Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Qmsg_Lifting.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke | |
*) | |
section "Lifting rules for parallel compositions with QMSG" | |
theory Qmsg_Lifting | |
imports Qmsg OAWN_SOS Inv_Cterms OAWN_Invariants | |
begin | |
lemma oseq_no_change_on_send: | |
fixes \<sigma> s a \<sigma>' s' | |
assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> oseqp_sos \<Gamma> i" | |
shows "case a of | |
broadcast m \<Rightarrow> \<sigma>' i = \<sigma> i | |
| groupcast ips m \<Rightarrow> \<sigma>' i = \<sigma> i | |
| unicast ips m \<Rightarrow> \<sigma>' i = \<sigma> i | |
| \<not>unicast ips \<Rightarrow> \<sigma>' i = \<sigma> i | |
| send m \<Rightarrow> \<sigma>' i = \<sigma> i | |
| deliver m \<Rightarrow> \<sigma>' i = \<sigma> i | |
| _ \<Rightarrow> True" | |
using assms by induction simp_all | |
lemma qmsg_no_change_on_send_or_receive: | |
fixes \<sigma> s a \<sigma>' s' | |
assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> oparp_sos i (oseqp_sos \<Gamma> i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)" | |
and "a \<noteq> \<tau>" | |
shows "\<sigma>' i = \<sigma> i" | |
proof - | |
from assms(1) obtain p q p' q' | |
where "((\<sigma>, (p, q)), a, (\<sigma>', (p', q'))) \<in> oparp_sos i (oseqp_sos \<Gamma> i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)" | |
by (cases s, cases s', simp) | |
thus ?thesis | |
proof | |
assume "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
and "\<And>m. a \<noteq> receive m" | |
with \<open>a \<noteq> \<tau>\<close> show "\<sigma>' i = \<sigma> i" | |
by - (drule oseq_no_change_on_send, cases a, auto) | |
next | |
assume "(q, a, q') \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G" | |
and "\<sigma>' i = \<sigma> i" | |
thus "\<sigma>' i = \<sigma> i" by simp | |
next | |
assume "a = \<tau>" with \<open>a \<noteq> \<tau>\<close> show ?thesis by auto | |
qed | |
qed | |
lemma qmsg_msgs_not_empty: | |
"qmsg \<TTurnstile> onl \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G (\<lambda>(msgs, l). l = ()-:1 \<longrightarrow> msgs \<noteq> [])" | |
by inv_cterms | |
lemma qmsg_send_from_queue: | |
"qmsg \<TTurnstile>\<^sub>A (\<lambda>((msgs, q), a, _). sendmsg (\<lambda>m. m\<in>set msgs) a)" | |
proof - | |
have "qmsg \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G (\<lambda>((msgs, _), a, _). sendmsg (\<lambda>m. m\<in>set msgs) a)" | |
by (inv_cterms inv add: onl_invariant_sterms [OF qmsg_wf qmsg_msgs_not_empty]) | |
thus ?thesis | |
by (rule step_invariant_weakenE) (auto dest!: onllD) | |
qed | |
lemma qmsg_queue_contents: | |
"qmsg \<TTurnstile>\<^sub>A (\<lambda>((msgs, q), a, (msgs', q')). case a of | |
receive m \<Rightarrow> set msgs' \<subseteq> set (msgs @ [m]) | |
| _ \<Rightarrow> set msgs' \<subseteq> set msgs)" | |
proof - | |
have "qmsg \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G (\<lambda>((msgs, q), a, (msgs', q')). | |
case a of | |
receive m \<Rightarrow> set msgs' \<subseteq> set (msgs @ [m]) | |
| _ \<Rightarrow> set msgs' \<subseteq> set msgs)" | |
by (inv_cterms) (clarsimp simp add: in_set_tl)+ | |
thus ?thesis | |
by (rule step_invariant_weakenE) (auto dest!: onllD) | |
qed | |
lemma qmsg_send_receive_or_tau: | |
"qmsg \<TTurnstile>\<^sub>A (\<lambda>(_, a, _). \<exists>m. a = send m \<or> a = receive m \<or> a = \<tau>)" | |
proof - | |
