Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Calculation with real numbers (Boehm-style but by inference). *) | |
(* ========================================================================= *) | |
needs "Library/transc.ml";; | |
let REAL_SUB_SUM0 = prove | |
(`!x y m. sum(0,m) x - sum(0,m) y = sum(0,m) (\i. x i - y i)`, | |
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN | |
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[sum] THEN | |
REAL_ARITH_TAC);; | |
let REAL_MUL_RSUM0 = prove | |
(`!m c x. c * sum(0,m) x = sum(0,m) (\i. c * x(i))`, | |
INDUCT_TAC THEN | |
ASM_REWRITE_TAC[sum; REAL_MUL_RZERO; REAL_ADD_LDISTRIB]);; | |
let REAL_ABS_LEMMA = prove | |
(`!a b n. (&a pow n) * abs b = abs((&a pow n) * b)`, | |
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM]);; | |
let REAL_ABS_LEMMA1 = prove | |
(`!a b. &a * abs b = abs(&a * b)`, | |
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NUM]);; | |
let REAL_ABS_TRIANGLE_LEMMA = prove | |
(`!u x y z. abs(x - y) + abs(z - x) < u ==> abs(z - y) < u`, | |
REAL_ARITH_TAC);; | |
let REAL_MONO_POW2 = prove | |
(`!m n. m <= n ==> &2 pow m <= &2 pow n`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN | |
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN | |
SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN | |
REWRITE_TAC[ADD_CLAUSES; real_pow; REAL_LE_REFL] THEN | |
POP_ASSUM MP_TAC THEN MP_TAC(SPEC `m:num` REAL_LT_POW2) THEN | |
REAL_ARITH_TAC);; | |
let REAL_LE_SUC_POW2 = prove | |
(`!m. &2 pow m + &1 <= &2 pow (SUC m)`, | |
GEN_TAC THEN REWRITE_TAC[real_pow; REAL_MUL_2; REAL_LE_LADD; REAL_LE_POW2]);; | |
let REAL_OPPSIGN_LEMMA = prove | |
(`!x y. (x * y < &0) <=> (x < &0 /\ &0 < y) \/ (&0 < x /\ y < &0)`, | |
REPEAT GEN_TAC THEN | |
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC `x:real` REAL_LT_NEGTOTAL) THEN | |
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC `y:real` REAL_LT_NEGTOTAL) THEN | |
ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_LT_REFL] THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
DISCH_THEN(fun th -> MP_TAC(MATCH_MP REAL_LT_MUL th) THEN MP_TAC th) THEN | |
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN | |
REAL_ARITH_TAC);; | |
let REAL_OPPSIGN = prove | |
(`(&0 < x ==> &0 <= y) /\ (x < &0 ==> y <= &0) <=> &0 <= x * y`, | |
REWRITE_TAC[GSYM REAL_NOT_LT; REAL_OPPSIGN_LEMMA] THEN | |
REAL_ARITH_TAC);; | |
let REAL_NDIV_LEMMA1a = prove | |
(`!a m n. &2 * abs(&2 pow m * &a - &2 pow (m + n)) <= &2 pow m | |
==> (&a = &2 pow n)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_POW_ADD; GSYM REAL_SUB_LDISTRIB] THEN | |
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM] THEN | |
REWRITE_TAC[REAL_OF_NUM_POW] THEN | |
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC | |
(SPECL [`a:num`; `2 EXP n`] LT_CASES) THEN | |
ASM_REWRITE_TAC[] THEN | |
CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN | |
POP_ASSUM(X_CHOOSE_THEN `d:num` SUBST1_TAC o REWRITE_RULE[LT_EXISTS]) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[REAL_ARITH `((a + b) - a = b) /\ (a - (a + b) = --b)`] THEN | |
REWRITE_TAC[REAL_ABS_NEG; REAL_NOT_LE; REAL_ABS_NUM] THEN | |
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[REAL_MUL_2; REAL_ADD_LDISTRIB; REAL_ADD_RDISTRIB] THEN | |
REWRITE_TAC[REAL_MUL_RID; REAL_ADD_ASSOC; REAL_LT_ADDL] THEN | |
MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&(2 EXP m)` THEN | |
REWRITE_TAC[REAL_LT_POW2; GSYM REAL_OF_NUM_POW] THEN | |
ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + c = b + (a + c)`] THEN | |
REWRITE_TAC[GSYM REAL_MUL_2; REAL_LE_ADDR] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN | |
MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2]);; | |
let REAL_NDIV_LEMMA1b = prove | |
(`!a m n. ~(&2 * abs(-- (&2 pow m * &a) - &2 pow (m + n)) <= &2 pow m)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[real_sub; GSYM REAL_NEG_ADD] THEN | |
REWRITE_TAC[REAL_ABS_NEG; REAL_POW_ADD] THEN | |
REWRITE_TAC[REAL_ABS_MUL; GSYM REAL_ADD_LDISTRIB] THEN | |
SUBGOAL_THEN `&0 <= &a + &2 pow n` ASSUME_TAC THENL | |
[MATCH_MP_TAC REAL_LE_ADD THEN REWRITE_TAC[REAL_POS] THEN | |
MATCH_MP_TAC REAL_POW_LE THEN REWRITE_TAC[REAL_POS]; | |
REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM] THEN | |
ASM_REWRITE_TAC[real_abs; REAL_NOT_LE] THEN | |
MATCH_MP_TAC REAL_LTE_TRANS THEN | |
EXISTS_TAC `(&2 * &2 pow m) * &1` THEN CONJ_TAC THENL | |
[REWRITE_TAC[REAL_MUL_RID; REAL_MUL_2] THEN | |
REWRITE_TAC[REAL_LT_ADDR; REAL_LT_POW2]; | |
REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_LMUL THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN | |
MATCH_MP_TAC REAL_POW_LE THEN REWRITE_TAC[REAL_POS]; | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 pow n` THEN | |
REWRITE_TAC[REAL_LE_POW2; REAL_LE_ADDL; REAL_POS]]]]);; | |
let REAL_NDIV_LEMMA2 = prove | |
(`!a b m n. (?k. (b = &k) \/ (b = --(&k))) /\ | |
(abs(a) = &2 pow m) /\ | |
&2 * abs(a * b - &2 pow (m + n)) <= abs(a) | |
==> (a * b = &2 pow (m + n))`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISJ_CASES_THEN SUBST1_TAC (REAL_ARITH `(a = abs a) \/ (a = --(abs a))`) THEN | |
ASM_REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG] THEN | |
REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_POW; REAL_ABS_NUM; REAL_NEG_NEG] THEN | |
REWRITE_TAC[REAL_NDIV_LEMMA1b] THEN | |
DISCH_THEN(SUBST1_TAC o MATCH_MP REAL_NDIV_LEMMA1a) THEN | |
REWRITE_TAC[REAL_POW_ADD]);; | |
let REAL_NDIV_LEMMA3 = prove | |
(`!a b m n. m <= n /\ | |
(?k. (b = &k) \/ (b = --(&k))) /\ | |
(abs(a) = &2 pow m) /\ | |
&2 * abs(a * b - &2 pow n) <= abs(a) | |
==> (a * b = &2 pow n)`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN | |
REWRITE_TAC[REAL_NDIV_LEMMA2]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Surely there is already an efficient way to do this... *) | |
(* ------------------------------------------------------------------------- *) | |
let log2 = (*** least p >= 0 with x <= 2^p ***) | |
let rec log2 x y = | |
if x </ Int 1 then y | |
else log2 (quo_num x (Int 2)) (y +/ Int 1) in | |
fun x -> log2 (x -/ Int 1) (Int 0);; | |
(* ------------------------------------------------------------------------- *) | |
(* Theorems justifying the steps. *) | |
(* ------------------------------------------------------------------------- *) | |
let REALCALC_DOWNGRADE = prove | |
(`(SUC d0 = d) ==> | |
(n + d = n0) ==> | |
abs(a - &2 pow n0 * x) < &1 ==> | |
abs((&2 pow d) * b - a) <= &2 pow d0 ==> | |
abs(b - &2 pow n * x) < &1`, | |
DISCH_THEN(SUBST1_TAC o SYM) THEN | |
DISCH_THEN(SUBST1_TAC o SYM) THEN | |
REPEAT DISCH_TAC THEN | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `&2 pow (SUC d0)` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_POW_LT THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_ABS_LEMMA; REAL_MUL_RID; REAL_SUB_LDISTRIB] THEN | |
MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&2 pow d0 + &2 pow d0` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_ABS_TRIANGLE_LEMMA THEN EXISTS_TAC `a:real` THEN | |
MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&1` THEN | |
REWRITE_TAC[REAL_MUL_ASSOC; GSYM REAL_POW_ADD] THEN | |
ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_REWRITE_TAC[] THEN | |
SPEC_TAC(`d0:num`,`d0:num`) THEN INDUCT_TAC THEN | |
REWRITE_TAC[real_pow; REAL_LE_REFL] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&1 + &1` THEN | |
REWRITE_TAC[REAL_MUL_2] THEN CONJ_TAC THENL | |
[REAL_ARITH_TAC; | |
MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[]]; | |
REWRITE_TAC[real_pow; GSYM REAL_MUL_2; REAL_LE_REFL]]]);; | |
let REALCALC_INT = prove | |
(`abs((&2 pow n) * a - (&2 pow n) * a) < &1`, | |
REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_0; REAL_LT_01]);; | |
let REALCALC_NEG = prove | |
(`abs(a - (&2 pow n) * x) < &1 | |
==> abs(--a - (&2 pow n) * --x) < &1`, | |
REWRITE_TAC[real_sub; GSYM REAL_NEG_ADD] THEN | |
REWRITE_TAC[REAL_ABS_NEG; REAL_MUL_RNEG]);; | |
let REALCALC_ABS = prove | |
(`abs(a - &2 pow n * x) < &1 | |
==> abs(abs(a) - &2 pow n * abs(x)) < &1`, | |
DISCH_TAC THEN REWRITE_TAC[REAL_ABS_LEMMA] THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN | |
EXISTS_TAC `abs(a - (&2 pow n) * x)` THEN | |
ASM_REWRITE_TAC[REAL_ABS_SUB_ABS]);; | |
let REALCALC_INV_LEMMA = prove | |
(`(?m. (b = &m) \/ (b = --(&m))) /\ | |
(?m. (a = &m) \/ (a = --(&m))) /\ | |
SUC(n + k) <= (2 * e) /\ | |
&2 pow e <= abs(a) /\ | |
abs(a - &2 pow k * x) < &1 /\ | |
&2 * abs(a * b - &2 pow (n + k)) <= abs(a) | |
==> abs(b - &2 pow n * inv(x)) < &1`, | |
let lemma1 = REAL_ARITH | |
`!x y z b. &2 * abs(x - y) <= b /\ &2 * abs(y - z) < b | |
==> &2 * abs(x - z) < &2 * b` in | |
let lemma2 = REAL_ARITH | |
`!x y z. x + &1 <= abs(z) /\ abs(z - y) < &1 ==> x <= abs(y)` in | |
let lemma3 = REAL_ARITH | |
`(abs(x) <= &1 /\ &0 < abs(y) /\ abs(y) < &1) /\ | |
(&0 < x ==> &0 <= y) /\ (x < &0 ==> y <= &0) | |
==> abs(x - y) < &1` in | |
let lemma4 = REAL_ARITH | |
`!a b c. c <= abs(a) + abs(b) /\ abs(a - b) < c ==> | |
(&0 < a ==> &0 <= b) /\ (a < &0 ==> b <= &0)` in | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN | |
SUBGOAL_THEN `~(a = &0)` ASSUME_TAC THENL | |
[DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `&2 pow e <= abs(&0)` THEN | |
REWRITE_TAC[REAL_ABS_0; GSYM REAL_NOT_LT; REAL_LT_POW2]; ALL_TAC] THEN | |
SUBGOAL_THEN `~(x = &0)` ASSUME_TAC THENL | |
[DISCH_THEN SUBST_ALL_TAC THEN | |
UNDISCH_TAC `abs(a - &2 pow k * &0) < &1` THEN | |
REWRITE_TAC[REAL_MUL_RZERO; REAL_SUB_RZERO; REAL_NOT_LT] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 pow e` THEN | |
ASM_REWRITE_TAC[REAL_LE_POW2]; ALL_TAC] THEN | |
SUBGOAL_THEN `(&2 pow e + &1 <= abs(a)) \/ (&2 pow e = abs(a))` MP_TAC THENL | |
[REWRITE_TAC[REAL_OF_NUM_POW] THEN | |
FIRST_ASSUM(CHOOSE_THEN(DISJ_CASES_THEN SUBST_ALL_TAC)) THEN | |
REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[REAL_ABS_NEG; REAL_ABS_NUM]) THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE; REAL_OF_NUM_EQ] THEN | |
REWRITE_TAC[GSYM ADD1; LE_SUC_LT; GSYM LE_LT] THEN | |
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_POW]; | |
UNDISCH_TAC `&2 pow e <= abs(a)` THEN DISCH_THEN(K ALL_TAC)] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[DISCH_TAC THEN MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN | |
EXISTS_TAC `&2 * abs(a)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LT_MUL THEN | |
ASM_REWRITE_TAC[GSYM REAL_ABS_NZ] THEN REAL_ARITH_TAC; | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC; GSYM REAL_ABS_MUL] THEN | |
REWRITE_TAC[REAL_SUB_LDISTRIB; REAL_MUL_RID] THEN | |
MATCH_MP_TAC lemma1 THEN EXISTS_TAC `&2 pow (n + k)` THEN | |
ASM_REWRITE_TAC[]] THEN | |
GEN_REWRITE_TAC (LAND_CONV o funpow 3 RAND_CONV) [REAL_MUL_SYM] THEN | |
REWRITE_TAC[REAL_POW_ADD; GSYM REAL_MUL_ASSOC] THEN | |
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_ABS_MUL] THEN | |
MATCH_MP_TAC REAL_LT_RCANCEL_IMP THEN | |
EXISTS_TAC `abs(x)` THEN ASM_REWRITE_TAC[GSYM REAL_ABS_NZ] THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN | |
ONCE_REWRITE_TAC[GSYM REAL_ABS_MUL] THEN | |
MATCH_MP_TAC REAL_LTE_TRANS THEN | |
EXISTS_TAC `&2 * abs(&2 pow n) * &1` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LT_LMUL THEN | |
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LT_LMUL THEN CONJ_TAC THENL | |
[REWRITE_TAC[GSYM REAL_ABS_NZ; REAL_POW_EQ_0] THEN | |
CONV_TAC(RAND_CONV(LAND_CONV REAL_INT_EQ_CONV)) THEN REWRITE_TAC[]; | |
REWRITE_TAC[REAL_SUB_RDISTRIB] THEN | |
ONCE_REWRITE_TAC[REAL_ABS_SUB] THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [REAL_MUL_SYM] THEN | |
REWRITE_TAC[REAL_MUL_ASSOC] THEN | |
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_RINV th]) THEN | |
ASM_REWRITE_TAC[REAL_MUL_LID]]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `&2 pow k` THEN | |
REWRITE_TAC[REAL_LT_POW2; REAL_MUL_RID; REAL_ABS_LEMMA] THEN | |
ONCE_REWRITE_TAC | |
[AC REAL_MUL_AC `a * b * c = (a * c) * b`] THEN | |
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `&2 pow e * &2 pow e` THEN CONJ_TAC THENL | |
[ONCE_REWRITE_TAC | |
[AC REAL_MUL_AC `(a * b) * c = c * b * a`] THEN | |
REWRITE_TAC[GSYM REAL_POW_ADD; GSYM(CONJUNCT2 real_pow)] THEN | |
MATCH_MP_TAC REAL_MONO_POW2 THEN ASM_REWRITE_TAC[GSYM MULT_2]; | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2]; | |
REWRITE_TAC[REAL_ABS_LEMMA] THEN MATCH_MP_TAC lemma2 THEN | |
EXISTS_TAC `a:real` THEN ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2]; | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 pow e + &1` THEN | |
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]]; | |
DISCH_TAC THEN | |
DISJ_CASES_TAC (SPECL [`e:num`; `n + k:num`] LET_CASES) THENL | |
[SUBGOAL_THEN `a * b = &2 pow (n + k)` ASSUME_TAC THENL | |
[MATCH_MP_TAC REAL_NDIV_LEMMA3 THEN | |
EXISTS_TAC `e:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `abs(a)` THEN | |
ASM_REWRITE_TAC[GSYM REAL_ABS_NZ; GSYM REAL_ABS_MUL] THEN | |
ASM_REWRITE_TAC[REAL_SUB_LDISTRIB] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c = b * a * c`] THEN | |
REWRITE_TAC[REAL_POW_ADD; GSYM REAL_SUB_LDISTRIB] THEN | |
REWRITE_TAC[REAL_ABS_MUL; REAL_MUL_RID] THEN | |
MATCH_MP_TAC REAL_LT_RCANCEL_IMP THEN EXISTS_TAC `abs(x)` THEN | |
ASM_REWRITE_TAC[GSYM REAL_ABS_NZ; GSYM REAL_MUL_ASSOC] THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_ABS_MUL] THEN | |
REWRITE_TAC[REAL_SUB_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN | |
REWRITE_TAC[MATCH_MP REAL_MUL_LINV (ASSUME `~(x = &0)`)] THEN | |
ONCE_REWRITE_TAC[REAL_ABS_SUB] THEN | |
MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&2 pow n * &1` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM] THEN | |
MATCH_MP_TAC REAL_LT_LMUL THEN | |
ASM_REWRITE_TAC[REAL_LT_POW2; REAL_MUL_RID]; | |
MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN EXISTS_TAC `&2 pow (SUC k)` THEN | |
REWRITE_TAC[REAL_MUL_RID; REAL_LT_POW2]] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `&2 pow (2 * e)` THEN CONJ_TAC THENL | |
[REWRITE_TAC[GSYM REAL_POW_ADD; ADD_CLAUSES] THEN | |
MATCH_MP_TAC REAL_MONO_POW2 THEN ASM_REWRITE_TAC[]; | |
SUBST1_TAC(SYM(ASSUME `&2 pow e = abs(a)`)) THEN | |
REWRITE_TAC[MULT_2; REAL_POW_ADD; GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN | |
REWRITE_TAC[MATCH_MP REAL_LT_IMP_LE (SPEC_ALL REAL_LT_POW2)]] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[real_pow] THEN | |
SUBGOAL_THEN `?d. e = SUC d` (CHOOSE_THEN SUBST_ALL_TAC) THENL | |
[UNDISCH_TAC `SUC (n + k) <= (2 * e)` THEN | |
SPEC_TAC(`e:num`,`e:num`) THEN INDUCT_TAC THEN | |
REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; LE; NOT_SUC] THEN | |
REWRITE_TAC[SUC_INJ; GSYM EXISTS_REFL]; | |
REWRITE_TAC[real_pow; GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_POS] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `&2 pow (SUC d) - &1` THEN | |
REWRITE_TAC[REAL_LE_SUB_RADD; REAL_LE_SUB_LADD] THEN | |
REWRITE_TAC[REAL_LE_SUC_POW2] THEN | |
SUBGOAL_THEN `abs(abs a - &2 pow k * abs(x)) < &1` MP_TAC THENL | |
[REWRITE_TAC[REAL_ABS_LEMMA] THEN | |
MATCH_MP_TAC(REAL_LET_IMP REAL_ABS_SUB_ABS) THEN | |
ASM_REWRITE_TAC[]; | |
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]]; | |
SUBGOAL_THEN `abs(b) <= &1 /\ &0 <= a * b` STRIP_ASSUME_TAC THENL | |
[ASM_CASES_TAC `b = &0` THEN | |
ASM_REWRITE_TAC[REAL_ABS_0; REAL_MUL_RZERO; REAL_POS] THEN | |
SUBGOAL_THEN `abs(a) <= abs(a * b)` ASSUME_TAC THENL | |
[GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_MUL_RID] THEN | |
REWRITE_TAC[REAL_ABS_MUL] THEN MATCH_MP_TAC REAL_LE_LMUL THEN | |
REWRITE_TAC[REAL_ABS_POS] THEN | |
SUBGOAL_THEN `?q. abs(b) = &q` CHOOSE_TAC THENL | |
[UNDISCH_TAC `?m. (b = &m) \/ (b = --(&m))` THEN | |
DISCH_THEN(X_CHOOSE_THEN `p:num` DISJ_CASES_TAC) THEN | |
EXISTS_TAC `p:num` THEN | |
ASM_REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM]; | |
UNDISCH_TAC `~(b = &0)` THEN ASM_REWRITE_TAC[REAL_ABS_NZ] THEN | |
REWRITE_TAC[REAL_ABS_NUM; REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN | |
REWRITE_TAC[SYM(REWRITE_CONV[ARITH_SUC] `SUC 0`)] THEN | |
REWRITE_TAC[LE_SUC_LT]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `abs(a * b) <= abs(a) /\ &0 <= a * b` ASSUME_TAC THENL | |
[MP_TAC(SPEC `(n:num) + k` REAL_LT_POW2) THEN | |
UNDISCH_TAC `&2 * abs(a * b - &2 pow (n + k)) <= abs a` THEN | |
UNDISCH_TAC `abs(a) <= abs(a * b)` THEN | |
