Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: CatBicat | |
Author: Eugene W. Stark <stark@cs.stonybrook.edu>, 2021 | |
Maintainer: Eugene W. Stark <stark@cs.stonybrook.edu> | |
*) | |
section "Bicategory of Categories" | |
text \<open> | |
In this section we construct a bicategory whose objects correspond to categories having arrows | |
in a given type, whose 1-cells correspond to functors between such categories, and whose 2-cells | |
correspond to natural transformations between such functors. We show that the bicategory that | |
results from the construction is strict. | |
\<close> | |
theory CatBicat | |
imports Bicategory.Strictness ConcreteBicategory | |
begin | |
locale catbicat | |
begin | |
abbreviation ARR | |
where "ARR A B \<equiv> partial_magma.arr (functor_category.comp A B)" | |
abbreviation MKARR | |
where "MKARR \<equiv> concrete_category.MkArr" | |
abbreviation MAP | |
where "MAP \<equiv> concrete_category.Map" | |
abbreviation DOM | |
where "DOM \<equiv> concrete_category.Dom" | |
abbreviation COD | |
where "COD \<equiv> concrete_category.Cod" | |
abbreviation NULL | |
where "NULL \<equiv> concrete_category.Null" | |
abbreviation OBJ | |
where "OBJ \<equiv> Collect category" | |
abbreviation HOM | |
where "HOM \<equiv> functor_category.comp" | |
abbreviation COMP | |
where "COMP C B A \<mu> \<nu> \<equiv> if ARR B C \<mu> \<and> ARR A B \<nu> | |
then MKARR (DOM \<mu> o DOM \<nu>) (COD \<mu> o COD \<nu>) (MAP \<mu> o MAP \<nu>) | |
else NULL" | |
abbreviation ID | |
where "ID A \<equiv> MKARR (identity_functor.map A) (identity_functor.map A) | |
(identity_functor.map A)" | |
abbreviation ASSOC | |
where "ASSOC D C B A \<tau> \<mu> \<nu> \<equiv> | |
if ARR C D \<tau> \<and> ARR B C \<mu> \<and> ARR A B \<nu> then | |
MKARR (DOM \<tau> o DOM \<mu> o DOM \<nu>) (COD \<tau> o COD \<mu> o COD \<nu>) | |
(MAP \<tau> o MAP \<mu> o MAP \<nu>) | |
else NULL" | |
text \<open> | |
Although we are using the \<open>concrete_bicategory\<close> construction to take care of some | |
of the details, the proof is still awkward, because the locale assumptions we need to | |
verify are all conditioned on universally quantified entities being in the set \<open>OBJ\<close>, | |
and we cannot create interpretations to unpack these conditions until we are within | |
a proof context where these entities have been fixed and the conditions have been | |
introduced as assumptions. | |
So, for example, to prove that \<open>COMP\<close> has the required functoriality property, | |
we have to fix \<open>A\<close>, \<open>B\<close>, and \<open>C\<close> and introduce assumptions \<open>A \<in> OBJ\<close>, \<open>B \<in> OBJ\<close>, | |
and \<open>C \<in> OBJ\<close>, and only then can we use these assumptions to interpret \<open>A\<close>, \<open>B\<close>, | |
and \<open>C\<close> as categories and \<open>HOM A B\<close>, \<open>HOM B C\<close>, and \<open>HOM A C\<close> as functor categories. | |
We have to go into a still deeper proof context before we can fix particular arguments | |
\<open>\<mu>\<close> and \<open>\<nu>\<close> to \<open>COMP C B A\<close>, introduce the assumptions that they are arrows of | |
their respective hom-categories, and finally use those assumptions to interpret them | |
as natural transformations. At that point, we are finally in a position to apply | |
the already-proved interchange law for natural transformations, which is the essential | |
core of the functoriality property we need to show. | |
\<close> | |
sublocale concrete_bicategory OBJ HOM ID COMP ID ASSOC | |
proof (unfold concrete_bicategory_def, intro conjI allI impI) | |
show 1: "\<And>(A :: 'a comp) (B :: 'a comp). \<lbrakk> A \<in> OBJ; B \<in> OBJ \<rbrakk> \<Longrightarrow> category (HOM A B)" | |
using functor_category_def functor_category.is_category by auto | |
show COMP: | |
"\<And>(A :: 'a comp) (B :: 'a comp) (C :: 'a comp). | |
\<lbrakk> A \<in> OBJ; B \<in> OBJ; C \<in> OBJ \<rbrakk> | |
\<Longrightarrow> binary_functor (HOM B C) (HOM A B) (HOM A C) | |
(\<lambda>(\<mu>, \<nu>). COMP C B A \<mu> \<nu>)" | |
proof - | |
fix A :: "'a comp" and B :: "'a comp" and C :: "'a comp" | |
assume A: "A \<in> OBJ" and B: "B \<in> OBJ" and C: "C \<in> OBJ" | |
let ?COMP = "\<lambda>(\<mu>, \<nu>). COMP C B A \<mu> \<nu>" | |
interpret A: category A using A by simp | |
interpret B: category B using B by simp | |
interpret C: category C using C by simp | |
interpret BC: functor_category B C .. | |
interpret AB: functor_category A B .. | |
interpret AC: functor_category A C .. | |
interpret BC_AB: product_category BC.comp AB.comp .. | |
show "binary_functor (HOM B C) (HOM A B) (HOM A C) (\<lambda>(\<mu>, \<nu>). COMP C B A \<mu> \<nu>)" | |
proof | |
show "\<And>\<mu>\<nu>. \<not> BC_AB.arr \<mu>\<nu> \<Longrightarrow> ?COMP \<mu>\<nu> = AC.null" | |
using BC_AB.arr_char AC.null_char AC.arr_MkArr by auto | |
fix \<mu>\<nu> | |
assume \<mu>\<nu>: "BC_AB.arr \<mu>\<nu>" | |
interpret \<mu>: natural_transformation B C | |
\<open>AC.Dom (fst \<mu>\<nu>)\<close> \<open>AC.Cod (fst \<mu>\<nu>)\<close> \<open>MAP (fst \<mu>\<nu>)\<close> | |
using \<mu>\<nu> BC.arr_char [of "fst \<mu>\<nu>"] by simp | |
interpret \<nu>: natural_transformation A B | |
\<open>AC.Dom (snd \<mu>\<nu>)\<close> \<open>AC.Cod (snd \<mu>\<nu>)\<close> \<open>MAP (snd \<mu>\<nu>)\<close> | |
using \<mu>\<nu> AB.arr_char [of "snd \<mu>\<nu>"] by simp | |
interpret \<mu>\<nu>: natural_transformation A C | |
\<open>AC.Dom (fst \<mu>\<nu>) o AC.Dom (snd \<mu>\<nu>)\<close> | |
\<open>AC.Cod (fst \<mu>\<nu>) o AC.Cod (snd \<mu>\<nu>)\<close> | |
\<open>MAP (fst \<mu>\<nu>) o MAP (snd \<mu>\<nu>)\<close> | |
using \<mu>.natural_transformation_axioms \<nu>.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
show "AC.arr (?COMP \<mu>\<nu>)" | |
using \<mu>\<nu> BC_AB.arr_char \<mu>\<nu>.natural_transformation_axioms | |
\<mu>\<nu>.F.functor_axioms \<mu>\<nu>.G.functor_axioms AC.arr_MkArr | |
by (cases \<mu>\<nu>) simp | |
show "AC.dom (?COMP \<mu>\<nu>) = ?COMP (BC_AB.dom \<mu>\<nu>)" | |
using \<mu>\<nu> BC_AB.arr_char \<mu>\<nu>.natural_transformation_axioms | |
\<mu>\<nu>.F.functor_axioms \<mu>\<nu>.G.functor_axioms AC.arr_MkArr | |
by (cases \<mu>\<nu>) simp | |
show "AC.cod (?COMP \<mu>\<nu>) = ?COMP (BC_AB.cod \<mu>\<nu>)" | |
using \<mu>\<nu> BC_AB.arr_char \<mu>\<nu>.natural_transformation_axioms | |
\<mu>\<nu>.F.functor_axioms \<mu>\<nu>.G.functor_axioms AC.arr_MkArr | |
by (cases \<mu>\<nu>) simp | |
next | |
fix \<mu>\<nu> \<sigma>\<tau> | |
assume seq: "BC_AB.seq \<mu>\<nu> \<sigma>\<tau>" | |
interpret \<mu>: natural_transformation B C | |
\<open>BC.Dom (fst \<mu>\<nu>)\<close> \<open>BC.Cod (fst \<mu>\<nu>)\<close> \<open>MAP (fst \<mu>\<nu>)\<close> | |
using seq BC_AB.seq_char BC_AB.arr_char BC.arr_char [of "fst \<mu>\<nu>"] AB.arr_char | |
by auto | |
interpret \<nu>: natural_transformation A B | |
\<open>AB.Dom (snd \<mu>\<nu>)\<close> \<open>AB.Cod (snd \<mu>\<nu>)\<close> \<open>MAP (snd \<mu>\<nu>)\<close> | |
using seq BC_AB.seq_char BC_AB.arr_char BC.arr_char AB.arr_char [of "snd \<mu>\<nu>"] | |
by auto | |
interpret \<mu>\<nu>: natural_transformation A C | |
\<open>AC.Dom (fst \<mu>\<nu>) o AC.Dom (snd \<mu>\<nu>)\<close> | |