have "qmsg \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G (\<lambda>(_, a, _). \<exists>m. a = send m \<or> a = receive m \<or> a = \<tau>)" | |
by inv_cterms | |
thus ?thesis | |
by rule (auto dest!: onllD) | |
qed | |
lemma par_qmsg_oreachable: | |
assumes "(\<sigma>, \<zeta>) \<in> oreachable (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg) (otherwith S {i} (orecvmsg R)) (other U {i})" | |
(is "_ \<in> oreachable _ ?owS _") | |
and pinv: "A \<Turnstile>\<^sub>A (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, _, \<sigma>'). U (\<sigma> i) (\<sigma>' i))" | |
and ustutter: "\<And>\<xi>. U \<xi> \<xi>" | |
and sgivesu: "\<And>\<xi> \<xi>'. S \<xi> \<xi>' \<Longrightarrow> U \<xi> \<xi>'" | |
and upreservesq: "\<And>\<sigma> \<sigma>' m. \<lbrakk> \<forall>j. U (\<sigma> j) (\<sigma>' j); R \<sigma> m \<rbrakk> \<Longrightarrow> R \<sigma>' m" | |
shows "(\<sigma>, fst \<zeta>) \<in> oreachable A ?owS (other U {i}) | |
\<and> snd \<zeta> \<in> reachable qmsg (recvmsg (R \<sigma>)) | |
\<and> (\<forall>m\<in>set (fst (snd \<zeta>)). R \<sigma> m)" | |
using assms(1) proof (induction rule: oreachable_pair_induct) | |
fix \<sigma> pq | |
assume "(\<sigma>, pq) \<in> init (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg)" | |
then obtain p ms q where "pq = (p, (ms, q))" | |
and "(\<sigma>, p) \<in> init A" | |
and "(ms, q) \<in> init qmsg" | |
by (clarsimp simp del: \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_simps) | |
from this(2) have "(\<sigma>, p) \<in> oreachable A ?owS (other U {i})" .. | |
moreover from \<open>(ms, q) \<in> init qmsg\<close> have "(ms, q) \<in> reachable qmsg (recvmsg (R \<sigma>))" .. | |
moreover from \<open>(ms, q) \<in> init qmsg\<close> have "ms = []" | |
unfolding \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def by simp | |
ultimately show "(\<sigma>, fst pq) \<in> oreachable A ?owS (other U {i}) | |
\<and> snd pq \<in> reachable qmsg (recvmsg (R \<sigma>)) | |
\<and> (\<forall>m\<in>set (fst (snd pq)). R \<sigma> m)" | |
using \<open>pq = (p, (ms, q))\<close> by simp | |
next | |
note \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_simps [simp del] | |
case (other \<sigma> pq \<sigma>') | |
hence "(\<sigma>, fst pq) \<in> oreachable A ?owS (other U {i})" | |
and "other U {i} \<sigma> \<sigma>'" | |
and qr: "snd pq \<in> reachable qmsg (recvmsg (R \<sigma>))" | |
and "\<forall>m\<in>set (fst (snd pq)). R \<sigma> m" | |
by simp_all | |
from \<open>other U {i} \<sigma> \<sigma>'\<close> and ustutter have "\<forall>j. U (\<sigma> j) (\<sigma>' j)" | |
by (clarsimp elim!: otherE) metis | |
from \<open>other U {i} \<sigma> \<sigma>'\<close> | |
and \<open>(\<sigma>, fst pq) \<in> oreachable A ?owS (other U {i})\<close> | |
have "(\<sigma>', fst pq) \<in> oreachable A ?owS (other U {i})" | |
by - (rule oreachable_other') | |
moreover have "\<forall>m\<in>set (fst (snd pq)). R \<sigma>' m" | |
proof | |
fix m assume "m \<in> set (fst (snd pq))" | |
with \<open>\<forall>m\<in>set (fst (snd pq)). R \<sigma> m\<close> have "R \<sigma> m" .. | |
with \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> show "R \<sigma>' m" by (rule upreservesq) | |
qed | |
moreover from qr have "snd pq \<in> reachable qmsg (recvmsg (R \<sigma>'))" | |
proof | |
fix a | |
assume "recvmsg (R \<sigma>) a" | |
thus "recvmsg (R \<sigma>') a" | |
proof (rule recvmsgE [where R=R]) | |
fix m assume "R \<sigma> m" | |