SUBGOAL_THEN `~(a * b = &0)` MP_TAC THENL | |
[ASM_REWRITE_TAC[REAL_ENTIRE]; ALL_TAC] THEN | |
SUBGOAL_THEN `&2 * &2 pow (n + k) <= abs(a)` MP_TAC THENL | |
[REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN | |
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN | |
MATCH_MP_TAC REAL_MONO_POW2 THEN ASM_REWRITE_TAC[LE_SUC_LT]; | |
REAL_ARITH_TAC]; | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN | |
EXISTS_TAC `abs(a)` THEN ASM_REWRITE_TAC | |
[GSYM REAL_ABS_NZ; GSYM REAL_ABS_MUL; REAL_MUL_RID]]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC lemma3 THEN CONJ_TAC THENL | |
[ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ASM_REWRITE_TAC[GSYM REAL_ABS_NZ; REAL_ENTIRE; REAL_INV_EQ_0] THEN | |
MATCH_MP_TAC REAL_LT_IMP_NZ THEN REWRITE_TAC[REAL_LT_POW2]; | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `abs(x)` THEN | |
ASM_REWRITE_TAC[GSYM REAL_ABS_NZ; GSYM REAL_ABS_MUL] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c = b * c * a`] THEN | |
SUBGOAL_THEN `inv(x) * x = &1` SUBST1_TAC THENL | |
[MATCH_MP_TAC REAL_MUL_LINV THEN ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_RID] THEN | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `&2 pow k` THEN | |
REWRITE_TAC[REAL_LT_POW2; REAL_ABS_LEMMA] THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN | |
EXISTS_TAC `&2 pow (SUC(n + k)) - &1` THEN | |
REWRITE_TAC[REAL_LT_SUB_RADD; REAL_LE_SUB_LADD] THEN | |
ONCE_REWRITE_TAC[ADD_SYM] THEN | |
REWRITE_TAC[GSYM REAL_POW_ADD] THEN | |
ONCE_REWRITE_TAC[ADD_SYM] THEN | |
REWRITE_TAC[REAL_LE_SUC_POW2; REAL_ABS_POW; REAL_ABS_NUM] THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `&2 pow e` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_MONO_POW2 THEN | |
ASM_REWRITE_TAC[LE_SUC_LT]; | |
UNDISCH_TAC `abs(a - &2 pow k * x) < &1` THEN | |
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]]]; | |
SUBGOAL_THEN `&0 <= b * (&2 pow n * inv x)` MP_TAC THENL | |
[MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN | |
EXISTS_TAC `a * a` THEN ASM_REWRITE_TAC[REAL_LT_SQUARE] THEN | |
REWRITE_TAC[REAL_MUL_RZERO] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC | |
`(a * b) * c * d = (a * c) * (b * d)`] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN | |
EXISTS_TAC `x * x` THEN ASM_REWRITE_TAC[REAL_LT_SQUARE] THEN | |
REWRITE_TAC[REAL_MUL_RZERO] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC | |
`(a * b) * c * d * e = d * (e * a) * c * b`] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN | |
REWRITE_TAC[MATCH_MP REAL_LT_IMP_LE (SPEC_ALL REAL_LT_POW2)] THEN | |
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) | |
[MATCH_MP REAL_MUL_LINV th]) THEN | |
MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `&2 pow k` THEN | |
REWRITE_TAC[REAL_LT_POW2; REAL_MUL_RZERO; REAL_MUL_LID] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c = b * (a * c)`] THEN | |
ONCE_REWRITE_TAC[GSYM REAL_OPPSIGN] THEN | |
MATCH_MP_TAC lemma4 THEN EXISTS_TAC `&1` THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `abs(a)` THEN CONJ_TAC THENL | |
[UNDISCH_TAC `?m. (a = &m) \/ (a = -- (&m))` THEN | |
DISCH_THEN(CHOOSE_THEN(DISJ_CASES_THEN SUBST_ALL_TAC)) THEN | |
ASM_REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM] THEN | |
REWRITE_TAC[REAL_OF_NUM_LE] THEN | |
REWRITE_TAC[SYM(REWRITE_CONV[ARITH_SUC] `SUC 0`)] THEN | |
REWRITE_TAC[LE_SUC_LT] THEN RULE_ASSUM_TAC | |
(REWRITE_RULE[REAL_ARITH `(--x = &0) = (x = &0)`]) THEN | |
UNDISCH_TAC `~(&m = &0)` THEN REWRITE_TAC[REAL_OF_NUM_EQ] THEN | |
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[NOT_LT; LE]; | |
REWRITE_TAC[REAL_LE_ADDR; REAL_ABS_POS]]; | |
REWRITE_TAC[REAL_OPPSIGN]]]]]);; | |
let REALCALC_INV = prove | |
(`abs(a - &2 pow k * x) < &1 ==> | |
(?m. (a = &m) \/ (a = --(&m))) ==> | |
(?m. (b = &m) \/ (b = --(&m))) ==> | |
SUC(n + k) <= (2 * e) ==> | |
&2 pow e <= abs(a) ==> | |
&2 * abs(a * b - &2 pow (n + k)) <= abs(a) | |
==> abs(b - &2 pow n * inv(x)) < &1`, | |
REPEAT DISCH_TAC THEN MATCH_MP_TAC REALCALC_INV_LEMMA THEN | |
ASM_REWRITE_TAC[]);; | |
let REALCALC_ADD = prove | |
(`(n + 2 = n') ==> | |
abs(a - &2 pow n' * x) < &1 ==> | |
abs(b - &2 pow n' * y) < &1 ==> | |
abs(&4 * c - (a + b)) <= &2 | |
==> abs(c - &2 pow n * (x + y)) < &1`, | |
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN REPEAT DISCH_TAC THEN | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN | |
EXISTS_TAC `&2 pow 2` THEN | |
CONV_TAC(LAND_CONV REAL_INT_REDUCE_CONV) THEN | |
REWRITE_TAC[REAL_ABS_LEMMA; REAL_SUB_LDISTRIB; REAL_MUL_RID] THEN | |
REWRITE_TAC[REAL_MUL_ASSOC; GSYM REAL_POW_ADD] THEN | |
ONCE_REWRITE_TAC[ADD_SYM] THEN | |
SUBST1_TAC(REAL_INT_REDUCE_CONV `&2 pow 2`) THEN | |
MATCH_MP_TAC REAL_ABS_TRIANGLE_LEMMA THEN | |
EXISTS_TAC `a + b` THEN | |
GEN_REWRITE_TAC RAND_CONV [SYM(REAL_INT_REDUCE_CONV `&2 + &2`)] THEN | |
MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC | |
[REAL_ARITH `(x + y) - a * (u + v) = (x - a * u) + (y - a * v)`] THEN | |
GEN_REWRITE_TAC RAND_CONV [SYM(REAL_INT_REDUCE_CONV `&1 + &1`)] THEN | |
MATCH_MP_TAC(REAL_LET_IMP REAL_ABS_TRIANGLE) THEN | |
MATCH_MP_TAC REAL_LT_ADD2 THEN ASM_REWRITE_TAC[]);; | |
let REALCALC_MUL = prove | |
(`abs(a - &2 pow k * x) < &1 ==> | |
abs(b - &2 pow l * y) < &1 ==> | |
(n + m = k + l) ==> | |
&2 * (abs(a) + abs(b) + &1) <= &2 pow m ==> | |
&2 * abs(&2 pow m * c - a * b) <= &2 pow m | |
==> abs(c - &2 pow n * (x * y)) < &1`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `&2 pow m` THEN | |
REWRITE_TAC[REAL_LT_POW2; REAL_ABS_LEMMA; REAL_SUB_LDISTRIB] THEN | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `&2` THEN | |
CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN | |
REWRITE_TAC[REAL_MUL_RID] THEN | |
GEN_REWRITE_TAC RAND_CONV [REAL_MUL_2] THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN | |
EXISTS_TAC `&2 * abs(&2 pow m * c - a * b) + | |
&2 * abs(a * b - &2 pow m * &2 pow n * x * y)` THEN | |
CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN | |
MATCH_MP_TAC REAL_LET_ADD2 THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_MUL_ASSOC; GSYM REAL_POW_ADD] THEN | |
ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_POW_ADD] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC `((a * b) * c) * d = (a * c) * (b * d)`] THEN | |
SUBGOAL_THEN `?d. abs(d) < &1 /\ (&2 pow k * x = a + d)` MP_TAC THENL | |
[EXISTS_TAC `&2 pow k * x - a` THEN | |
UNDISCH_TAC `abs(a - &2 pow k * x) < &1` THEN REAL_ARITH_TAC; | |
DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC))] THEN | |
SUBGOAL_THEN `?e. abs(e) < &1 /\ (&2 pow l * y = b + e)` MP_TAC THENL | |
[EXISTS_TAC `&2 pow l * y - b` THEN | |
UNDISCH_TAC `abs(b - &2 pow l * y) < &1` THEN REAL_ARITH_TAC; | |
DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC))] THEN | |
MATCH_MP_TAC REAL_LTE_TRANS THEN | |
EXISTS_TAC `&2 * (abs(a) * &1 + abs(b) * &1 + &1 * &1)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LT_LMUL THEN | |
CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN | |
EXISTS_TAC `abs(a) * abs(e) + abs(b) * abs(d) + abs(d) * abs(e)` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[GSYM REAL_ABS_MUL] THEN REAL_ARITH_TAC; | |
MATCH_MP_TAC REAL_LET_ADD2 THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LET_ADD2 THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_MUL2 THEN ASM_REWRITE_TAC[REAL_ABS_POS]]]]; | |
ASM_REWRITE_TAC[REAL_MUL_RID]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Square root. *) | |
(* ------------------------------------------------------------------------- *) | |
let REALCALC_SQRT = prove | |
(`abs(a - &2 pow n * x) < &1 | |
==> &1 <= x | |
==> abs(b pow 2 - &2 pow n * a) <= b | |
==> abs(b - &2 pow n * sqrt(x)) < &1`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN | |
EXISTS_TAC `abs(b + &2 pow n * sqrt(x))` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC(REAL_ARITH | |
`!z. abs(z) <= b /\ &0 < c ==> &0 < abs(b + c)`) THEN | |
EXISTS_TAC `b pow 2 - &2 pow n * a` THEN ASM_REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; ARITH; REAL_LT_MUL; | |
SQRT_POS_LT; REAL_ARITH `&1 <= x ==> &0 < x`]; ALL_TAC] THEN | |
REWRITE_TAC[GSYM REAL_ABS_MUL; REAL_MUL_RID] THEN | |