\<open>AC.Cod (fst \<mu>\<nu>) o AC.Cod (snd \<mu>\<nu>)\<close> | |
\<open>MAP (fst \<mu>\<nu>) o MAP (snd \<mu>\<nu>)\<close> | |
using \<mu>.natural_transformation_axioms \<nu>.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
interpret \<sigma>: natural_transformation B C | |
\<open>BC.Dom (fst \<sigma>\<tau>)\<close> \<open>BC.Cod (fst \<sigma>\<tau>)\<close> \<open>MAP (fst \<sigma>\<tau>)\<close> | |
using seq BC_AB.seq_char BC_AB.arr_char BC.arr_char [of "fst \<sigma>\<tau>"] AB.arr_char | |
by auto | |
interpret \<tau>: natural_transformation A B | |
\<open>AB.Dom (snd \<sigma>\<tau>)\<close> \<open>AB.Cod (snd \<sigma>\<tau>)\<close> \<open>MAP (snd \<sigma>\<tau>)\<close> | |
using seq BC_AB.seq_char BC_AB.arr_char BC.arr_char AB.arr_char [of "snd \<sigma>\<tau>"] | |
by auto | |
interpret \<sigma>\<tau>: natural_transformation A C | |
\<open>AC.Dom (fst \<sigma>\<tau>) o AC.Dom (snd \<sigma>\<tau>)\<close> | |
\<open>AC.Cod (fst \<sigma>\<tau>) o AC.Cod (snd \<sigma>\<tau>)\<close> | |
\<open>MAP (fst \<sigma>\<tau>) o MAP (snd \<sigma>\<tau>)\<close> | |
using \<sigma>.natural_transformation_axioms \<tau>.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
interpret \<mu>o\<sigma>: vertical_composite B C | |
\<open>BC.Dom (fst \<sigma>\<tau>)\<close> \<open>BC.Cod (fst \<sigma>\<tau>)\<close> \<open>BC.Cod (fst \<mu>\<nu>)\<close> | |
\<open>MAP (fst \<sigma>\<tau>)\<close> \<open>MAP (fst \<mu>\<nu>)\<close> | |
using seq BC_AB.seq_char BC.seq_char \<mu>.natural_transformation_axioms | |
by intro_locales (simp add: natural_transformation_def) | |
interpret \<nu>o\<tau>: vertical_composite A B | |
\<open>AB.Dom (snd \<sigma>\<tau>)\<close> \<open>AB.Cod (snd \<sigma>\<tau>)\<close> \<open>AB.Cod (snd \<mu>\<nu>)\<close> | |
\<open>MAP (snd \<sigma>\<tau>)\<close> \<open>MAP (snd \<mu>\<nu>)\<close> | |
using seq BC_AB.seq_char AB.seq_char \<nu>.natural_transformation_axioms | |
by intro_locales (simp add: natural_transformation_def) | |
show "?COMP (BC_AB.comp \<mu>\<nu> \<sigma>\<tau>) = AC.comp (?COMP \<mu>\<nu>) (?COMP \<sigma>\<tau>)" | |
proof - | |
have "?COMP (BC_AB.comp \<mu>\<nu> \<sigma>\<tau>) = | |
AC.MkArr | |
(BC.Dom (fst (BC_AB.comp \<mu>\<nu> \<sigma>\<tau>)) \<circ> AB.Dom (snd (BC_AB.comp \<mu>\<nu> \<sigma>\<tau>))) | |
(BC.Cod (fst (BC_AB.comp \<mu>\<nu> \<sigma>\<tau>)) \<circ> AB.Cod (snd (BC_AB.comp \<mu>\<nu> \<sigma>\<tau>))) | |
(BC.Map (fst (BC_AB.comp \<mu>\<nu> \<sigma>\<tau>)) \<circ> AB.Map (snd (BC_AB.comp \<mu>\<nu> \<sigma>\<tau>)))" | |
using seq BC_AB.arr_char by (cases "BC_AB.comp \<mu>\<nu> \<sigma>\<tau>", simp) | |
also have | |
"... = | |
AC.MkArr | |
(BC.Dom (fst \<sigma>\<tau>) \<circ> AB.Dom (snd \<sigma>\<tau>)) (BC.Cod (fst \<mu>\<nu>) \<circ> AB.Cod (snd \<mu>\<nu>)) | |
(vertical_composite.map B C (BC.Map (fst \<sigma>\<tau>)) (AB.Map (fst \<mu>\<nu>)) \<circ> | |
vertical_composite.map A B (BC.Map (snd \<sigma>\<tau>)) (AB.Map (snd \<mu>\<nu>)))" | |
using seq BC_AB.comp_char BC_AB.seq_char BC_AB.arr_char BC.seq_char AB.seq_char | |
BC.Dom_comp BC.Cod_comp BC.Map_comp | |
AB.Dom_comp AB.Cod_comp AB.Map_comp | |
by auto (* 7 sec *) | |
also have "... = AC.MkArr | |
(BC.Dom (fst \<sigma>\<tau>) \<circ> AB.Dom (snd \<sigma>\<tau>)) | |
(BC.Cod (fst \<mu>\<nu>) \<circ> AB.Cod (snd \<mu>\<nu>)) | |
(vertical_composite.map A C | |
(AC.Map (fst \<sigma>\<tau>) \<circ> AC.Map (snd \<sigma>\<tau>)) | |
(AC.Map (fst \<mu>\<nu>) \<circ> AC.Map (snd \<mu>\<nu>)))" | |
using \<sigma>.natural_transformation_axioms \<tau>.natural_transformation_axioms | |
\<mu>.natural_transformation_axioms \<nu>.natural_transformation_axioms | |
\<mu>o\<sigma>.\<tau>.natural_transformation_axioms \<nu>o\<tau>.\<tau>.natural_transformation_axioms | |
interchange | |
by blast | |
also have "... = AC.comp (AC.MkArr (AC.Dom (fst \<mu>\<nu>) \<circ> AC.Dom (snd \<mu>\<nu>)) | |
(AC.Cod (fst \<mu>\<nu>) \<circ> AC.Cod (snd \<mu>\<nu>)) | |
(AC.Map (fst \<mu>\<nu>) \<circ> AC.Map (snd \<mu>\<nu>))) | |
(AC.MkArr (AC.Dom (fst \<sigma>\<tau>) \<circ> AC.Dom (snd \<sigma>\<tau>)) | |
(AC.Cod (fst \<sigma>\<tau>) \<circ> AC.Cod (snd \<sigma>\<tau>)) | |
(AC.Map (fst \<sigma>\<tau>) \<circ> AC.Map (snd \<sigma>\<tau>)))" | |
using seq BC_AB.seq_char BC.seq_char AB.seq_char AC.comp_MkArr | |
\<sigma>\<tau>.natural_transformation_axioms \<mu>\<nu>.natural_transformation_axioms | |
by simp | |
also have "... = AC.comp (?COMP \<mu>\<nu>) (?COMP \<sigma>\<tau>)" | |
using seq BC_AB.seq_char BC_AB.arr_char BC.seq_char AB.seq_char | |
BC.Dom_comp BC.Cod_comp BC.Map_comp | |
AB.Dom_comp AB.Cod_comp AB.Map_comp | |
by (cases \<mu>\<nu>, cases \<sigma>\<tau>) simp | |
finally show ?thesis by blast | |
qed | |
qed | |
qed | |
show 2: "\<And>(A :: 'a comp). A \<in> OBJ \<Longrightarrow> partial_magma.ide (HOM A A) (ID A)" | |
using concrete_category.ide_MkIde functor_category.is_concrete_category | |
functor_category_def identity_functor.intro identity_functor.is_functor | |
by fastforce | |
show "\<And>(A :: 'a comp). A \<in> OBJ | |
\<Longrightarrow> partial_magma.in_hom (HOM A A) (ID A) | |
(COMP A A A (ID A) (ID A)) (ID A)" | |
proof - | |
fix A :: "'a comp" | |
assume A: "A \<in> OBJ" | |
interpret A: category A | |
using A by simp | |
interpret AA: functor_category A A .. | |
show "AA.in_hom (ID A) (COMP A A A (ID A) (ID A)) (ID A)" | |
using A.is_functor by force | |
qed | |
show "\<And>(A :: 'a comp). A \<in> OBJ \<Longrightarrow> category.iso (HOM A A) (ID A)" | |
by (simp add: 1 2 category.ide_is_iso) | |
show "\<And>(A :: 'a comp) (B :: 'a comp) (C :: 'a comp) (D :: 'a comp). | |
\<lbrakk> A \<in> OBJ; B \<in> OBJ; C \<in> OBJ; D \<in> OBJ \<rbrakk> | |
\<Longrightarrow> natural_isomorphism | |
(product_category.comp | |
(HOM C D) (product_category.comp (HOM B C) (HOM A B))) | |
(HOM A D) | |
(\<lambda>(f, g, h). COMP D B A (COMP D C B f g) h) | |
(\<lambda>(f, g, h). COMP D C A f (COMP C B A g h)) | |
(\<lambda>(f, g, h). ASSOC D C B A f g h)" | |
proof - | |
fix A :: "'a comp" and B :: "'a comp" and C :: "'a comp" and D :: "'a comp" | |
assume A: "A \<in> OBJ" and B: "B \<in> OBJ" and C: "C \<in> OBJ" and D: "D \<in> OBJ" | |
interpret A: category A using A by simp | |
interpret B: category B using B by simp | |
interpret C: category C using C by simp | |
interpret D: category D using D by simp | |
interpret AB: functor_category A B .. | |
interpret BC: functor_category B C .. | |
interpret CD: functor_category C D .. | |
interpret AD: functor_category A D .. | |
interpret BD: functor_category B D .. | |
interpret AC: functor_category A C .. | |
interpret BC_AB: product_category BC.comp AB.comp .. | |
interpret CD_BC_AB: product_category CD.comp BC_AB.comp .. | |
let ?L = "\<lambda>(f, g, h). COMP D B A (COMP D C B f g) h" | |
let ?R = "\<lambda>(f, g, h). COMP D C A f (COMP C B A g h)" | |
let ?A = "\<lambda>(f, g, h). ASSOC D C B A f g h" | |
have *: | |
"\<And>fgh fgh'. CD_BC_AB.seq fgh fgh' \<Longrightarrow> | |
AD.comp | |
(AD.MkArr | |
(CD.Dom (fst fgh) \<circ> BC.Dom (fst (snd fgh)) \<circ> AB.Dom (snd (snd fgh))) | |
(CD.Cod (fst fgh) \<circ> BC.Cod (fst (snd fgh)) \<circ> AB.Cod (snd (snd fgh))) | |
(CD.Map (fst fgh) \<circ> BC.Map (fst (snd fgh)) \<circ> AB.Map (snd (snd fgh)))) | |
(AD.MkArr | |