with \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> show "R \<sigma>' m" by (rule upreservesq) | |
qed | |
qed | |
ultimately show ?case using qr by simp | |
next | |
case (local \<sigma> pq \<sigma>' pq' a) | |
obtain p ms q p' ms' q' where "pq = (p, (ms, q))" | |
and "pq' = (p', (ms', q'))" | |
by (cases pq, cases pq') metis | |
with local.hyps local.IH | |
have pqtr: "((\<sigma>, (p, (ms, q))), a, (\<sigma>', (p', (ms', q')))) | |
\<in> oparp_sos i (trans A) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)" | |
and por: "(\<sigma>, p) \<in> oreachable A ?owS (other U {i})" | |
and qr: "(ms, q) \<in> reachable qmsg (recvmsg (R \<sigma>))" | |
and "\<forall>m\<in>set ms. R \<sigma> m" | |
and "?owS \<sigma> \<sigma>' a" | |
by (simp_all del: \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_simps) | |
from \<open>?owS \<sigma> \<sigma>' a\<close> have "\<forall>j. j\<noteq>i \<longrightarrow> S (\<sigma> j) (\<sigma>' j)" | |
by (clarsimp dest!: otherwith_syncD) | |
with sgivesu have "\<forall>j. j\<noteq>i \<longrightarrow> U (\<sigma> j) (\<sigma>' j)" by simp | |
from \<open>?owS \<sigma> \<sigma>' a\<close> have "orecvmsg R \<sigma> a" by (rule otherwithE) | |
hence "recvmsg (R \<sigma>) a" .. | |
from pqtr have "(\<sigma>', p') \<in> oreachable A ?owS (other U {i}) | |
\<and> (ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>')) | |
\<and> (\<forall>m\<in>set ms'. R \<sigma>' m)" | |
proof | |
assume "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" | |
and "\<And>m. a \<noteq> receive m" | |
and "(ms', q') = (ms, q)" | |
from this(1) have ptr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" by simp | |
with pinv por and \<open>?owS \<sigma> \<sigma>' a\<close> have "U (\<sigma> i) (\<sigma>' i)" | |
by (auto dest!: ostep_invariantD) | |
with \<open>\<forall>j. j\<noteq>i \<longrightarrow> U (\<sigma> j) (\<sigma>' j)\<close> have "\<forall>j. U (\<sigma> j) (\<sigma>' j)" by auto | |
hence recvmsg': "\<And>a. recvmsg (R \<sigma>) a \<Longrightarrow> recvmsg (R \<sigma>') a" | |
by (auto elim!: recvmsgE [where R=R] upreservesq) | |
from por ptr \<open>?owS \<sigma> \<sigma>' a\<close> have "(\<sigma>', p') \<in> oreachable A ?owS (other U {i})" | |
by - (rule oreachable_local') | |
moreover have "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>'))" | |
proof - | |
from qr and \<open>(ms', q') = (ms, q)\<close> | |
have "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>))" by simp | |
thus ?thesis by (rule reachable_weakenE) (erule recvmsg') | |
qed | |
moreover have "\<forall>m\<in>set ms'. R \<sigma>' m" | |
proof | |
fix m | |
assume "m\<in>set ms'" | |
with \<open>(ms', q') = (ms, q)\<close> have "m\<in>set ms" by simp | |
with \<open>\<forall>m\<in>set ms. R \<sigma> m\<close> have "R \<sigma> m" .. | |
with \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> show "R \<sigma>' m" | |
by (rule upreservesq) | |
qed | |
ultimately show | |
"(\<sigma>', p') \<in> oreachable A ?owS (other U {i}) | |
\<and> (ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>')) | |
\<and> (\<forall>m\<in>set ms'. R \<sigma>' m)" by simp_all | |
next | |
assume qtr: "((ms, q), a, (ms', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G" | |
and "\<And>m. a \<noteq> send m" | |
and "p' = p" | |
and "\<sigma>' i = \<sigma> i" | |
from this(4) and \<open>\<And>\<xi>. U \<xi> \<xi>\<close> have "U (\<sigma> i) (\<sigma>' i)" by simp | |
