Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: OAWN_Convert.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke | |
*) | |
section "Transfer standard invariants into open invariants" | |
theory OAWN_Convert | |
imports AWN_SOS_Labels AWN_Invariants | |
OAWN_SOS OAWN_Invariants | |
begin | |
definition initiali :: "'i \<Rightarrow> (('i \<Rightarrow> 'g) \<times> 'l) set \<Rightarrow> ('g \<times> 'l) set \<Rightarrow> bool" | |
where "initiali i OI CI \<equiv> ({(\<sigma> i, p)|\<sigma> p. (\<sigma>, p) \<in> OI} = CI)" | |
lemma initialiI [intro]: | |
assumes OICI: "\<And>\<sigma> p. (\<sigma>, p) \<in> OI \<Longrightarrow> (\<sigma> i, p) \<in> CI" | |
and CIOI: "\<And>\<xi> p. (\<xi>, p) \<in> CI \<Longrightarrow> \<exists>\<sigma>. \<xi> = \<sigma> i \<and> (\<sigma>, p) \<in> OI" | |
shows "initiali i OI CI" | |
unfolding initiali_def | |
by (intro set_eqI iffI) (auto elim!: OICI CIOI) | |
lemma open_from_initialiD [dest]: | |
assumes "initiali i OI CI" | |
and "(\<sigma>, p) \<in> OI" | |
shows "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> CI" | |
using assms unfolding initiali_def by auto | |
lemma closed_from_initialiD [dest]: | |
assumes "initiali i OI CI" | |
and "(\<xi>, p) \<in> CI" | |
shows "\<exists>\<sigma>. \<sigma> i = \<xi> \<and> (\<sigma>, p) \<in> OI" | |
using assms unfolding initiali_def by auto | |
definition | |
seql :: "'i \<Rightarrow> (('s \<times> 'l) \<Rightarrow> bool) \<Rightarrow> (('i \<Rightarrow> 's) \<times> 'l) \<Rightarrow> bool" | |
where | |
"seql i P \<equiv> (\<lambda>(\<sigma>, p). P (\<sigma> i, p))" | |
lemma seqlI [intro]: | |
"P (fst s i, snd s) \<Longrightarrow> seql i P s" | |
by (clarsimp simp: seql_def) | |
lemma same_seql [elim]: | |
assumes "\<forall>j\<in>{i}. \<sigma>' j = \<sigma> j" | |
and "seql i P (\<sigma>', s)" | |
shows "seql i P (\<sigma>, s)" | |
using assms unfolding seql_def by (clarsimp) | |
lemma seqlsimp: | |
"seql i P (\<sigma>, p) = P (\<sigma> i, p)" | |
unfolding seql_def by simp | |
lemma other_steps_resp_local [intro!, simp]: "other_steps (other A I) I" | |
by (clarsimp elim!: otherE) | |
lemma seql_onl_swap: | |
"seql i (onl \<Gamma> P) = onl \<Gamma> (seql i P)" | |
unfolding seql_def onl_def by simp | |
lemma oseqp_sos_resp_local_steps [intro!, simp]: | |
fixes \<Gamma> :: "'p \<Rightarrow> ('s, 'm, 'p, 'l) seqp" | |
shows "local_steps (oseqp_sos \<Gamma> i) {i}" | |
proof | |
fix \<sigma> \<sigma>' \<zeta> \<zeta>' :: "nat \<Rightarrow> 's" and s a s' | |
assume tr: "((\<sigma>, s), a, \<sigma>', s') \<in> oseqp_sos \<Gamma> i" | |
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j" | |
thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> oseqp_sos \<Gamma> i" | |
proof induction | |
fix \<sigma> \<sigma>' l ms p | |
assume "\<sigma>' i = \<sigma> i" | |
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j" | |
hence "((\<zeta>, {l}broadcast(ms).p), broadcast (ms (\<sigma> i)), (\<sigma>', p)) \<in> oseqp_sos \<Gamma> i" | |
by (metis obroadcastT singleton_iff) | |
with \<open>\<forall>j\<in>{i}. \<zeta> j = \<sigma> j\<close> show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> | |