(CD.Dom (fst fgh') \<circ> BC.Dom (fst (snd fgh')) \<circ> AB.Dom (snd (snd fgh'))) | |
(CD.Cod (fst fgh') \<circ> BC.Cod (fst (snd fgh')) \<circ> AB.Cod (snd (snd fgh'))) | |
(CD.Map (fst fgh') \<circ> BC.Map (fst (snd fgh')) \<circ> AB.Map (snd (snd fgh')))) = | |
AD.MkArr (AD.Dom (fst fgh') \<circ> AD.Dom (BC.comp (fst (snd fgh)) (fst (snd fgh'))) | |
\<circ> AD.Dom (AB.comp (snd (snd fgh)) (snd (snd fgh')))) | |
(AD.Cod (fst fgh) \<circ> AD.Cod (BC.comp (fst (snd fgh)) (fst (snd fgh'))) | |
\<circ> AD.Cod (AB.comp (snd (snd fgh)) (snd (snd fgh')))) | |
(vertical_composite.map C D (AD.Map (fst fgh')) (AD.Map (fst fgh)) | |
\<circ> AD.Map (BC.comp (fst (snd fgh)) (fst (snd fgh'))) | |
\<circ> AD.Map (AB.comp (snd (snd fgh)) (snd (snd fgh'))))" | |
proof - | |
fix fgh fgh' | |
assume seq: "CD_BC_AB.seq fgh fgh'" | |
have fgh: "CD_BC_AB.arr fgh" | |
using seq by blast | |
have fgh': "CD_BC_AB.arr fgh'" | |
using seq by blast | |
let ?f = "fst (fgh)" and ?g = "fst (snd (fgh))" and ?h = "snd (snd fgh)" | |
let ?f' = "fst (fgh')" and ?g' = "fst (snd (fgh'))" and ?h' = "snd (snd fgh')" | |
let ?LHS = "AD.comp | |
(AD.MkArr (CD.Dom ?f \<circ> BC.Dom ?g \<circ> AB.Dom ?h) | |
(CD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h) | |
(CD.Map ?f \<circ> BC.Map ?g \<circ> AB.Map ?h)) | |
(AD.MkArr (CD.Dom ?f' \<circ> BC.Dom ?g' \<circ> AB.Dom ?h') | |
(CD.Cod ?f' \<circ> BC.Cod ?g' \<circ> AB.Cod ?h') | |
(CD.Map ?f' \<circ> BC.Map ?g' \<circ> AB.Map ?h'))" | |
let ?RHS = "AD.MkArr | |
(AD.Dom ?f' \<circ> AD.Dom (BC.comp ?g ?g') \<circ> AD.Dom (AB.comp ?h ?h')) | |
(AD.Cod ?f \<circ> AD.Cod (BC.comp ?g ?g') \<circ> AD.Cod (AB.comp ?h ?h')) | |
(vertical_composite.map C D (AD.Map ?f') (AD.Map ?f) | |
\<circ> AD.Map (BC.comp ?g ?g') \<circ> AD.Map (AB.comp ?h ?h'))" | |
interpret f: natural_transformation C D \<open>CD.Dom ?f\<close> \<open>CD.Cod ?f\<close> \<open>MAP ?f\<close> | |
using fgh CD_BC_AB.arr_char CD.arr_char by simp | |
interpret g: natural_transformation B C \<open>BC.Dom ?g\<close> \<open>BC.Cod ?g\<close> \<open>MAP ?g\<close> | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp | |
interpret h: natural_transformation A B \<open>AB.Dom ?h\<close> \<open>AB.Cod ?h\<close> \<open>MAP ?h\<close> | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp | |
interpret fg: natural_transformation B D | |
\<open>CD.Dom ?f o BC.Dom ?g\<close> \<open>CD.Cod ?f o BC.Cod ?g\<close> \<open>MAP ?f o MAP ?g\<close> | |
using f.natural_transformation_axioms g.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
interpret fgh: natural_transformation A D | |
\<open>CD.Dom ?f o BC.Dom ?g o AB.Dom ?h\<close> | |
\<open>CD.Cod ?f o BC.Cod ?g o AB.Cod ?h\<close> | |
\<open>MAP ?f o MAP ?g o MAP ?h\<close> | |
using f.natural_transformation_axioms g.natural_transformation_axioms | |
h.natural_transformation_axioms horizontal_composite | |
by blast | |
interpret f': natural_transformation C D \<open>CD.Dom ?f'\<close> \<open>CD.Cod ?f'\<close> \<open>MAP ?f'\<close> | |
using fgh' CD_BC_AB.arr_char CD.arr_char by simp | |
interpret g': natural_transformation B C \<open>BC.Dom ?g'\<close> \<open>BC.Cod ?g'\<close> \<open>MAP ?g'\<close> | |
using fgh' CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp | |
interpret h': natural_transformation A B \<open>AB.Dom ?h'\<close> \<open>AB.Cod ?h'\<close> \<open>MAP ?h'\<close> | |
using fgh' CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp | |
interpret fg': natural_transformation B D | |
\<open>CD.Dom ?f' o BC.Dom ?g'\<close> \<open>CD.Cod ?f' o BC.Cod ?g'\<close> | |
\<open>MAP ?f' o MAP ?g'\<close> | |
using f'.natural_transformation_axioms g'.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
interpret fgh': natural_transformation A D | |
\<open>CD.Dom ?f' o BC.Dom ?g' o AB.Dom ?h'\<close> | |
\<open>CD.Cod ?f' o BC.Cod ?g' o AB.Cod ?h'\<close> | |
\<open>MAP ?f' o MAP ?g' o MAP ?h'\<close> | |
using f'.natural_transformation_axioms g'.natural_transformation_axioms | |
h'.natural_transformation_axioms horizontal_composite | |
by blast | |
interpret ff': vertical_composite C D \<open>CD.Dom ?f'\<close> \<open>CD.Cod ?f'\<close> \<open>CD.Cod ?f\<close> | |
\<open>MAP ?f'\<close> \<open>MAP ?f\<close> | |
using seq CD_BC_AB.seq_char [of fgh fgh'] CD.seq_char [of ?f ?f'] | |
f.natural_transformation_axioms f'.natural_transformation_axioms | |
C.category_axioms D.category_axioms | |
f'.F.functor_axioms f'.G.functor_axioms f.G.functor_axioms | |
by (metis vertical_composite.intro) | |
interpret gg': vertical_composite B C \<open>BC.Dom ?g'\<close> \<open>BC.Cod ?g'\<close> \<open>BC.Cod ?g\<close> | |
\<open>MAP ?g'\<close> \<open>MAP ?g\<close> | |
using seq CD_BC_AB.seq_char [of fgh fgh'] BC_AB.seq_char BC.seq_char [of ?g ?g'] | |
g.natural_transformation_axioms g'.natural_transformation_axioms | |
B.category_axioms C.category_axioms | |
g'.F.functor_axioms g'.G.functor_axioms g.G.functor_axioms | |
by (metis vertical_composite.intro) | |
interpret hh': vertical_composite A B \<open>AB.Dom ?h'\<close> \<open>AB.Cod ?h'\<close> \<open>AB.Cod ?h\<close> | |
\<open>MAP ?h'\<close> \<open>MAP ?h\<close> | |
using seq CD_BC_AB.seq_char [of fgh fgh'] BC_AB.seq_char AB.seq_char [of ?h ?h'] | |
h.natural_transformation_axioms h'.natural_transformation_axioms | |
A.category_axioms B.category_axioms | |
h'.F.functor_axioms h'.G.functor_axioms h.G.functor_axioms | |
by (metis vertical_composite.intro) | |
have "?LHS = AD.MkArr | |
(CD.Dom ?f' \<circ> BC.Dom ?g' \<circ> AB.Dom ?h') | |
(CD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h) | |
(vertical_composite.map A D | |
(CD.Map ?f' \<circ> BC.Map ?g' \<circ> AB.Map ?h') | |
(CD.Map ?f \<circ> BC.Map ?g \<circ> AB.Map ?h))" | |
using AD.comp_MkArr [of "CD.Dom ?f' \<circ> BC.Dom ?g' \<circ> AB.Dom ?h'" | |
"CD.Cod ?f' \<circ> BC.Cod ?g' \<circ> AB.Cod ?h'" | |
"CD.Map ?f' \<circ> BC.Map ?g' \<circ> AB.Map ?h'" | |
"CD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h" | |
"CD.Map ?f \<circ> BC.Map ?g \<circ> AB.Map ?h"] | |
using seq CD_BC_AB.seq_char CD.seq_char BC_AB.seq_char AB.arr_char | |
BD.seq_char AB.seq_char BC.seq_char fg.natural_transformation_axioms | |
fg'.natural_transformation_axioms fgh'.natural_transformation_axioms | |
fgh.natural_transformation_axioms | |
by auto | |
also have "... = AD.MkArr | |
(CD.Dom ?f' \<circ> BC.Dom ?g' \<circ> AB.Dom ?h') | |
(CD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h) | |
(vertical_composite.map C D (CD.Map ?f') (CD.Map ?f) | |
\<circ> vertical_composite.map B C (BC.Map ?g') (BC.Map ?g) | |
o vertical_composite.map A B (AB.Map ?h') (AB.Map ?h))" | |
proof - | |
have "vertical_composite.map A D | |
(CD.Map ?f' \<circ> BC.Map ?g' \<circ> AB.Map ?h') | |
(CD.Map ?f \<circ> BC.Map ?g \<circ> AB.Map ?h) = | |
vertical_composite.map C D (CD.Map ?f') (CD.Map ?f) | |
\<circ> vertical_composite.map B C (BC.Map ?g') (BC.Map ?g) | |
o vertical_composite.map A B (AB.Map ?h') (AB.Map ?h)" | |
using interchange | |
[of B C "BC.Dom ?g'" "BC.Cod ?g'" "BC.Map ?g'" | |
"BC.Cod ?g" "BC.Map ?g" D | |
"CD.Dom ?f'" "CD.Cod ?f'" "CD.Map ?f'" | |
"CD.Cod ?f" "CD.Map ?f"] | |
interchange | |
f'.natural_transformation_axioms ff'.\<tau>.natural_transformation_axioms | |