with \<open>\<forall>j. j\<noteq>i \<longrightarrow> U (\<sigma> j) (\<sigma>' j)\<close> have "\<forall>j. U (\<sigma> j) (\<sigma>' j)" by auto | |
hence recvmsg': "\<And>a. recvmsg (R \<sigma>) a \<Longrightarrow> recvmsg (R \<sigma>') a" | |
by (auto elim!: recvmsgE [where R=R] upreservesq) | |
from qtr have tqtr: "((ms, q), a, (ms', q')) \<in> trans qmsg" by simp | |
from \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> and \<open>\<sigma>' i = \<sigma> i\<close> have "other U {i} \<sigma> \<sigma>'" by auto | |
with por and \<open>p' = p\<close> | |
have "(\<sigma>', p') \<in> oreachable A ?owS (other U {i})" | |
by (auto dest: oreachable_other) | |
moreover have "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>'))" | |
proof (rule reachable_weakenE [where P="recvmsg (R \<sigma>)"]) | |
from qr tqtr \<open>recvmsg (R \<sigma>) a\<close> show "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>))" .. | |
qed (rule recvmsg') | |
moreover have "\<forall>m\<in>set ms'. R \<sigma>' m" | |
proof | |
fix m | |
assume "m \<in> set ms'" | |
moreover have "case a of receive m \<Rightarrow> set ms' \<subseteq> set (ms @ [m]) | _ \<Rightarrow> set ms' \<subseteq> set ms" | |
proof - | |
from qr have "(ms, q) \<in> reachable qmsg TT" .. | |
thus ?thesis using tqtr | |
by (auto dest!: step_invariantD [OF qmsg_queue_contents]) | |
qed | |
ultimately have "R \<sigma> m" using \<open>\<forall>m\<in>set ms. R \<sigma> m\<close> and \<open>orecvmsg R \<sigma> a\<close> | |
by (cases a) auto | |
with \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> show "R \<sigma>' m" | |
by (rule upreservesq) | |
qed | |
ultimately show "(\<sigma>', p') \<in> oreachable A ?owS (other U {i}) | |
\<and> (ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>')) | |
\<and> (\<forall>m\<in>set ms'. R \<sigma>' m)" by simp | |
next | |
fix m | |
assume "a = \<tau>" | |
and "((\<sigma>, p), receive m, (\<sigma>', p')) \<in> trans A" | |
and "((ms, q), send m, (ms', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G" | |
from this(2-3) | |
have ptr: "((\<sigma>, p), receive m, (\<sigma>', p')) \<in> trans A" | |
and qtr: "((ms, q), send m, (ms', q')) \<in> trans qmsg" by simp_all | |
from qr have "(ms, q) \<in> reachable qmsg TT" .. | |
with qtr have "m \<in> set ms" | |
by (auto dest!: step_invariantD [OF qmsg_send_from_queue]) | |
with \<open>\<forall>m\<in>set ms. R \<sigma> m\<close> have "R \<sigma> m" .. | |
hence "orecvmsg R \<sigma> (receive m)" by simp | |
with \<open>\<forall>j. j\<noteq>i \<longrightarrow> S (\<sigma> j) (\<sigma>' j)\<close> have "?owS \<sigma> \<sigma>' (receive m)" | |
by (auto intro!: otherwithI) | |
with pinv por ptr have "U (\<sigma> i) (\<sigma>' i)" | |
by (auto dest!: ostep_invariantD) | |
with \<open>\<forall>j. j\<noteq>i \<longrightarrow> U (\<sigma> j) (\<sigma>' j)\<close> have "\<forall>j. U (\<sigma> j) (\<sigma>' j)" by auto | |
hence recvmsg': "\<And>a. recvmsg (R \<sigma>) a \<Longrightarrow> recvmsg (R \<sigma>') a" | |
by (auto elim!: recvmsgE [where R=R] upreservesq) | |
from por ptr have "(\<sigma>', p') \<in> oreachable A ?owS (other U {i})" | |
using \<open>?owS \<sigma> \<sigma>' (receive m)\<close> by - (erule(1) oreachable_local, simp) | |
moreover have "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>'))" | |
proof (rule reachable_weakenE [where P="recvmsg (R \<sigma>)"]) | |
