Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: OInvariants.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke | |
*) | |
section "Open reachability and invariance" | |
theory OInvariants | |
imports Invariants | |
begin | |
subsection "Open reachability" | |
text \<open> | |
By convention, the states of an open automaton are pairs. The first component is considered | |
to be the global state and the second is the local state. | |
A state is `open reachable' under @{term S} and @{term U} if it is the initial state, or it | |
is the destination of a transition---where the global components satisfy @{term S}---from an | |
open reachable state, or it is the destination of an interleaved environment step where the | |
global components satisfy @{term U}. | |
\<close> | |
inductive_set oreachable | |
:: "('g \<times> 'l, 'a) automaton | |
\<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool) | |
\<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> bool) | |
\<Rightarrow> ('g \<times> 'l) set" | |
for A :: "('g \<times> 'l, 'a) automaton" | |
and S :: "'g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool" | |
and U :: "'g \<Rightarrow> 'g \<Rightarrow> bool" | |
where | |
oreachable_init: "s \<in> init A \<Longrightarrow> s \<in> oreachable A S U" | |
| oreachable_local: "\<lbrakk> s \<in> oreachable A S U; (s, a, s') \<in> trans A; S (fst s) (fst s') a \<rbrakk> | |
\<Longrightarrow> s' \<in> oreachable A S U" | |
| oreachable_other: "\<lbrakk> s \<in> oreachable A S U; U (fst s) \<sigma>' \<rbrakk> | |
\<Longrightarrow> (\<sigma>', snd s) \<in> oreachable A S U" | |
lemma oreachable_local' [elim]: | |
assumes "(\<sigma>, p) \<in> oreachable A S U" | |
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
shows "(\<sigma>', p') \<in> oreachable A S U" | |
using assms by (metis fst_conv oreachable.oreachable_local) | |
lemma oreachable_other' [elim]: | |
assumes "(\<sigma>, p) \<in> oreachable A S U" | |
and "U \<sigma> \<sigma>'" | |
shows "(\<sigma>', p) \<in> oreachable A S U" | |
proof - | |
from \<open>U \<sigma> \<sigma>'\<close> have "U (fst (\<sigma>, p)) \<sigma>'" by simp | |
with \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>', snd (\<sigma>, p)) \<in> oreachable A S U" | |
by (rule oreachable_other) | |
thus "(\<sigma>', p) \<in> oreachable A S U" by simp | |
qed | |
lemma oreachable_pair_induct [consumes, case_names init other local]: | |
assumes "(\<sigma>, p) \<in> oreachable A S U" | |
and "\<And>\<sigma> p. (\<sigma>, p) \<in> init A \<Longrightarrow> P \<sigma> p" | |
and "(\<And>\<sigma> p \<sigma>'. \<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P \<sigma> p; U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P \<sigma>' p)" | |
and "(\<And>\<sigma> p \<sigma>' p' a. \<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P \<sigma> p; | |
((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A; S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P \<sigma>' p')" | |
shows "P \<sigma> p" | |
using assms (1) proof (induction "(\<sigma>, p)" arbitrary: \<sigma> p) | |
fix \<sigma> p | |
assume "(\<sigma>, p) \<in> init A" | |
with assms(2) show "P \<sigma> p" . | |
next | |
fix s \<sigma>' | |
assume "s \<in> oreachable A S U" | |
and "U (fst s) \<sigma>'" | |
and IH: "\<And>\<sigma> p. s = (\<sigma>, p) \<Longrightarrow> P \<sigma> p" | |
from this(1) obtain \<sigma> p where "s = (\<sigma>, p)" | |
and "(\<sigma>, p) \<in> oreachable A S U" | |
by (metis surjective_pairing) | |
note this(2) | |
moreover from IH and \<open>s = (\<sigma>, p)\<close> have "P \<sigma> p" . | |
moreover from \<open>U (fst s) \<sigma>'\<close> and \<open>s = (\<sigma>, p)\<close> have "U \<sigma> \<sigma>'" by simp | |
ultimately have "P \<sigma>' p" by (rule assms(3)) | |
with \<open>s = (\<sigma>, p)\<close> show "P \<sigma>' (snd s)" by simp | |
next | |
fix s a \<sigma>' p' | |
assume "s \<in> oreachable A S U" | |
and tr: "(s, a, (\<sigma>', p')) \<in> trans A" | |