g'.natural_transformation_axioms gg'.\<tau>.natural_transformation_axioms | |
fg'.natural_transformation_axioms | |
gg'.\<tau>.natural_transformation_axioms h'.natural_transformation_axioms | |
hh'.\<tau>.natural_transformation_axioms horizontal_composite | |
by (metis (no_types, lifting)) (* 20 sec *) | |
thus ?thesis by simp | |
qed | |
also have "... = ?RHS" | |
by (metis (no_types, lifting) AB.Cod_comp AB.Dom_comp AB.Map_comp' | |
AB.seq_char BC.Cod_comp BC.Dom_comp BC.Map_comp' BC.seq_char | |
BC_AB.seq_char CD_BC_AB.seqE seq) | |
finally show "?LHS = ?RHS" by fastforce | |
qed | |
interpret L: "functor" CD_BC_AB.comp AD.comp ?L | |
proof | |
interpret CD_BC: product_category CD.comp BC.comp .. | |
interpret BD: functor_category B D .. | |
fix fgh | |
show "\<not> CD_BC_AB.arr fgh \<Longrightarrow> ?L fgh = AD.null" | |
using AD.null_char BD.null_char by (cases fgh, auto) | |
assume fgh: "CD_BC_AB.arr fgh" | |
let ?f = "fst (fgh)" and ?g = "fst (snd (fgh))" and ?h = "snd (snd fgh)" | |
interpret f: natural_transformation C D \<open>CD.Dom ?f\<close> \<open>CD.Cod ?f\<close> \<open>MAP ?f\<close> | |
using fgh CD_BC_AB.arr_char CD.arr_char by simp | |
interpret g: natural_transformation B C \<open>BC.Dom ?g\<close> \<open>BC.Cod ?g\<close> \<open>MAP ?g\<close> | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp | |
interpret h: natural_transformation A B \<open>AB.Dom ?h\<close> \<open>AB.Cod ?h\<close> \<open>MAP ?h\<close> | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp | |
interpret fg: natural_transformation B D | |
\<open>CD.Dom ?f o BC.Dom ?g\<close> \<open>CD.Cod ?f o BC.Cod ?g\<close> \<open>MAP ?f o MAP ?g\<close> | |
using f.natural_transformation_axioms g.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
interpret fgh: natural_transformation A D | |
\<open>CD.Dom ?f o BC.Dom ?g o AB.Dom ?h\<close> | |
\<open>CD.Cod ?f o BC.Cod ?g o AB.Cod ?h\<close> | |
\<open>MAP ?f o MAP ?g o MAP ?h\<close> | |
using f.natural_transformation_axioms g.natural_transformation_axioms | |
h.natural_transformation_axioms horizontal_composite | |
by blast | |
show 1: "AD.arr (?L fgh)" | |
using fgh CD_BC_AB.arr_char CD.arr_char BC_AB.arr_char BC.arr_char AB.arr_char | |
fg.natural_transformation_axioms fgh.natural_transformation_axioms | |
fgh.F.functor_axioms fgh.G.functor_axioms AD.arr_char | |
by (cases fgh, auto) | |
show "AD.dom (?L fgh) = ?L (CD_BC_AB.dom fgh)" | |
using fgh 1 fg.natural_transformation_axioms fg.F.functor_axioms | |
by (cases fgh, auto) | |
show "AD.cod (?L fgh) = ?L (CD_BC_AB.cod fgh)" | |
using fgh 1 fg.natural_transformation_axioms fg.G.functor_axioms | |
by (cases fgh, auto) | |
next | |
(* | |
* TODO: It might be worth it to change the axioms for functor so that the assumption | |
* for this case is "arr fgh \<and> arr fgh' \<and> dom fgh = cod fgh'". That would allow | |
* proofs to overlap this last case with the rest when convenient, like here. | |
*) | |
fix fgh fgh' | |
assume seq: "CD_BC_AB.seq fgh fgh'" | |
have fgh: "CD_BC_AB.arr fgh" | |
using seq by blast | |
have fgh': "CD_BC_AB.arr fgh'" | |
using seq by blast | |
let ?f = "fst (fgh)" and ?g = "fst (snd (fgh))" and ?h = "snd (snd fgh)" | |
interpret f: natural_transformation C D \<open>CD.Dom ?f\<close> \<open>CD.Cod ?f\<close> \<open>MAP ?f\<close> | |
using fgh CD_BC_AB.arr_char CD.arr_char by simp | |
interpret g: natural_transformation B C \<open>BC.Dom ?g\<close> \<open>BC.Cod ?g\<close> \<open>MAP ?g\<close> | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp | |
interpret h: natural_transformation A B \<open>AB.Dom ?h\<close> \<open>AB.Cod ?h\<close> \<open>MAP ?h\<close> | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp | |
interpret fg: natural_transformation B D | |
\<open>CD.Dom ?f o BC.Dom ?g\<close> \<open>CD.Cod ?f o BC.Cod ?g\<close> \<open>MAP ?f o MAP ?g\<close> | |
using f.natural_transformation_axioms g.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
let ?f' = "fst (fgh')" and ?g' = "fst (snd (fgh'))" and ?h' = "snd (snd fgh')" | |
interpret f': natural_transformation C D \<open>CD.Dom ?f'\<close> \<open>CD.Cod ?f'\<close> \<open>MAP ?f'\<close> | |
using fgh' CD_BC_AB.arr_char CD.arr_char by simp | |
interpret g': natural_transformation B C \<open>BC.Dom ?g'\<close> \<open>BC.Cod ?g'\<close> \<open>MAP ?g'\<close> | |
using fgh' CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp | |
interpret h': natural_transformation A B \<open>AB.Dom ?h'\<close> \<open>AB.Cod ?h'\<close> \<open>MAP ?h'\<close> | |
using fgh' CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp | |
interpret fg': natural_transformation B D | |
\<open>CD.Dom ?f' o BC.Dom ?g'\<close> \<open>CD.Cod ?f' o BC.Cod ?g'\<close> | |
\<open>MAP ?f' o MAP ?g'\<close> | |
using f'.natural_transformation_axioms g'.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
interpret ff': vertical_composite C D \<open>CD.Dom ?f'\<close> \<open>CD.Cod ?f'\<close> \<open>CD.Cod ?f\<close> | |
\<open>MAP ?f'\<close> \<open>MAP ?f\<close> | |
using seq CD_BC_AB.seq_char [of fgh fgh'] CD.seq_char [of ?f ?f'] | |
f.natural_transformation_axioms f'.natural_transformation_axioms | |
C.category_axioms D.category_axioms | |
f'.F.functor_axioms f'.G.functor_axioms f.G.functor_axioms | |
by (unfold vertical_composite_def) presburger | |
interpret gg': vertical_composite B C \<open>CD.Dom ?g'\<close> \<open>CD.Cod ?g'\<close> \<open>CD.Cod ?g\<close> | |
\<open>MAP ?g'\<close> \<open>MAP ?g\<close> | |
using seq CD_BC_AB.seq_char [of fgh fgh'] CD.seq_char [of ?g ?g'] | |
g.natural_transformation_axioms g'.natural_transformation_axioms | |
C.category_axioms D.category_axioms | |
by (unfold vertical_composite_def) | |
(metis BC.seq_char BC_AB.seqE natural_transformation_def) | |
interpret gg'off': natural_transformation B D | |
\<open>AC.Dom (fst fgh') \<circ> AC.Dom (fst (snd fgh'))\<close> | |
\<open>AC.Cod (fst fgh) \<circ> AC.Cod (fst (snd fgh))\<close> \<open>ff'.map \<circ> gg'.map\<close> | |
by (meson ff'.natural_transformation_axioms gg'.natural_transformation_axioms | |
horizontal_composite) | |
show "?L (CD_BC_AB.comp fgh fgh') = AD.comp (?L fgh) (?L fgh')" | |
proof - | |
have "AD.comp (?L fgh) (?L fgh') = | |
AD.comp | |
(AD.MkArr (CD.Dom ?f \<circ> BC.Dom ?g \<circ> AB.Dom ?h) | |
(CD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h) | |
(CD.Map ?f \<circ> BC.Map ?g \<circ> AB.Map ?h)) | |
(AD.MkArr (CD.Dom ?f' \<circ> BC.Dom ?g' \<circ> AB.Dom ?h') | |
(CD.Cod ?f' \<circ> BC.Cod ?g' \<circ> AB.Cod ?h') | |
(CD.Map ?f' \<circ> BC.Map ?g' \<circ> AB.Map ?h'))" | |
using seq CD_BC_AB.seq_char CD.seq_char BC_AB.seq_char AB.arr_char | |
BD.seq_char AB.seq_char BC.seq_char fg.natural_transformation_axioms | |
fg'.natural_transformation_axioms | |
by (cases fgh, cases fgh') auto (* 20 sec *) | |
also have "... = | |
AD.MkArr | |
(AD.Dom ?f' \<circ> AD.Dom (BC.comp ?g ?g') \<circ> AD.Dom (AB.comp ?h ?h')) | |
(AD.Cod ?f \<circ> AD.Cod (BC.comp ?g ?g') \<circ> AD.Cod (AB.comp ?h ?h')) | |
(vertical_composite.map C D (AD.Map ?f') (AD.Map ?f) | |
\<circ> AD.Map (BC.comp ?g ?g') | |
\<circ> AD.Map (AB.comp ?h ?h'))" | |
using seq * [of fgh fgh'] by blast | |
also have "... = ?L (CD_BC_AB.comp fgh fgh')" | |
using fgh fgh' CD_BC_AB.comp_char CD.seq_char BC_AB.comp_char | |