have "recvmsg (R \<sigma>) (send m)" by simp | |
with qr qtr show "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>))" .. | |
qed (rule recvmsg') | |
moreover have "\<forall>m\<in>set ms'. R \<sigma>' m" | |
proof | |
fix m | |
assume "m \<in> set ms'" | |
moreover have "set ms' \<subseteq> set ms" | |
proof - | |
from qr have "(ms, q) \<in> reachable qmsg TT" .. | |
thus ?thesis using qtr | |
by (auto dest!: step_invariantD [OF qmsg_queue_contents]) | |
qed | |
ultimately have "R \<sigma> m" using \<open>\<forall>m\<in>set ms. R \<sigma> m\<close> by auto | |
with \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> show "R \<sigma>' m" | |
by (rule upreservesq) | |
qed | |
ultimately show "(\<sigma>', p') \<in> oreachable A ?owS (other U {i}) | |
\<and> (ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>')) | |
\<and> (\<forall>m\<in>set ms'. R \<sigma>' m)" by simp | |
qed | |
with \<open>pq = (p, (ms, q))\<close> and \<open>pq' = (p', (ms', q'))\<close> show ?case | |
by (simp_all del: \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_simps) | |
qed | |
lemma par_qmsg_oreachable_statelessassm: | |
assumes "(\<sigma>, \<zeta>) \<in> oreachable (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg) | |
(\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>) (other (\<lambda>_ _. True) {i})" | |
and ustutter: "\<And>\<xi>. U \<xi> \<xi>" | |
shows "(\<sigma>, fst \<zeta>) \<in> oreachable A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>) (other (\<lambda>_ _. True) {i}) | |
\<and> snd \<zeta> \<in> reachable qmsg (recvmsg R) | |
\<and> (\<forall>m\<in>set (fst (snd \<zeta>)). R m)" | |
proof - | |
from assms(1) | |
have "(\<sigma>, \<zeta>) \<in> oreachable (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg) | |
(otherwith (\<lambda>_ _. True) {i} (orecvmsg (\<lambda>_. R))) | |
(other (\<lambda>_ _. True) {i})" by auto | |
moreover | |
have "A \<Turnstile>\<^sub>A (otherwith (\<lambda>_ _. True) {i} (orecvmsg (\<lambda>_. R)), | |
other (\<lambda>_ _. True) {i} \<rightarrow>) globala (\<lambda>(\<sigma>, _, \<sigma>'). True)" | |
by auto | |
ultimately | |
obtain "(\<sigma>, fst \<zeta>) \<in> oreachable A | |
(otherwith (\<lambda>_ _. True) {i} (orecvmsg (\<lambda>_. R))) (other (\<lambda>_ _. True) {i})" | |
and *: "snd \<zeta> \<in> reachable qmsg (recvmsg R)" | |
and **: "(\<forall>m\<in>set (fst (snd \<zeta>)). R m)" | |
by (auto dest!: par_qmsg_oreachable) | |
from this(1) | |
have "(\<sigma>, fst \<zeta>) \<in> oreachable A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>) (other (\<lambda>_ _. True) {i})" | |
by rule auto | |
thus ?thesis using * ** by simp | |
qed | |
lemma lift_into_qmsg: | |
assumes "A \<Turnstile> (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>) global P" | |
and "\<And>\<xi>. U \<xi> \<xi>" | |
and "\<And>\<xi> \<xi>'. S \<xi> \<xi>' \<Longrightarrow> U \<xi> \<xi>'" | |
and "\<And>\<sigma> \<sigma>' m. \<lbrakk> \<forall>j. U (\<sigma> j) (\<sigma>' j); R \<sigma> m \<rbrakk> \<Longrightarrow> R \<sigma>' m" | |
and "A \<Turnstile>\<^sub>A (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, _, \<sigma>'). U (\<sigma> i) (\<sigma>' i))" | |
shows "A \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile> (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>) global P" | |
proof (rule oinvariant_oreachableI) | |
fix \<sigma> \<zeta> | |