((\<zeta>, {l}broadcast(ms).p), broadcast (ms (\<sigma> i)), (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i" | |
by blast | |
next | |
fix \<sigma> \<sigma>' :: "nat \<Rightarrow> 's" and fmsg :: "'m \<Rightarrow> 's \<Rightarrow> 's" and msg l p | |
assume *: "\<sigma>' i = fmsg msg (\<sigma> i)" | |
and **: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j" | |
hence "\<forall>j\<in>{i}. (\<zeta>(i := fmsg msg (\<zeta> i))) j = \<sigma>' j" by clarsimp | |
moreover from * ** | |
have "((\<zeta>, {l}receive(fmsg).p), receive msg, (\<zeta>(i := fmsg msg (\<zeta> i)), p)) \<in> oseqp_sos \<Gamma> i" | |
by (metis fun_upd_same oreceiveT) | |
ultimately show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> | |
((\<zeta>, {l}receive(fmsg).p), receive msg, (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i" | |
by blast | |
next | |
fix \<sigma>' \<sigma> l p and fas :: "'s \<Rightarrow> 's" | |
assume *: "\<sigma>' i = fas (\<sigma> i)" | |
and **: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j" | |
hence "\<forall>j\<in>{i}. (\<zeta>(i := fas (\<zeta> i))) j = \<sigma>' j" by clarsimp | |
moreover from * ** have "((\<zeta>, {l}\<lbrakk>fas\<rbrakk> p), \<tau>, (\<zeta>(i := fas (\<zeta> i)), p)) \<in> oseqp_sos \<Gamma> i" | |
by (metis fun_upd_same oassignT) | |
ultimately show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, {l}\<lbrakk>fas\<rbrakk> p), \<tau>, (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i" | |
by blast | |
next | |
fix g :: "'s \<Rightarrow> 's set" and \<sigma> \<sigma>' l p | |
assume *: "\<sigma>' i \<in> g (\<sigma> i)" | |
and **: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j" | |
hence "\<forall>j\<in>{i}. (SOME \<zeta>'. \<zeta>' i = \<sigma>' i) j = \<sigma>' j" by simp (metis (lifting, full_types) some_eq_ex) | |
moreover with * ** have "((\<zeta>, {l}\<langle>g\<rangle> p), \<tau>, (SOME \<zeta>'. \<zeta>' i = \<sigma>' i, p)) \<in> oseqp_sos \<Gamma> i" | |
by simp (metis oguardT step_seq_tau) | |
ultimately show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, {l}\<langle>g\<rangle> p), \<tau>, (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i" | |
by blast | |
next | |
fix \<sigma> pn a \<sigma>' p' | |
assume "((\<sigma>, \<Gamma> pn), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
and IH: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j \<Longrightarrow> \<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, \<Gamma> pn), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i" | |
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j" | |
then obtain \<zeta>' where "\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j" | |
and "((\<zeta>, \<Gamma> pn), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i" | |
by blast | |
thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, call(pn)), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i" | |
by blast | |
next | |
fix \<sigma> p a \<sigma>' p' q | |
assume "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j \<Longrightarrow> \<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, p), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i" | |
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j" | |