ONCE_REWRITE_TAC[REAL_ARITH | |
`(a + b) * (a - b) = a * a - b * b`] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`!c d. abs(b - c) <= d /\ abs(c - a) < e - d | |
==> abs(b - a) < e`) THEN | |
MAP_EVERY EXISTS_TAC [`&2 pow n * a`; `b:real`] THEN | |
ASM_REWRITE_TAC[GSYM REAL_POW_2] THEN | |
REWRITE_TAC[REAL_POW_2; GSYM REAL_MUL_ASSOC] THEN | |
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_ABS_MUL] THEN | |
MATCH_MP_TAC(REAL_ARITH `a < c ==> a < abs(b + c) - b`) THEN | |
REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM] THEN | |
MATCH_MP_TAC REAL_LT_LMUL THEN | |
SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&1` THEN | |
ASM_SIMP_TAC[GSYM REAL_MUL_ASSOC; GSYM POW_2; SQRT_POW_2; | |
REAL_ARITH `&1 <= x ==> &0 <= x`] THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP(REAL_ARITH `&1 <= x ==> &0 <= x`)) THEN | |
UNDISCH_TAC `&1 <= x` THEN CONV_TAC CONTRAPOS_CONV THEN | |
REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `x = sqrt(x) pow 2` SUBST1_TAC THENL | |
[CONV_TAC SYM_CONV THEN ASM_REWRITE_TAC[SQRT_POW2]; | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN | |
REWRITE_TAC[POW_2] THEN MATCH_MP_TAC REAL_LT_MUL2 THEN | |
ASM_SIMP_TAC[SQRT_POS_LE]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmas common to all the Taylor series error analyses. *) | |
(* ------------------------------------------------------------------------- *) | |
let STEP_LEMMA1 = prove | |
(`!a b c d x y. | |
abs(a - c) <= x /\ abs(b - d) <= y | |
==> abs(a * b - c * d) <= abs(c) * y + abs(d) * x + x * y`, | |
REPEAT GEN_TAC THEN | |
ABBREV_TAC `u = a - c` THEN ABBREV_TAC `v = b - d` THEN | |
SUBGOAL_THEN `a = c + u` SUBST1_TAC THENL | |
[POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN `b = d + v` SUBST1_TAC THENL | |
[POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
STRIP_TAC THEN SUBST1_TAC | |
(REAL_ARITH `(c + u) * (d + v) - c * d = c * v + d * u + u * v`) THEN | |
REPEAT(MATCH_MP_TAC (REAL_LE_IMP REAL_ABS_TRIANGLE) THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC) THEN | |
REWRITE_TAC[REAL_ABS_MUL] THENL | |
[MATCH_MP_TAC REAL_LE_LMUL; | |
MATCH_MP_TAC REAL_LE_LMUL; | |
MATCH_MP_TAC REAL_LE_MUL2] THEN | |
ASM_REWRITE_TAC[REAL_ABS_POS]);; | |
let STEP_LEMMA2 = prove | |
(`!n s t u x y k l a d. | |
&0 < a /\ | |
&0 < d /\ | |
abs(s - &2 pow n * x) <= k /\ | |
abs(t - &2 pow n * y) <= l /\ | |
&2 * abs(u * &2 pow n * d - a * s * t) <= &2 pow n * d | |
==> abs(u - &2 pow n * (a / d) * (x * y)) <= | |
(a / d) * (abs(x) + k / (&2 pow n)) * l + | |
((a / d) * k * abs(y) + &1 / &2)`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ONCE_REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN | |
(CONJUNCTS_THEN2 (ASSUME_TAC o MATCH_MP STEP_LEMMA1) ASSUME_TAC) THEN | |
SUBGOAL_THEN `&0 < &2 * &2 pow n * d` ASSUME_TAC THENL | |
[REPEAT(MATCH_MP_TAC REAL_LT_MUL THEN CONJ_TAC) THEN | |
ASM_REWRITE_TAC[REAL_LT_POW2] THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN | |
EXISTS_TAC `&2 * &2 pow n * d` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[real_div; REAL_ADD_LDISTRIB; REAL_ADD_RDISTRIB] THEN | |
SUBGOAL_THEN | |
`!z. (&2 * &2 pow n * d) * abs(z) = abs((&2 * &2 pow n * d) * z)` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[GEN_TAC THEN ONCE_REWRITE_TAC[REAL_ABS_MUL] THEN AP_THM_TAC THEN | |
AP_TERM_TAC THEN UNDISCH_TAC `&0 < &2 * &2 pow n * d` THEN | |
REAL_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[REAL_SUB_LDISTRIB] THEN | |
(MATCH_MP_TAC o GEN_ALL o REAL_ARITH) | |
`abs(a - b) + abs(b - c) <= d ==> abs(a - c) <= d` THEN | |
EXISTS_TAC `&2 * a * s * t` THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_ADD_ASSOC] THEN | |
GEN_REWRITE_TAC RAND_CONV [REAL_ADD_SYM] THEN | |
SUBGOAL_THEN `(inv(&2) * &2 = &1) /\ | |
(inv(&2 pow n) * &2 pow n = &1) /\ | |
(inv(d) * d = &1)` | |
STRIP_ASSUME_TAC THENL | |
[REPEAT CONJ_TAC THEN MATCH_MP_TAC REAL_MUL_LINV THEN | |
REWRITE_TAC[REAL_POW_EQ_0] THEN | |
UNDISCH_TAC `&0 < d` THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN | |
ASM_REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_RID] THEN | |
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; GSYM REAL_ABS_LEMMA1] THEN | |
REWRITE_TAC[REAL_MUL_ASSOC] THEN | |
GEN_REWRITE_TAC (LAND_CONV o funpow 2 RAND_CONV o LAND_CONV) | |
[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[GSYM REAL_MUL_ASSOC]; | |
REWRITE_TAC(map (GSYM o SPEC `&2`) | |
[REAL_SUB_LDISTRIB; REAL_ADD_LDISTRIB]) THEN | |
REWRITE_TAC[GSYM REAL_ABS_LEMMA1] THEN MATCH_MP_TAC REAL_LE_LMUL THEN | |
CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) | |
[AC REAL_MUL_AC | |
`a * b * c * d * e * f * g = d * (a * f) * (c * g) * (e * b)`] THEN | |
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o LAND_CONV) | |
[AC REAL_MUL_AC | |
`a * b * c * d * e * f = c * (a * e) * f * (d * b)`] THEN | |
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) | |
[AC REAL_MUL_AC | |
`a * b * c * d * e * f * g = c * (e * g) * (f * a) * (d * b)`] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) | |
[AC REAL_MUL_AC | |
`a * b * c * d * e * f = c * (a * f) * e * (d * b)`] THEN | |
GEN_REWRITE_TAC RAND_CONV | |
[AC REAL_ADD_AC `(a + b) + c = a + c + b`] THEN | |
ASM_REWRITE_TAC[REAL_MUL_RID] THEN | |
REWRITE_TAC[GSYM REAL_ADD_LDISTRIB; GSYM REAL_SUB_LDISTRIB] THEN | |
REWRITE_TAC[REAL_ABS_MUL] THEN | |
SUBGOAL_THEN `abs(a) = a` SUBST1_TAC THENL | |
[UNDISCH_TAC `&0 < a` THEN REAL_ARITH_TAC; | |
MATCH_MP_TAC REAL_LE_LMUL THEN ASM_REWRITE_TAC[REAL_ABS_LEMMA] THEN | |
MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now specific instances. *) | |
(* ------------------------------------------------------------------------- *) | |
let STEP_EXP = prove | |
(`abs(x) <= &1 /\ | |
abs(s - &2 pow n * x) <= &1 /\ | |
abs(t - &2 pow n * (x pow i / &(FACT i))) <= k /\ | |
&2 * abs(u * &2 pow n * &(SUC i) - s * t) <= &2 pow n * &(SUC i) | |
==> abs(u - &2 pow n * (x pow (SUC i)) / &(FACT(SUC i))) <= | |
(&2 / &(SUC i)) * k + &1 / &(FACT(SUC i)) + &1 / &2`, | |
STRIP_TAC THEN | |
MP_TAC(SPECL [`n:num`; `s:real`; `t:real`; `u:real`; | |
`x:real`; `x pow i / &(FACT i)`; | |
`&1`; `k:real`; `&1`; `&(SUC i)`] STEP_LEMMA2) THEN | |
ASM_REWRITE_TAC[REAL_LT_01; REAL_MUL_LID] THEN | |
REWRITE_TAC[REAL_OF_NUM_LT; LT_0] THEN | |
REWRITE_TAC[FACT; real_div; GSYM REAL_OF_NUM_MUL; real_pow] THEN | |
REWRITE_TAC[REAL_MUL_LID; REAL_INV_MUL] THEN | |
MATCH_MP_TAC(REAL_ARITH `(a = b) /\ c <= d ==> a <= c ==> b <= d`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[REAL_MUL_AC]; | |
REWRITE_TAC[REAL_ADD_ASSOC; REAL_LE_RADD] THEN | |
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o LAND_CONV) [REAL_MUL_SYM] THEN | |
REWRITE_TAC[GSYM REAL_ADD_LDISTRIB; GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_INV THEN REWRITE_TAC[REAL_OF_NUM_LE; LE_0]; | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_RMUL THEN CONJ_TAC THENL | |
[GEN_REWRITE_TAC RAND_CONV [REAL_ARITH `&2 = &1 + &1`] THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC REAL_INV_LE_1 THEN REWRITE_TAC[REAL_LE_POW2]; | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `abs(t - &2 pow n * (x pow i / &(FACT i)))` THEN | |
ASM_REWRITE_TAC[REAL_ABS_POS]]; | |
REWRITE_TAC[REAL_ABS_MUL] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[REAL_ABS_POW] THEN MATCH_MP_TAC REAL_POW_1_LE THEN | |
ASM_REWRITE_TAC[REAL_ABS_POS]; | |
MATCH_MP_TAC(REAL_ARITH `&0 <= a ==> abs(a) <= a`) THEN | |
MATCH_MP_TAC REAL_LE_INV THEN | |
REWRITE_TAC[REAL_OF_NUM_LE; LE_0]]]]]);; | |
let STEP_SIN = prove | |
(`abs(x) <= &1 /\ | |
abs(s - &2 pow n * --(x pow 2)) <= &1 /\ | |
abs(t - &2 pow n * | |
x pow (2 * i + 1) / &(FACT (2 * i + 1))) | |
<= &1 /\ | |
&2 * abs(u * &2 pow n * &(2 * i + 2) * &(2 * i + 3) | |
- s * t) | |
<= &2 pow n * &(2 * i + 2) * &(2 * i + 3) | |
==> abs(u - &2 pow n * | |
--(x pow (2 * (SUC i) + 1)) / | |
&(FACT (2 * (SUC i) + 1))) <= &1`, | |
STRIP_TAC THEN | |
MP_TAC(SPECL [`n:num`; `s:real`; `t:real`; `u:real`; | |
`--(x pow 2)`; | |
`x pow (2 * i + 1) / | |
&(FACT(2 * i + 1))`; | |
`&1`; `&1`; `&1`; | |
`&(2 * i + 2) * &(2 * i + 3)`] | |
STEP_LEMMA2) THEN | |
