Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /AWN /OInvariants.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
33 kB
(* Title: OInvariants.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke
*)
section "Open reachability and invariance"
theory OInvariants
imports Invariants
begin
subsection "Open reachability"
text \<open>
By convention, the states of an open automaton are pairs. The first component is considered
to be the global state and the second is the local state.
A state is `open reachable' under @{term S} and @{term U} if it is the initial state, or it
is the destination of a transition---where the global components satisfy @{term S}---from an
open reachable state, or it is the destination of an interleaved environment step where the
global components satisfy @{term U}.
\<close>
inductive_set oreachable
:: "('g \<times> 'l, 'a) automaton
\<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool)
\<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> bool)
\<Rightarrow> ('g \<times> 'l) set"
for A :: "('g \<times> 'l, 'a) automaton"
and S :: "'g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool"
and U :: "'g \<Rightarrow> 'g \<Rightarrow> bool"
where
oreachable_init: "s \<in> init A \<Longrightarrow> s \<in> oreachable A S U"
| oreachable_local: "\<lbrakk> s \<in> oreachable A S U; (s, a, s') \<in> trans A; S (fst s) (fst s') a \<rbrakk>
\<Longrightarrow> s' \<in> oreachable A S U"
| oreachable_other: "\<lbrakk> s \<in> oreachable A S U; U (fst s) \<sigma>' \<rbrakk>
\<Longrightarrow> (\<sigma>', snd s) \<in> oreachable A S U"
lemma oreachable_local' [elim]:
assumes "(\<sigma>, p) \<in> oreachable A S U"
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
shows "(\<sigma>', p') \<in> oreachable A S U"
using assms by (metis fst_conv oreachable.oreachable_local)
lemma oreachable_other' [elim]:
assumes "(\<sigma>, p) \<in> oreachable A S U"
and "U \<sigma> \<sigma>'"
shows "(\<sigma>', p) \<in> oreachable A S U"
proof -
from \<open>U \<sigma> \<sigma>'\<close> have "U (fst (\<sigma>, p)) \<sigma>'" by simp
with \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>', snd (\<sigma>, p)) \<in> oreachable A S U"
by (rule oreachable_other)
thus "(\<sigma>', p) \<in> oreachable A S U" by simp
qed
lemma oreachable_pair_induct [consumes, case_names init other local]:
assumes "(\<sigma>, p) \<in> oreachable A S U"
and "\<And>\<sigma> p. (\<sigma>, p) \<in> init A \<Longrightarrow> P \<sigma> p"
and "(\<And>\<sigma> p \<sigma>'. \<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P \<sigma> p; U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P \<sigma>' p)"
and "(\<And>\<sigma> p \<sigma>' p' a. \<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P \<sigma> p;
((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A; S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P \<sigma>' p')"
shows "P \<sigma> p"
using assms (1) proof (induction "(\<sigma>, p)" arbitrary: \<sigma> p)
fix \<sigma> p
assume "(\<sigma>, p) \<in> init A"
with assms(2) show "P \<sigma> p" .
next
fix s \<sigma>'
assume "s \<in> oreachable A S U"
and "U (fst s) \<sigma>'"
and IH: "\<And>\<sigma> p. s = (\<sigma>, p) \<Longrightarrow> P \<sigma> p"
from this(1) obtain \<sigma> p where "s = (\<sigma>, p)"
and "(\<sigma>, p) \<in> oreachable A S U"
by (metis surjective_pairing)
note this(2)
moreover from IH and \<open>s = (\<sigma>, p)\<close> have "P \<sigma> p" .
moreover from \<open>U (fst s) \<sigma>'\<close> and \<open>s = (\<sigma>, p)\<close> have "U \<sigma> \<sigma>'" by simp
ultimately have "P \<sigma>' p" by (rule assms(3))
with \<open>s = (\<sigma>, p)\<close> show "P \<sigma>' (snd s)" by simp
next
fix s a \<sigma>' p'
assume "s \<in> oreachable A S U"
and tr: "(s, a, (\<sigma>', p')) \<in> trans A"
and "S (fst s) (fst (\<sigma>', p')) a"
and IH: "\<And>\<sigma> p. s = (\<sigma>, p) \<Longrightarrow> P \<sigma> p"
from this(1) obtain \<sigma> p where "s = (\<sigma>, p)"
and "(\<sigma>, p) \<in> oreachable A S U"
by (metis surjective_pairing)
note this(2)
moreover from IH \<open>s = (\<sigma>, p)\<close> have "P \<sigma> p" .