then obtain \<zeta>' where "\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j" | |
and "((\<zeta>, p), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i" | |
by blast | |
thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, p \<oplus> q), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i" | |
by blast | |
next | |
fix \<sigma> p a \<sigma>' q q' | |
assume "((\<sigma>, q), a, (\<sigma>', q')) \<in> oseqp_sos \<Gamma> i" | |
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j \<Longrightarrow> \<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, q), a, (\<zeta>', q')) \<in> oseqp_sos \<Gamma> i" | |
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j" | |
then obtain \<zeta>' where "\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j" | |
and "((\<zeta>, q), a, (\<zeta>', q')) \<in> oseqp_sos \<Gamma> i" | |
by blast | |
thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, p \<oplus> q), a, (\<zeta>', q')) \<in> oseqp_sos \<Gamma> i" | |
by blast | |
qed (simp_all, (metis ogroupcastT ounicastT onotunicastT osendT odeliverT)+) | |
qed | |
lemma oseqp_sos_subreachable [intro!, simp]: | |
assumes "trans OA = oseqp_sos \<Gamma> i" | |
shows "subreachable OA (other ANY {i}) {i}" | |
by rule (clarsimp simp add: assms(1))+ | |
lemma oseq_step_is_seq_step: | |
fixes \<sigma> :: "ip \<Rightarrow> 's" | |
assumes "((\<sigma>, p), a :: 'm seq_action, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
and "\<sigma> i = \<xi>" | |
shows "\<exists>\<xi>'. \<sigma>' i = \<xi>' \<and> ((\<xi>, p), a, (\<xi>', p')) \<in> seqp_sos \<Gamma>" | |
using assms proof induction | |
fix \<sigma> \<sigma>' l ms p | |
assume "\<sigma>' i = \<sigma> i" | |
and "\<sigma> i = \<xi>" | |
hence "\<sigma>' i = \<xi>" by simp | |
have "((\<xi>, {l}broadcast(ms).p), broadcast (ms \<xi>), (\<xi>, p)) \<in> seqp_sos \<Gamma>" | |
by auto | |
with \<open>\<sigma> i = \<xi>\<close> and \<open>\<sigma>' i = \<xi>\<close> show "\<exists>\<xi>'. \<sigma>' i = \<xi>' | |
\<and> ((\<xi>, {l}broadcast(ms).p), broadcast (ms (\<sigma> i)), (\<xi>', p)) \<in> seqp_sos \<Gamma>" | |
by clarsimp | |
next | |
fix fmsg :: "'m \<Rightarrow> 's \<Rightarrow> 's" and msg :: 'm and \<sigma>' \<sigma> l p | |
assume "\<sigma>' i = fmsg msg (\<sigma> i)" | |
and "\<sigma> i = \<xi>" | |
have "((\<xi>, {l}receive(fmsg).p), receive msg, (fmsg msg \<xi>, p)) \<in> seqp_sos \<Gamma>" | |
by auto | |
with \<open>\<sigma>' i = fmsg msg (\<sigma> i)\<close> and \<open>\<sigma> i = \<xi>\<close> | |
show "\<exists>\<xi>'. \<sigma>' i = \<xi>' \<and> ((\<xi>, {l}receive(fmsg).p), receive msg, (\<xi>', p)) \<in> seqp_sos \<Gamma>" | |
by clarsimp | |
qed (simp_all, (metis assignT choiceT1 choiceT2 groupcastT guardT | |
callT unicastT notunicastT sendT deliverT step_seq_tau)+) | |
lemma reachable_oseq_seqp_sos: | |
assumes "(\<sigma>, p) \<in> reachable OA I" | |
and "initiali i (init OA) (init A)" | |
and spo: "trans OA = oseqp_sos \<Gamma> i" | |
and sp: "trans A = seqp_sos \<Gamma>" | |
shows "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> reachable A I" | |
using assms(1) proof (induction rule: reachable_pair_induct) | |
fix \<sigma> p | |
assume "(\<sigma>, p) \<in> init OA" | |