and "S (fst s) (fst (\<sigma>', p')) a" | |
and IH: "\<And>\<sigma> p. s = (\<sigma>, p) \<Longrightarrow> P \<sigma> p" | |
from this(1) obtain \<sigma> p where "s = (\<sigma>, p)" | |
and "(\<sigma>, p) \<in> oreachable A S U" | |
by (metis surjective_pairing) | |
note this(2) | |
moreover from IH \<open>s = (\<sigma>, p)\<close> have "P \<sigma> p" . | |
moreover from tr and \<open>s = (\<sigma>, p)\<close> have "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" by simp | |
moreover from \<open>S (fst s) (fst (\<sigma>', p')) a\<close> and \<open>s = (\<sigma>, p)\<close> have "S \<sigma> \<sigma>' a" by simp | |
ultimately show "P \<sigma>' p'" by (rule assms(4)) | |
qed | |
lemma oreachable_weakenE [elim]: | |
assumes "s \<in> oreachable A PS PU" | |
and PSQS: "\<And>s s' a. PS s s' a \<Longrightarrow> QS s s' a" | |
and PUQU: "\<And>s s'. PU s s' \<Longrightarrow> QU s s'" | |
shows "s \<in> oreachable A QS QU" | |
using assms(1) | |
proof (induction) | |
fix s assume "s \<in> init A" | |
thus "s \<in> oreachable A QS QU" .. | |
next | |
fix s a s' | |
assume "s \<in> oreachable A QS QU" | |
and "(s, a, s') \<in> trans A" | |
and "PS (fst s) (fst s') a" | |
from \<open>PS (fst s) (fst s') a\<close> have "QS (fst s) (fst s') a" by (rule PSQS) | |
with \<open>s \<in> oreachable A QS QU\<close> and \<open>(s, a, s') \<in> trans A\<close> show "s' \<in> oreachable A QS QU" .. | |
next | |
fix s g' | |
assume "s \<in> oreachable A QS QU" | |
and "PU (fst s) g'" | |
from \<open>PU (fst s) g'\<close> have "QU (fst s) g'" by (rule PUQU) | |
with \<open>s \<in> oreachable A QS QU\<close> show "(g', snd s) \<in> oreachable A QS QU" .. | |
qed | |
definition | |
act :: "('a \<Rightarrow> bool) \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> 'a \<Rightarrow> bool" | |
where | |
"act I \<equiv> (\<lambda>_ _. I)" | |
lemma act_simp [iff]: "act I s s' a = I a" | |
unfolding act_def .. | |
lemma reachable_in_oreachable [elim]: | |
fixes s | |
assumes "s \<in> reachable A I" | |
shows "s \<in> oreachable A (act I) U" | |
unfolding act_def using assms proof induction | |
fix s | |
assume "s \<in> init A" | |
thus "s \<in> oreachable A (\<lambda>_ _. I) U" .. | |
next | |
fix s a s' | |
assume "s \<in> oreachable A (\<lambda>_ _. I) U" | |
and "(s, a, s') \<in> trans A" | |
and "I a" | |
thus "s' \<in> oreachable A (\<lambda>_ _. I) U" | |
by (rule oreachable_local) | |
qed | |
subsection "Open Invariance" | |
definition oinvariant | |
:: "('g \<times> 'l, 'a) automaton | |
\<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> bool) | |
\<Rightarrow> (('g \<times> 'l) \<Rightarrow> bool) \<Rightarrow> bool" | |
("_ \<Turnstile> (1'((1_),/ (1_) \<rightarrow>')/ _)" [100, 0, 0, 9] 8) | |
where | |
"(A \<Turnstile> (S, U \<rightarrow>) P) = (\<forall>s\<in>oreachable A S U. P s)" | |
lemma oinvariantI [intro]: | |
fixes T TI S U P | |
assumes init: "\<And>s. s \<in> init A \<Longrightarrow> P s" | |
and other: "\<And>g g' l. | |
\<lbrakk> (g, l) \<in> oreachable A S U; P (g, l); U g g' \<rbrakk> \<Longrightarrow> P (g', l)" | |
and local: "\<And>s a s'. | |
\<lbrakk> s \<in> oreachable A S U; P s; (s, a, s') \<in> trans A; S (fst s) (fst s') a \<rbrakk> \<Longrightarrow> P s'" | |
shows "A \<Turnstile> (S, U \<rightarrow>) P" | |
unfolding oinvariant_def | |
proof | |
fix s | |
assume "s \<in> oreachable A S U" | |
thus "P s" | |
proof induction | |
fix s assume "s \<in> init A" | |
thus "P s" by (rule init) | |
next | |
fix s a s' | |
assume "s \<in> oreachable A S U" | |
and "P s" | |
and "(s, a, s') \<in> trans A" | |
and "S (fst s) (fst s') a" | |
thus "P s'" by (rule local) | |
next | |
fix s g' | |
assume "s \<in> oreachable A S U" | |
and "P s" | |
and "U (fst s) g'" | |
thus "P (g', snd s)" | |
by - (rule other [where g="fst s"], simp_all) | |
qed | |
qed | |
lemma oinvariant_oreachableI: | |
assumes "\<And>\<sigma> s. (\<sigma>, s)\<in>oreachable A S U \<Longrightarrow> P (\<sigma>, s)" | |