assume "(\<sigma>, \<zeta>) \<in> oreachable (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg) (otherwith S {i} (orecvmsg R)) (other U {i})" | |
then obtain s where "(\<sigma>, s) \<in> oreachable A (otherwith S {i} (orecvmsg R)) (other U {i})" | |
by (auto dest!: par_qmsg_oreachable [OF _ assms(5,2-4)]) | |
with assms(1) show "global P (\<sigma>, \<zeta>)" | |
by (auto dest: oinvariant_weakenD [OF assms(1)]) | |
qed | |
lemma lift_step_into_qmsg: | |
assumes inv: "A \<Turnstile>\<^sub>A (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>) globala P" | |
and ustutter: "\<And>\<xi>. U \<xi> \<xi>" | |
and sgivesu: "\<And>\<xi> \<xi>'. S \<xi> \<xi>' \<Longrightarrow> U \<xi> \<xi>'" | |
and upreservesq: "\<And>\<sigma> \<sigma>' m. \<lbrakk> \<forall>j. U (\<sigma> j) (\<sigma>' j); R \<sigma> m \<rbrakk> \<Longrightarrow> R \<sigma>' m" | |
and self_sync: "A \<Turnstile>\<^sub>A (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, _, \<sigma>'). U (\<sigma> i) (\<sigma>' i))" | |
and recv_stutter: "\<And>\<sigma> \<sigma>' m. \<lbrakk> \<forall>j. U (\<sigma> j) (\<sigma>' j); \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> P (\<sigma>, receive m, \<sigma>')" | |
and receive_right: "\<And>\<sigma> \<sigma>' m. P (\<sigma>, receive m, \<sigma>') \<Longrightarrow> P (\<sigma>, \<tau>, \<sigma>')" | |
shows "A \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>) globala P" | |
(is "_ \<Turnstile>\<^sub>A (?owS, ?U \<rightarrow>) _") | |
proof (rule ostep_invariantI) | |
fix \<sigma> \<zeta> a \<sigma>' \<zeta>' | |
assume or: "(\<sigma>, \<zeta>) \<in> oreachable (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg) ?owS ?U" | |
and otr: "((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>')) \<in> trans (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg)" | |
and "?owS \<sigma> \<sigma>' a" | |
from this(2) have "((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>')) \<in> oparp_sos i (trans A) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)" | |
by simp | |
then obtain s msgs q s' msgs' q' | |
where "\<zeta> = (s, (msgs, q))" "\<zeta>' = (s', (msgs', q'))" | |
and "((\<sigma>, (s, (msgs, q))), a, (\<sigma>', (s', (msgs', q')))) | |
\<in> oparp_sos i (trans A) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)" | |
by (metis prod_cases3) | |
from this(1-2) and or | |
obtain "(\<sigma>, s) \<in> oreachable A ?owS ?U" | |
"(msgs, q) \<in> reachable qmsg (recvmsg (R \<sigma>))" | |
"(\<forall>m\<in>set msgs. R \<sigma> m)" | |
by (auto dest: par_qmsg_oreachable [OF _ self_sync ustutter sgivesu] | |
elim!: upreservesq) | |
from otr \<open>\<zeta> = (s, (msgs, q))\<close> \<open>\<zeta>' = (s', (msgs', q'))\<close> | |
have "((\<sigma>, (s, (msgs, q))), a, (\<sigma>', (s', (msgs', q')))) | |
\<in> oparp_sos i (trans A) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)" | |
by simp | |
hence "globala P ((\<sigma>, s), a, (\<sigma>', s'))" | |
proof | |
assume "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A" | |
with \<open>(\<sigma>, s) \<in> oreachable A ?owS ?U\<close> | |
show "globala P ((\<sigma>, s), a, (\<sigma>', s'))" | |
using \<open>?owS \<sigma> \<sigma>' a\<close> by (rule ostep_invariantD [OF inv]) | |
next | |
assume "((msgs, q), a, (msgs', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G" | |
and "\<And>m. a \<noteq> send m" | |
and "\<sigma>' i = \<sigma> i" | |