ASM_REWRITE_TAC[REAL_LT_01; REAL_MUL_LID] THEN W(C SUBGOAL_THEN | |
(fun th -> REWRITE_TAC[th]) o funpow 2 (fst o dest_imp) o snd) THENL | |
[REWRITE_TAC(map num_CONV [`3`; `2`; `1`]) THEN | |
REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LT] THEN | |
REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES; LT_0]; ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH `(a = b) /\ c <= d ==> a <= c ==> b <= d`) THEN | |
CONJ_TAC THENL | |
[AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN SUBGOAL_THEN | |
`2 * (SUC i) + 1 = SUC(SUC(2 * i + 1))` | |
SUBST1_TAC THENL | |
[GEN_REWRITE_TAC I [GSYM REAL_OF_NUM_EQ] THEN | |
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD] THEN | |
REAL_ARITH_TAC; | |
REWRITE_TAC[real_pow; FACT] THEN | |
REWRITE_TAC[ADD1; GSYM ADD_ASSOC] THEN | |
REWRITE_TAC[ARITH] THEN | |
REWRITE_TAC[real_div; REAL_INV_MUL; GSYM REAL_OF_NUM_MUL; | |
GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[REAL_MUL_LID; REAL_MUL_RNEG; REAL_MUL_LNEG] THEN | |
REWRITE_TAC[REAL_POW_2; REAL_MUL_AC]]; | |
GEN_REWRITE_TAC RAND_CONV | |
[SYM(REAL_RAT_REDUCE_CONV `&1 / &3 + &1 / &6 + &1 / &2`)] THEN | |
REWRITE_TAC[REAL_ADD_ASSOC; REAL_LE_RADD] THEN | |
SUBGOAL_THEN `&1 / (&(2 * i + 2) * &(2 * i + 3)) | |
<= &1 / &6` ASSUME_TAC THENL | |
[REWRITE_TAC[real_div; REAL_MUL_LID] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN | |
CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_ARITH `&6 = &2 * &3`] THEN | |
REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN | |
MATCH_MP_TAC LE_MULT2 THEN ONCE_REWRITE_TAC[ADD_SYM] THEN | |
REWRITE_TAC[LE_ADD]; ALL_TAC] THEN | |
REWRITE_TAC[SYM(REAL_RAT_REDUCE_CONV `&1 / &6 * &2`)] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_MUL_RID] THEN | |
REWRITE_TAC[GSYM REAL_ADD_LDISTRIB] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[] THEN | |
REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[real_div; REAL_MUL_LID; REAL_LE_INV_EQ] THEN | |
REWRITE_TAC[REAL_OF_NUM_MUL; REAL_POS]; | |
MATCH_MP_TAC REAL_LE_ADD THEN | |
REWRITE_TAC[REAL_MUL_RID; REAL_ABS_POS] THEN | |
MATCH_MP_TAC REAL_LE_ADD THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID; REAL_LE_INV_EQ; REAL_ABS_POS] THEN | |
MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2]; | |
REWRITE_TAC[REAL_MUL_RID]] THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[GEN_REWRITE_TAC RAND_CONV [REAL_ARITH `&2 = &1 + &1`] THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_POW] THEN | |
MATCH_MP_TAC REAL_POW_1_LE THEN ASM_REWRITE_TAC[REAL_ABS_POS]; | |
REWRITE_TAC[real_div; REAL_MUL_LID] THEN | |
MATCH_MP_TAC REAL_INV_LE_1 THEN REWRITE_TAC[REAL_LE_POW2]]; | |
REWRITE_TAC[real_div; REAL_ABS_MUL] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[REAL_ABS_POW] THEN MATCH_MP_TAC REAL_POW_1_LE THEN | |
ASM_REWRITE_TAC[REAL_ABS_POS]; | |
REWRITE_TAC[REAL_ABS_INV; REAL_ABS_NUM] THEN | |
MATCH_MP_TAC REAL_INV_LE_1 THEN | |
REWRITE_TAC[REAL_OF_NUM_LE; FACT_LE]]]]);; | |
let STEP_COS = prove | |
(`abs(x) <= &1 /\ | |
abs(s - &2 pow n * --(x pow 2)) <= &1 /\ | |
abs(t - &2 pow n * | |
x pow (2 * i) / &(FACT (2 * i))) | |
<= k /\ | |
&2 * abs(u * &2 pow n * &(2 * i + 1) * &(2 * i + 2) | |
- s * t) | |
<= &2 pow n * &(2 * i + 1) * &(2 * i + 2) | |
==> abs(u - &2 pow n * | |
--(x pow (2 * (SUC i))) / | |
&(FACT (2 * (SUC i)))) | |
<= (&2 * inv(&(2 * i + 1) * &(2 * i + 2))) * k | |
+ inv(&(FACT(2 * i + 2))) + &1 / &2`, | |
STRIP_TAC THEN | |
MP_TAC(SPECL [`n:num`; `s:real`; `t:real`; `u:real`; | |
`--(x pow 2)`; | |
`x pow (2 * i) / | |
&(FACT(2 * i))`; | |
`&1`; `k:real`; `&1`; | |
`&(2 * i + 1) * &(2 * i + 2)`] | |
STEP_LEMMA2) THEN | |
ASM_REWRITE_TAC[REAL_LT_01; REAL_MUL_LID] THEN W(C SUBGOAL_THEN | |
(fun th -> REWRITE_TAC[th]) o funpow 2 (fst o dest_imp) o snd) THENL | |
[REWRITE_TAC(map num_CONV [`3`; `2`; `1`]) THEN | |
REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LT] THEN | |
REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES; LT_0]; ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH `(a = b) /\ c <= d ==> a <= c ==> b <= d`) THEN | |
CONJ_TAC THENL | |
[AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN SUBGOAL_THEN | |
`2 * (SUC i) = SUC(SUC(2 * i))` | |
SUBST1_TAC THENL | |
[GEN_REWRITE_TAC I [GSYM REAL_OF_NUM_EQ] THEN | |
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD] THEN | |
REAL_ARITH_TAC; | |
REWRITE_TAC[real_pow; FACT] THEN | |
REWRITE_TAC[ADD1; GSYM ADD_ASSOC] THEN | |
REWRITE_TAC[ARITH] THEN | |
REWRITE_TAC[real_div; REAL_INV_MUL; GSYM REAL_OF_NUM_MUL; | |
GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[REAL_MUL_LID; REAL_MUL_RNEG; REAL_MUL_LNEG] THEN | |
REWRITE_TAC[REAL_POW_2; REAL_MUL_AC]]; | |
REWRITE_TAC[REAL_ADD_ASSOC; REAL_LE_RADD] THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[REWRITE_TAC[REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN CONJ_TAC THENL | |
[REWRITE_TAC[real_div; REAL_MUL_LID] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_SYM] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_INV THEN | |
REWRITE_TAC[REAL_OF_NUM_MUL; REAL_POS]; | |
GEN_REWRITE_TAC RAND_CONV [REAL_ARITH `&2 = &1 + &1`] THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_POW] THEN | |
MATCH_MP_TAC REAL_POW_1_LE THEN | |
ASM_REWRITE_TAC[REAL_ABS_POS]; | |
MATCH_MP_TAC REAL_INV_LE_1 THEN REWRITE_TAC[REAL_LE_POW2]]]; | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC | |
`abs(t - &2 pow n * x pow (2 * i) / &(FACT (2 * i)))` THEN | |
ASM_REWRITE_TAC[REAL_ABS_POS]]; | |
REWRITE_TAC[real_div; REAL_MUL_LID; REAL_INV_MUL; REAL_ABS_MUL] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC | |
`(a * b) * c * d = (d * a * b) * c`] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
REPEAT CONJ_TAC THENL | |
[REPEAT(MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC) THEN | |
REWRITE_TAC[REAL_POS; REAL_ABS_POS; REAL_LE_INV_EQ]; | |
REWRITE_TAC[REAL_ABS_INV] THEN | |
REWRITE_TAC[GSYM REAL_INV_MUL; REAL_ABS_NUM] THEN | |
MATCH_MP_TAC REAL_EQ_IMP_LE THEN AP_TERM_TAC THEN | |
REWRITE_TAC[num_CONV `2`; num_CONV `1`; ADD_CLAUSES] THEN | |
REWRITE_TAC[SYM(num_CONV `2`); SYM(num_CONV `1`)] THEN | |
REWRITE_TAC[FACT; REAL_OF_NUM_MUL] THEN | |
REWRITE_TAC[MULT_AC]; | |
REWRITE_TAC[REAL_ABS_POW] THEN MATCH_MP_TAC REAL_POW_1_LE THEN | |
ASM_REWRITE_TAC[REAL_ABS_POS]]]]);; | |
let STEP_LN = prove | |
(`2 <= n /\ | |
abs(x) <= &1 / &2 /\ | |
abs(s - &2 pow n * --x) <= &1 /\ | |
abs(t - &2 pow n * -- ((--x) pow (SUC i) / &(SUC i))) <= &3 /\ | |
&2 * abs(u * &2 pow n * &(SUC(SUC i)) - &(SUC i) * s * t) | |
<= &2 pow n * &(SUC(SUC i)) | |
==> abs(u - &2 pow n * -- ((--x) pow (SUC(SUC i)) / &(SUC(SUC i)))) <= &3`, | |
STRIP_TAC THEN | |
MP_TAC(SPECL [`n:num`; `s:real`; `t:real`; `u:real`; | |
`--x`; | |
`-- (--x pow (SUC i) / &(SUC i))`; | |
`&1`; `&3`; | |
`&(SUC i)`; | |
`&(SUC(SUC i))`] | |
STEP_LEMMA2) THEN | |
ASM_REWRITE_TAC[REAL_LT_01; REAL_MUL_LID] THEN | |
REWRITE_TAC[REAL_OF_NUM_LT; LT_0] THEN | |
MATCH_MP_TAC(REAL_ARITH `(a = b) /\ c <= d ==> a <= c ==> b <= d`) THEN | |
CONJ_TAC THENL | |
[AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[real_pow; real_div; REAL_INV_MUL] THEN | |
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN | |
AP_TERM_TAC THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN | |
GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN | |
SUBGOAL_THEN `inv(&(SUC i)) * &(SUC i) = &1` ASSUME_TAC THENL | |
[MATCH_MP_TAC REAL_MUL_LINV THEN | |
REWRITE_TAC[REAL_OF_NUM_EQ; NOT_SUC]; | |
ASM_REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_LID] THEN | |
REWRITE_TAC[REAL_MUL_AC]]; | |
GEN_REWRITE_TAC RAND_CONV [SYM(REAL_RAT_REDUCE_CONV | |
`(&1 / &2 + &1 / &4) * &3 + &1 / &4 + &1 / &2`)] THEN | |
REWRITE_TAC[REAL_ADD_ASSOC; REAL_LE_RADD] THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN | |
CONV_TAC(RAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN | |
EXISTS_TAC `&(SUC(SUC i))` THEN | |
REWRITE_TAC[REAL_MUL_LZERO; REAL_OF_NUM_LT; LT_0] THEN | |
REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN | |
MATCH_MP_TAC(REAL_ARITH `(x = &1) ==> &0 <= x`) THEN | |
MATCH_MP_TAC REAL_MUL_LINV THEN | |
REWRITE_TAC[REAL_OF_NUM_EQ; NOT_SUC]; | |
MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN | |
EXISTS_TAC `&(SUC(SUC i))` THEN | |
REWRITE_TAC[REAL_OF_NUM_LT; LT_0] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID; GSYM REAL_MUL_ASSOC] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_POS] THEN | |
REWRITE_TAC[REAL_OF_NUM_LE; LE] THEN | |
MATCH_MP_TAC(REAL_ARITH `(x = &1) ==> &0 <= x /\ x <= &1`) THEN | |
MATCH_MP_TAC REAL_MUL_LINV THEN | |
REWRITE_TAC[REAL_OF_NUM_EQ; NOT_SUC]; | |
MATCH_MP_TAC REAL_LE_ADD THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID; REAL_LE_INV_EQ] THEN | |
MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2]; | |
MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[REAL_ABS_NEG] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN | |
CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN | |
SUBST1_TAC(SYM(REAL_INT_REDUCE_CONV `&2 pow 2`)) THEN | |
MATCH_MP_TAC REAL_MONO_POW2 THEN ASM_REWRITE_TAC[]]; | |
REWRITE_TAC[real_div; REAL_ABS_MUL; REAL_ABS_NEG; REAL_ABS_INV] THEN | |
REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NEG; REAL_MUL_LID] THEN | |
REWRITE_TAC[REAL_ABS_NUM] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN | |
SUBGOAL_THEN `inv(&(SUC i)) * &(SUC i) = &1` ASSUME_TAC THENL | |
[MATCH_MP_TAC REAL_MUL_LINV THEN REWRITE_TAC[REAL_OF_NUM_EQ; NOT_SUC]; | |
GEN_REWRITE_TAC RAND_CONV | |
[EQT_ELIM(REAL_RAT_REDUCE_CONV `inv(&4) = inv(&2) * inv(&2)`)] THEN | |
ASM_REWRITE_TAC[REAL_MUL_RID; GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC | |
[REAL_POS; REAL_ABS_POS; REAL_LE_INV_EQ; GSYM REAL_ABS_POW] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_POS] THEN | |
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN | |
MP_TAC(SPEC `i:num` REAL_POS) THEN REAL_ARITH_TAC; | |
REWRITE_TAC[real_pow; REAL_ABS_POW] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN | |
REWRITE_TAC[REAL_LE_INV_EQ; REAL_ABS_POS] THEN | |
REPEAT CONJ_TAC THENL | |
[CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_POW_LE THEN REWRITE_TAC[REAL_ABS_POS]; | |
MATCH_MP_TAC REAL_POW_1_LE THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&1 / &2` THEN | |
ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV]]]]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Expand the "!k. SUC k < r ==> P k" term for given numeral r. *) | |
(* ------------------------------------------------------------------------- *) | |
let EXPAND_RANGE_CONV = | |
let pth0 = prove | |
(`(!k. SUC k < 0 ==> P k) <=> T`, | |
REWRITE_TAC[LT]) | |
and pth1 = prove | |
(`(!k. k < (SUC m) ==> P k) <=> | |
(!k. k < m ==> P k) /\ P m`, | |
REWRITE_TAC[LT] THEN MESON_TAC[]) | |
and pth2 = prove | |
(`(!k. k < 0 ==> P k) <=> T`, | |
REWRITE_TAC[LT]) in | |
let triv_conv = GEN_REWRITE_CONV I [pth0] | |
and trivial_conv = GEN_REWRITE_CONV I [pth2] | |
and nontrivial_conv = GEN_REWRITE_CONV I [pth1] in | |
let s_tm = `s:real` | |
and m_tm = `m:num` | |
and n_tm = `n:num` in | |
let rec expand_conv tm = | |
try trivial_conv tm | |
with Failure _ -> | |
let mth = num_CONV(rand(lhand(body(rand tm)))) in | |
let th1 = BINDER_CONV(LAND_CONV(RAND_CONV(K mth))) tm in | |
let th2 = TRANS th1 (nontrivial_conv (rand(concl th1))) in | |
let th3 = COMB2_CONV (RAND_CONV expand_conv) (SUBS_CONV[SYM mth]) | |
(rand(concl th2)) in | |
TRANS th2 th3 in | |
let hack_conv = | |
triv_conv ORELSEC | |
(BINDER_CONV (LAND_CONV | |
((RAND_CONV num_CONV) THENC REWR_CONV LT_SUC)) THENC | |
expand_conv) in | |
hack_conv;; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmas leading to iterative versions. *) | |
(* ------------------------------------------------------------------------- *) | |
let STEP_EXP_THM = prove | |
(`abs(x) <= &1 /\ | |
abs(s - &2 pow n * x) < &1 /\ | |
abs(t(i) - &2 pow n * (x pow i / &(FACT i))) <= k ==> | |
&2 * abs(t(SUC i) * &2 pow n * &(SUC i) - s * t(i)) <= &2 pow n * &(SUC i) | |
==> abs(t(SUC i) - &2 pow n * (x pow (SUC i)) / &(FACT(SUC i))) <= | |
(&2 / &(SUC i)) * k + &1 / &(FACT(SUC i)) + &1 / &2`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC(GEN_ALL STEP_EXP) THEN | |
MAP_EVERY EXISTS_TAC [`s:real`; `t(i:num):real`] THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN | |
ASM_REWRITE_TAC[]);; | |
let STEP_EXP_RULE th = | |
let th1 = MATCH_MP STEP_EXP_THM th in | |
let th2 = UNDISCH(PURE_REWRITE_RULE[ARITH_SUC] th1) in | |
let th3 = CONV_RULE(RAND_CONV(ONCE_DEPTH_CONV NUM_FACT_CONV)) th2 in | |
let th4 = CONV_RULE(RAND_CONV REAL_RAT_REDUCE_CONV) th3 in | |
let th5 = ASSUME(find is_conj (hyp th)) in | |
let th6a,th6b = (I F_F CONJUNCT1) (CONJ_PAIR th5) in | |
CONJ th6a (CONJ th6b th4);; | |
let STEP_EXP_0 = (UNDISCH o prove) | |
(`abs(x) <= &1 /\ | |
abs(s - &2 pow n * x) < &1 /\ | |
(t(0) = &2 pow n) ==> | |
abs(x) <= &1 /\ | |
abs(s - &2 pow n * x) < &1 /\ | |
abs(t(0) - &2 pow n * (x pow 0 / &(FACT 0))) <= &0`, | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[real_pow; FACT; real_div; REAL_INV_1; REAL_MUL_RID] THEN | |
REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_0; REAL_LE_REFL]);; | |
let STEP_EXP_1 = STEP_EXP_RULE STEP_EXP_0;; (* e(1) = 3/2 *) | |
let STEP_EXP_2 = STEP_EXP_RULE STEP_EXP_1;; (* e(2) = 5/2 *) | |
let STEP_EXP_3 = STEP_EXP_RULE STEP_EXP_2;; (* e(3) = 7/3 *) | |
let STEP_EXP_4 = STEP_EXP_RULE STEP_EXP_3;; (* e(4) = 41/24 *) | |
let STEP_EXP_5 = STEP_EXP_RULE STEP_EXP_4;; (* e(5) = 143/120 *) | |
let STEP_EXP_4_PLUS = prove | |
(`4 <= m /\ | |
abs(x) <= &1 /\ | |
abs(s - &2 pow n * x) < &1 /\ | |
(t(0) = &2 pow n) /\ | |
(!k. SUC k < SUC m ==> | |
&2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k)) | |
<= &2 pow n * &(SUC k)) | |
==> abs(t m - &2 pow n * x pow m / &(FACT m)) <= &2`, | |
let lemma = prove | |
(`(!k. k < (SUC m) ==> P k) <=> | |
(!k. k < m ==> P k) /\ P m`, | |
REWRITE_TAC[LT] THEN MESON_TAC[]) in | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
POP_ASSUM(X_CHOOSE_THEN `d:num` SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[LT_SUC] THEN SPEC_TAC(`d:num`,`d:num`) THEN | |
INDUCT_TAC THENL | |
[REWRITE_TAC[ADD_CLAUSES] THEN | |
SUBST1_TAC(TOP_DEPTH_CONV num_CONV `4`) THEN | |
REWRITE_TAC[lemma] THEN REWRITE_TAC[ARITH_SUC] THEN | |
REWRITE_TAC[LT] THEN STRIP_TAC THEN | |
MP_TAC (DISCH_ALL STEP_EXP_4) THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(REAL_ARITH `b <= c ==> a <= b ==> a <= c`) THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV; | |
REWRITE_TAC[ADD_CLAUSES; lemma] THEN STRIP_TAC THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `&2 / &(SUC(4 + d)) * &2 + | |
&1 / &(FACT(SUC(4 + d))) + &1 / &2` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC(GEN_ALL STEP_EXP) THEN ASM_REWRITE_TAC[] THEN | |
EXISTS_TAC `s:real` THEN EXISTS_TAC `t(4 + d):real` THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]; | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; | |
GEN_REWRITE_TAC RAND_CONV | |
[SYM(REAL_RAT_REDUCE_CONV `&3 / &2 + &1 / &2`)] THEN | |
REWRITE_TAC[REAL_LE_RADD; REAL_ADD_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&4 / &5 + &1 / &120` THEN | |
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
REWRITE_TAC[real_div; REAL_MUL_ASSOC] THEN | |
REWRITE_TAC[REAL_ARITH `&2 * &2 = &4`] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN | |
REWRITE_TAC[REAL_ARITH `&0 <= &4`] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN | |
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN | |
MP_TAC(SPEC `d':num` REAL_POS) THEN REAL_ARITH_TAC; | |
REWRITE_TAC[real_div; REAL_MUL_LID] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN | |
CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN | |
SUBST1_TAC(SYM(NUM_FACT_CONV `FACT 5`)) THEN | |
REWRITE_TAC[REAL_OF_NUM_LE] THEN MATCH_MP_TAC FACT_MONO THEN | |
REWRITE_TAC[num_CONV `5`; LE_SUC; LE_ADD]]]]);; | |
let STEPS_EXP_0 = prove | |
(`abs(x) <= &1 /\ | |
abs(s - &2 pow n * x) < &1 /\ | |
(t(0) = &2 pow n) /\ | |
(!k. SUC k < 0 ==> | |
&2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k)) | |
<= &2 pow n * &(SUC k)) | |
==> abs(sum(0,0) t - | |
&2 pow n * sum(0,0) (\i. x pow i / &(FACT i))) <= &2 * &0`, | |
STRIP_TAC THEN ASM_REWRITE_TAC[sum] THEN | |
REWRITE_TAC[REAL_MUL_RZERO; REAL_ABS_0; REAL_SUB_REFL; REAL_LE_REFL]);; | |