shows "A \<Turnstile> (S, U \<rightarrow>) P" | |
using assms unfolding oinvariant_def by auto | |
lemma oinvariant_pairI [intro]: | |
assumes init: "\<And>\<sigma> p. (\<sigma>, p) \<in> init A \<Longrightarrow> P (\<sigma>, p)" | |
and local: "\<And>\<sigma> p \<sigma>' p' a. | |
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P (\<sigma>, p); ((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A; | |
S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P (\<sigma>', p')" | |
and other: "\<And>\<sigma> \<sigma>' p. | |
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P (\<sigma>, p); U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P (\<sigma>', p)" | |
shows "A \<Turnstile> (S, U \<rightarrow>) P" | |
by (rule oinvariantI) | |
(clarsimp | erule init | erule(3) local | erule(2) other)+ | |
lemma oinvariantD [dest]: | |
assumes "A \<Turnstile> (S, U \<rightarrow>) P" | |
and "s \<in> oreachable A S U" | |
shows "P s" | |
using assms unfolding oinvariant_def | |
by clarsimp | |
lemma oinvariant_initD [dest, elim]: | |
assumes invP: "A \<Turnstile> (S, U \<rightarrow>) P" | |
and init: "s \<in> init A" | |
shows "P s" | |
proof - | |
from init have "s \<in> oreachable A S U" .. | |
with invP show ?thesis .. | |
qed | |
lemma oinvariant_weakenE [elim!]: | |
assumes invP: "A \<Turnstile> (PS, PU \<rightarrow>) P" | |
and PQ: "\<And>s. P s \<Longrightarrow> Q s" | |
and QSPS: "\<And>s s' a. QS s s' a \<Longrightarrow> PS s s' a" | |
and QUPU: "\<And>s s'. QU s s' \<Longrightarrow> PU s s'" | |
shows "A \<Turnstile> (QS, QU \<rightarrow>) Q" | |
proof | |
fix s | |
assume "s \<in> init A" | |
with invP have "P s" .. | |
thus "Q s" by (rule PQ) | |
next | |
fix \<sigma> p \<sigma>' p' a | |
assume "(\<sigma>, p) \<in> oreachable A QS QU" | |
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" | |
and "QS \<sigma> \<sigma>' a" | |
from this(3) have "PS \<sigma> \<sigma>' a" by (rule QSPS) | |
from \<open>(\<sigma>, p) \<in> oreachable A QS QU\<close> and QSPS QUPU have "(\<sigma>, p) \<in> oreachable A PS PU" .. | |
hence "(\<sigma>', p') \<in> oreachable A PS PU" using \<open>((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A\<close> and \<open>PS \<sigma> \<sigma>' a\<close> .. | |
with invP have "P (\<sigma>', p')" .. | |
thus "Q (\<sigma>', p')" by (rule PQ) | |
next | |
fix \<sigma> \<sigma>' p | |
assume "(\<sigma>, p) \<in> oreachable A QS QU" | |
and "Q (\<sigma>, p)" | |
and "QU \<sigma> \<sigma>'" | |
from \<open>QU \<sigma> \<sigma>'\<close> have "PU \<sigma> \<sigma>'" by (rule QUPU) | |
from \<open>(\<sigma>, p) \<in> oreachable A QS QU\<close> and QSPS QUPU have "(\<sigma>, p) \<in> oreachable A PS PU" .. | |
hence "(\<sigma>', p) \<in> oreachable A PS PU" using \<open>PU \<sigma> \<sigma>'\<close> .. | |
with invP have "P (\<sigma>', p)" .. | |
thus "Q (\<sigma>', p)" by (rule PQ) | |
qed | |
lemma oinvariant_weakenD [dest]: | |
assumes "A \<Turnstile> (S', U' \<rightarrow>) P" | |
and "(\<sigma>, p) \<in> oreachable A S U" | |
and weakenS: "\<And>s s' a. S s s' a \<Longrightarrow> S' s s' a" | |
and weakenU: "\<And>s s'. U s s' \<Longrightarrow> U' s s'" | |
shows "P (\<sigma>, p)" | |
proof - | |
from \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>, p) \<in> oreachable A S' U'" | |
by (rule oreachable_weakenE) | |
(erule weakenS, erule weakenU) | |
with \<open>A \<Turnstile> (S', U' \<rightarrow>) P\<close> show "P (\<sigma>, p)" .. | |
qed | |
lemma close_open_invariant: | |
assumes oinv: "A \<Turnstile> (act I, U \<rightarrow>) P" | |
shows "A \<TTurnstile> (I \<rightarrow>) P" | |
proof | |
fix s | |
assume "s \<in> init A" | |
with oinv show "P s" .. | |
next | |
fix \<xi> p \<xi>' p' a | |
assume sr: "(\<xi>, p) \<in> reachable A I" | |
and step: "((\<xi>, p), a, (\<xi>', p')) \<in> trans A" | |
and "I a" | |
hence "(\<xi>', p') \<in> reachable A I" .. | |
hence "(\<xi>', p') \<in> oreachable A (act I) U" .. | |
