Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Pnet.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke | |
*) | |
section "Lemmas for partial networks" | |
theory Pnet | |
imports AWN_SOS Invariants | |
begin | |
text \<open> | |
These lemmas mostly concern the preservation of node structure by @{term pnet_sos} transitions. | |
\<close> | |
lemma pnet_maintains_dom: | |
assumes "(s, a, s') \<in> trans (pnet np p)" | |
shows "net_ips s = net_ips s'" | |
using assms proof (induction p arbitrary: s a s') | |
fix i R \<sigma> s a s' | |
assume "(s, a, s') \<in> trans (pnet np \<langle>i; R\<rangle>)" | |
hence "(s, a, s') \<in> node_sos (trans (np i))" .. | |
thus "net_ips s = net_ips s'" | |
by (rule node_sos.cases) simp_all | |
next | |
fix p1 p2 s a s' | |
assume "\<And>s a s'. (s, a, s') \<in> trans (pnet np p1) \<Longrightarrow> net_ips s = net_ips s'" | |
and "\<And>s a s'. (s, a, s') \<in> trans (pnet np p2) \<Longrightarrow> net_ips s = net_ips s'" | |
and "(s, a, s') \<in> trans (pnet np (p1 \<parallel> p2))" | |
thus "net_ips s = net_ips s'" | |
by simp (erule pnet_sos.cases, simp_all) | |
qed | |
lemma pnet_net_ips_net_tree_ips [elim]: | |
assumes "s \<in> reachable (pnet np p) I" | |
shows "net_ips s = net_tree_ips p" | |
using assms proof induction | |
fix s | |
assume "s \<in> init (pnet np p)" | |
thus "net_ips s = net_tree_ips p" | |
proof (induction p arbitrary: s) | |
fix i R s | |
assume "s \<in> init (pnet np \<langle>i; R\<rangle>)" | |
then obtain ns where "s = NodeS i ns R" .. | |
thus "net_ips s = net_tree_ips \<langle>i; R\<rangle>" | |
by simp | |
next | |
fix p1 p2 s | |
assume IH1: "\<And>s. s \<in> init (pnet np p1) \<Longrightarrow> net_ips s = net_tree_ips p1" | |
and IH2: "\<And>s. s \<in> init (pnet np p2) \<Longrightarrow> net_ips s = net_tree_ips p2" | |
and "s \<in> init (pnet np (p1 \<parallel> p2))" | |
from this(3) obtain s1 s2 where "s1 \<in> init (pnet np p1)" | |
and "s2 \<in> init (pnet np p2)" | |
and "s = SubnetS s1 s2" by auto | |
from this(1-2) have "net_ips s1 = net_tree_ips p1" | |
and "net_ips s2 = net_tree_ips p2" | |
using IH1 IH2 by auto | |
with \<open>s = SubnetS s1 s2\<close> show "net_ips s = net_tree_ips (p1 \<parallel> p2)" by auto | |
qed | |
next | |
fix s a s' | |
assume "(s, a, s') \<in> trans (pnet np p)" | |
and "net_ips s = net_tree_ips p" | |
from this(1) have "net_ips s = net_ips s'" | |
by (rule pnet_maintains_dom) | |
with \<open>net_ips s = net_tree_ips p\<close> show "net_ips s' = net_tree_ips p" | |
by simp | |
qed | |
lemma pnet_init_net_ips_net_tree_ips: | |
assumes "s \<in> init (pnet np p)" | |
shows "net_ips s = net_tree_ips p" | |
using assms(1) by (rule reachable_init [THEN pnet_net_ips_net_tree_ips]) | |
lemma pnet_init_in_net_ips_in_net_tree_ips [elim]: | |
assumes "s \<in> init (pnet np p)" | |
and "i \<in> net_ips s" | |
shows "i \<in> net_tree_ips p" | |
using assms by (clarsimp dest!: pnet_init_net_ips_net_tree_ips) | |
lemma pnet_init_in_net_tree_ips_in_net_ips [elim]: | |
assumes "s \<in> init (pnet np p)" | |
and "i \<in> net_tree_ips p" | |
shows "i \<in> net_ips s" | |
using assms by (clarsimp dest!: pnet_init_net_ips_net_tree_ips) | |
lemma pnet_init_not_in_net_tree_ips_not_in_net_ips [elim]: | |
assumes "s \<in> init (pnet np p)" | |
and "i \<notin> net_tree_ips p" | |
shows "i \<notin> net_ips s" | |
proof | |
assume "i \<in> net_ips s" | |
with assms(1) have "i \<in> net_tree_ips p" .. | |
with assms(2) show False .. | |
qed | |
lemma net_node_reachable_is_node: | |