BC.seq_char AB.seq_char gg'off'.natural_transformation_axioms | |
apply simp | |
by (metis (no_types, lifting) BC_AB.seqE CD_BC_AB.seqE seq) | |
finally show ?thesis by argo | |
qed | |
qed | |
interpret R: "functor" CD_BC_AB.comp AD.comp ?R | |
proof | |
interpret CD_BC: product_category CD.comp BC.comp .. | |
interpret AC: functor_category A C .. | |
fix fgh | |
show "\<not> CD_BC_AB.arr fgh \<Longrightarrow> ?R fgh = AD.null" | |
using AD.null_char AC.null_char by (cases fgh, auto) | |
assume fgh: "CD_BC_AB.arr fgh" | |
let ?f = "fst (fgh)" and ?g = "fst (snd (fgh))" and ?h = "snd (snd fgh)" | |
interpret f: natural_transformation C D \<open>CD.Dom ?f\<close> \<open>CD.Cod ?f\<close> \<open>MAP ?f\<close> | |
using fgh CD_BC_AB.arr_char CD.arr_char by simp | |
interpret g: natural_transformation B C \<open>BC.Dom ?g\<close> \<open>BC.Cod ?g\<close> \<open>MAP ?g\<close> | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp | |
interpret h: natural_transformation A B \<open>AB.Dom ?h\<close> \<open>AB.Cod ?h\<close> \<open>MAP ?h\<close> | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp | |
interpret fg: natural_transformation B D | |
\<open>CD.Dom ?f o BC.Dom ?g\<close> \<open>CD.Cod ?f o BC.Cod ?g\<close> \<open>MAP ?f o MAP ?g\<close> | |
using f.natural_transformation_axioms g.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
interpret gh: natural_transformation A C | |
\<open>BC.Dom ?g o AB.Dom ?h\<close> \<open>BC.Cod ?g o AB.Cod ?h\<close> | |
\<open>MAP ?g o MAP ?h\<close> | |
using g.natural_transformation_axioms h.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
interpret fgh: natural_transformation A D | |
\<open>CD.Dom ?f o (BC.Dom ?g o AB.Dom ?h)\<close> | |
\<open>CD.Cod ?f o (BC.Cod ?g o AB.Cod ?h)\<close> | |
\<open>MAP ?f o (MAP ?g o MAP ?h)\<close> | |
using f.natural_transformation_axioms g.natural_transformation_axioms | |
h.natural_transformation_axioms horizontal_composite | |
by blast | |
show 1: "AD.arr (?R fgh)" | |
using fgh CD_BC_AB.arr_char AB.arr_char CD_BC.arr_char CD.arr_char BC.arr_char | |
gh.natural_transformation_axioms fgh.natural_transformation_axioms | |
fgh.F.functor_axioms fgh.G.functor_axioms AD.arr_char AC.arr_char | |
by (cases fgh) (simp add: natural_transformation_def) | |
show "AD.dom (?R fgh) = ?R (CD_BC_AB.dom fgh)" | |
using fgh 1 gh.natural_transformation_axioms gh.F.functor_axioms | |
by (cases fgh) auto | |
show "AD.cod (?R fgh) = ?R (CD_BC_AB.cod fgh)" | |
using fgh 1 gh.natural_transformation_axioms gh.G.functor_axioms | |
by (cases fgh) auto | |
next | |
fix fgh fgh' | |
assume seq: "CD_BC_AB.seq fgh fgh'" | |
have fgh: "CD_BC_AB.arr fgh" | |
using seq by blast | |
have fgh': "CD_BC_AB.arr fgh'" | |
using seq by blast | |
let ?f = "fst (fgh)" and ?g = "fst (snd (fgh))" and ?h = "snd (snd fgh)" | |
have f: "CD.arr ?f" and g: "BC.arr ?g" and h: "AB.arr ?h" | |
using fgh by simp_all | |
interpret f: natural_transformation C D \<open>CD.Dom ?f\<close> \<open>CD.Cod ?f\<close> \<open>MAP ?f\<close> | |
using fgh CD_BC_AB.arr_char CD.arr_char by simp | |
interpret g: natural_transformation B C \<open>BC.Dom ?g\<close> \<open>BC.Cod ?g\<close> \<open>MAP ?g\<close> | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp | |
interpret h: natural_transformation A B \<open>AB.Dom ?h\<close> \<open>AB.Cod ?h\<close> \<open>MAP ?h\<close> | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp | |
interpret gh: natural_transformation A C | |
\<open>BC.Dom ?g o AB.Dom ?h\<close> \<open>BC.Cod ?g o AB.Cod ?h\<close> | |
\<open>MAP ?g o MAP ?h\<close> | |
using g.natural_transformation_axioms h.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
let ?f' = "fst (fgh')" and ?g' = "fst (snd (fgh'))" and ?h' = "snd (snd fgh')" | |
have f': "CD.arr ?f'" and g': "BC.arr ?g'" and h': "AB.arr ?h'" | |
using fgh' by simp_all | |
interpret f': natural_transformation C D \<open>CD.Dom ?f'\<close> \<open>CD.Cod ?f'\<close> \<open>MAP ?f'\<close> | |
using seq CD_BC_AB.arr_char CD.arr_char by blast | |
interpret g': natural_transformation B C \<open>BC.Dom ?g'\<close> \<open>BC.Cod ?g'\<close> \<open>MAP ?g'\<close> | |
using seq CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by blast | |
interpret h': natural_transformation A B \<open>AB.Dom ?h'\<close> \<open>AB.Cod ?h'\<close> \<open>MAP ?h'\<close> | |
using seq CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by blast | |
interpret gh': natural_transformation A C | |
\<open>BC.Dom ?g' o AB.Dom ?h'\<close> \<open>BC.Cod ?g' o AB.Cod ?h'\<close> | |
\<open>MAP ?g' o MAP ?h'\<close> | |
using g'.natural_transformation_axioms h'.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
interpret fg': natural_transformation B D | |
\<open>CD.Dom ?f' o BC.Dom ?g'\<close> \<open>CD.Cod ?f' o BC.Cod ?g'\<close> | |
\<open>MAP ?f' o MAP ?g'\<close> | |
using f'.natural_transformation_axioms g'.natural_transformation_axioms | |
horizontal_composite | |
by blast | |
interpret ff': vertical_composite C D \<open>CD.Dom ?f'\<close> \<open>CD.Cod ?f'\<close> \<open>CD.Cod ?f\<close> | |
\<open>MAP ?f'\<close> \<open>MAP ?f\<close> | |
using seq CD_BC_AB.seq_char [of fgh fgh'] CD.seq_char [of ?f ?f'] | |
f.natural_transformation_axioms f'.natural_transformation_axioms | |
C.category_axioms D.category_axioms | |
f'.F.functor_axioms f'.G.functor_axioms f.G.functor_axioms | |
by (metis vertical_composite.intro) | |
interpret gg': vertical_composite B C \<open>BC.Dom ?g'\<close> \<open>BC.Cod ?g'\<close> \<open>BC.Cod ?g\<close> | |
\<open>MAP ?g'\<close> \<open>MAP ?g\<close> | |
using seq CD_BC_AB.seq_char [of fgh fgh'] BC_AB.seq_char BC.seq_char [of ?g ?g'] | |
g.natural_transformation_axioms g'.natural_transformation_axioms | |
B.category_axioms C.category_axioms | |
g'.F.functor_axioms g'.G.functor_axioms g.G.functor_axioms | |
by (metis vertical_composite.intro) | |
interpret hh': vertical_composite A B \<open>AB.Dom ?h'\<close> \<open>AB.Cod ?h'\<close> \<open>AB.Cod ?h\<close> | |
\<open>MAP ?h'\<close> \<open>MAP ?h\<close> | |
using seq CD_BC_AB.seq_char [of fgh fgh'] BC_AB.seq_char AB.seq_char [of ?h ?h'] | |
h.natural_transformation_axioms h'.natural_transformation_axioms | |
A.category_axioms B.category_axioms | |
h'.F.functor_axioms h'.G.functor_axioms h.G.functor_axioms | |
by (metis vertical_composite.intro) | |
show "?R (CD_BC_AB.comp fgh fgh') = AD.comp (?R fgh) (?R fgh')" | |
proof - | |
have "AD.comp (?R fgh) (?R fgh') = | |
AD.comp | |
(AD.MkArr (CD.Dom ?f \<circ> BC.Dom ?g \<circ> AB.Dom ?h) | |
(CD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h) | |
(CD.Map ?f \<circ> BC.Map ?g \<circ> AB.Map ?h)) | |
(AD.MkArr (CD.Dom ?f' \<circ> BC.Dom ?g' \<circ> AB.Dom ?h') | |
(CD.Cod ?f' \<circ> BC.Cod ?g' \<circ> AB.Cod ?h') | |
(CD.Map ?f' \<circ> BC.Map ?g' \<circ> AB.Map ?h'))" | |
using fgh fgh' gh.natural_transformation_axioms gh'.natural_transformation_axioms | |
apply (cases fgh, cases fgh') | |
by (simp add: o_assoc) | |
also have "... = | |
AD.MkArr | |
(AD.Dom ?f' \<circ> AD.Dom (BC.comp ?g ?g') \<circ> AD.Dom (AB.comp ?h ?h')) | |
(AD.Cod ?f \<circ> AD.Cod (BC.comp ?g ?g') \<circ> AD.Cod (AB.comp ?h ?h')) | |
(vertical_composite.map C D (AD.Map ?f') (AD.Map ?f) | |