with oinv show "P (\<xi>', p')" .. | |
qed | |
definition local_steps :: "((('i \<Rightarrow> 's1) \<times> 'l1) \<times> 'a \<times> ('i \<Rightarrow> 's2) \<times> 'l2) set \<Rightarrow> 'i set \<Rightarrow> bool" | |
where "local_steps T J \<equiv> | |
(\<forall>\<sigma> \<zeta> s a \<sigma>' s'. ((\<sigma>, s), a, (\<sigma>', s')) \<in> T \<and> (\<forall>j\<in>J. \<zeta> j = \<sigma> j) | |
\<longrightarrow> (\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> T))" | |
lemma local_stepsI [intro!]: | |
assumes "\<And>\<sigma> \<zeta> s a \<sigma>' \<zeta>' s'. \<lbrakk> ((\<sigma>, s), a, (\<sigma>', s')) \<in> T; \<forall>j\<in>J. \<zeta> j = \<sigma> j \<rbrakk> | |
\<Longrightarrow> (\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> T)" | |
shows "local_steps T J" | |
unfolding local_steps_def using assms by clarsimp | |
lemma local_stepsE [elim, dest]: | |
assumes "local_steps T J" | |
and "((\<sigma>, s), a, (\<sigma>', s')) \<in> T" | |
and "\<forall>j\<in>J. \<zeta> j = \<sigma> j" | |
shows "\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> T" | |
using assms unfolding local_steps_def by blast | |
definition other_steps :: "(('i \<Rightarrow> 's) \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> bool) \<Rightarrow> 'i set \<Rightarrow> bool" | |
where "other_steps U J \<equiv> \<forall>\<sigma> \<sigma>'. U \<sigma> \<sigma>' \<longrightarrow> (\<forall>j\<in>J. \<sigma>' j = \<sigma> j)" | |
lemma other_stepsI [intro!]: | |
assumes "\<And>\<sigma> \<sigma>' j. \<lbrakk> U \<sigma> \<sigma>'; j \<in> J \<rbrakk> \<Longrightarrow> \<sigma>' j = \<sigma> j" | |
shows "other_steps U J" | |
using assms unfolding other_steps_def by simp | |
lemma other_stepsE [elim]: | |
assumes "other_steps U J" | |
and "U \<sigma> \<sigma>'" | |
shows "\<forall>j\<in>J. \<sigma>' j = \<sigma> j" | |
using assms unfolding other_steps_def by simp | |
definition subreachable | |
where "subreachable A U J \<equiv> \<forall>I. \<forall>s \<in> oreachable A (\<lambda>s s'. I) U. | |
(\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I)" | |
lemma subreachableI [intro]: | |
assumes "local_steps (trans A) J" | |
and "other_steps U J" | |
shows "subreachable A U J" | |
unfolding subreachable_def | |
proof (rule, rule) | |
fix I s | |
assume "s \<in> oreachable A (\<lambda>s s'. I) U" | |
thus "(\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I)" | |
proof induction | |
fix s | |
assume "s \<in> init A" | |
hence "(fst s, snd s) \<in> reachable A I" | |
by simp (rule reachable_init) | |
moreover have "\<forall>j\<in>J. (fst s) j = (fst s) j" | |
by simp | |
ultimately show "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I" | |
by auto | |
next | |
fix s a s' | |
assume "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I" | |
and "(s, a, s') \<in> trans A" | |
and "I a" | |
then obtain \<zeta> where "\<forall>j\<in>J. \<zeta> j = (fst s) j" | |
and "(\<zeta>, snd s) \<in> reachable A I" by auto | |
from \<open>(s, a, s') \<in> trans A\<close> have "((fst s, snd s), a, (fst s', snd s')) \<in> trans A" | |
by simp | |
with \<open>local_steps (trans A) J\<close> obtain \<zeta>' where "\<forall>j\<in>J. \<zeta>' j = (fst s') j" | |
and "((\<zeta>, snd s), a, (\<zeta>', snd s')) \<in> trans A" | |
using \<open>\<forall>j\<in>J. \<zeta> j = (fst s) j\<close> by - (drule(2) local_stepsE, clarsimp) | |
from \<open>(\<zeta>, snd s) \<in> reachable A I\<close> | |
and \<open>((\<zeta>, snd s), a, (\<zeta>', snd s')) \<in> trans A\<close> | |
and \<open>I a\<close> | |
have "(\<zeta>', snd s') \<in> reachable A I" .. | |
with \<open>\<forall>j\<in>J. \<zeta>' j = (fst s') j\<close> | |
show "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s') j) \<and> (\<sigma>, snd s') \<in> reachable A I" by auto | |
next | |
fix s \<sigma>' | |
assume "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I" | |
and "U (fst s) \<sigma>'" | |
then obtain \<sigma> where "\<forall>j\<in>J. \<sigma> j = (fst s) j" | |
