Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /AWN /Invariants.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
11.1 kB
(* Title: Invariants.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke
*)
section "Reachability and Invariance"
theory Invariants
imports Lib TransitionSystems
begin
subsection Reachability
text \<open>
A state is `reachable' under @{term I} if either it is the initial state, or it is the
destination of a transition whose action satisfies @{term I} from a reachable state.
The `standard' definition of reachability is recovered by setting @{term I} to @{term TT}.
\<close>
inductive_set reachable
for A :: "('s, 'a) automaton"
and I :: "'a \<Rightarrow> bool"
where
reachable_init: "s \<in> init A \<Longrightarrow> s \<in> reachable A I"
| reachable_step: "\<lbrakk> s \<in> reachable A I; (s, a, s') \<in> trans A; I a \<rbrakk> \<Longrightarrow> s' \<in> reachable A I"
inductive_cases reachable_icases: "s \<in> reachable A I"
lemma reachable_pair_induct [consumes, case_names init step]:
assumes "(\<xi>, p) \<in> reachable A I"
and "\<And>\<xi> p. (\<xi>, p) \<in> init A \<Longrightarrow> P \<xi> p"
and "(\<And>\<xi> p \<xi>' p' a. \<lbrakk> (\<xi>, p) \<in> reachable A I; P \<xi> p;
((\<xi>, p), a, (\<xi>', p')) \<in> trans A; I a \<rbrakk> \<Longrightarrow> P \<xi>' p')"
shows "P \<xi> p"
using assms(1) proof (induction "(\<xi>, p)" arbitrary: \<xi> p)
fix \<xi> p
assume "(\<xi>, p) \<in> init A"
with assms(2) show "P \<xi> p" .
next
fix s a \<xi>' p'
assume "s \<in> reachable A I"
and tr: "(s, a, (\<xi>', p')) \<in> trans A"
and "I a"
and IH: "\<And>\<xi> p. s = (\<xi>, p) \<Longrightarrow> P \<xi> p"
from this(1) obtain \<xi> p where "s = (\<xi>, p)"
and "(\<xi>, p) \<in> reachable A I"
by (metis prod.collapse)
note this(2)
moreover from IH and \<open>s = (\<xi>, p)\<close> have "P \<xi> p" .
moreover from tr and \<open>s = (\<xi>, p)\<close> have "((\<xi>, p), a, (\<xi>', p')) \<in> trans A" by simp
ultimately show "P \<xi>' p'"
using \<open>I a\<close> by (rule assms(3))
qed
lemma reachable_weakenE [elim]:
assumes "s \<in> reachable A P"
and PQ: "\<And>a. P a \<Longrightarrow> Q a"
shows "s \<in> reachable A Q"
using assms(1)
proof (induction)
fix s assume "s \<in> init A"
thus "s \<in> reachable A Q" ..
next
fix s a s'
assume "s \<in> reachable A P"
and "s \<in> reachable A Q"
and "(s, a, s') \<in> trans A"
and "P a"
from \<open>P a\<close> have "Q a" by (rule PQ)
with \<open>s \<in> reachable A Q\<close> and \<open>(s, a, s') \<in> trans A\<close> show "s' \<in> reachable A Q" ..
qed
lemma reachable_weaken_TT [elim]:
assumes "s \<in> reachable A I"
shows "s \<in> reachable A TT"
using assms by rule simp
lemma init_empty_reachable_empty:
assumes "init A = {}"
shows "reachable A I = {}"
proof (rule ccontr)
assume "reachable A I \<noteq> {}"
then obtain s where "s \<in> reachable A I" by auto
thus False
proof (induction rule: reachable.induct)
fix s
assume "s \<in> init A"
with \<open>init A = {}\<close> show False by simp
qed
qed
subsection Invariance
definition invariant
:: "('s, 'a) automaton \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('s \<Rightarrow> bool) \<Rightarrow> bool"
("_ \<TTurnstile> (1'(_ \<rightarrow>')/ _)" [100, 0, 9] 8)
where
"(A \<TTurnstile> (I \<rightarrow>) P) = (\<forall>s\<in>reachable A I. P s)"
abbreviation
any_invariant
:: "('s, 'a) automaton \<Rightarrow> ('s \<Rightarrow> bool) \<Rightarrow> bool"
("_ \<TTurnstile> _" [100, 9] 8)
where
"(A \<TTurnstile> P) \<equiv> (A \<TTurnstile> (TT \<rightarrow>) P)"
lemma invariantI [intro]:
assumes init: "\<And>s. s \<in> init A \<Longrightarrow> P s"
and step: "\<And>s a s'. \<lbrakk> s \<in> reachable A I; P s; (s, a, s') \<in> trans A; I a \<rbrakk> \<Longrightarrow> P s'"
shows "A \<TTurnstile> (I \<rightarrow>) P"
unfolding invariant_def
proof
fix s
assume "s \<in> reachable A I"
thus "P s"
proof induction
fix s assume "s \<in> init A"
thus "P s" by (rule init)
next
fix s a s'
assume "s \<in> reachable A I"
and "P s"
and "(s, a, s') \<in> trans A"
and "I a"
thus "P s'" by (rule step)
qed
qed
lemma invariant_pairI [intro]:
assumes init: "\<And>\<xi> p. (\<xi>, p) \<in> init A \<Longrightarrow> P (\<xi>, p)"
and step: "\<And>\<xi> p \<xi>' p' a.