moreover from tr and \<open>s = (\<sigma>, p)\<close> have "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" by simp
moreover from \<open>S (fst s) (fst (\<sigma>', p')) a\<close> and \<open>s = (\<sigma>, p)\<close> have "S \<sigma> \<sigma>' a" by simp
ultimately show "P \<sigma>' p'" by (rule assms(4))
qed
lemma oreachable_weakenE [elim]:
assumes "s \<in> oreachable A PS PU"
and PSQS: "\<And>s s' a. PS s s' a \<Longrightarrow> QS s s' a"
and PUQU: "\<And>s s'. PU s s' \<Longrightarrow> QU s s'"
shows "s \<in> oreachable A QS QU"
using assms(1)
proof (induction)
fix s assume "s \<in> init A"
thus "s \<in> oreachable A QS QU" ..
next
fix s a s'
assume "s \<in> oreachable A QS QU"
and "(s, a, s') \<in> trans A"
and "PS (fst s) (fst s') a"
from \<open>PS (fst s) (fst s') a\<close> have "QS (fst s) (fst s') a" by (rule PSQS)
with \<open>s \<in> oreachable A QS QU\<close> and \<open>(s, a, s') \<in> trans A\<close> show "s' \<in> oreachable A QS QU" ..
next
fix s g'
assume "s \<in> oreachable A QS QU"
and "PU (fst s) g'"
from \<open>PU (fst s) g'\<close> have "QU (fst s) g'" by (rule PUQU)
with \<open>s \<in> oreachable A QS QU\<close> show "(g', snd s) \<in> oreachable A QS QU" ..
qed
definition
act :: "('a \<Rightarrow> bool) \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> 'a \<Rightarrow> bool"
where
"act I \<equiv> (\<lambda>_ _. I)"
lemma act_simp [iff]: "act I s s' a = I a"
unfolding act_def ..
lemma reachable_in_oreachable [elim]:
fixes s
assumes "s \<in> reachable A I"
shows "s \<in> oreachable A (act I) U"
unfolding act_def using assms proof induction
fix s
assume "s \<in> init A"
thus "s \<in> oreachable A (\<lambda>_ _. I) U" ..
next
fix s a s'
assume "s \<in> oreachable A (\<lambda>_ _. I) U"
and "(s, a, s') \<in> trans A"
and "I a"
thus "s' \<in> oreachable A (\<lambda>_ _. I) U"
by (rule oreachable_local)
qed
subsection "Open Invariance"
definition oinvariant
:: "('g \<times> 'l, 'a) automaton
\<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> bool)
\<Rightarrow> (('g \<times> 'l) \<Rightarrow> bool) \<Rightarrow> bool"
("_ \<Turnstile> (1'((1_),/ (1_) \<rightarrow>')/ _)" [100, 0, 0, 9] 8)
where
"(A \<Turnstile> (S, U \<rightarrow>) P) = (\<forall>s\<in>oreachable A S U. P s)"
lemma oinvariantI [intro]:
fixes T TI S U P
assumes init: "\<And>s. s \<in> init A \<Longrightarrow> P s"
and other: "\<And>g g' l.
\<lbrakk> (g, l) \<in> oreachable A S U; P (g, l); U g g' \<rbrakk> \<Longrightarrow> P (g', l)"
and local: "\<And>s a s'.
\<lbrakk> s \<in> oreachable A S U; P s; (s, a, s') \<in> trans A; S (fst s) (fst s') a \<rbrakk> \<Longrightarrow> P s'"
shows "A \<Turnstile> (S, U \<rightarrow>) P"
unfolding oinvariant_def
proof
fix s
assume "s \<in> oreachable A S U"
thus "P s"
proof induction
fix s assume "s \<in> init A"
thus "P s" by (rule init)
next
fix s a s'
assume "s \<in> oreachable A S U"
and "P s"
and "(s, a, s') \<in> trans A"
and "S (fst s) (fst s') a"
thus "P s'" by (rule local)
next
fix s g'
assume "s \<in> oreachable A S U"
and "P s"
and "U (fst s) g'"
thus "P (g', snd s)"
by - (rule other [where g="fst s"], simp_all)
qed
qed
lemma oinvariant_oreachableI:
assumes "\<And>\<sigma> s. (\<sigma>, s)\<in>oreachable A S U \<Longrightarrow> P (\<sigma>, s)"
shows "A \<Turnstile> (S, U \<rightarrow>) P"
using assms unfolding oinvariant_def by auto
lemma oinvariant_pairI [intro]:
assumes init: "\<And>\<sigma> p. (\<sigma>, p) \<in> init A \<Longrightarrow> P (\<sigma>, p)"
and local: "\<And>\<sigma> p \<sigma>' p' a.