and "(\<sigma>, snd s) \<in> reachable A I" by auto | |
from \<open>other_steps U J\<close> and \<open>U (fst s) \<sigma>'\<close> have "\<forall>j\<in>J. \<sigma>' j = (fst s) j" | |
by - (erule(1) other_stepsE) | |
with \<open>\<forall>j\<in>J. \<sigma> j = (fst s) j\<close> have "\<forall>j\<in>J. \<sigma> j = \<sigma>' j" | |
by clarsimp | |
with \<open>(\<sigma>, snd s) \<in> reachable A I\<close> | |
show "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = fst (\<sigma>', snd s) j) \<and> (\<sigma>, snd (\<sigma>', snd s)) \<in> reachable A I" | |
by auto | |
qed | |
qed | |
lemma subreachableE [elim]: | |
assumes "subreachable A U J" | |
and "s \<in> oreachable A (\<lambda>s s'. I) U" | |
shows "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I" | |
using assms unfolding subreachable_def by simp | |
lemma subreachableE_pair [elim]: | |
assumes "subreachable A U J" | |
and "(\<sigma>, s) \<in> oreachable A (\<lambda>s s'. I) U" | |
shows "\<exists>\<zeta>. (\<forall>j\<in>J. \<zeta> j = \<sigma> j) \<and> (\<zeta>, s) \<in> reachable A I" | |
using assms unfolding subreachable_def by (metis fst_conv snd_conv) | |
lemma subreachable_otherE [elim]: | |
assumes "subreachable A U J" | |
and "(\<sigma>, l) \<in> oreachable A (\<lambda>s s'. I) U" | |
and "U \<sigma> \<sigma>'" | |
shows "\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> (\<zeta>', l) \<in> reachable A I" | |
proof - | |
from \<open>(\<sigma>, l) \<in> oreachable A (\<lambda>s s'. I) U\<close> and \<open>U \<sigma> \<sigma>'\<close> | |
have "(\<sigma>', l) \<in> oreachable A (\<lambda>s s'. I) U" | |
by - (rule oreachable_other') | |
with \<open>subreachable A U J\<close> show ?thesis | |
by auto | |
qed | |
lemma open_closed_invariant: | |
fixes J | |
assumes "A \<TTurnstile> (I \<rightarrow>) P" | |
and "subreachable A U J" | |
and localp: "\<And>\<sigma> \<sigma>' s. \<lbrakk> \<forall>j\<in>J. \<sigma>' j = \<sigma> j; P (\<sigma>', s) \<rbrakk> \<Longrightarrow> P (\<sigma>, s)" | |
shows "A \<Turnstile> (act I, U \<rightarrow>) P" | |
proof (rule, simp_all only: act_def) | |
fix s | |
assume "s \<in> init A" | |
with \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> show "P s" .. | |
next | |
fix s a s' | |
assume "s \<in> oreachable A (\<lambda>_ _. I) U" | |
and "P s" | |
and "(s, a, s') \<in> trans A" | |
and "I a" | |
hence "s' \<in> oreachable A (\<lambda>_ _. I) U" | |
by (metis oreachable_local) | |
with \<open>subreachable A U J\<close> obtain \<sigma>' | |
where "\<forall>j\<in>J. \<sigma>' j = (fst s') j" | |
and "(\<sigma>', snd s') \<in> reachable A I" | |
by (metis subreachableE) | |
from \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> and \<open>(\<sigma>', snd s') \<in> reachable A I\<close> have "P (\<sigma>', snd s')" .. | |
with \<open>\<forall>j\<in>J. \<sigma>' j = (fst s') j\<close> show "P s'" | |
by (metis localp prod.collapse) | |
next | |
fix g g' l | |
assume or: "(g, l) \<in> oreachable A (\<lambda>s s'. I) U" | |
and "U g g'" | |
and "P (g, l)" | |
from \<open>subreachable A U J\<close> and or and \<open>U g g'\<close> | |
obtain gg' where "\<forall>j\<in>J. gg' j = g' j" | |
and "(gg', l) \<in> reachable A I" | |
by (auto dest!: subreachable_otherE) | |
from \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> and \<open>(gg', l) \<in> reachable A I\<close> | |
have "P (gg', l)" .. | |
with \<open>\<forall>j\<in>J. gg' j = g' j\<close> show "P (g', l)" | |
by (rule localp) | |
qed | |
lemma oinvariant_anyact: | |
assumes "A \<Turnstile> (act TT, U \<rightarrow>) P" | |
shows "A \<Turnstile> (S, U \<rightarrow>) P" | |
using assms by rule auto | |
definition | |
ostep_invariant | |
:: "('g \<times> 'l, 'a) automaton | |
\<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> bool) | |
\<Rightarrow> (('g \<times> 'l, 'a) transition \<Rightarrow> bool) \<Rightarrow> bool" | |
("_ \<Turnstile>\<^sub>A (1'((1_),/ (1_) \<rightarrow>')/ _)" [100, 0, 0, 9] 8) | |