with \<open>initiali i (init OA) (init A)\<close> obtain \<xi> where "\<sigma> i = \<xi>" | |
and "(\<xi>, p) \<in> init A" | |
by auto | |
from \<open>(\<xi>, p) \<in> init A\<close> have "(\<xi>, p) \<in> reachable A I" .. | |
with \<open>\<sigma> i = \<xi>\<close> show "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> reachable A I" | |
by auto | |
next | |
fix \<sigma> p \<sigma>' p' a | |
assume "(\<sigma>, p) \<in> reachable OA I" | |
and IH: "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> reachable A I" | |
and otr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans OA" | |
and "I a" | |
from IH obtain \<xi> where "\<sigma> i = \<xi>" | |
and cr: "(\<xi>, p) \<in> reachable A I" | |
by clarsimp | |
from otr and spo have "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by simp | |
with \<open>\<sigma> i = \<xi>\<close> obtain \<xi>' where "\<sigma>' i = \<xi>'" | |
and "((\<xi>, p), a, (\<xi>', p')) \<in> seqp_sos \<Gamma>" | |
by (auto dest!: oseq_step_is_seq_step) | |
from this(2) and sp have ctr: "((\<xi>, p), a, (\<xi>', p')) \<in> trans A" by simp | |
from \<open>(\<xi>, p) \<in> reachable A I\<close> and ctr and \<open>I a\<close> | |
have "(\<xi>', p') \<in> reachable A I" .. | |
with \<open>\<sigma>' i = \<xi>'\<close> show "\<exists>\<xi>. \<sigma>' i = \<xi> \<and> (\<xi>, p') \<in> reachable A I" | |
by blast | |
qed | |
lemma reachable_oseq_seqp_sos': | |
assumes "s \<in> reachable OA I" | |
and "initiali i (init OA) (init A)" | |
and "trans OA = oseqp_sos \<Gamma> i" | |
and "trans A = seqp_sos \<Gamma>" | |
shows "\<exists>\<xi>. (fst s) i = \<xi> \<and> (\<xi>, snd s) \<in> reachable A I" | |
using assms | |
by - (cases s, auto dest: reachable_oseq_seqp_sos) | |
text \<open> | |
Any invariant shown in the (simpler) closed semantics can be transferred to an invariant in | |
the open semantics. | |
\<close> | |
theorem open_seq_invariant [intro]: | |
assumes "A \<TTurnstile> (I \<rightarrow>) P" | |
and "initiali i (init OA) (init A)" | |
and spo: "trans OA = oseqp_sos \<Gamma> i" | |
and sp: "trans A = seqp_sos \<Gamma>" | |
shows "OA \<Turnstile> (act I, other ANY {i} \<rightarrow>) (seql i P)" | |
proof - | |
have "OA \<TTurnstile> (I \<rightarrow>) (seql i P)" | |
proof (rule invariant_arbitraryI) | |
fix s | |
assume "s \<in> reachable OA I" | |
with \<open>initiali i (init OA) (init A)\<close> obtain \<xi> where "(fst s) i = \<xi>" | |
and "(\<xi>, snd s) \<in> reachable A I" | |
by (auto dest: reachable_oseq_seqp_sos' [OF _ _ spo sp]) | |
with \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> have "P (\<xi>, snd s)" by auto | |
with \<open>(fst s) i = \<xi>\<close> show "seql i P s" by auto | |
qed | |
moreover from spo have "subreachable OA (other ANY {i}) {i}" .. | |
ultimately show ?thesis | |
proof (rule open_closed_invariant) | |
fix \<sigma> \<sigma>' s | |
assume "\<forall>j\<in>{i}. \<sigma>' j = \<sigma> j" | |
and "seql i P (\<sigma>', s)" | |
thus "seql i P (\<sigma>, s)" .. | |
qed | |
qed | |
definition | |
seqll :: "'i \<Rightarrow> ((('s \<times> 'l) \<times> 'a \<times> ('s \<times> 'l)) \<Rightarrow> bool) | |
\<Rightarrow> ((('i \<Rightarrow> 's) \<times> 'l) \<times> 'a \<times> (('i \<Rightarrow> 's) \<times> 'l)) \<Rightarrow> bool" | |