assumes "st \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) I" | |
shows "\<exists>ns R. st = NodeS ii ns R" | |
using assms proof induct | |
fix s | |
assume "s \<in> init (pnet np \<langle>ii; R\<^sub>i\<rangle>)" | |
thus "\<exists>ns R. s = NodeS ii ns R" | |
by (rule pnet_node_init') simp | |
next | |
fix s a s' | |
assume "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) I" | |
and "\<exists>ns R. s = NodeS ii ns R" | |
and "(s, a, s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)" | |
and "I a" | |
thus "\<exists>ns R. s' = NodeS ii ns R" | |
by (auto simp add: trans_node_comp dest!: node_sos_dest) | |
qed | |
lemma partial_net_preserves_subnets: | |
assumes "(SubnetS s t, a, st') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))" | |
shows "\<exists>s' t'. st' = SubnetS s' t'" | |
using assms by cases simp_all | |
lemma net_par_reachable_is_subnet: | |
assumes "st \<in> reachable (pnet np (p1 \<parallel> p2)) I" | |
shows "\<exists>s t. st = SubnetS s t" | |
using assms by induct (auto dest!: partial_net_preserves_subnets) | |
lemma reachable_par_subnet_induct [consumes, case_names init step]: | |
assumes "SubnetS s t \<in> reachable (pnet np (p1 \<parallel> p2)) I" | |
and init: "\<And>s t. SubnetS s t \<in> init (pnet np (p1 \<parallel> p2)) \<Longrightarrow> P s t" | |
and step: "\<And>s t s' t' a. \<lbrakk> | |
SubnetS s t \<in> reachable (pnet np (p1 \<parallel> p2)) I; | |
P s t; (SubnetS s t, a, SubnetS s' t') \<in> (trans (pnet np (p1 \<parallel> p2))); I a \<rbrakk> | |
\<Longrightarrow> P s' t'" | |
shows "P s t" | |
using assms(1) proof (induction "SubnetS s t" arbitrary: s t) | |
fix s t | |
assume "SubnetS s t \<in> init (pnet np (p1 \<parallel> p2))" | |
with init show "P s t" . | |
next | |
fix st a s' t' | |
assume "st \<in> reachable (pnet np (p1 \<parallel> p2)) I" | |
and tr: "(st, a, SubnetS s' t') \<in> trans (pnet np (p1 \<parallel> p2))" | |
and "I a" | |
and IH: "\<And>s t. st = SubnetS s t \<Longrightarrow> P s t" | |
from this(1) obtain s t where "st = SubnetS s t" | |
and str: "SubnetS s t \<in> reachable (pnet np (p1 \<parallel> p2)) I" | |
by (metis net_par_reachable_is_subnet) | |
note this(2) | |
moreover from IH and \<open>st = SubnetS s t\<close> have "P s t" . | |
moreover from \<open>st = SubnetS s t\<close> and tr | |
have "(SubnetS s t, a, SubnetS s' t') \<in> trans (pnet np (p1 \<parallel> p2))" by simp | |
ultimately show "P s' t'" | |
using \<open>I a\<close> by (rule step) | |
qed | |
lemma subnet_reachable: | |
assumes "SubnetS s1 s2 \<in> reachable (pnet np (p1 \<parallel> p2)) TT" | |
shows "s1 \<in> reachable (pnet np p1) TT" | |
"s2 \<in> reachable (pnet np p2) TT" | |
proof - | |
from assms have "s1 \<in> reachable (pnet np p1) TT | |
\<and> s2 \<in> reachable (pnet np p2) TT" | |
proof (induction rule: reachable_par_subnet_induct) | |
fix s1 s2 | |
assume "SubnetS s1 s2 \<in> init (pnet np (p1 \<parallel> p2))" | |
thus "s1 \<in> reachable (pnet np p1) TT | |
\<and> s2 \<in> reachable (pnet np p2) TT" | |
by (auto dest: reachable_init) | |
next | |
case (step s1 s2 s1' s2' a) | |
hence "SubnetS s1 s2 \<in> reachable (pnet np (p1 \<parallel> p2)) TT" | |
and sr1: "s1 \<in> reachable (pnet np p1) TT" | |
and sr2: "s2 \<in> reachable (pnet np p2) TT" | |
and "(SubnetS s1 s2, a, SubnetS s1' s2') \<in> trans (pnet np (p1 \<parallel> p2))" by auto | |
from this(4) | |
have "(SubnetS s1 s2, a, SubnetS s1' s2') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))" | |