\<circ> AD.Map (BC.comp ?g ?g') | |
\<circ> AD.Map (AB.comp ?h ?h'))" | |
using seq * [of fgh fgh'] by blast | |
also have "... = AD.MkArr | |
(AD.Dom ?f' \<circ> BC.Dom ?g' \<circ> AB.Dom ?h') | |
(AD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h) | |
(vertical_composite.map C D (AD.Map ?f') (AD.Map ?f) | |
\<circ> AD.Map (BC.comp ?g ?g') | |
\<circ> AD.Map (AB.comp ?h ?h'))" | |
using seq CD_BC_AB.seq_char BC_AB.seq_char BC.Dom_comp AB.Dom_comp | |
BC.Cod_comp AB.Cod_comp BC.seq_char AB.seq_char | |
by (simp add: o_assoc) | |
also have "... = AD.MkArr | |
(AD.Dom ?f' \<circ> BC.Dom ?g' \<circ> AB.Dom ?h') | |
(AD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h) | |
(vertical_composite.map C D (AD.Map ?f') (AD.Map ?f) o | |
vertical_composite.map B C (BC.Map ?g') (BC.Map ?g) o | |
vertical_composite.map A B (AB.Map ?h') (AB.Map ?h))" | |
using seq CD_BC_AB.seq_char BC_AB.seq_char BC.Map_comp AB.Map_comp | |
BC.seq_char AB.seq_char | |
by (cases fgh) simp | |
also have "... = AD.MkArr | |
(AD.Dom ?f' \<circ> BC.Dom ?g' \<circ> AB.Dom ?h') | |
(AD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h) | |
(CD.Map (CD.comp ?f ?f') o BC.Map (BC.comp ?g ?g') | |
o AB.Map (AB.comp ?h ?h'))" | |
using seq CD_BC_AB.seq_char BC_AB.seq_char CD.Map_comp BC.Map_comp | |
AB.Map_comp CD.seq_char BC.seq_char AB.seq_char | |
by simp | |
also have | |
"... = | |
AD.MkArr | |
(CD.Dom (CD.comp ?f ?f') \<circ> (BC.Dom (BC.comp ?g ?g') \<circ> AB.Dom (AB.comp ?h ?h'))) | |
(CD.Cod (CD.comp ?f ?f') \<circ> (BC.Cod (BC.comp ?g ?g') \<circ> AB.Cod (AB.comp ?h ?h'))) | |
(CD.Map (CD.comp ?f ?f') \<circ> (BC.Map (BC.comp ?g ?g') \<circ> AB.Map (AB.comp ?h ?h')))" | |
using seq CD_BC_AB.seq_char BC_AB.seq_char BC.Dom_comp AB.Dom_comp | |
BC.Cod_comp AB.Cod_comp CD.seq_char BC.seq_char AB.seq_char | |
by (cases fgh) (simp add: o_assoc) | |
also have "... = ?R (CD.comp ?f ?f', BC.comp ?g ?g', AB.comp ?h ?h')" | |
proof - | |
have "CD.seq ?f ?f' \<and> BC.seq ?g ?g' \<and> AB.seq ?h ?h'" | |
using seq CD_BC_AB.seq_char BC_AB.seq_char CD.seq_char BC.seq_char AB.seq_char | |
by simp | |
moreover have "natural_transformation A C | |
(AC.Dom (BC.comp ?g ?g') \<circ> AC.Dom (AB.comp ?h ?h')) | |
(AC.Cod (BC.comp ?g ?g') \<circ> AC.Cod (AB.comp ?h ?h')) | |
(AC.Map (BC.comp ?g ?g') \<circ> AC.Map (AB.comp ?h ?h'))" | |
using horizontal_composite calculation by blast | |
ultimately show ?thesis by simp | |
qed | |
also have "... = ?R (CD_BC_AB.comp fgh fgh')" | |
using seq fgh fgh' CD_BC_AB.comp_simp BC_AB.comp_simp CD_BC_AB.seq_char | |
BC_AB.seq_char | |
by (cases fgh) simp | |
finally show ?thesis by argo | |
qed | |
qed | |
interpret A: natural_transformation CD_BC_AB.comp AD.comp ?L ?R ?A | |
proof | |
interpret CD_BC: product_category CD.comp BC.comp .. | |
fix fgh | |
show "\<not> CD_BC_AB.arr fgh \<Longrightarrow> ?A fgh = AD.null" | |
using AD.null_char BD.null_char by (cases fgh, auto) | |
assume fgh: "CD_BC_AB.arr fgh" | |
show "AD.dom (?A fgh) = ?L (CD_BC_AB.dom fgh)" | |
using fgh AD.dom_char AB.arr_char BC.arr_char CD.arr_char | |
AB.dom_char BC.dom_char CD.dom_char | |
apply (cases fgh) apply simp | |
by (metis (no_types, lifting) functor_is_transformation horizontal_composite) | |
show "AD.cod (?A fgh) = ?R (CD_BC_AB.cod fgh)" | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char | |
AD.cod_char AB.arr_char BC.arr_char CD.arr_char | |
AB.cod_char BC.cod_char CD.cod_char | |
apply (cases fgh) | |
apply (simp add: o_assoc) | |
by (metis (no_types, lifting) functor_is_transformation horizontal_composite) | |
show "AD.comp (?A (CD_BC_AB.cod fgh)) (?L fgh) = ?A fgh" | |
proof - | |
let ?f = "fst fgh" and ?g = "fst (snd fgh)" and ?h = "snd (snd fgh)" | |
have 1: "natural_transformation B D | |
(CD.Dom ?f \<circ> BC.Dom ?g) (CD.Cod ?f \<circ> BC.Cod ?g) | |
(CD.Map ?f \<circ> BC.Map ?g)" | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char | |
apply (cases fgh) | |
apply (simp add: o_assoc) | |
by (metis (no_types, lifting) horizontal_composite) | |
have 2: "natural_transformation A D (AC.Dom ?f \<circ> AC.Dom ?g \<circ> AC.Dom ?h) | |
(AC.Cod ?f \<circ> AC.Cod ?g \<circ> AC.Cod ?h) | |
(AC.Map ?f \<circ> AC.Map ?g \<circ> AC.Map ?h)" | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char | |
CD.arr_char | |
apply (cases fgh) | |
apply (simp add: o_assoc) | |
by (metis (no_types, lifting) horizontal_composite) | |
have "AD.comp (?A (CD_BC_AB.cod fgh)) (?L fgh) = | |
AD.comp (AD.MkIde (CD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h)) | |
(AD.MkArr (CD.Dom ?f \<circ> BC.Dom ?g \<circ> AB.Dom ?h) | |
(CD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h) | |
(CD.Map ?f \<circ> BC.Map ?g \<circ> AB.Map ?h))" | |
using 1 2 fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char | |
apply (cases fgh) | |
apply (simp add: o_assoc) | |
by (metis AB.cod_char BC.MkIde_Cod CD.arr.simps(2) CD.arr_cod_iff_arr) | |
also have "... = ?A fgh" | |
using 2 fgh | |
by (cases fgh) (simp add: o_assoc AD.comp_cod_arr) | |
finally show ?thesis by simp | |
qed | |
show "AD.comp (?R fgh) (?A (CD_BC_AB.dom fgh)) = ?A fgh" | |
proof - | |
let ?f = "fst fgh" and ?g = "fst (snd fgh)" and ?h = "snd (snd fgh)" | |
have 1: "natural_transformation A C | |
(AC.Dom ?g \<circ> AC.Dom ?h) (AC.Cod ?g \<circ> AC.Cod ?h) | |
(AC.Map ?g \<circ> AC.Map ?h)" | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char | |
apply (cases fgh) | |
apply (simp add: o_assoc) | |
by (metis (no_types, lifting) horizontal_composite) | |
have 2: "natural_transformation A D (AC.Dom ?f \<circ> AC.Dom ?g \<circ> AC.Dom ?h) | |
(AC.Cod ?f \<circ> AC.Cod ?g \<circ> AC.Cod ?h) | |
(AC.Map ?f \<circ> AC.Map ?g \<circ> AC.Map ?h)" | |
using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char | |
apply (cases fgh) | |
apply (simp add: o_assoc) | |
by (metis (no_types, lifting) horizontal_composite) | |
have "AD.comp (?R fgh) (?A (CD_BC_AB.dom fgh)) = | |
AD.comp (AD.MkArr (CD.Dom ?f \<circ> BC.Dom ?g \<circ> AB.Dom ?h) | |
(CD.Cod ?f \<circ> BC.Cod ?g \<circ> AB.Cod ?h) | |
(CD.Map ?f \<circ> BC.Map ?g \<circ> AB.Map ?h)) | |
(AD.MkIde (CD.Dom ?f \<circ> BC.Dom ?g \<circ> AB.Dom ?h))" | |
using 1 2 fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char | |
CD.arr_char | |
apply (cases fgh) | |
apply (simp add: o_assoc) | |
by (metis AB.dom_char BC.MkIde_Dom CD.arr.simps(2) CD.arr_dom_iff_arr) | |
also have "... = ?A fgh" | |
using 2 fgh | |
by (cases fgh) (simp add: o_assoc AD.comp_arr_dom) | |
finally show ?thesis by simp | |
qed | |
qed | |
show "natural_isomorphism CD_BC_AB.comp AD.comp ?L ?R ?A" | |
proof | |
fix abc | |
assume abc: "CD_BC_AB.ide abc" | |
show "AD.iso (?A abc)" | |
proof - | |
interpret A_abc: natural_transformation A D | |
\<open>BD.Dom (?A abc)\<close> \<open>BD.Cod (?A abc)\<close> \<open>BD.Map (?A abc)\<close> | |
using abc CD_BC_AB.ideD(1) CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char | |
BC.arr_char CD.arr_char | |
apply (cases abc) | |
apply (simp add: o_assoc) | |
by (metis AB.null_char BC.null_char CD.null_char functor_is_transformation | |
horizontal_composite) | |
interpret A_abc: natural_isomorphism A D | |
\<open>BD.Dom (?A abc)\<close> \<open>BD.Cod (?A abc)\<close> \<open>BD.Map (?A abc)\<close> | |
proof - | |