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P (\<sigma>, p); ((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A;
S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P (\<sigma>', p')"
and other: "\<And>\<sigma> \<sigma>' p.
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P (\<sigma>, p); U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P (\<sigma>', p)"
shows "A \<Turnstile> (S, U \<rightarrow>) P"
by (rule oinvariantI)
(clarsimp | erule init | erule(3) local | erule(2) other)+
lemma oinvariantD [dest]:
assumes "A \<Turnstile> (S, U \<rightarrow>) P"
and "s \<in> oreachable A S U"
shows "P s"
using assms unfolding oinvariant_def
by clarsimp
lemma oinvariant_initD [dest, elim]:
assumes invP: "A \<Turnstile> (S, U \<rightarrow>) P"
and init: "s \<in> init A"
shows "P s"
proof -
from init have "s \<in> oreachable A S U" ..
with invP show ?thesis ..
qed
lemma oinvariant_weakenE [elim!]:
assumes invP: "A \<Turnstile> (PS, PU \<rightarrow>) P"
and PQ: "\<And>s. P s \<Longrightarrow> Q s"
and QSPS: "\<And>s s' a. QS s s' a \<Longrightarrow> PS s s' a"
and QUPU: "\<And>s s'. QU s s' \<Longrightarrow> PU s s'"
shows "A \<Turnstile> (QS, QU \<rightarrow>) Q"
proof
fix s
assume "s \<in> init A"
with invP have "P s" ..
thus "Q s" by (rule PQ)
next
fix \<sigma> p \<sigma>' p' a
assume "(\<sigma>, p) \<in> oreachable A QS QU"
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
and "QS \<sigma> \<sigma>' a"
from this(3) have "PS \<sigma> \<sigma>' a" by (rule QSPS)
from \<open>(\<sigma>, p) \<in> oreachable A QS QU\<close> and QSPS QUPU have "(\<sigma>, p) \<in> oreachable A PS PU" ..
hence "(\<sigma>', p') \<in> oreachable A PS PU" using \<open>((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A\<close> and \<open>PS \<sigma> \<sigma>' a\<close> ..
with invP have "P (\<sigma>', p')" ..
thus "Q (\<sigma>', p')" by (rule PQ)
next
fix \<sigma> \<sigma>' p
assume "(\<sigma>, p) \<in> oreachable A QS QU"
and "Q (\<sigma>, p)"
and "QU \<sigma> \<sigma>'"
from \<open>QU \<sigma> \<sigma>'\<close> have "PU \<sigma> \<sigma>'" by (rule QUPU)
from \<open>(\<sigma>, p) \<in> oreachable A QS QU\<close> and QSPS QUPU have "(\<sigma>, p) \<in> oreachable A PS PU" ..
hence "(\<sigma>', p) \<in> oreachable A PS PU" using \<open>PU \<sigma> \<sigma>'\<close> ..
with invP have "P (\<sigma>', p)" ..
thus "Q (\<sigma>', p)" by (rule PQ)
qed
lemma oinvariant_weakenD [dest]:
assumes "A \<Turnstile> (S', U' \<rightarrow>) P"
and "(\<sigma>, p) \<in> oreachable A S U"
and weakenS: "\<And>s s' a. S s s' a \<Longrightarrow> S' s s' a"
and weakenU: "\<And>s s'. U s s' \<Longrightarrow> U' s s'"
shows "P (\<sigma>, p)"
proof -
from \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>, p) \<in> oreachable A S' U'"
by (rule oreachable_weakenE)
(erule weakenS, erule weakenU)
with \<open>A \<Turnstile> (S', U' \<rightarrow>) P\<close> show "P (\<sigma>, p)" ..
qed
lemma close_open_invariant:
assumes oinv: "A \<Turnstile> (act I, U \<rightarrow>) P"
shows "A \<TTurnstile> (I \<rightarrow>) P"
proof
fix s
assume "s \<in> init A"
with oinv show "P s" ..
next
fix \<xi> p \<xi>' p' a
assume sr: "(\<xi>, p) \<in> reachable A I"
and step: "((\<xi>, p), a, (\<xi>', p')) \<in> trans A"
and "I a"
hence "(\<xi>', p') \<in> reachable A I" ..
hence "(\<xi>', p') \<in> oreachable A (act I) U" ..
with oinv show "P (\<xi>', p')" ..