\<lbrakk> (\<xi>, p) \<in> reachable A I; P (\<xi>, p); ((\<xi>, p), a, (\<xi>', p')) \<in> trans A; I a \<rbrakk>
\<Longrightarrow> P (\<xi>', p')"
shows "A \<TTurnstile> (I \<rightarrow>) P"
using assms by auto
lemma invariant_arbitraryI:
assumes "\<And>s. s \<in> reachable A I \<Longrightarrow> P s"
shows "A \<TTurnstile> (I \<rightarrow>) P"
using assms unfolding invariant_def by simp
lemma invariantD [dest]:
assumes "A \<TTurnstile> (I \<rightarrow>) P"
and "s \<in> reachable A I"
shows "P s"
using assms unfolding invariant_def by blast
lemma invariant_initE [elim]:
assumes invP: "A \<TTurnstile> (I \<rightarrow>) P"
and init: "s \<in> init A"
shows "P s"
proof -
from init have "s \<in> reachable A I" ..
with invP show ?thesis ..
qed
lemma invariant_weakenE [elim]:
fixes T \<sigma> P Q
assumes invP: "A \<TTurnstile> (PI \<rightarrow>) P"
and PQ: "\<And>s. P s \<Longrightarrow> Q s"
and QIPI: "\<And>a. QI a \<Longrightarrow> PI a"
shows "A \<TTurnstile> (QI \<rightarrow>) Q"
proof
fix s
assume "s \<in> init A"
with invP have "P s" ..
thus "Q s" by (rule PQ)
next
fix s a s'
assume "s \<in> reachable A QI"
and "(s, a, s') \<in> trans A"
and "QI a"
from \<open>QI a\<close> have "PI a" by (rule QIPI)
from \<open>s \<in> reachable A QI\<close> and QIPI have "s \<in> reachable A PI" ..
hence "s' \<in> reachable A PI" using \<open>(s, a, s') \<in> trans A\<close> and \<open>PI a\<close> ..
with invP have "P s'" ..
thus "Q s'" by (rule PQ)
qed
definition
step_invariant
:: "('s, 'a) automaton \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> (('s, 'a) transition \<Rightarrow> bool) \<Rightarrow> bool"
("_ \<TTurnstile>\<^sub>A (1'(_ \<rightarrow>')/ _)" [100, 0, 0] 8)
where
"(A \<TTurnstile>\<^sub>A (I \<rightarrow>) P) = (\<forall>a. I a \<longrightarrow> (\<forall>s\<in>reachable A I. (\<forall>s'.(s, a, s') \<in> trans A \<longrightarrow> P (s, a, s'))))"
lemma invariant_restrict_inD [dest]:
assumes "A \<TTurnstile> (TT \<rightarrow>) P"
shows "A \<TTurnstile> (QI \<rightarrow>) P"
using assms by auto
abbreviation
any_step_invariant
:: "('s, 'a) automaton \<Rightarrow> (('s, 'a) transition \<Rightarrow> bool) \<Rightarrow> bool"
("_ \<TTurnstile>\<^sub>A _" [100, 9] 8)
where
"(A \<TTurnstile>\<^sub>A P) \<equiv> (A \<TTurnstile>\<^sub>A (TT \<rightarrow>) P)"
lemma step_invariant_true:
"p \<TTurnstile>\<^sub>A (\<lambda>(s, a, s'). True)"
unfolding step_invariant_def by simp
lemma step_invariantI [intro]:
assumes *: "\<And>s a s'. \<lbrakk> s\<in>reachable A I; (s, a, s')\<in>trans A; I a \<rbrakk> \<Longrightarrow> P (s, a, s')"
shows "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P"
unfolding step_invariant_def
using assms by auto
lemma step_invariantD [dest]:
assumes "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P"
and "s\<in>reachable A I"
and "(s, a, s') \<in> trans A"
and "I a"
shows "P (s, a, s')"
using assms unfolding step_invariant_def by blast
lemma step_invariantE [elim]:
fixes T \<sigma> P I s a s'
assumes "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P"
and "s\<in>reachable A I"
and "(s, a, s') \<in> trans A"
and "I a"
and "P (s, a, s') \<Longrightarrow> Q"
shows "Q"
using assms by auto
lemma step_invariant_pairI [intro]:
assumes *: "\<And>\<xi> p \<xi>' p' a.