from this(3) and ustutter have "U (\<sigma> i) (\<sigma>' i)" by simp | |
with \<open>?owS \<sigma> \<sigma>' a\<close> and sgivesu have "\<forall>j. U (\<sigma> j) (\<sigma>' j)" | |
by (clarsimp dest!: otherwith_syncD) metis | |
moreover have "(\<exists>m. a = receive m) \<or> (a = \<tau>)" | |
proof - | |
from \<open>(msgs, q) \<in> reachable qmsg (recvmsg (R \<sigma>))\<close> | |
have "(msgs, q) \<in> reachable qmsg TT" .. | |
moreover from \<open>((msgs, q), a, (msgs', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G\<close> | |
have "((msgs, q), a, (msgs', q')) \<in> trans qmsg" by simp | |
ultimately show ?thesis | |
using \<open>\<And>m. a \<noteq> send m\<close> | |
by (auto dest!: step_invariantD [OF qmsg_send_receive_or_tau]) | |
qed | |
ultimately show "globala P ((\<sigma>, s), a, (\<sigma>', s'))" | |
using \<open>\<sigma>' i = \<sigma> i\<close> | |
by simp (metis receive_right recv_stutter step_seq_tau) | |
next | |
fix m | |
assume "a = \<tau>" | |
and "((\<sigma>, s), receive m, (\<sigma>', s')) \<in> trans A" | |
and "((msgs, q), send m, (msgs', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G" | |
from \<open>(msgs, q) \<in> reachable qmsg (recvmsg (R \<sigma>))\<close> | |
have "(msgs, q) \<in> reachable qmsg TT" .. | |
moreover from \<open>((msgs, q), send m, (msgs', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G\<close> | |
have "((msgs, q), send m, (msgs', q')) \<in> trans qmsg" by simp | |
ultimately have "m\<in>set msgs" | |
by (auto dest!: step_invariantD [OF qmsg_send_from_queue]) | |
with \<open>\<forall>m\<in>set msgs. R \<sigma> m\<close> have "R \<sigma> m" .. | |
with \<open>?owS \<sigma> \<sigma>' a\<close> have "?owS \<sigma> \<sigma>' (receive m)" | |
by (auto dest!: otherwith_syncD) | |
with \<open>((\<sigma>, s), receive m, (\<sigma>', s')) \<in> trans A\<close> | |
have "globala P ((\<sigma>, s), receive m, (\<sigma>', s'))" | |
using \<open>(\<sigma>, s) \<in> oreachable A ?owS ?U\<close> | |
by - (rule ostep_invariantD [OF inv]) | |
hence "P (\<sigma>, receive m, \<sigma>')" by simp | |
hence "P (\<sigma>, \<tau>, \<sigma>')" by (rule receive_right) | |
with \<open>a = \<tau>\<close> show "globala P ((\<sigma>, s), a, (\<sigma>', s'))" by simp | |
qed | |
with \<open>\<zeta> = (s, (msgs, q))\<close> and \<open>\<zeta>' = (s', (msgs', q'))\<close> show "globala P ((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>'))" | |
by simp | |
qed | |
lemma lift_step_into_qmsg_statelessassm: | |
assumes "A \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) globala P" | |
and "\<And>\<sigma> \<sigma>' m. \<sigma>' i = \<sigma> i \<Longrightarrow> P (\<sigma>, receive m, \<sigma>')" | |
and "\<And>\<sigma> \<sigma>' m. P (\<sigma>, receive m, \<sigma>') \<Longrightarrow> P (\<sigma>, \<tau>, \<sigma>')" | |
shows "A \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) globala P" | |
proof - | |
from assms(1) have *: "A \<Turnstile>\<^sub>A (otherwith (\<lambda>_ _. True) {i} (orecvmsg (\<lambda>_. R)), | |
other (\<lambda>_ _. True) {i} \<rightarrow>) globala P" | |
by rule auto | |
hence "A \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A | |
(otherwith (\<lambda>_ _. True) {i} (orecvmsg (\<lambda>_. R)), other (\<lambda>_ _. True) {i} \<rightarrow>) globala P" | |
by (rule lift_step_into_qmsg) | |
(auto elim!: assms(2-3) simp del: step_seq_tau) | |
thus ?thesis by rule auto | |
qed | |
end | |