by simp | |
thus "s1' \<in> reachable (pnet np p1) TT | |
\<and> s2' \<in> reachable (pnet np p2) TT" | |
by cases (insert sr1 sr2, auto elim: reachable_step) | |
qed | |
thus "s1 \<in> reachable (pnet np p1) TT" | |
"s2 \<in> reachable (pnet np p2) TT" by auto | |
qed | |
lemma delivered_to_node [elim]: | |
assumes "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT" | |
and "(s, i:deliver(d), s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)" | |
shows "i = ii" | |
proof - | |
from assms(1) obtain P R where "s = NodeS ii P R" | |
by (metis net_node_reachable_is_node) | |
with assms(2) show "i = ii" | |
by (clarsimp simp add: trans_node_comp elim!: node_deliverTE') | |
qed | |
lemma delivered_to_net_ips: | |
assumes "s \<in> reachable (pnet np p) TT" | |
and "(s, i:deliver(d), s') \<in> trans (pnet np p)" | |
shows "i \<in> net_ips s" | |
using assms proof (induction p arbitrary: s s') | |
fix ii R\<^sub>i s s' | |
assume sr: "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT" | |
and "(s, i:deliver(d), s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)" | |
from this(2) have tr: "(s, i:deliver(d), s') \<in> node_sos (trans (np ii))" by simp | |
from sr obtain P R where [simp]: "s = NodeS ii P R" | |
by (metis net_node_reachable_is_node) | |
moreover from tr obtain P' R' where [simp]: "s' = NodeS ii P' R'" | |
by simp (metis node_sos_dest) | |
ultimately have "i = ii" using tr by auto | |
thus "i \<in> net_ips s" by simp | |
next | |
fix p1 p2 s s' | |
assume IH1: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p1) TT; | |
(s, i:deliver(d), s') \<in> trans (pnet np p1) \<rbrakk> \<Longrightarrow> i \<in> net_ips s" | |
and IH2: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p2) TT; | |
(s, i:deliver(d), s') \<in> trans (pnet np p2) \<rbrakk> \<Longrightarrow> i \<in> net_ips s" | |
and sr: "s \<in> reachable (pnet np (p1 \<parallel> p2)) TT" | |
and tr: "(s, i:deliver(d), s') \<in> trans (pnet np (p1 \<parallel> p2))" | |
from tr have "(s, i:deliver(d), s') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))" | |
by simp | |
thus "i \<in> net_ips s" | |
proof (rule partial_deliverTE) | |
fix s1 s1' s2 | |
assume "s = SubnetS s1 s2" | |
and "s' = SubnetS s1' s2" | |
and tr: "(s1, i:deliver(d), s1') \<in> trans (pnet np p1)" | |
from sr have "s1 \<in> reachable (pnet np p1) TT" | |
by (auto simp only: \<open>s = SubnetS s1 s2\<close> elim: subnet_reachable) | |
hence "i \<in> net_ips s1" using tr by (rule IH1) | |
thus "i \<in> net_ips s" by (simp add: \<open>s = SubnetS s1 s2\<close>) | |
next | |
fix s2 s2' s1 | |
assume "s = SubnetS s1 s2" | |
and "s' = SubnetS s1 s2'" | |
and tr: "(s2, i:deliver(d), s2') \<in> trans (pnet np p2)" | |
from sr have "s2 \<in> reachable (pnet np p2) TT" | |
by (auto simp only: \<open>s = SubnetS s1 s2\<close> elim: subnet_reachable) | |
hence "i \<in> net_ips s2" using tr by (rule IH2) | |
thus "i \<in> net_ips s" by (simp add: \<open>s = SubnetS s1 s2\<close>) | |
qed | |
qed | |
lemma wf_net_tree_net_ips_disjoint [elim]: | |
assumes "wf_net_tree (p1 \<parallel> p2)" | |
and "s1 \<in> reachable (pnet np p1) S" | |
and "s2 \<in> reachable (pnet np p2) S" | |
shows "net_ips s1 \<inter> net_ips s2 = {}" | |
proof - | |
from \<open>wf_net_tree (p1 \<parallel> p2)\<close> have "net_tree_ips p1 \<inter> net_tree_ips p2 = {}" by auto | |
moreover from assms(2) have "net_ips s1 = net_tree_ips p1" .. | |
moreover from assms(3) have "net_ips s2 = net_tree_ips p2" .. | |