where | |
"(A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P) = | |
(\<forall>s\<in>oreachable A S U. (\<forall>a s'. (s, a, s') \<in> trans A \<and> S (fst s) (fst s') a \<longrightarrow> P (s, a, s')))" | |
lemma ostep_invariant_def': | |
"(A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P) = (\<forall>s\<in>oreachable A S U. | |
(\<forall>a s'. (s, a, s') \<in> trans A \<and> S (fst s) (fst s') a \<longrightarrow> P (s, a, s')))" | |
unfolding ostep_invariant_def by auto | |
lemma ostep_invariantI [intro]: | |
assumes *: "\<And>\<sigma> s a \<sigma>' s'. \<lbrakk> (\<sigma>, s)\<in>oreachable A S U; ((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A; S \<sigma> \<sigma>' a \<rbrakk> | |
\<Longrightarrow> P ((\<sigma>, s), a, (\<sigma>', s'))" | |
shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P" | |
unfolding ostep_invariant_def | |
using assms by auto | |
lemma ostep_invariantD [dest]: | |
assumes "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P" | |
and "(\<sigma>, s)\<in>oreachable A S U" | |
and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
shows "P ((\<sigma>, s), a, (\<sigma>', s'))" | |
using assms unfolding ostep_invariant_def' by clarsimp | |
lemma ostep_invariantE [elim]: | |
assumes "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P" | |
and "(\<sigma>, s)\<in>oreachable A S U" | |
and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
and "P ((\<sigma>, s), a, (\<sigma>', s')) \<Longrightarrow> Q" | |
shows "Q" | |
using assms by auto | |
lemma ostep_invariant_weakenE [elim!]: | |
assumes invP: "A \<Turnstile>\<^sub>A (PS, PU \<rightarrow>) P" | |
and PQ: "\<And>t. P t \<Longrightarrow> Q t" | |
and QSPS: "\<And>\<sigma> \<sigma>' a. QS \<sigma> \<sigma>' a \<Longrightarrow> PS \<sigma> \<sigma>' a" | |
and QUPU: "\<And>\<sigma> \<sigma>'. QU \<sigma> \<sigma>' \<Longrightarrow> PU \<sigma> \<sigma>'" | |
shows "A \<Turnstile>\<^sub>A (QS, QU \<rightarrow>) Q" | |
proof | |
fix \<sigma> s \<sigma>' s' a | |
assume "(\<sigma>, s) \<in> oreachable A QS QU" | |
and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A" | |
and "QS \<sigma> \<sigma>' a" | |
from \<open>QS \<sigma> \<sigma>' a\<close> have "PS \<sigma> \<sigma>' a" by (rule QSPS) | |
from \<open>(\<sigma>, s) \<in> oreachable A QS QU\<close> have "(\<sigma>, s) \<in> oreachable A PS PU" using QSPS QUPU .. | |
with invP have "P ((\<sigma>, s), a, (\<sigma>', s'))" using \<open>((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A\<close> \<open>PS \<sigma> \<sigma>' a\<close> .. | |
thus "Q ((\<sigma>, s), a, (\<sigma>', s'))" by (rule PQ) | |
qed | |
lemma ostep_invariant_weaken_with_invariantE [elim]: | |
assumes pinv: "A \<Turnstile> (S, U \<rightarrow>) P" | |
and qinv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) Q" | |
and wr: "\<And>\<sigma> s a \<sigma>' s'. \<lbrakk> P (\<sigma>, s); P (\<sigma>', s'); Q ((\<sigma>, s), a, (\<sigma>', s')); S \<sigma> \<sigma>' a \<rbrakk> | |
\<Longrightarrow> R ((\<sigma>, s), a, (\<sigma>', s'))" | |
shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) R" | |
proof | |
fix \<sigma> s a \<sigma>' s' | |
assume sr: "(\<sigma>, s) \<in> oreachable A S U" | |
and tr: "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
hence "(\<sigma>', s') \<in> oreachable A S U" .. | |
with pinv have "P (\<sigma>', s')" .. | |
from pinv and sr have "P (\<sigma>, s)" .. | |
from qinv sr tr \<open>S \<sigma> \<sigma>' a\<close> have "Q ((\<sigma>, s), a, (\<sigma>', s'))" .. | |
with \<open>P (\<sigma>, s)\<close> and \<open>P (\<sigma>', s')\<close> show "R ((\<sigma>, s), a, (\<sigma>', s'))" using \<open>S \<sigma> \<sigma>' a\<close> by (rule wr) | |
qed | |
lemma ostep_to_invariantI: | |
assumes sinv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) Q" | |
and init: "\<And>\<sigma> s. (\<sigma>, s) \<in> init A \<Longrightarrow> P (\<sigma>, s)" | |
and local: "\<And>\<sigma> s \<sigma>' s' a. | |