let STEPS_EXP_1 = prove | |
(`abs(x) <= &1 /\ | |
abs(s - &2 pow n * x) < &1 /\ | |
(t(0) = &2 pow n) /\ | |
(!k. SUC k < 1 ==> | |
&2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k)) | |
<= &2 pow n * &(SUC k)) | |
==> abs(sum(0,1) t - &2 pow n * sum(0,1)(\i. x pow i / &(FACT i))) | |
<= &2 * &1`, | |
CONV_TAC(ONCE_DEPTH_CONV EXPAND_RANGE_CONV) THEN REWRITE_TAC[] THEN | |
STRIP_TAC THEN CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN | |
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN | |
MP_TAC (DISCH_ALL STEP_EXP_0) THEN ASM_REWRITE_TAC[]);; | |
let STEPS_EXP_2 = prove | |
(`abs(x) <= &1 /\ | |
abs(s - &2 pow n * x) < &1 /\ | |
(t(0) = &2 pow n) /\ | |
(!k. SUC k < 2 ==> | |
&2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k)) | |
<= &2 pow n * &(SUC k)) | |
==> abs(sum(0,2) t - &2 pow n * sum(0,2) (\i. x pow i / &(FACT i))) | |
<= &2 * &2`, | |
CONV_TAC(ONCE_DEPTH_CONV EXPAND_RANGE_CONV) THEN REWRITE_TAC[] THEN | |
STRIP_TAC THEN CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN | |
REWRITE_TAC[REAL_ADD_LDISTRIB] THEN | |
REWRITE_TAC[REAL_ARITH `(a + b) - (c + d) = (a - c) + (b - d)`] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0 + &3 / &2` THEN | |
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN | |
MATCH_MP_TAC(REAL_LE_IMP(REAL_ARITH `abs(a + b) <= abs(a) + abs(b)`)) THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[MP_TAC (DISCH_ALL STEP_EXP_0) THEN ASM_REWRITE_TAC[]; | |
MP_TAC (DISCH_ALL STEP_EXP_1) THEN | |
ASM_REWRITE_TAC[ADD_CLAUSES]]);; | |
let STEPS_EXP_3 = prove | |
(`abs(x) <= &1 /\ | |
abs(s - &2 pow n * x) < &1 /\ | |
(t(0) = &2 pow n) /\ | |
(!k. SUC k < 3 ==> | |
&2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k)) | |
<= &2 pow n * &(SUC k)) | |
==> abs(sum(0,3) t - &2 pow n * sum(0,3) (\i. x pow i / &(FACT i))) | |
<= &2 * &3`, | |
CONV_TAC(ONCE_DEPTH_CONV EXPAND_RANGE_CONV) THEN REWRITE_TAC[] THEN | |
STRIP_TAC THEN CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN | |
REWRITE_TAC[REAL_ADD_LDISTRIB] THEN | |
REWRITE_TAC[REAL_ARITH `(a + b) - (c + d) = (a - c) + (b - d)`] THEN | |
REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0 + &3 / &2 + &5 / &2` THEN | |
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN | |
REPEAT | |
(MATCH_MP_TAC(REAL_LE_IMP(REAL_ARITH `abs(a + b) <= abs(a) + abs(b)`)) THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC) | |
THENL | |
[MP_TAC (DISCH_ALL STEP_EXP_0) THEN ASM_REWRITE_TAC[]; | |
MP_TAC (DISCH_ALL STEP_EXP_1) THEN ASM_REWRITE_TAC[ADD_CLAUSES]; | |
MP_TAC (DISCH_ALL STEP_EXP_2) THEN ASM_REWRITE_TAC[ADD_CLAUSES]]);; | |
let STEPS_EXP_4 = prove | |
(`abs(x) <= &1 /\ | |
abs(s - &2 pow n * x) < &1 /\ | |
(t(0) = &2 pow n) /\ | |
(!k. SUC k < 4 ==> | |
&2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k)) | |
<= &2 pow n * &(SUC k)) | |
==> abs(sum(0,4) t - &2 pow n * sum(0,4) (\i. x pow i / &(FACT i))) | |
<= &2 * &4`, | |
CONV_TAC(ONCE_DEPTH_CONV EXPAND_RANGE_CONV) THEN REWRITE_TAC[] THEN | |
STRIP_TAC THEN CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN | |
REWRITE_TAC[REAL_ADD_LDISTRIB] THEN | |
REWRITE_TAC[REAL_ARITH `(a + b) - (c + d) = (a - c) + (b - d)`] THEN | |
REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `&0 + &3 / &2 + &5 / &2 + &7 / &3` THEN | |
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN | |
REPEAT | |
(MATCH_MP_TAC(REAL_LE_IMP(REAL_ARITH `abs(a + b) <= abs(a) + abs(b)`)) THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC) | |
THENL | |
[MP_TAC (DISCH_ALL STEP_EXP_0) THEN ASM_REWRITE_TAC[]; | |
MP_TAC (DISCH_ALL STEP_EXP_1) THEN ASM_REWRITE_TAC[ADD_CLAUSES]; | |
MP_TAC (DISCH_ALL STEP_EXP_2) THEN ASM_REWRITE_TAC[ADD_CLAUSES]; | |
MP_TAC (DISCH_ALL STEP_EXP_3) THEN ASM_REWRITE_TAC[ADD_CLAUSES]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Iterated versions. *) | |
(* ------------------------------------------------------------------------- *) | |
let STEPS_EXP_LEMMA = prove | |
(`(!k. P(SUC k) ==> P(k)) /\ | |
(P(0) ==> (abs(sum(0,0) z) <= &2 * &0)) /\ | |
(P(1) ==> (abs(sum(0,1) z) <= &2 * &1)) /\ | |
(P(2) ==> (abs(sum(0,2) z) <= &2 * &2)) /\ | |
(P(3) ==> (abs(sum(0,3) z) <= &2 * &3)) /\ | |
(P(4) ==> (abs(sum(0,4) z) <= &2 * &4)) /\ | |
(!m. 4 <= m /\ P(SUC m) ==> (abs(z m) <= &2)) | |
==> !m. P(m) ==> (abs(sum(0,m) z) <= &2 * &m)`, | |
STRIP_TAC THEN SUBGOAL_THEN | |
`!d. P(d + 4) ==> | |
abs(sum(0,d + 4) z) <= &2 * &(d + 4)` | |
ASSUME_TAC THENL | |
[INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN | |
DISCH_TAC THEN REWRITE_TAC[sum; ADD1] THEN | |
ONCE_REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[REAL_ADD_LDISTRIB] THEN | |
MATCH_MP_TAC(REAL_LE_IMP(REAL_ARITH `abs(a + b) <= abs(a) + abs(b)`)) THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_RID] THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[ADD_CLAUSES] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN | |
REWRITE_TAC[LE_ADD]]; | |
GEN_TAC THEN | |
DISJ_CASES_THEN MP_TAC (SPECL [`4`; `m:num`] LE_CASES) THENL | |
[DISCH_THEN(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN | |
ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_REWRITE_TAC[]; | |
SUBST1_TAC(TOP_DEPTH_CONV num_CONV `4`) THEN | |
REWRITE_TAC[LE] THEN REWRITE_TAC[ARITH_SUC] THEN | |
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN SUBST1_TAC) THEN | |
ASM_REWRITE_TAC[]]]);; | |
let STEPS_EXP = prove | |
(`abs(x) <= &1 /\ | |
abs(s - &2 pow n * x) < &1 /\ | |
(t(0) = &2 pow n) /\ | |
(!k. SUC k < m ==> | |
&2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k)) | |
<= &2 pow n * &(SUC k)) | |
==> abs(sum(0,m) t - &2 pow n * sum(0,m) (\i. x pow i / &(FACT i))) | |
<= &2 * &m`, | |
REWRITE_TAC[REAL_MUL_RSUM0; REAL_SUB_SUM0] THEN | |
SPEC_TAC(`m:num`,`m:num`) THEN MATCH_MP_TAC STEPS_EXP_LEMMA THEN | |
REWRITE_TAC[GSYM REAL_SUB_SUM0; GSYM REAL_MUL_RSUM0] THEN | |
REWRITE_TAC[STEPS_EXP_0; STEPS_EXP_1; STEPS_EXP_2; STEPS_EXP_3] THEN | |
REWRITE_TAC[STEPS_EXP_4; STEP_EXP_4_PLUS] THEN | |
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
MATCH_MP_TAC LT_TRANS THEN EXISTS_TAC `k:num` THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[LT]);; | |
let STEPS_LN = prove | |
(`2 <= n /\ | |
abs(x) <= &1 / &2 /\ | |
abs(s - &2 pow n * --x) < &1 /\ | |
(t(0) = --s) /\ | |
(!k. SUC k < m ==> | |
&2 * abs(t(SUC k) * &2 pow n * &(SUC(SUC k)) | |
- &(SUC k) * s * t(k)) | |
<= &2 pow n * &(SUC(SUC k))) | |
==> abs(sum(0,m) t - &2 pow n * sum(0,m) | |
(\i. (--(&1)) pow i * x pow (SUC i) / &(SUC i))) <= &3 * &m`, | |
REWRITE_TAC[REAL_MUL_RSUM0; REAL_SUB_SUM0] THEN | |
STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN | |
MATCH_MP_TAC (REAL_LE_IMP SUM_ABS_LE) THEN | |
MATCH_MP_TAC SUM_BOUND THEN REWRITE_TAC[ADD_CLAUSES; LE_0] THEN | |
INDUCT_TAC THENL | |
[REWRITE_TAC[real_pow; ARITH; REAL_DIV_1; REAL_MUL_LID; REAL_MUL_RID] THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_ARITH `-- a - b * c = --(a - b * --c)`] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&1` THEN | |
ASM_SIMP_TAC[REAL_ABS_NEG; REAL_LT_IMP_LE; REAL_OF_NUM_LE; ARITH]; | |
ALL_TAC] THEN | |
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN | |
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN | |
SUBGOAL_THEN `p:num < m` (ANTE_RES_THEN MP_TAC) THENL | |
[UNDISCH_TAC `SUC p < m` THEN ARITH_TAC; ALL_TAC] THEN | |
DISCH_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`!y. abs(x - y) + abs(y - z) <= e ==> abs(x - z) <= e`) THEN | |
EXISTS_TAC `&(SUC p) * s * t p / (&2 pow n * &(SUC(SUC p)))` THEN | |
ONCE_REWRITE_TAC [SYM(REAL_RAT_REDUCE_CONV `&1 / &2 + &5 / &2`)] THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN | |
EXISTS_TAC `&2 pow n * &(SUC(SUC p))` THEN | |
SUBGOAL_THEN `&0 < &2 pow n * &(SUC(SUC p))` ASSUME_TAC THENL | |
[MATCH_MP_TAC REAL_LT_MUL THEN | |
SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; LT_0; ARITH]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `!x y. &0 < y ==> (abs(x) * y = abs(x * y))` | |
(fun th -> ASM_SIMP_TAC[th]) THENL | |
[REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ABS_MUL] THEN | |
AP_TERM_TAC THEN ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE]; ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `&2` THEN | |