ultimately show ?thesis by simp | |
qed | |
lemma init_mapstate_Some_aodv_init [elim]: | |
assumes "s \<in> init (pnet np p)" | |
and "netmap s i = Some v" | |
shows "v \<in> init (np i)" | |
using assms proof (induction p arbitrary: s) | |
fix ii R s | |
assume "s \<in> init (pnet np \<langle>ii; R\<rangle>)" | |
and "netmap s i = Some v" | |
from this(1) obtain ns where s: "s = NodeS ii ns R" | |
and ns: "ns \<in> init (np ii)" .. | |
from s and \<open>netmap s i = Some v\<close> have "i = ii" | |
by simp (metis domI domIff) | |
with s ns show "v \<in> init (np i)" | |
using \<open>netmap s i = Some v\<close> by simp | |
next | |
fix p1 p2 s | |
assume IH1: "\<And>s. s \<in> init (pnet np p1) \<Longrightarrow> netmap s i = Some v \<Longrightarrow> v \<in> init (np i)" | |
and IH2: "\<And>s. s \<in> init (pnet np p2) \<Longrightarrow> netmap s i = Some v \<Longrightarrow> v \<in> init (np i)" | |
and "s \<in> init (pnet np (p1 \<parallel> p2))" | |
and "netmap s i = Some v" | |
from this(3) obtain s1 s2 where "s = SubnetS s1 s2" | |
and "s1 \<in> init (pnet np p1)" | |
and "s2 \<in> init (pnet np p2)" by auto | |
from this(1) and \<open>netmap s i = Some v\<close> | |
have "netmap s1 i = Some v \<or> netmap s2 i = Some v" by auto | |
thus "v \<in> init (np i)" | |
proof | |
assume "netmap s1 i = Some v" | |
with \<open>s1 \<in> init (pnet np p1)\<close> show ?thesis by (rule IH1) | |
next | |
assume "netmap s2 i = Some v" | |
with \<open>s2 \<in> init (pnet np p2)\<close> show ?thesis by (rule IH2) | |
qed | |
qed | |
lemma reachable_connect_netmap [elim]: | |
assumes "s \<in> reachable (pnet np n) TT" | |
and "(s, connect(i, i'), s') \<in> trans (pnet np n)" | |
shows "netmap s' = netmap s" | |
using assms proof (induction n arbitrary: s s') | |
fix ii R\<^sub>i s s' | |
assume sr: "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT" | |
and "(s, connect(i, i'), s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)" | |
from this(2) have tr: "(s, connect(i, i'), s') \<in> node_sos (trans (np ii))" .. | |
from sr obtain p R where "s = NodeS ii p R" | |
by (metis net_node_reachable_is_node) | |
with tr show "netmap s' = netmap s" | |
by (auto elim!: node_sos.cases) | |
next | |
fix p1 p2 s s' | |
assume IH1: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p1) TT; | |
(s, connect(i, i'), s') \<in> trans (pnet np p1) \<rbrakk> \<Longrightarrow> netmap s' = netmap s" | |
and IH2: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p2) TT; | |
(s, connect(i, i'), s') \<in> trans (pnet np p2) \<rbrakk> \<Longrightarrow> netmap s' = netmap s" | |
and sr: "s \<in> reachable (pnet np (p1 \<parallel> p2)) TT" | |
and tr: "(s, connect(i, i'), s') \<in> trans (pnet np (p1 \<parallel> p2))" | |
from tr have "(s, connect(i, i'), s') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))" | |
by simp | |
thus "netmap s' = netmap s" | |
proof cases | |
fix s1 s1' s2 s2' | |
assume "s = SubnetS s1 s2" | |
and "s' = SubnetS s1' s2'" | |
and tr1: "(s1, connect(i, i'), s1') \<in> trans (pnet np p1)" | |
and tr2: "(s2, connect(i, i'), s2') \<in> trans (pnet np p2)" | |
from this(1) and sr | |
have "SubnetS s1 s2 \<in> reachable (pnet np (p1 \<parallel> p2)) TT" by simp | |
hence sr1: "s1 \<in> reachable (pnet np p1) TT" | |
and sr2: "s2 \<in> reachable (pnet np p2) TT" | |
by (auto intro: subnet_reachable) | |
from sr1 tr1 have "netmap s1' = netmap s1" by (rule IH1) | |
moreover from sr2 tr2 have "netmap s2' = netmap s2" by (rule IH2) | |
ultimately show "netmap s' = netmap s" | |