where | |
"seqll i P \<equiv> (\<lambda>((\<sigma>, p), a, (\<sigma>', p')). P ((\<sigma> i, p), a, (\<sigma>' i, p')))" | |
lemma same_seqll [elim]: | |
assumes "\<forall>j\<in>{i}. \<sigma>\<^sub>1' j = \<sigma>\<^sub>1 j" | |
and "\<forall>j\<in>{i}. \<sigma>\<^sub>2' j = \<sigma>\<^sub>2 j" | |
and "seqll i P ((\<sigma>\<^sub>1', s), a, (\<sigma>\<^sub>2', s'))" | |
shows "seqll i P ((\<sigma>\<^sub>1, s), a, (\<sigma>\<^sub>2, s'))" | |
using assms unfolding seqll_def by (clarsimp) | |
lemma seqllI [intro!]: | |
assumes "P ((\<sigma> i, p), a, (\<sigma>' i, p'))" | |
shows "seqll i P ((\<sigma>, p), a, (\<sigma>', p'))" | |
using assms unfolding seqll_def by simp | |
lemma seqllD [dest]: | |
assumes "seqll i P ((\<sigma>, p), a, (\<sigma>', p'))" | |
shows "P ((\<sigma> i, p), a, (\<sigma>' i, p'))" | |
using assms unfolding seqll_def by simp | |
lemma seqllsimp: | |
"seqll i P ((\<sigma>, p), a, (\<sigma>', p')) = P ((\<sigma> i, p), a, (\<sigma>' i, p'))" | |
unfolding seqll_def by simp | |
lemma seqll_onll_swap: | |
"seqll i (onll \<Gamma> P) = onll \<Gamma> (seqll i P)" | |
unfolding seqll_def onll_def by simp | |
theorem open_seq_step_invariant [intro]: | |
assumes "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P" | |
and "initiali i (init OA) (init A)" | |
and spo: "trans OA = oseqp_sos \<Gamma> i" | |
and sp: "trans A = seqp_sos \<Gamma>" | |
shows "OA \<Turnstile>\<^sub>A (act I, other ANY {i} \<rightarrow>) (seqll i P)" | |
proof - | |
have "OA \<TTurnstile>\<^sub>A (I \<rightarrow>) (seqll i P)" | |
proof (rule step_invariant_arbitraryI) | |
fix \<sigma> p a \<sigma>' p' | |
assume or: "(\<sigma>, p) \<in> reachable OA I" | |
and otr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans OA" | |
and "I a" | |
from or \<open>initiali i (init OA) (init A)\<close> spo sp obtain \<xi> where "\<sigma> i = \<xi>" | |
and cr: "(\<xi>, p) \<in> reachable A I" | |
by - (drule(3) reachable_oseq_seqp_sos', auto) | |
from otr and spo have "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by simp | |
with \<open>\<sigma> i = \<xi>\<close> obtain \<xi>' where "\<sigma>' i = \<xi>'" | |
and ctr: "((\<xi>, p), a, (\<xi>', p')) \<in> seqp_sos \<Gamma>" | |
by (auto dest!: oseq_step_is_seq_step) | |
with sp have "((\<xi>, p), a, (\<xi>', p')) \<in> trans A" by simp | |
with \<open>A \<TTurnstile>\<^sub>A (I \<rightarrow>) P\<close> cr have "P ((\<xi>, p), a, (\<xi>', p'))" using \<open>I a\<close> .. | |
with \<open>\<sigma> i = \<xi>\<close> and \<open>\<sigma>' i = \<xi>'\<close> have "P ((\<sigma> i, p), a, (\<sigma>' i, p'))" by simp | |
thus "seqll i P ((\<sigma>, p), a, (\<sigma>', p'))" .. | |
qed | |
moreover from spo have "local_steps (trans OA) {i}" by simp | |
moreover have "other_steps (other ANY {i}) {i}" .. | |
ultimately show ?thesis | |
proof (rule open_closed_step_invariant) | |
fix \<sigma> \<zeta> a \<sigma>' \<zeta>' s s' | |
assume "\<forall>j\<in>{i}. \<sigma> j = \<zeta> j" | |
and "\<forall>j\<in>{i}. \<sigma>' j = \<zeta>' j" | |
and "seqll i P ((\<sigma>, s), a, (\<sigma>', s'))" | |
thus "seqll i P ((\<zeta>, s), a, (\<zeta>', s'))" .. | |
qed | |
qed | |
end | |