P s; (s, a, s') \<in> trans A; I a \<rbrakk> \<Longrightarrow> P s'" | |
shows "A \<TTurnstile> (I \<rightarrow>) P" | |
unfolding invariant_def | |
proof | |
fix s | |
assume "s \<in> reachable A I" | |
thus "P s" | |
proof induction | |
fix s assume "s \<in> init A" | |
thus "P s" by (rule init) | |
next | |
fix s a s' | |
assume "s \<in> reachable A I" | |
and "P s" | |
and "(s, a, s') \<in> trans A" | |
and "I a" | |
thus "P s'" by (rule step) | |
qed | |
qed | |
lemma invariant_pairI [intro]: | |
assumes init: "\<And>\<xi> p. (\<xi>, p) \<in> init A \<Longrightarrow> P (\<xi>, p)" | |
and step: "\<And>\<xi> p \<xi>' p' a. | |
\<lbrakk> (\<xi>, p) \<in> reachable A I; P (\<xi>, p); ((\<xi>, p), a, (\<xi>', p')) \<in> trans A; I a \<rbrakk> | |
\<Longrightarrow> P (\<xi>', p')" | |
shows "A \<TTurnstile> (I \<rightarrow>) P" | |
using assms by auto | |
lemma invariant_arbitraryI: | |
assumes "\<And>s. s \<in> reachable A I \<Longrightarrow> P s" | |
shows "A \<TTurnstile> (I \<rightarrow>) P" | |
using assms unfolding invariant_def by simp | |
lemma invariantD [dest]: | |
assumes "A \<TTurnstile> (I \<rightarrow>) P" | |
and "s \<in> reachable A I" | |
shows "P s" | |
using assms unfolding invariant_def by blast | |
lemma invariant_initE [elim]: | |
assumes invP: "A \<TTurnstile> (I \<rightarrow>) P" | |
and init: "s \<in> init A" | |
shows "P s" | |
proof - | |
from init have "s \<in> reachable A I" .. | |
with invP show ?thesis .. | |
qed | |
lemma invariant_weakenE [elim]: | |
fixes T \<sigma> P Q | |
assumes invP: "A \<TTurnstile> (PI \<rightarrow>) P" | |
and PQ: "\<And>s. P s \<Longrightarrow> Q s" | |
and QIPI: "\<And>a. QI a \<Longrightarrow> PI a" | |
shows "A \<TTurnstile> (QI \<rightarrow>) Q" | |
proof | |
fix s | |
assume "s \<in> init A" | |
with invP have "P s" .. | |
thus "Q s" by (rule PQ) | |
next | |
fix s a s' | |
assume "s \<in> reachable A QI" | |
and "(s, a, s') \<in> trans A" | |
and "QI a" | |
from \<open>QI a\<close> have "PI a" by (rule QIPI) | |
from \<open>s \<in> reachable A QI\<close> and QIPI have "s \<in> reachable A PI" .. | |
hence "s' \<in> reachable A PI" using \<open>(s, a, s') \<in> trans A\<close> and \<open>PI a\<close> .. | |
with invP have "P s'" .. | |
thus "Q s'" by (rule PQ) | |
qed | |
definition | |
step_invariant | |
:: "('s, 'a) automaton \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> (('s, 'a) transition \<Rightarrow> bool) \<Rightarrow> bool" | |
("_ \<TTurnstile>\<^sub>A (1'(_ \<rightarrow>')/ _)" [100, 0, 0] 8) | |
where | |
"(A \<TTurnstile>\<^sub>A (I \<rightarrow>) P) = (\<forall>a. I a \<longrightarrow> (\<forall>s\<in>reachable A I. (\<forall>s'.(s, a, s') \<in> trans A \<longrightarrow> P (s, a, s'))))" | |
lemma invariant_restrict_inD [dest]: | |
assumes "A \<TTurnstile> (TT \<rightarrow>) P" | |
shows "A \<TTurnstile> (QI \<rightarrow>) P" | |
using assms by auto | |
abbreviation | |
any_step_invariant | |
:: "('s, 'a) automaton \<Rightarrow> (('s, 'a) transition \<Rightarrow> bool) \<Rightarrow> bool" | |
("_ \<TTurnstile>\<^sub>A _" [100, 9] 8) | |
where | |
"(A \<TTurnstile>\<^sub>A P) \<equiv> (A \<TTurnstile>\<^sub>A (TT \<rightarrow>) P)" | |
lemma step_invariant_true: | |
"p \<TTurnstile>\<^sub>A (\<lambda>(s, a, s'). True)" | |
unfolding step_invariant_def by simp | |
lemma step_invariantI [intro]: | |
assumes *: "\<And>s a s'. \<lbrakk> s\<in>reachable A I; (s, a, s')\<in>trans A; I a \<rbrakk> \<Longrightarrow> P (s, a, s')" | |
shows "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P" | |