\<lbrakk> (\<sigma>, s) \<in> oreachable A S U; | |
P (\<sigma>, s); | |
Q ((\<sigma>, s), a, (\<sigma>', s')); | |
S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P (\<sigma>', s')" | |
and other: "\<And>\<sigma> \<sigma>' s. \<lbrakk> (\<sigma>, s) \<in> oreachable A S U; U \<sigma> \<sigma>'; P (\<sigma>, s) \<rbrakk> \<Longrightarrow> P (\<sigma>', s)" | |
shows "A \<Turnstile> (S, U \<rightarrow>) P" | |
proof | |
fix \<sigma> s assume "(\<sigma>, s) \<in> init A" thus "P (\<sigma>, s)" by (rule init) | |
next | |
fix \<sigma> s \<sigma>' s' a | |
assume "(\<sigma>, s) \<in> oreachable A S U" | |
and "P (\<sigma>, s)" | |
and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
show "P (\<sigma>', s')" | |
proof - | |
from sinv and \<open>(\<sigma>, s)\<in>oreachable A S U\<close> and \<open>((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A\<close> and \<open>S \<sigma> \<sigma>' a\<close> | |
have "Q ((\<sigma>, s), a, (\<sigma>', s'))" .. | |
with \<open>(\<sigma>, s)\<in>oreachable A S U\<close> and \<open>P (\<sigma>, s)\<close> show "P (\<sigma>', s')" | |
using \<open>S \<sigma> \<sigma>' a\<close> by (rule local) | |
qed | |
next | |
fix \<sigma> \<sigma>' l | |
assume "(\<sigma>, l) \<in> oreachable A S U" | |
and "U \<sigma> \<sigma>'" | |
and "P (\<sigma>, l)" | |
thus "P (\<sigma>', l)" by (rule other) | |
qed | |
lemma open_closed_step_invariant: | |
assumes "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P" | |
and "local_steps (trans A) J" | |
and "other_steps U J" | |
and localp: "\<And>\<sigma> \<zeta> a \<sigma>' \<zeta>' s s'. | |
\<lbrakk> \<forall>j\<in>J. \<sigma> j = \<zeta> j; \<forall>j\<in>J. \<sigma>' j = \<zeta>' j; P ((\<sigma>, s), a, (\<sigma>', s')) \<rbrakk> | |
\<Longrightarrow> P ((\<zeta>, s), a, (\<zeta>', s'))" | |
shows "A \<Turnstile>\<^sub>A (act I, U \<rightarrow>) P" | |
proof | |
fix \<sigma> s a \<sigma>' s' | |
assume or: "(\<sigma>, s) \<in> oreachable A (act I) U" | |
and tr: "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A" | |
and "act I \<sigma> \<sigma>' a" | |
from \<open>act I \<sigma> \<sigma>' a\<close> have "I a" .. | |
from \<open>local_steps (trans A) J\<close> and \<open>other_steps U J\<close> have "subreachable A U J" .. | |
then obtain \<zeta> where "\<forall>j\<in>J. \<zeta> j = \<sigma> j" | |
and "(\<zeta>, s) \<in> reachable A I" | |
using or unfolding act_def | |
by (auto dest!: subreachableE_pair) | |
from \<open>local_steps (trans A) J\<close> and tr and \<open>\<forall>j\<in>J. \<zeta> j = \<sigma> j\<close> | |
obtain \<zeta>' where "\<forall>j\<in>J. \<zeta>' j = \<sigma>' j" | |
and "((\<zeta>, s), a, (\<zeta>', s')) \<in> trans A" | |
by auto | |
from \<open>A \<TTurnstile>\<^sub>A (I \<rightarrow>) P\<close> and \<open>(\<zeta>, s) \<in> reachable A I\<close> | |
and \<open>((\<zeta>, s), a, (\<zeta>', s')) \<in> trans A\<close> | |
and \<open>I a\<close> | |
have "P ((\<zeta>, s), a, (\<zeta>', s'))" .. | |
with \<open>\<forall>j\<in>J. \<zeta> j = \<sigma> j\<close> and \<open>\<forall>j\<in>J. \<zeta>' j = \<sigma>' j\<close> show "P ((\<sigma>, s), a, (\<sigma>', s'))" | |
by (rule localp) | |
qed | |
lemma oinvariant_step_anyact: | |
assumes "p \<Turnstile>\<^sub>A (act TT, U \<rightarrow>) P" | |
shows "p \<Turnstile>\<^sub>A (S, U \<rightarrow>) P" | |
using assms by rule auto | |
subsection "Standard assumption predicates " | |
text \<open>otherwith\<close> | |
definition otherwith :: "('s \<Rightarrow> 's \<Rightarrow> bool) | |
\<Rightarrow> 'i set | |
\<Rightarrow> (('i \<Rightarrow> 's) \<Rightarrow> 'a \<Rightarrow> bool) | |
\<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> 'a \<Rightarrow> bool" | |
where "otherwith Q I P \<sigma> \<sigma>' a \<equiv> (\<forall>i. i\<notin>I \<longrightarrow> Q (\<sigma> i) (\<sigma>' i)) \<and> P \<sigma> a" | |
lemma otherwithI [intro]: | |
assumes other: "\<And>j. j\<notin>I \<Longrightarrow> Q (\<sigma> j) (\<sigma>' j)" | |