have "\<And>a'. A.ide a' \<Longrightarrow> D.iso (CD.Map (fst abc) | |
(BC.Map (fst (snd abc)) | |
(AB.Map (snd (snd abc)) a')))" | |
proof - | |
fix a' | |
assume a': "A.ide a'" | |
have "BC.ide (fst (snd abc)) \<and> AB.ide (snd (snd abc))" | |
using abc by force | |
hence "C.iso (AC.Map (fst (snd abc)) (AC.Map (snd (snd abc)) a'))" | |
using a' by (metis (no_types) A.ide_is_iso AB.ide_char BC.ide_char | |
functor.preserves_iso) | |
thus "D.iso (AC.Map (fst abc) (AC.Map (fst (snd abc)) | |
(AC.Map (snd (snd abc)) a')))" | |
by (meson CD.ide_char CD_BC_AB.ide_char abc functor.preserves_iso) | |
qed | |
thus "natural_isomorphism A D | |
(BD.Dom (?A abc)) (BD.Cod (?A abc)) (BD.Map (?A abc))" | |
apply unfold_locales | |
using abc CD_BC_AB.iso_char BC_AB.iso_char A.ide_is_iso functor.preserves_iso | |
by (cases abc) simp | |
qed | |
have "?A abc \<noteq> AD.null" | |
using abc | |
by (metis (no_types, lifting) A.preserves_reflects_arr AD.not_arr_null | |
CD_BC_AB.ideD(1)) | |
moreover have "natural_isomorphism A D | |
(BD.Dom (?A abc)) (BD.Cod (?A abc)) (BD.Map (?A abc))" | |
.. | |
ultimately show ?thesis by simp | |
qed | |
qed | |
qed | |
show "\<And>(A :: 'a comp) (B :: 'a comp). \<lbrakk> A \<in> OBJ; B \<in> OBJ \<rbrakk> | |
\<Longrightarrow> fully_faithful_functor (HOM A B) (HOM A B) | |
(\<lambda>f. if partial_magma.arr (HOM A B) f | |
then COMP B B A (ID B) f | |
else partial_magma.null (HOM A B))" | |
proof - | |
fix A :: "'a comp" and B :: "'a comp" | |
assume A: "A \<in> OBJ" and B: "B \<in> OBJ" | |
interpret A: category A using A by simp | |
interpret B: category B using B by simp | |
interpret AB: functor_category A B .. | |
interpret BB: functor_category B B .. | |
let ?L = "\<lambda>f. if partial_magma.arr (HOM A B) f | |
then COMP B B A (ID B) f | |
else partial_magma.null (HOM A B)" | |
have "?L = AB.map" | |
using AB.arr_char B.functor_axioms AB.MkArr_Map AB.is_extensional by force | |
thus "fully_faithful_functor AB.comp AB.comp ?L" | |
by (simp add: AB.is_fully_faithful) | |
qed | |
show "\<And>(A :: 'a comp) (B :: 'a comp). \<lbrakk> A \<in> OBJ; B \<in> OBJ \<rbrakk> | |
\<Longrightarrow> fully_faithful_functor (HOM A B) (HOM A B) | |
(\<lambda>f. if partial_magma.arr (HOM A B) f | |
then COMP B A A f (ID A) | |
else partial_magma.null (HOM A B))" | |
proof - | |
fix A :: "'a comp" and B :: "'a comp" | |
assume A: "A \<in> OBJ" and B: "B \<in> OBJ" | |
interpret A: category A using A by simp | |
interpret B: category B using B by simp | |
interpret AB: functor_category A B .. | |
interpret AA: functor_category A A .. | |
interpret BB: functor_category B B .. | |
let ?R = "\<lambda>f. if partial_magma.arr (HOM A B) f | |
then COMP B A A f (ID A) | |
else partial_magma.null (HOM A B)" | |
have "?R = AB.map" | |
proof | |
fix f | |
have "\<not> AB.arr f \<Longrightarrow> ?R f = AB.map f" | |
using AB.is_extensional by simp | |
moreover have "AB.arr f \<Longrightarrow> ?R f = AB.map f" | |
proof - | |
assume f: "AB.arr f" | |
have "?R f = | |
BB.MkArr (BB.Dom f \<circ> A.map) (BB.Cod f \<circ> A.map) (BB.Map f \<circ> A.map)" | |
using f AB.arr_char BB.ide_MkIde BB.arr_char A.functor_axioms by simp | |
also have "... = AB.map f" | |
using f AB.arr_char AB.MkArr_Map by force | |
finally show "?R f = AB.map f" by blast | |
qed | |
ultimately show "?R f = AB.map f" by blast | |
qed | |
thus "fully_faithful_functor AB.comp AB.comp ?R" | |
by (simp add: AB.is_fully_faithful) | |
qed | |
show "\<And>(A :: 'a comp) (B :: 'a comp) (C :: 'a comp) (D :: 'a comp) (E :: 'a comp) f g h k. | |
\<lbrakk> A \<in> OBJ; B \<in> OBJ; C \<in> OBJ; D \<in> OBJ; E \<in> OBJ; | |
partial_magma.ide (HOM D E) f; partial_magma.ide (HOM C D) g; | |
partial_magma.ide (HOM B C) h; partial_magma.ide (HOM A B) k \<rbrakk> \<Longrightarrow> | |
HOM A E (COMP E D A f (ASSOC D C B A g h k)) | |
(HOM A E (ASSOC E D B A f (COMP D C B g h) k) | |
(COMP E B A (ASSOC E D C B f g h) k)) = | |
HOM A E (ASSOC E D C A f g (COMP C B A h k)) | |
(ASSOC E C B A (COMP E D C f g) h k)" | |
proof - | |
fix A :: "'a comp" and B :: "'a comp" and C :: "'a comp" | |
and D :: "'a comp" and E :: "'a comp" | |
fix f g h k | |
assume A: "A \<in> OBJ" and B: "B \<in> OBJ" and C: "C \<in> OBJ" | |
and D: "D \<in> OBJ" and E: "E \<in> OBJ" | |
assume f: "partial_magma.ide (HOM D E) f" | |
assume g: "partial_magma.ide (HOM C D) g" | |
assume h: "partial_magma.ide (HOM B C) h" | |
assume k: "partial_magma.ide (HOM A B) k" | |
interpret A: category A using A by simp | |
interpret B: category B using B by simp | |
interpret C: category C using C by simp | |
interpret D: category D using D by simp | |
interpret E: category E using E by simp | |
interpret AB: functor_category A B .. | |
interpret BC: functor_category B C .. | |
interpret CD: functor_category C D .. | |
interpret DE: functor_category D E .. | |
interpret BD: functor_category B D .. | |
interpret AD: functor_category A D .. | |
interpret CE: functor_category C E .. | |
interpret AC: functor_category A C .. | |
interpret BE: functor_category B E .. | |
interpret AE: functor_category A E .. | |
interpret f: natural_transformation D E \<open>DE.Dom f\<close> \<open>DE.Cod f\<close> \<open>MAP f\<close> | |
using f DE.arr_char by simp | |
interpret g: natural_transformation C D \<open>CD.Dom g\<close> \<open>CD.Cod g\<close> \<open>MAP g\<close> | |
using g CD.arr_char by simp | |
interpret h: natural_transformation B C \<open>BC.Dom h\<close> \<open>BC.Cod h\<close> \<open>MAP h\<close> | |
using h BC.arr_char by simp | |
interpret k: natural_transformation A B \<open>AB.Dom k\<close> \<open>AB.Cod k\<close> \<open>MAP k\<close> | |
using k AB.arr_char by simp | |
have 0: "natural_transformation A E | |
(DE.Map f \<circ> CD.Map g \<circ> BC.Map h \<circ> AB.Map k) | |
(DE.Map f \<circ> CD.Map g \<circ> BC.Map h \<circ> AB.Map k) | |
(DE.Map f \<circ> CD.Map g \<circ> BC.Map h \<circ> AB.Map k)" | |
using f.natural_transformation_axioms g.natural_transformation_axioms | |
h.natural_transformation_axioms k.natural_transformation_axioms | |
f g h k AB.ide_char BC.ide_char CD.ide_char DE.ide_char | |
horizontal_composite | |
by (metis (no_types, lifting)) | |
have 1: "natural_transformation B D | |
(CD.Map g \<circ> BC.Map h) (CD.Map g \<circ> BC.Map h) (CD.Map g \<circ> BC.Map h)" | |
using g.natural_transformation_axioms h.natural_transformation_axioms | |
g h BC.ide_char CD.ide_char horizontal_composite | |
by (metis (no_types, lifting)) | |
have 2: "natural_transformation B E | |
(DE.Map f \<circ> CD.Map g \<circ> BC.Map h) | |
(DE.Map f \<circ> CD.Map g \<circ> BC.Map h) | |
(DE.Map f \<circ> CD.Map g \<circ> BC.Map h)" | |
using 1 f.natural_transformation_axioms f DE.ide_char horizontal_composite o_assoc | |
by (metis (no_types, lifting)) | |
have 3: "natural_transformation A C | |
(BC.Map h \<circ> AB.Map k) (BC.Map h \<circ> AB.Map k) (BC.Map h \<circ> AB.Map k)" | |
using k.natural_transformation_axioms h.natural_transformation_axioms | |
k h AB.ide_char BC.ide_char horizontal_composite | |
by metis | |
have 4: "natural_transformation C E | |
(DE.Map f \<circ> CD.Map g) (DE.Map f \<circ> CD.Map g) (DE.Map f \<circ> CD.Map g)" | |
using f g f.natural_transformation_axioms g.natural_transformation_axioms | |