qed
definition local_steps :: "((('i \<Rightarrow> 's1) \<times> 'l1) \<times> 'a \<times> ('i \<Rightarrow> 's2) \<times> 'l2) set \<Rightarrow> 'i set \<Rightarrow> bool"
where "local_steps T J \<equiv>
(\<forall>\<sigma> \<zeta> s a \<sigma>' s'. ((\<sigma>, s), a, (\<sigma>', s')) \<in> T \<and> (\<forall>j\<in>J. \<zeta> j = \<sigma> j)
\<longrightarrow> (\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> T))"
lemma local_stepsI [intro!]:
assumes "\<And>\<sigma> \<zeta> s a \<sigma>' \<zeta>' s'. \<lbrakk> ((\<sigma>, s), a, (\<sigma>', s')) \<in> T; \<forall>j\<in>J. \<zeta> j = \<sigma> j \<rbrakk>
\<Longrightarrow> (\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> T)"
shows "local_steps T J"
unfolding local_steps_def using assms by clarsimp
lemma local_stepsE [elim, dest]:
assumes "local_steps T J"
and "((\<sigma>, s), a, (\<sigma>', s')) \<in> T"
and "\<forall>j\<in>J. \<zeta> j = \<sigma> j"
shows "\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> T"
using assms unfolding local_steps_def by blast
definition other_steps :: "(('i \<Rightarrow> 's) \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> bool) \<Rightarrow> 'i set \<Rightarrow> bool"
where "other_steps U J \<equiv> \<forall>\<sigma> \<sigma>'. U \<sigma> \<sigma>' \<longrightarrow> (\<forall>j\<in>J. \<sigma>' j = \<sigma> j)"
lemma other_stepsI [intro!]:
assumes "\<And>\<sigma> \<sigma>' j. \<lbrakk> U \<sigma> \<sigma>'; j \<in> J \<rbrakk> \<Longrightarrow> \<sigma>' j = \<sigma> j"
shows "other_steps U J"
using assms unfolding other_steps_def by simp
lemma other_stepsE [elim]:
assumes "other_steps U J"
and "U \<sigma> \<sigma>'"
shows "\<forall>j\<in>J. \<sigma>' j = \<sigma> j"
using assms unfolding other_steps_def by simp
definition subreachable
where "subreachable A U J \<equiv> \<forall>I. \<forall>s \<in> oreachable A (\<lambda>s s'. I) U.
(\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I)"
lemma subreachableI [intro]:
assumes "local_steps (trans A) J"
and "other_steps U J"
shows "subreachable A U J"
unfolding subreachable_def
proof (rule, rule)
fix I s
assume "s \<in> oreachable A (\<lambda>s s'. I) U"
thus "(\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I)"
proof induction
fix s
assume "s \<in> init A"
hence "(fst s, snd s) \<in> reachable A I"
by simp (rule reachable_init)
moreover have "\<forall>j\<in>J. (fst s) j = (fst s) j"
by simp
ultimately show "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I"
by auto
next
fix s a s'
assume "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I"
and "(s, a, s') \<in> trans A"
and "I a"
then obtain \<zeta> where "\<forall>j\<in>J. \<zeta> j = (fst s) j"
and "(\<zeta>, snd s) \<in> reachable A I" by auto
from \<open>(s, a, s') \<in> trans A\<close> have "((fst s, snd s), a, (fst s', snd s')) \<in> trans A"
by simp
with \<open>local_steps (trans A) J\<close> obtain \<zeta>' where "\<forall>j\<in>J. \<zeta>' j = (fst s') j"
and "((\<zeta>, snd s), a, (\<zeta>', snd s')) \<in> trans A"
using \<open>\<forall>j\<in>J. \<zeta> j = (fst s) j\<close> by - (drule(2) local_stepsE, clarsimp)
from \<open>(\<zeta>, snd s) \<in> reachable A I\<close>
and \<open>((\<zeta>, snd s), a, (\<zeta>', snd s')) \<in> trans A\<close>
and \<open>I a\<close>
have "(\<zeta>', snd s') \<in> reachable A I" ..