using \<open>s = SubnetS s1 s2\<close> and \<open>s' = SubnetS s1' s2'\<close> by simp | |
qed simp_all | |
qed | |
lemma reachable_disconnect_netmap [elim]: | |
assumes "s \<in> reachable (pnet np n) TT" | |
and "(s, disconnect(i, i'), s') \<in> trans (pnet np n)" | |
shows "netmap s' = netmap s" | |
using assms proof (induction n arbitrary: s s') | |
fix ii R\<^sub>i s s' | |
assume sr: "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT" | |
and "(s, disconnect(i, i'), s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)" | |
from this(2) have tr: "(s, disconnect(i, i'), s') \<in> node_sos (trans (np ii))" .. | |
from sr obtain p R where "s = NodeS ii p R" | |
by (metis net_node_reachable_is_node) | |
with tr show "netmap s' = netmap s" | |
by (auto elim!: node_sos.cases) | |
next | |
fix p1 p2 s s' | |
assume IH1: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p1) TT; | |
(s, disconnect(i, i'), s') \<in> trans (pnet np p1) \<rbrakk> \<Longrightarrow> netmap s' = netmap s" | |
and IH2: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p2) TT; | |
(s, disconnect(i, i'), s') \<in> trans (pnet np p2) \<rbrakk> \<Longrightarrow> netmap s' = netmap s" | |
and sr: "s \<in> reachable (pnet np (p1 \<parallel> p2)) TT" | |
and tr: "(s, disconnect(i, i'), s') \<in> trans (pnet np (p1 \<parallel> p2))" | |
from tr have "(s, disconnect(i, i'), s') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))" | |
by simp | |
thus "netmap s' = netmap s" | |
proof cases | |
fix s1 s1' s2 s2' | |
assume "s = SubnetS s1 s2" | |
and "s' = SubnetS s1' s2'" | |
and tr1: "(s1, disconnect(i, i'), s1') \<in> trans (pnet np p1)" | |
and tr2: "(s2, disconnect(i, i'), s2') \<in> trans (pnet np p2)" | |
from this(1) and sr | |
have "SubnetS s1 s2 \<in> reachable (pnet np (p1 \<parallel> p2)) TT" by simp | |
hence sr1: "s1 \<in> reachable (pnet np p1) TT" | |
and sr2: "s2 \<in> reachable (pnet np p2) TT" | |
by (auto intro: subnet_reachable) | |
from sr1 tr1 have "netmap s1' = netmap s1" by (rule IH1) | |
moreover from sr2 tr2 have "netmap s2' = netmap s2" by (rule IH2) | |
ultimately show "netmap s' = netmap s" | |
using \<open>s = SubnetS s1 s2\<close> and \<open>s' = SubnetS s1' s2'\<close> by simp | |
qed simp_all | |
qed | |
fun net_ip_action :: "(ip \<Rightarrow> ('s, 'm seq_action) automaton) | |
\<Rightarrow> 'm node_action \<Rightarrow> ip \<Rightarrow> net_tree \<Rightarrow> 's net_state \<Rightarrow> 's net_state \<Rightarrow> bool" | |
where | |
"net_ip_action np a i (p1 \<parallel> p2) (SubnetS s1 s2) (SubnetS s1' s2') = | |
((i \<in> net_ips s1 \<longrightarrow> ((s1, a, s1') \<in> trans (pnet np p1) | |
\<and> s2' = s2 \<and> net_ip_action np a i p1 s1 s1')) | |
\<and> (i \<in> net_ips s2 \<longrightarrow> ((s2, a, s2') \<in> trans (pnet np p2)) | |
\<and> s1' = s1 \<and> net_ip_action np a i p2 s2 s2'))" | |
| "net_ip_action np a i p s s' = True" | |
lemma pnet_tau_single_node [elim]: | |
assumes "wf_net_tree p" | |
and "s \<in> reachable (pnet np p) TT" | |
and "(s, \<tau>, s') \<in> trans (pnet np p)" | |
shows "\<exists>i\<in>net_ips s. ((\<forall>j. j\<noteq>i \<longrightarrow> netmap s' j = netmap s j) | |
\<and> net_ip_action np \<tau> i p s s')" | |
using assms proof (induction p arbitrary: s s') | |
fix ii R\<^sub>i s s' | |
assume "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT" | |
and "(s, \<tau>, s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)" | |
from this obtain p R p' R' where "s = NodeS ii p R" and "s' = NodeS ii p' R'" | |