unfolding step_invariant_def | |
using assms by auto | |
lemma step_invariantD [dest]: | |
assumes "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P" | |
and "s\<in>reachable A I" | |
and "(s, a, s') \<in> trans A" | |
and "I a" | |
shows "P (s, a, s')" | |
using assms unfolding step_invariant_def by blast | |
lemma step_invariantE [elim]: | |
fixes T \<sigma> P I s a s' | |
assumes "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P" | |
and "s\<in>reachable A I" | |
and "(s, a, s') \<in> trans A" | |
and "I a" | |
and "P (s, a, s') \<Longrightarrow> Q" | |
shows "Q" | |
using assms by auto | |
lemma step_invariant_pairI [intro]: | |
assumes *: "\<And>\<xi> p \<xi>' p' a. | |
\<lbrakk> (\<xi>, p) \<in> reachable A I; ((\<xi>, p), a, (\<xi>', p')) \<in> trans A; I a \<rbrakk> | |
\<Longrightarrow> P ((\<xi>, p), a, (\<xi>', p'))" | |
shows "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P" | |
using assms by auto | |
lemma step_invariant_arbitraryI: | |
assumes "\<And>\<xi> p a \<xi>' p'. \<lbrakk> (\<xi>, p) \<in> reachable A I; ((\<xi>, p), a, (\<xi>', p')) \<in> trans A; I a \<rbrakk> | |
\<Longrightarrow> P ((\<xi>, p), a, (\<xi>', p'))" | |
shows "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P" | |
using assms by auto | |
lemma step_invariant_weakenE [elim!]: | |
fixes T \<sigma> P Q | |
assumes invP: "A \<TTurnstile>\<^sub>A (PI \<rightarrow>) P" | |
and PQ: "\<And>t. P t \<Longrightarrow> Q t" | |
and QIPI: "\<And>a. QI a \<Longrightarrow> PI a" | |
shows "A \<TTurnstile>\<^sub>A (QI \<rightarrow>) Q" | |
proof | |
fix s a s' | |
assume "s \<in> reachable A QI" | |
and "(s, a, s') \<in> trans A" | |
and "QI a" | |
from \<open>QI a\<close> have "PI a" by (rule QIPI) | |
from \<open>s \<in> reachable A QI\<close> have "s \<in> reachable A PI" using QIPI .. | |
with invP have "P (s, a, s')" using \<open>(s, a, s') \<in> trans A\<close> \<open>PI a\<close> .. | |
thus "Q (s, a, s')" by (rule PQ) | |
qed | |
lemma step_invariant_weaken_with_invariantE [elim]: | |
assumes pinv: "A \<TTurnstile> (I \<rightarrow>) P" | |
and qinv: "A \<TTurnstile>\<^sub>A (I \<rightarrow>) Q" | |
and wr: "\<And>s a s'. \<lbrakk> P s; P s'; Q (s, a, s'); I a \<rbrakk> \<Longrightarrow> R (s, a, s')" | |
shows "A \<TTurnstile>\<^sub>A (I \<rightarrow>) R" | |
proof | |
fix s a s' | |
assume sr: "s \<in> reachable A I" | |
and tr: "(s, a, s') \<in> trans A" | |
and "I a" | |
hence "s' \<in> reachable A I" .. | |
with pinv have "P s'" .. | |
from pinv and sr have "P s" .. | |
from qinv sr tr \<open>I a\<close> have "Q (s, a, s')" .. | |
with \<open>P s\<close> and \<open>P s'\<close> show "R (s, a, s')" using \<open>I a\<close> by (rule wr) | |
qed | |
lemma step_to_invariantI: | |
assumes sinv: "A \<TTurnstile>\<^sub>A (I \<rightarrow>) Q" | |
and init: "\<And>s. s \<in> init A \<Longrightarrow> P s" | |
and step: "\<And>s s' a. | |
\<lbrakk> s \<in> reachable A I; | |
P s; | |
Q (s, a, s'); | |
I a \<rbrakk> \<Longrightarrow> P s'" | |
shows "A \<TTurnstile> (I \<rightarrow>) P" | |
proof | |
fix s assume "s \<in> init A" thus "P s" by (rule init) | |
next | |
fix s s' a | |
assume "s \<in> reachable A I" | |
and "P s" | |
and "(s, a, s') \<in> trans A" | |
and "I a" | |
show "P s'" | |
proof - | |
from sinv and \<open>s\<in>reachable A I\<close> and \<open>(s, a, s')\<in>trans A\<close> and \<open>I a\<close> have "Q (s, a, s')" .. | |
with \<open>s\<in>reachable A I\<close> and \<open>P s\<close> show "P s'" using \<open>I a\<close> by (rule step) | |
qed | |
qed | |
end | |