with \<open>\<forall>j\<in>J. \<zeta>' j = (fst s') j\<close>
show "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s') j) \<and> (\<sigma>, snd s') \<in> reachable A I" by auto
next
fix s \<sigma>'
assume "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I"
and "U (fst s) \<sigma>'"
then obtain \<sigma> where "\<forall>j\<in>J. \<sigma> j = (fst s) j"
and "(\<sigma>, snd s) \<in> reachable A I" by auto
from \<open>other_steps U J\<close> and \<open>U (fst s) \<sigma>'\<close> have "\<forall>j\<in>J. \<sigma>' j = (fst s) j"
by - (erule(1) other_stepsE)
with \<open>\<forall>j\<in>J. \<sigma> j = (fst s) j\<close> have "\<forall>j\<in>J. \<sigma> j = \<sigma>' j"
by clarsimp
with \<open>(\<sigma>, snd s) \<in> reachable A I\<close>
show "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = fst (\<sigma>', snd s) j) \<and> (\<sigma>, snd (\<sigma>', snd s)) \<in> reachable A I"
by auto
qed
qed
lemma subreachableE [elim]:
assumes "subreachable A U J"
and "s \<in> oreachable A (\<lambda>s s'. I) U"
shows "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I"
using assms unfolding subreachable_def by simp
lemma subreachableE_pair [elim]:
assumes "subreachable A U J"
and "(\<sigma>, s) \<in> oreachable A (\<lambda>s s'. I) U"
shows "\<exists>\<zeta>. (\<forall>j\<in>J. \<zeta> j = \<sigma> j) \<and> (\<zeta>, s) \<in> reachable A I"
using assms unfolding subreachable_def by (metis fst_conv snd_conv)
lemma subreachable_otherE [elim]:
assumes "subreachable A U J"
and "(\<sigma>, l) \<in> oreachable A (\<lambda>s s'. I) U"
and "U \<sigma> \<sigma>'"
shows "\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> (\<zeta>', l) \<in> reachable A I"
proof -
from \<open>(\<sigma>, l) \<in> oreachable A (\<lambda>s s'. I) U\<close> and \<open>U \<sigma> \<sigma>'\<close>
have "(\<sigma>', l) \<in> oreachable A (\<lambda>s s'. I) U"
by - (rule oreachable_other')
with \<open>subreachable A U J\<close> show ?thesis
by auto
qed
lemma open_closed_invariant:
fixes J
assumes "A \<TTurnstile> (I \<rightarrow>) P"
and "subreachable A U J"
and localp: "\<And>\<sigma> \<sigma>' s. \<lbrakk> \<forall>j\<in>J. \<sigma>' j = \<sigma> j; P (\<sigma>', s) \<rbrakk> \<Longrightarrow> P (\<sigma>, s)"
shows "A \<Turnstile> (act I, U \<rightarrow>) P"
proof (rule, simp_all only: act_def)
fix s
assume "s \<in> init A"
with \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> show "P s" ..
next
fix s a s'
assume "s \<in> oreachable A (\<lambda>_ _. I) U"
and "P s"
and "(s, a, s') \<in> trans A"
and "I a"
hence "s' \<in> oreachable A (\<lambda>_ _. I) U"
by (metis oreachable_local)
with \<open>subreachable A U J\<close> obtain \<sigma>'
where "\<forall>j\<in>J. \<sigma>' j = (fst s') j"
and "(\<sigma>', snd s') \<in> reachable A I"
by (metis subreachableE)
from \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> and \<open>(\<sigma>', snd s') \<in> reachable A I\<close> have "P (\<sigma>', snd s')" ..
with \<open>\<forall>j\<in>J. \<sigma>' j = (fst s') j\<close> show "P s'"
by (metis localp prod.collapse)
next
fix g g' l
assume or: "(g, l) \<in> oreachable A (\<lambda>s s'. I) U"
and "U g g'"
and "P (g, l)"
from \<open>subreachable A U J\<close> and or and \<open>U g g'\<close>
obtain gg' where "\<forall>j\<in>J. gg' j = g' j"
and "(gg', l) \<in> reachable A I"
by (auto dest!: subreachable_otherE)
from \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> and \<open>(gg', l) \<in> reachable A I\<close>
have "P (gg', l)" ..
with \<open>\<forall>j\<in>J. gg' j = g' j\<close> show "P (g', l)"
by (rule localp)
qed
lemma oinvariant_anyact:
assumes "A \<Turnstile> (act TT, U \<rightarrow>) P"
shows "A \<Turnstile> (S, U \<rightarrow>) P"
using assms by rule auto
definition
ostep_invariant
:: "('g \<times> 'l, 'a) automaton
\<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> bool)
\<Rightarrow> (('g \<times> 'l, 'a) transition \<Rightarrow> bool) \<Rightarrow> bool"
("_ \<Turnstile>\<^sub>A (1'((1_),/ (1_) \<rightarrow>')/ _)" [100, 0, 0, 9] 8)
where
"(A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P) =
(\<forall>s\<in>oreachable A S U. (\<forall>a s'. (s, a, s') \<in> trans A \<and> S (fst s) (fst s') a \<longrightarrow> P (s, a, s')))"
lemma ostep_invariant_def':
"(A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P) = (\<forall>s\<in>oreachable A S U.