by (metis (opaque_lifting, no_types) TT_True net_node_reachable_is_node | |
reachable_step) | |
hence "net_ips s = {ii}" | |
and "net_ips s' = {ii}" by simp_all | |
hence "\<exists>i\<in>dom (netmap s). \<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j" | |
by (simp add: net_ips_is_dom_netmap) | |
thus "\<exists>i\<in>net_ips s. (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j) | |
\<and> net_ip_action np \<tau> i (\<langle>ii; R\<^sub>i\<rangle>) s s'" | |
by (simp add: net_ips_is_dom_netmap) | |
next | |
fix p1 p2 s s' | |
assume IH1: "\<And>s s'. \<lbrakk> wf_net_tree p1; | |
s \<in> reachable (pnet np p1) TT; | |
(s, \<tau>, s') \<in> trans (pnet np p1) \<rbrakk> | |
\<Longrightarrow> \<exists>i\<in>net_ips s. (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j) | |
\<and> net_ip_action np \<tau> i p1 s s'" | |
and IH2: "\<And>s s'. \<lbrakk> wf_net_tree p2; | |
s \<in> reachable (pnet np p2) TT; | |
(s, \<tau>, s') \<in> trans (pnet np p2) \<rbrakk> | |
\<Longrightarrow> \<exists>i\<in>net_ips s. (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j) | |
\<and> net_ip_action np \<tau> i p2 s s'" | |
and sr: "s \<in> reachable (pnet np (p1 \<parallel> p2)) TT" | |
and "wf_net_tree (p1 \<parallel> p2)" | |
and tr: "(s, \<tau>, s') \<in> trans (pnet np (p1 \<parallel> p2))" | |
from \<open>wf_net_tree (p1 \<parallel> p2)\<close> have "net_tree_ips p1 \<inter> net_tree_ips p2 = {}" | |
and "wf_net_tree p1" | |
and "wf_net_tree p2" by auto | |
from tr have "(s, \<tau>, s') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))" by simp | |
thus "\<exists>i\<in>net_ips s. (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j) | |
\<and> net_ip_action np \<tau> i (p1 \<parallel> p2) s s'" | |
proof cases | |
fix s1 s1' s2 | |
assume subs: "s = SubnetS s1 s2" | |
and subs': "s' = SubnetS s1' s2" | |
and tr1: "(s1, \<tau>, s1') \<in> trans (pnet np p1)" | |
from sr have sr1: "s1 \<in> reachable (pnet np p1) TT" | |
and "s2 \<in> reachable (pnet np p2) TT" | |
by (simp_all only: subs) (erule subnet_reachable)+ | |
with \<open>net_tree_ips p1 \<inter> net_tree_ips p2 = {}\<close> have "dom(netmap s1) \<inter> dom(netmap s2) = {}" | |
by (metis net_ips_is_dom_netmap pnet_net_ips_net_tree_ips) | |
from \<open>wf_net_tree p1\<close> sr1 tr1 obtain i where "i\<in>dom(netmap s1)" | |
and *: "\<forall>j. j \<noteq> i \<longrightarrow> netmap s1' j = netmap s1 j" | |
and "net_ip_action np \<tau> i p1 s1 s1'" | |
by (auto simp add: net_ips_is_dom_netmap dest!: IH1) | |
from this(1) and \<open>dom(netmap s1) \<inter> dom(netmap s2) = {}\<close> have "i\<notin>dom(netmap s2)" | |
by auto | |
with subs subs' tr1 \<open>net_ip_action np \<tau> i p1 s1 s1'\<close> have "net_ip_action np \<tau> i (p1 \<parallel> p2) s s'" | |
by (simp add: net_ips_is_dom_netmap) | |
moreover have "\<forall>j. j \<noteq> i \<longrightarrow> (netmap s1' ++ netmap s2) j = (netmap s1 ++ netmap s2) j" | |
proof (intro allI impI) | |
fix j | |
assume "j \<noteq> i" | |
with * have "netmap s1' j = netmap s1 j" by simp | |
thus "(netmap s1' ++ netmap s2) j = (netmap s1 ++ netmap s2) j" | |
by (metis (opaque_lifting, mono_tags) map_add_dom_app_simps(1) map_add_dom_app_simps(3)) | |
qed | |
ultimately show ?thesis using \<open>i\<in>dom(netmap s1)\<close> subs subs' | |
by (auto simp add: net_ips_is_dom_netmap) | |
next | |
fix s2 s2' s1 | |
assume subs: "s = SubnetS s1 s2" | |
and subs': "s' = SubnetS s1 s2'" | |
and tr2: "(s2, \<tau>, s2') \<in> trans (pnet np p2)" | |