CD.ide_char DE.ide_char horizontal_composite | |
by metis | |
have "HOM A E (COMP E D A f (ASSOC D C B A g h k)) | |
(HOM A E (ASSOC E D B A f (COMP D C B g h) k) | |
(COMP E B A (ASSOC E D C B f g h) k)) = | |
AE.MkIde (DE.Map f \<circ> CD.Map g \<circ> BC.Map h \<circ> AB.Map k)" | |
proof - | |
have "functor B E (DE.Map f \<circ> CD.Map g \<circ> BC.Map h)" | |
using 2 natural_transformation_def by blast | |
moreover have "functor A D (CD.Map g \<circ> BC.Map h \<circ> AB.Map k)" | |
using k 1 AB.ide_char horizontal_composite k.natural_transformation_axioms | |
natural_transformation_def | |
by (metis (no_types, lifting)) | |
ultimately show ?thesis | |
using f g h k 0 1 2 by (simp add: o_assoc) | |
qed | |
also have "... = HOM A E (ASSOC E D C A f g (COMP C B A h k)) | |
(ASSOC E C B A (COMP E D C f g) h k)" | |
using f g h k 0 3 4 AC.ide_MkIde CE.ide_MkIde | |
by (simp add: o_assoc) | |
finally show "HOM A E (COMP E D A f (ASSOC D C B A g h k)) | |
(HOM A E (ASSOC E D B A f (COMP D C B g h) k) | |
(COMP E B A (ASSOC E D C B f g h) k)) = | |
HOM A E (ASSOC E D C A f g (COMP C B A h k)) | |
(ASSOC E C B A (COMP E D C f g) h k)" | |
by blast | |
qed | |
qed (* 15 sec *) | |
lemma is_concrete_bicategory: | |
shows "concrete_bicategory OBJ HOM ID COMP ID ASSOC" | |
.. | |
lemma unit_simp: | |
assumes "obj a" | |
shows "\<i> a = a" | |
by (metis (mono_tags, lifting) \<i>_def assms obj_char) | |
lemma assoc_simp: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "\<a> f g h = hcomp f (hcomp g h)" | |
proof - | |
let ?A = "Src h" and ?B = "Trg h" and ?C = "Trg g" and ?D = "Trg f" | |
have 1: "Src f = Trg g \<and> Src g = Trg h" | |
using assms by (simp add: src_def trg_def) | |
interpret A: category ?A using assms Src_in_Obj [of h] by simp | |
interpret B: category ?B using assms Trg_in_Obj [of h] by simp | |
interpret C: category ?C using assms Trg_in_Obj [of g] by simp | |
interpret D: category ?D using assms Trg_in_Obj [of f] by simp | |
interpret AB: functor_category ?A ?B .. | |
interpret BC: functor_category ?B ?C .. | |
interpret CD: functor_category ?C ?D .. | |
interpret AD: functor_category ?A ?D .. | |
interpret BC_AB: product_category BC.comp AB.comp .. | |
interpret CD_BC_AB: product_category CD.comp BC_AB.comp .. | |
interpret f: "functor" ?C ?D \<open>CD.Map (Map f)\<close> | |
using assms 1 ide_char'' [of f] arr_char [of f] CD.ide_char by simp | |
interpret g: "functor" ?B ?C \<open>BC.Map (Map g)\<close> | |
using assms 1 ide_char'' [of g] arr_char [of g] CD.ide_char by simp | |
interpret h: "functor" ?A ?B \<open>AB.Map (Map h)\<close> | |
using assms 1 ide_char'' [of h] arr_char [of h] CD.ide_char by simp | |
have "\<a> f g h = MkCell ?A ?D | |
(AD.MkArr (AD.Dom (Map f) \<circ> AD.Dom (Map g) \<circ> AD.Dom (Map h)) | |
(AD.Cod (Map f) \<circ> AD.Cod (Map g) \<circ> AD.Cod (Map h)) | |
(AD.Map (Map f) \<circ> AD.Map (Map g) \<circ> AD.Map (Map h)))" | |
using assms 1 ide_char'' \<a>_simp_ide [of f g h] | |
arr_char [of f] arr_char [of g] arr_char [of h] | |
by simp | |
moreover have "AD.ide (AD.MkArr | |
(CD.Dom (Map f) \<circ> BC.Dom (Map g) \<circ> AB.Dom (Map h)) | |
(CD.Cod (Map f) \<circ> BC.Cod (Map g) \<circ> AB.Cod (Map h)) | |
(CD.Map (Map f) \<circ> BC.Map (Map g) \<circ> AB.Map (Map h)))" | |
proof - | |
have "functor ?A ?D (CD.Map (Map f) \<circ> BC.Map (Map g) \<circ> AB.Map (Map h))" | |
using f.functor_axioms g.functor_axioms h.functor_axioms functor_comp by blast | |
hence "AD.ide (AD.MkArr (CD.Map (Map f) \<circ> BC.Map (Map g) \<circ> AB.Map (Map h)) | |
(CD.Map (Map f) \<circ> BC.Map (Map g) \<circ> AB.Map (Map h)) | |
(CD.Map (Map f) \<circ> BC.Map (Map g) \<circ> AB.Map (Map h)))" | |
using AD.ide_char AD.null_char by simp | |
thus ?thesis | |
using assms 1 | |
ide_char'' [of f] CD.ide_char [of "Map f"] | |
ide_char'' [of g] BC.ide_char [of "Map g"] | |
ide_char'' [of h] AB.ide_char [of "Map h"] | |
by presburger | |
qed | |
moreover have "arr (\<a> f g h)" | |
using assms by simp | |
ultimately have "ide (\<a> f g h)" | |
using ide_char''' [of "\<a> f g h"] by auto | |
hence "\<a> f g h = cod (\<a> f g h)" | |
by simp | |
thus "\<a> f g h = hcomp f (hcomp g h)" | |
using assms by simp | |
qed | |
lemma is_strict_bicategory: | |
shows "strict_bicategory vcomp hcomp \<a> \<i> src trg" | |
proof - | |
have "\<And>f :: ('a comp, ('a, 'a) functor_category.arr) cell. ide f \<Longrightarrow> hcomp f (src f) = f" | |
proof - | |
fix f :: "('a comp, ('a, 'a) functor_category.arr) cell" | |
assume f: "ide f" | |
let ?A = "Src f" and ?B = "Trg f" | |
interpret A: category ?A | |
using f Src_in_Obj [of f] by simp | |
interpret B: category ?B | |
using f Trg_in_Obj [of f] by simp | |
interpret AA: functor_category ?A ?A .. | |
interpret AB: functor_category ?A ?B .. | |
have 1: "functor ?A ?B (AB.Cod (Map f)) \<and> functor ?A ?B (AB.Dom (Map f)) \<and> | |
functor ?A ?B (AB.Map (Map f))" | |
using f ide_char''' AB.ide_char [of "Map f"] ide_char'' [of f] arr_char [of f] | |
by auto | |
have "hcomp f (src f) = MkCell ?A ?B (Map f)" | |
unfolding hcomp_def src_def | |
using f 1 AB.arr_char AB.null_char AB.ide_char | |
obj_MkObj [of "Src f"] obj_def functor_is_transformation ide_char''' | |
AB.ide_MkIde Src_in_Obj [of f] obj_MkObj obj_def AB.null_char arr_Map [of f] | |
A.functor_axioms AB.MkArr_Map arr_Map | |
by auto | |
also have "... = f" | |
using f MkCell_Map [of f] not_arr_null ideD(1) [of f] by fastforce | |
finally show "hcomp f (src f) = f" by blast | |
qed | |
moreover have | |
"\<And>f :: ('a comp, ('a, 'a) functor_category.arr) cell. ide f \<Longrightarrow> hcomp (trg f) f = f" | |
proof - | |
fix f :: "('a comp, ('a, 'a) functor_category.arr) cell" | |
assume f: "ide f" | |
let ?A = "Src f" and ?B = "Trg f" | |
interpret A: category ?A | |
using f Src_in_Obj [of f] by simp | |
interpret B: category ?B | |
using f Trg_in_Obj [of f] by simp | |
interpret BB: functor_category ?B ?B .. | |
interpret AB: functor_category ?A ?B .. | |
have 1: "functor ?A ?B (AB.Cod (Map f)) \<and> functor ?A ?B (AB.Dom (Map f)) \<and> | |
functor ?A ?B (AB.Map (Map f))" | |
using f ide_char''' AB.ide_char [of "Map f"] ide_char'' [of f] arr_char [of f] | |
by auto | |
have "hcomp (trg f) f = MkCell ?A ?B (Map f)" | |
unfolding hcomp_def trg_def | |
using f 1 AB.arr_char AB.null_char AB.ide_char | |
obj_MkObj [of "Trg f"] obj_def functor_is_transformation ide_char''' | |
AB.ide_MkIde Trg_in_Obj [of f] obj_MkObj obj_def AB.null_char arr_Map [of f] | |
B.functor_axioms AB.MkArr_Map arr_Map | |
by auto | |
also have "... = f" | |
using f MkCell_Map [of f] not_arr_null ideD(1) [of f] by fastforce | |
finally show "hcomp (trg f) f = f" by blast | |
qed | |
moreover have "\<And>a. obj a \<Longrightarrow> ide (\<i> a)" | |
using \<i>_def by (metis (mono_tags, lifting) obj_MkObj_Src objE obj_def) | |
moreover have "\<And>(f :: ('a comp, ('a, 'a) functor_category.arr) cell) g h. | |
\<lbrakk> ide f; ide g; ide h; src f = trg g; src g = trg h \<rbrakk> \<Longrightarrow> ide (\<a> f g h)" | |
by (simp add: assoc_simp) | |
ultimately show ?thesis | |
using is_strict_if by blast | |
qed | |
sublocale strict_bicategory vcomp hcomp \<a> \<i> src trg | |
using is_strict_bicategory by simp | |
end | |
end | |