(\<forall>a s'. (s, a, s') \<in> trans A \<and> S (fst s) (fst s') a \<longrightarrow> P (s, a, s')))"
unfolding ostep_invariant_def by auto
lemma ostep_invariantI [intro]:
assumes *: "\<And>\<sigma> s a \<sigma>' s'. \<lbrakk> (\<sigma>, s)\<in>oreachable A S U; ((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A; S \<sigma> \<sigma>' a \<rbrakk>
\<Longrightarrow> P ((\<sigma>, s), a, (\<sigma>', s'))"
shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P"
unfolding ostep_invariant_def
using assms by auto
lemma ostep_invariantD [dest]:
assumes "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P"
and "(\<sigma>, s)\<in>oreachable A S U"
and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
shows "P ((\<sigma>, s), a, (\<sigma>', s'))"
using assms unfolding ostep_invariant_def' by clarsimp
lemma ostep_invariantE [elim]:
assumes "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P"
and "(\<sigma>, s)\<in>oreachable A S U"
and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
and "P ((\<sigma>, s), a, (\<sigma>', s')) \<Longrightarrow> Q"
shows "Q"
using assms by auto
lemma ostep_invariant_weakenE [elim!]:
assumes invP: "A \<Turnstile>\<^sub>A (PS, PU \<rightarrow>) P"
and PQ: "\<And>t. P t \<Longrightarrow> Q t"
and QSPS: "\<And>\<sigma> \<sigma>' a. QS \<sigma> \<sigma>' a \<Longrightarrow> PS \<sigma> \<sigma>' a"
and QUPU: "\<And>\<sigma> \<sigma>'. QU \<sigma> \<sigma>' \<Longrightarrow> PU \<sigma> \<sigma>'"
shows "A \<Turnstile>\<^sub>A (QS, QU \<rightarrow>) Q"
proof
fix \<sigma> s \<sigma>' s' a
assume "(\<sigma>, s) \<in> oreachable A QS QU"
and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
and "QS \<sigma> \<sigma>' a"
from \<open>QS \<sigma> \<sigma>' a\<close> have "PS \<sigma> \<sigma>' a" by (rule QSPS)
from \<open>(\<sigma>, s) \<in> oreachable A QS QU\<close> have "(\<sigma>, s) \<in> oreachable A PS PU" using QSPS QUPU ..
with invP have "P ((\<sigma>, s), a, (\<sigma>', s'))" using \<open>((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A\<close> \<open>PS \<sigma> \<sigma>' a\<close> ..
thus "Q ((\<sigma>, s), a, (\<sigma>', s'))" by (rule PQ)
qed
lemma ostep_invariant_weaken_with_invariantE [elim]:
assumes pinv: "A \<Turnstile> (S, U \<rightarrow>) P"
and qinv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) Q"
and wr: "\<And>\<sigma> s a \<sigma>' s'. \<lbrakk> P (\<sigma>, s); P (\<sigma>', s'); Q ((\<sigma>, s), a, (\<sigma>', s')); S \<sigma> \<sigma>' a \<rbrakk>
\<Longrightarrow> R ((\<sigma>, s), a, (\<sigma>', s'))"
shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) R"
proof
fix \<sigma> s a \<sigma>' s'
assume sr: "(\<sigma>, s) \<in> oreachable A S U"
and tr: "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
hence "(\<sigma>', s') \<in> oreachable A S U" ..
with pinv have "P (\<sigma>', s')" ..
from pinv and sr have "P (\<sigma>, s)" ..
from qinv sr tr \<open>S \<sigma> \<sigma>' a\<close> have "Q ((\<sigma>, s), a, (\<sigma>', s'))" ..
with \<open>P (\<sigma>, s)\<close> and \<open>P (\<sigma>', s')\<close> show "R ((\<sigma>, s), a, (\<sigma>', s'))" using \<open>S \<sigma> \<sigma>' a\<close> by (rule wr)
qed
lemma ostep_to_invariantI:
assumes sinv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) Q"
and init: "\<And>\<sigma> s. (\<sigma>, s) \<in> init A \<Longrightarrow> P (\<sigma>, s)"
and local: "\<And>\<sigma> s \<sigma>' s' a.
\<lbrakk> (\<sigma>, s) \<in> oreachable A S U;
P (\<sigma>, s);
Q ((\<sigma>, s), a, (\<sigma>', s'));
S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P (\<sigma>', s')"
and other: "\<And>\<sigma> \<sigma>' s. \<lbrakk> (\<sigma>, s) \<in> oreachable A S U; U \<sigma> \<sigma>'; P (\<sigma>, s) \<rbrakk> \<Longrightarrow> P (\<sigma>', s)"
shows "A \<Turnstile> (S, U \<rightarrow>) P"
proof
fix \<sigma> s assume "(\<sigma>, s) \<in> init A" thus "P (\<sigma>, s)" by (rule init)
next
fix \<sigma> s \<sigma>' s' a
assume "(\<sigma>, s) \<in> oreachable A S U"
and "P (\<sigma>, s)"
and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
show "P (\<sigma>', s')"
proof -
from sinv and \<open>(\<sigma>, s)\<in>oreachable A S U\<close> and \<open>((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A\<close> and \<open>S \<sigma> \<sigma>' a\<close>
have "Q ((\<sigma>, s), a, (\<sigma>', s'))" ..