from sr have "s1 \<in> reachable (pnet np p1) TT" | |
and sr2: "s2 \<in> reachable (pnet np p2) TT" | |
by (simp_all only: subs) (erule subnet_reachable)+ | |
with \<open>net_tree_ips p1 \<inter> net_tree_ips p2 = {}\<close> have "dom(netmap s1) \<inter> dom(netmap s2) = {}" | |
by (metis net_ips_is_dom_netmap pnet_net_ips_net_tree_ips) | |
from \<open>wf_net_tree p2\<close> sr2 tr2 obtain i where "i\<in>dom(netmap s2)" | |
and *: "\<forall>j. j \<noteq> i \<longrightarrow> netmap s2' j = netmap s2 j" | |
and "net_ip_action np \<tau> i p2 s2 s2'" | |
by (auto simp add: net_ips_is_dom_netmap dest!: IH2) | |
from this(1) and \<open>dom(netmap s1) \<inter> dom(netmap s2) = {}\<close> have "i\<notin>dom(netmap s1)" | |
by auto | |
with subs subs' tr2 \<open>net_ip_action np \<tau> i p2 s2 s2'\<close> have "net_ip_action np \<tau> i (p1 \<parallel> p2) s s'" | |
by (simp add: net_ips_is_dom_netmap) | |
moreover have "\<forall>j. j \<noteq> i \<longrightarrow> (netmap s1 ++ netmap s2') j = (netmap s1 ++ netmap s2) j" | |
proof (intro allI impI) | |
fix j | |
assume "j \<noteq> i" | |
with * have "netmap s2' j = netmap s2 j" by simp | |
thus "(netmap s1 ++ netmap s2') j = (netmap s1 ++ netmap s2) j" | |
by (metis (opaque_lifting, mono_tags) domD map_add_Some_iff map_add_dom_app_simps(3)) | |
qed | |
ultimately show ?thesis using \<open>i\<in>dom(netmap s2)\<close> subs subs' | |
by (clarsimp simp add: net_ips_is_dom_netmap) | |
(metis domI dom_map_add map_add_find_right) | |
qed simp_all | |
qed | |
lemma pnet_deliver_single_node [elim]: | |
assumes "wf_net_tree p" | |
and "s \<in> reachable (pnet np p) TT" | |
and "(s, i:deliver(d), s') \<in> trans (pnet np p)" | |
shows "(\<forall>j. j\<noteq>i \<longrightarrow> netmap s' j = netmap s j) \<and> net_ip_action np (i:deliver(d)) i p s s'" | |
(is "?P p s s'") | |
using assms proof (induction p arbitrary: s s') | |
fix ii R\<^sub>i s s' | |
assume sr: "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT" | |
and tr: "(s, i:deliver(d), s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)" | |
from this obtain p R p' R' where "s = NodeS ii p R" and "s' = NodeS ii p' R'" | |
by (metis (opaque_lifting, no_types) TT_True net_node_reachable_is_node | |
reachable_step) | |
hence "net_ips s = {ii}" | |
and "net_ips s' = {ii}" by simp_all | |
hence "\<forall>j. j \<noteq> ii \<longrightarrow> netmap s' j = netmap s j" | |
by simp | |
moreover from sr tr have "i = ii" by (rule delivered_to_node) | |
ultimately show "(\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j) | |
\<and> net_ip_action np (i:deliver(d)) i (\<langle>ii; R\<^sub>i\<rangle>) s s'" | |
by simp | |
next | |
fix p1 p2 s s' | |
assume IH1: "\<And>s s'. \<lbrakk> wf_net_tree p1; | |
s \<in> reachable (pnet np p1) TT; | |
(s, i:deliver(d), s') \<in> trans (pnet np p1) \<rbrakk> | |
\<Longrightarrow> (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j) | |
\<and> net_ip_action np (i:deliver(d)) i p1 s s'" | |
and IH2: "\<And>s s'. \<lbrakk> wf_net_tree p2; | |
s \<in> reachable (pnet np p2) TT; | |
(s, i:deliver(d), s') \<in> trans (pnet np p2) \<rbrakk> | |
\<Longrightarrow> (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j) | |
\<and> net_ip_action np (i:deliver(d)) i p2 s s'" | |
and sr: "s \<in> reachable (pnet np (p1 \<parallel> p2)) TT" | |
and "wf_net_tree (p1 \<parallel> p2)" | |
and tr: "(s, i:deliver(d), s') \<in> trans (pnet np (p1 \<parallel> p2))" | |