and sync: "P \<sigma> a" | |
shows "otherwith Q I P \<sigma> \<sigma>' a" | |
unfolding otherwith_def using assms by simp | |
lemma otherwithE [elim]: | |
assumes "otherwith Q I P \<sigma> \<sigma>' a" | |
and "\<lbrakk> P \<sigma> a; \<forall>j. j\<notin>I \<longrightarrow> Q (\<sigma> j) (\<sigma>' j) \<rbrakk> \<Longrightarrow> R \<sigma> \<sigma>' a" | |
shows "R \<sigma> \<sigma>' a" | |
using assms unfolding otherwith_def by simp | |
lemma otherwith_actionD [dest]: | |
assumes "otherwith Q I P \<sigma> \<sigma>' a" | |
shows "P \<sigma> a" | |
using assms by auto | |
lemma otherwith_syncD [dest]: | |
assumes "otherwith Q I P \<sigma> \<sigma>' a" | |
shows "\<forall>j. j\<notin>I \<longrightarrow> Q (\<sigma> j) (\<sigma>' j)" | |
using assms by auto | |
lemma otherwithEI [elim]: | |
assumes "otherwith P I PO \<sigma> \<sigma>' a" | |
and "\<And>\<sigma> a. PO \<sigma> a \<Longrightarrow> QO \<sigma> a" | |
shows "otherwith P I QO \<sigma> \<sigma>' a" | |
using assms(1) unfolding otherwith_def | |
by (clarsimp elim!: assms(2)) | |
lemma all_but: | |
assumes "\<And>\<xi>. S \<xi> \<xi>" | |
and "\<sigma>' i = \<sigma> i" | |
and "\<forall>j. j \<noteq> i \<longrightarrow> S (\<sigma> j) (\<sigma>' j)" | |
shows "\<forall>j. S (\<sigma> j) (\<sigma>' j)" | |
using assms by metis | |
lemma all_but_eq [dest]: | |
assumes "\<sigma>' i = \<sigma> i" | |
and "\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j" | |
shows "\<sigma> = \<sigma>'" | |
using assms by - (rule ext, metis) | |
text \<open>other\<close> | |
definition other :: "('s \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 'i set \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> bool" | |
where "other P I \<sigma> \<sigma>' \<equiv> \<forall>i. if i\<in>I then \<sigma>' i = \<sigma> i else P (\<sigma> i) (\<sigma>' i)" | |
lemma otherI [intro]: | |
assumes local: "\<And>i. i\<in>I \<Longrightarrow> \<sigma>' i = \<sigma> i" | |
and other: "\<And>j. j\<notin>I \<Longrightarrow> P (\<sigma> j) (\<sigma>' j)" | |
shows "other P I \<sigma> \<sigma>'" | |
using assms unfolding other_def by clarsimp | |
lemma otherE [elim]: | |
assumes "other P I \<sigma> \<sigma>'" | |
and "\<lbrakk> \<forall>i\<in>I. \<sigma>' i = \<sigma> i; \<forall>j. j\<notin>I \<longrightarrow> P (\<sigma> j) (\<sigma>' j) \<rbrakk> \<Longrightarrow> R \<sigma> \<sigma>'" | |
shows "R \<sigma> \<sigma>'" | |
using assms unfolding other_def by simp | |
lemma other_localD [dest]: | |
"other P {i} \<sigma> \<sigma>' \<Longrightarrow> \<sigma>' i = \<sigma> i" | |
by auto | |
lemma other_otherD [dest]: | |
"other P {i} \<sigma> \<sigma>' \<Longrightarrow> \<forall>j. j\<noteq>i \<longrightarrow> P (\<sigma> j) (\<sigma>' j)" | |
by auto | |
lemma other_bothE [elim]: | |
assumes "other P {i} \<sigma> \<sigma>'" | |
obtains "\<sigma>' i = \<sigma> i" and "\<forall>j. j\<noteq>i \<longrightarrow> P (\<sigma> j) (\<sigma>' j)" | |
using assms by auto | |
lemma weaken_local [elim]: | |
assumes "other P I \<sigma> \<sigma>'" | |
and PQ: "\<And>\<xi> \<xi>'. P \<xi> \<xi>' \<Longrightarrow> Q \<xi> \<xi>'" | |
shows "other Q I \<sigma> \<sigma>'" | |
using assms unfolding other_def by auto | |
definition global :: "((nat \<Rightarrow> 's) \<Rightarrow> bool) \<Rightarrow> (nat \<Rightarrow> 's) \<times> 'local \<Rightarrow> bool" | |
where "global P \<equiv> (\<lambda>(\<sigma>, _). P \<sigma>)" | |
lemma globalsimp [simp]: "global P s = P (fst s)" | |
unfolding global_def by (simp split: prod.split) | |
definition globala :: "((nat \<Rightarrow> 's, 'action) transition \<Rightarrow> bool) | |
\<Rightarrow> ((nat \<Rightarrow> 's) \<times> 'local, 'action) transition \<Rightarrow> bool" | |
where "globala P \<equiv> (\<lambda>((\<sigma>, _), a, (\<sigma>', _)). P (\<sigma>, a, \<sigma>'))" | |
lemma globalasimp [simp]: "globala P s = P (fst (fst s), fst (snd s), fst (snd (snd s)))" | |
unfolding globala_def by (simp split: prod.split) | |
end | |