\<lbrakk> (\<xi>, p) \<in> reachable A I; ((\<xi>, p), a, (\<xi>', p')) \<in> trans A; I a \<rbrakk>
\<Longrightarrow> P ((\<xi>, p), a, (\<xi>', p'))"
shows "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P"
using assms by auto
lemma step_invariant_arbitraryI:
assumes "\<And>\<xi> p a \<xi>' p'. \<lbrakk> (\<xi>, p) \<in> reachable A I; ((\<xi>, p), a, (\<xi>', p')) \<in> trans A; I a \<rbrakk>
\<Longrightarrow> P ((\<xi>, p), a, (\<xi>', p'))"
shows "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P"
using assms by auto
lemma step_invariant_weakenE [elim!]:
fixes T \<sigma> P Q
assumes invP: "A \<TTurnstile>\<^sub>A (PI \<rightarrow>) P"
and PQ: "\<And>t. P t \<Longrightarrow> Q t"
and QIPI: "\<And>a. QI a \<Longrightarrow> PI a"
shows "A \<TTurnstile>\<^sub>A (QI \<rightarrow>) Q"
proof
fix s a s'
assume "s \<in> reachable A QI"
and "(s, a, s') \<in> trans A"
and "QI a"
from \<open>QI a\<close> have "PI a" by (rule QIPI)
from \<open>s \<in> reachable A QI\<close> have "s \<in> reachable A PI" using QIPI ..
with invP have "P (s, a, s')" using \<open>(s, a, s') \<in> trans A\<close> \<open>PI a\<close> ..
thus "Q (s, a, s')" by (rule PQ)
qed
lemma step_invariant_weaken_with_invariantE [elim]:
assumes pinv: "A \<TTurnstile> (I \<rightarrow>) P"
and qinv: "A \<TTurnstile>\<^sub>A (I \<rightarrow>) Q"
and wr: "\<And>s a s'. \<lbrakk> P s; P s'; Q (s, a, s'); I a \<rbrakk> \<Longrightarrow> R (s, a, s')"
shows "A \<TTurnstile>\<^sub>A (I \<rightarrow>) R"
proof
fix s a s'
assume sr: "s \<in> reachable A I"
and tr: "(s, a, s') \<in> trans A"
and "I a"
hence "s' \<in> reachable A I" ..
with pinv have "P s'" ..
from pinv and sr have "P s" ..
from qinv sr tr \<open>I a\<close> have "Q (s, a, s')" ..
with \<open>P s\<close> and \<open>P s'\<close> show "R (s, a, s')" using \<open>I a\<close> by (rule wr)
qed
lemma step_to_invariantI:
assumes sinv: "A \<TTurnstile>\<^sub>A (I \<rightarrow>) Q"
and init: "\<And>s. s \<in> init A \<Longrightarrow> P s"
and step: "\<And>s s' a.
\<lbrakk> s \<in> reachable A I;
P s;
Q (s, a, s');
I a \<rbrakk> \<Longrightarrow> P s'"
shows "A \<TTurnstile> (I \<rightarrow>) P"
proof
fix s assume "s \<in> init A" thus "P s" by (rule init)
next
fix s s' a
assume "s \<in> reachable A I"
and "P s"
and "(s, a, s') \<in> trans A"
and "I a"
show "P s'"
proof -
from sinv and \<open>s\<in>reachable A I\<close> and \<open>(s, a, s')\<in>trans A\<close> and \<open>I a\<close> have "Q (s, a, s')" ..
with \<open>s\<in>reachable A I\<close> and \<open>P s\<close> show "P s'" using \<open>I a\<close> by (rule step)
qed
qed
end