with \<open>(\<sigma>, s)\<in>oreachable A S U\<close> and \<open>P (\<sigma>, s)\<close> show "P (\<sigma>', s')"
using \<open>S \<sigma> \<sigma>' a\<close> by (rule local)
qed
next
fix \<sigma> \<sigma>' l
assume "(\<sigma>, l) \<in> oreachable A S U"
and "U \<sigma> \<sigma>'"
and "P (\<sigma>, l)"
thus "P (\<sigma>', l)" by (rule other)
qed
lemma open_closed_step_invariant:
assumes "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P"
and "local_steps (trans A) J"
and "other_steps U J"
and localp: "\<And>\<sigma> \<zeta> a \<sigma>' \<zeta>' s s'.
\<lbrakk> \<forall>j\<in>J. \<sigma> j = \<zeta> j; \<forall>j\<in>J. \<sigma>' j = \<zeta>' j; P ((\<sigma>, s), a, (\<sigma>', s')) \<rbrakk>
\<Longrightarrow> P ((\<zeta>, s), a, (\<zeta>', s'))"
shows "A \<Turnstile>\<^sub>A (act I, U \<rightarrow>) P"
proof
fix \<sigma> s a \<sigma>' s'
assume or: "(\<sigma>, s) \<in> oreachable A (act I) U"
and tr: "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
and "act I \<sigma> \<sigma>' a"
from \<open>act I \<sigma> \<sigma>' a\<close> have "I a" ..
from \<open>local_steps (trans A) J\<close> and \<open>other_steps U J\<close> have "subreachable A U J" ..
then obtain \<zeta> where "\<forall>j\<in>J. \<zeta> j = \<sigma> j"
and "(\<zeta>, s) \<in> reachable A I"
using or unfolding act_def
by (auto dest!: subreachableE_pair)
from \<open>local_steps (trans A) J\<close> and tr and \<open>\<forall>j\<in>J. \<zeta> j = \<sigma> j\<close>
obtain \<zeta>' where "\<forall>j\<in>J. \<zeta>' j = \<sigma>' j"
and "((\<zeta>, s), a, (\<zeta>', s')) \<in> trans A"
by auto
from \<open>A \<TTurnstile>\<^sub>A (I \<rightarrow>) P\<close> and \<open>(\<zeta>, s) \<in> reachable A I\<close>
and \<open>((\<zeta>, s), a, (\<zeta>', s')) \<in> trans A\<close>
and \<open>I a\<close>
have "P ((\<zeta>, s), a, (\<zeta>', s'))" ..
with \<open>\<forall>j\<in>J. \<zeta> j = \<sigma> j\<close> and \<open>\<forall>j\<in>J. \<zeta>' j = \<sigma>' j\<close> show "P ((\<sigma>, s), a, (\<sigma>', s'))"
by (rule localp)
qed
lemma oinvariant_step_anyact:
assumes "p \<Turnstile>\<^sub>A (act TT, U \<rightarrow>) P"
shows "p \<Turnstile>\<^sub>A (S, U \<rightarrow>) P"
using assms by rule auto
subsection "Standard assumption predicates "
text \<open>otherwith\<close>
definition otherwith :: "('s \<Rightarrow> 's \<Rightarrow> bool)
\<Rightarrow> 'i set
\<Rightarrow> (('i \<Rightarrow> 's) \<Rightarrow> 'a \<Rightarrow> bool)
\<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> 'a \<Rightarrow> bool"
where "otherwith Q I P \<sigma> \<sigma>' a \<equiv> (\<forall>i. i\<notin>I \<longrightarrow> Q (\<sigma> i) (\<sigma>' i)) \<and> P \<sigma> a"
lemma otherwithI [intro]:
assumes other: "\<And>j. j\<notin>I \<Longrightarrow> Q (\<sigma> j) (\<sigma>' j)"
and sync: "P \<sigma> a"
shows "otherwith Q I P \<sigma> \<sigma>' a"
unfolding otherwith_def using assms by simp
lemma otherwithE [elim]:
assumes "otherwith Q I P \<sigma> \<sigma>' a"
and "\<lbrakk> P \<sigma> a; \<forall>j. j\<notin>I \<longrightarrow> Q (\<sigma> j) (\<sigma>' j) \<rbrakk> \<Longrightarrow> R \<sigma> \<sigma>' a"
shows "R \<sigma> \<sigma>' a"
using assms unfolding otherwith_def by simp
lemma otherwith_actionD [dest]:
assumes "otherwith Q I P \<sigma> \<sigma>' a"
shows "P \<sigma> a"
using assms by auto
lemma otherwith_syncD [dest]:
assumes "otherwith Q I P \<sigma> \<sigma>' a"
shows "\<forall>j. j\<notin>I \<longrightarrow> Q (\<sigma> j) (\<sigma>' j)"
using assms by auto
lemma otherwithEI [elim]:
assumes "otherwith P I PO \<sigma> \<sigma>' a"
and "\<And>\<sigma> a. PO \<sigma> a \<Longrightarrow> QO \<sigma> a"
shows "otherwith P I QO \<sigma> \<sigma>' a"
using assms(1) unfolding otherwith_def
by (clarsimp elim!: assms(2))
lemma all_but:
assumes "\<And>\<xi>. S \<xi> \<xi>"
and "\<sigma>' i = \<sigma> i"
and "\<forall>j. j \<noteq> i \<longrightarrow> S (\<sigma> j) (\<sigma>' j)"
shows "\<forall>j. S (\<sigma> j) (\<sigma>' j)"
using assms by metis
lemma all_but_eq [dest]:
assumes "\<sigma>' i = \<sigma> i"
and "\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j"
shows "\<sigma> = \<sigma>'"
using assms by - (rule ext, metis)
text \<open>other\<close>
definition other :: "('s \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 'i set \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> bool"
where "other P I \<sigma> \<sigma>' \<equiv> \<forall>i. if i\<in>I then \<sigma>' i = \<sigma> i else P (\<sigma> i) (\<sigma>' i)"
lemma otherI [intro]:
assumes local: "\<And>i. i\<in>I \<Longrightarrow> \<sigma>' i = \<sigma> i"
and other: "\<And>j. j\<notin>I \<Longrightarrow> P (\<sigma> j) (\<sigma>' j)"
shows "other P I \<sigma> \<sigma>'"
using assms unfolding other_def by clarsimp
lemma otherE [elim]:
assumes "other P I \<sigma> \<sigma>'"
and "\<lbrakk> \<forall>i\<in>I. \<sigma>' i = \<sigma> i; \<forall>j. j\<notin>I \<longrightarrow> P (\<sigma> j) (\<sigma>' j) \<rbrakk> \<Longrightarrow> R \<sigma> \<sigma>'"
shows "R \<sigma> \<sigma>'"
using assms unfolding other_def by simp
lemma other_localD [dest]:
"other P {i} \<sigma> \<sigma>' \<Longrightarrow> \<sigma>' i = \<sigma> i"
by auto
lemma other_otherD [dest]:
"other P {i} \<sigma> \<sigma>' \<Longrightarrow> \<forall>j. j\<noteq>i \<longrightarrow> P (\<sigma> j) (\<sigma>' j)"
by auto
lemma other_bothE [elim]:
assumes "other P {i} \<sigma> \<sigma>'"
obtains "\<sigma>' i = \<sigma> i" and "\<forall>j. j\<noteq>i \<longrightarrow> P (\<sigma> j) (\<sigma>' j)"
using assms by auto
lemma weaken_local [elim]:
assumes "other P I \<sigma> \<sigma>'"
and PQ: "\<And>\<xi> \<xi>'. P \<xi> \<xi>' \<Longrightarrow> Q \<xi> \<xi>'"
shows "other Q I \<sigma> \<sigma>'"
using assms unfolding other_def by auto
definition global :: "((nat \<Rightarrow> 's) \<Rightarrow> bool) \<Rightarrow> (nat \<Rightarrow> 's) \<times> 'local \<Rightarrow> bool"
where "global P \<equiv> (\<lambda>(\<sigma>, _). P \<sigma>)"
lemma globalsimp [simp]: "global P s = P (fst s)"
unfolding global_def by (simp split: prod.split)
definition globala :: "((nat \<Rightarrow> 's, 'action) transition \<Rightarrow> bool)
\<Rightarrow> ((nat \<Rightarrow> 's) \<times> 'local, 'action) transition \<Rightarrow> bool"
where "globala P \<equiv> (\<lambda>((\<sigma>, _), a, (\<sigma>', _)). P (\<sigma>, a, \<sigma>'))"
lemma globalasimp [simp]: "globala P s = P (fst (fst s), fst (snd s), fst (snd (snd s)))"
unfolding globala_def by (simp split: prod.split)
end