from \<open>wf_net_tree (p1 \<parallel> p2)\<close> have "net_tree_ips p1 \<inter> net_tree_ips p2 = {}" | |
and "wf_net_tree p1" | |
and "wf_net_tree p2" by auto | |
from tr have "(s, i:deliver(d), s') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))" by simp | |
thus "(\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j) | |
\<and> net_ip_action np (i:deliver(d)) i (p1 \<parallel> p2) s s'" | |
proof cases | |
fix s1 s1' s2 | |
assume subs: "s = SubnetS s1 s2" | |
and subs': "s' = SubnetS s1' s2" | |
and tr1: "(s1, i:deliver(d), s1') \<in> trans (pnet np p1)" | |
from sr have sr1: "s1 \<in> reachable (pnet np p1) TT" | |
and "s2 \<in> reachable (pnet np p2) TT" | |
by (simp_all only: subs) (erule subnet_reachable)+ | |
with \<open>net_tree_ips p1 \<inter> net_tree_ips p2 = {}\<close> have "dom(netmap s1) \<inter> dom(netmap s2) = {}" | |
by (metis net_ips_is_dom_netmap pnet_net_ips_net_tree_ips) | |
moreover from sr1 tr1 have "i \<in> net_ips s1" by (rule delivered_to_net_ips) | |
ultimately have "i\<notin>dom(netmap s2)" by (auto simp add: net_ips_is_dom_netmap) | |
from \<open>wf_net_tree p1\<close> sr1 tr1 have *: "\<forall>j. j \<noteq> i \<longrightarrow> netmap s1' j = netmap s1 j" | |
and "net_ip_action np (i:deliver(d)) i p1 s1 s1'" | |
by (auto dest!: IH1) | |
from subs subs' tr1 this(2) \<open>i\<notin>dom(netmap s2)\<close> | |
have "net_ip_action np (i:deliver(d)) i (p1 \<parallel> p2) s s'" | |
by (simp add: net_ips_is_dom_netmap) | |
moreover have "\<forall>j. j \<noteq> i \<longrightarrow> (netmap s1' ++ netmap s2) j = (netmap s1 ++ netmap s2) j" | |
proof (intro allI impI) | |
fix j | |
assume "j \<noteq> i" | |
with * have "netmap s1' j = netmap s1 j" by simp | |
thus "(netmap s1' ++ netmap s2) j = (netmap s1 ++ netmap s2) j" | |
by (metis (opaque_lifting, mono_tags) map_add_dom_app_simps(1) map_add_dom_app_simps(3)) | |
qed | |
ultimately show ?thesis using \<open>i\<in>net_ips s1\<close> subs subs' by auto | |
next | |
fix s2 s2' s1 | |
assume subs: "s = SubnetS s1 s2" | |
and subs': "s' = SubnetS s1 s2'" | |
and tr2: "(s2, i:deliver(d), s2') \<in> trans (pnet np p2)" | |
from sr have "s1 \<in> reachable (pnet np p1) TT" | |
and sr2: "s2 \<in> reachable (pnet np p2) TT" | |
by (simp_all only: subs) (erule subnet_reachable)+ | |
with \<open>net_tree_ips p1 \<inter> net_tree_ips p2 = {}\<close> have "dom(netmap s1) \<inter> dom(netmap s2) = {}" | |
by (metis net_ips_is_dom_netmap pnet_net_ips_net_tree_ips) | |
moreover from sr2 tr2 have "i \<in> net_ips s2" by (rule delivered_to_net_ips) | |
ultimately have "i\<notin>dom(netmap s1)" by (auto simp add: net_ips_is_dom_netmap) | |
from \<open>wf_net_tree p2\<close> sr2 tr2 have *: "\<forall>j. j \<noteq> i \<longrightarrow> netmap s2' j = netmap s2 j" | |
and "net_ip_action np (i:deliver(d)) i p2 s2 s2'" | |
by (auto dest!: IH2) | |
from subs subs' tr2 this(2) \<open>i\<notin>dom(netmap s1)\<close> | |
have "net_ip_action np (i:deliver(d)) i (p1 \<parallel> p2) s s'" | |
by (simp add: net_ips_is_dom_netmap) | |
moreover have "\<forall>j. j \<noteq> i \<longrightarrow> (netmap s1 ++ netmap s2') j = (netmap s1 ++ netmap s2) j" | |
proof (intro allI impI) | |
fix j | |
assume "j \<noteq> i" | |
with * have "netmap s2' j = netmap s2 j" by simp | |
thus "(netmap s1 ++ netmap s2') j = (netmap s1 ++ netmap s2) j" | |
by (metis (opaque_lifting, mono_tags) domD map_add_Some_iff map_add_dom_app_simps(3)) | |
qed | |
ultimately show ?thesis using \<open>i\<in>net_ips s2\<close> subs subs' by auto | |
qed simp_all | |
qed | |
end | |