REWRITE_TAC[REAL_MUL_ASSOC] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_LID] THEN | |
REWRITE_TAC[REAL_SUB_RDISTRIB] THEN | |
SUBGOAL_THEN `!a b c d. &0 < a ==> ((b * c * d / a) * a = b * c * d)` | |
(fun th -> ASM_SIMP_TAC[th]) THEN | |
SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_RID; | |
REAL_LT_IMP_NZ]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`!y. abs(x - y) + abs(y - z) <= e ==> abs(x - z) <= e`) THEN | |
EXISTS_TAC `--(&1) pow p * s * x pow (SUC p) / &(SUC(SUC p))` THEN | |
ONCE_REWRITE_TAC [SYM(REAL_RAT_REDUCE_CONV `&9 / &4 + &1 / &4`)] THEN | |
MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL | |
[SUBGOAL_THEN `--(&1) pow p * s * x pow (SUC p) / &(SUC(SUC p)) = | |
&(SUC p) * s * | |
(&2 pow n * --(&1) pow p * x pow SUC p / &(SUC p)) / | |
(&2 pow n * &(SUC (SUC p)))` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_INV_MUL] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC | |
`a * b * c * d * e * f * g * h = | |
d * b * e * h * (g * c) * (f * a)`] THEN | |
SIMP_TAC[REAL_MUL_LINV; REAL_POW_EQ_0; REAL_OF_NUM_EQ; | |
ARITH; NOT_SUC] THEN | |
REWRITE_TAC[REAL_MUL_RID]; ALL_TAC] THEN | |
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_ABS_MUL] THEN | |
REWRITE_TAC[real_div; REAL_MUL_ASSOC; GSYM REAL_SUB_RDISTRIB] THEN | |
REWRITE_TAC[REAL_ABS_MUL; GSYM REAL_MUL_ASSOC] THEN | |
REWRITE_TAC[GSYM real_div] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c * d = (a * b * d) * c`] THEN | |
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o REDEPTH_CONV) | |
[GSYM REAL_ABS_MUL] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `abs (&(SUC p) * s * inv (&2 pow n * &(SUC (SUC p)))) * &3` THEN | |
ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ABS_POS] THEN | |
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NUM; REAL_ABS_INV; REAL_ABS_POW] THEN | |
REWRITE_TAC[REAL_INV_MUL] THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c * d * e = | |
(d * a) * (b * c) * e`] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `inv(&1) * &3 / &4 * &3` THEN | |
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN | |
REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN | |
ONCE_REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN | |
SIMP_TAC[REAL_LE_MUL; REAL_LE_INV_EQ; REAL_POS; | |
REAL_POW_LE; REAL_ABS_POS] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN | |
EXISTS_TAC `&(SUC(SUC p))` THEN | |
SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_RINV; REAL_OF_NUM_EQ; NOT_SUC] THEN | |
REWRITE_TAC[REAL_INV_1; REAL_MUL_LID; REAL_MUL_RID] THEN | |
REWRITE_TAC[REAL_OF_NUM_LT; REAL_OF_NUM_LE] THEN ARITH_TAC; | |
MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN | |
EXISTS_TAC `&2 pow n` THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN | |
SIMP_TAC[REAL_MUL_LINV; REAL_POW_EQ_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN | |
SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; ARITH; REAL_MUL_RID] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`!y. abs(x - y) < &1 /\ abs(y) <= d - &1 ==> abs(x) <= d`) THEN | |
EXISTS_TAC `&2 pow n * --x` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN EXISTS_TAC `inv(&2 pow n)` THEN | |
SIMP_TAC[REAL_LT_INV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN | |
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NEG; REAL_ABS_POW; REAL_ABS_NUM] THEN | |
GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN | |
SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_POW_EQ_0; REAL_OF_NUM_EQ; | |
ARITH_EQ] THEN | |
REWRITE_TAC[REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `&1 / &2` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[real_div; REAL_SUB_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN | |
SIMP_TAC[REAL_MUL_RINV; REAL_POW_EQ_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN | |
REWRITE_TAC[REAL_MUL_LID; REAL_MUL_RID] THEN | |
REWRITE_TAC[REAL_LE_SUB_LADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN | |
REWRITE_TAC[GSYM REAL_LE_SUB_LADD] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN | |
REWRITE_TAC[REAL_OF_NUM_LT; ARITH] THEN | |
SUBST1_TAC(SYM(REAL_INT_REDUCE_CONV `&2 pow 2`)) THEN | |
MATCH_MP_TAC REAL_POW_MONO THEN | |
ASM_REWRITE_TAC[REAL_OF_NUM_LE; ARITH]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`--(&1) pow p * s * x pow (SUC p) / &(SUC(SUC p)) - | |
&2 pow n * --(&1) pow (SUC p) * x pow (SUC(SUC p)) / &(SUC(SUC p)) = | |
(--(&1) pow p * x pow (SUC p) / &(SUC(SUC p))) * | |
(s - &2 pow n * --x)` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[real_pow; real_div; GSYM REAL_OF_NUM_SUC] THEN | |
REWRITE_TAC[REAL_SUB_LDISTRIB; GSYM REAL_MUL_ASSOC] THEN | |
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_MUL_LID] THEN | |
REWRITE_TAC[REAL_NEG_NEG; REAL_MUL_AC]; ALL_TAC] THEN | |
ONCE_REWRITE_TAC[REAL_ABS_MUL] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `abs (-- (&1) pow p * x pow SUC p / &(SUC (SUC p))) * &1` THEN | |
ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ABS_POS; REAL_LT_IMP_LE] THEN | |
REWRITE_TAC[REAL_MUL_RID; real_div; REAL_ABS_MUL; REAL_ABS_POW; | |
REAL_ABS_NEG; REAL_ABS_NUM; REAL_ABS_INV] THEN | |
REWRITE_TAC[REAL_POW_ONE; REAL_MUL_LID] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&2) pow 1 * inv(&2)` THEN | |
CONJ_TAC THENL [ALL_TAC; CONV_TAC REAL_RAT_REDUCE_CONV] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN | |
SIMP_TAC[REAL_ABS_POS; REAL_POW_LE; | |
REAL_LE_INV_EQ; LE_0; REAL_OF_NUM_LE] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&2) pow (SUC p)` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_POW_LE2 THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
ASM_REWRITE_TAC[REAL_ABS_POS]; | |
REWRITE_TAC[REAL_POW_INV] THEN MATCH_MP_TAC REAL_LE_INV2 THEN | |
CONJ_TAC THENL [CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN | |
MATCH_MP_TAC REAL_POW_MONO THEN | |
REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN ARITH_TAC]; | |
MATCH_MP_TAC REAL_LE_INV2 THEN | |
REWRITE_TAC[REAL_OF_NUM_LT; ARITH; REAL_OF_NUM_LE] THEN ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Special version of Taylor series for exponential in limited range. *) | |
(* ------------------------------------------------------------------------- *) | |
let MCLAURIN_EXP_LE1 = prove | |
(`!x n. abs(x) <= &1 | |
==> ?t. abs(t) <= &1 /\ | |
(exp(x) = sum(0,n) (\m. x pow m / &(FACT m)) + | |
(exp(t) / &(FACT n)) * x pow n)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`x:real`; `n:num`] MCLAURIN_EXP_LE) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `t:real` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(x)` THEN | |
ASM_REWRITE_TAC[]);; | |
let REAL_EXP_15 = prove | |
(`exp(&1) < &5`, | |
SUBST1_TAC(SYM(REAL_RAT_REDUCE_CONV `inv(&2) + inv(&2)`)) THEN | |
REWRITE_TAC[REAL_EXP_ADD] THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN | |
EXISTS_TAC `(&1 + &2 * inv(&2)) * (&1 + &2 * inv(&2))` THEN | |
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN | |
REWRITE_TAC[] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN | |
REWRITE_TAC[REAL_EXP_POS_LE] THEN | |
MATCH_MP_TAC REAL_EXP_BOUND_LEMMA THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV);; | |
let TAYLOR_EXP_WEAK = prove | |
(`abs(x) <= &1 ==> | |
abs(exp(x) - sum(0,m) (\i. x pow i / &(FACT i))) < &5 * inv(&(FACT m))`, | |
DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `m:num` o MATCH_MP MCLAURIN_EXP_LE1) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[REAL_ARITH `abs((x + y) - x) = abs(y)`] THEN | |
REWRITE_TAC[real_div; REAL_ABS_MUL; GSYM REAL_MUL_ASSOC] THEN | |
ASM_CASES_TAC `x = &0` THENL | |
[ASM_REWRITE_TAC[] THEN | |
SPEC_TAC(`m:num`,`m:num`) THEN INDUCT_TAC THENL | |
[REWRITE_TAC[real_pow; FACT; ABS_N; REAL_INV_1; REAL_MUL_RID] THEN | |
ASM_REWRITE_TAC[real_abs; REAL_EXP_POS_LE] THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN | |
EXISTS_TAC `exp(&1)` THEN REWRITE_TAC[REAL_EXP_15] THEN | |
REWRITE_TAC[REAL_EXP_MONO_LE] THEN | |
UNDISCH_TAC `abs(t) <= &1` THEN REAL_ARITH_TAC; | |
REWRITE_TAC[POW_0; REAL_ABS_0; REAL_MUL_RZERO] THEN | |
MATCH_MP_TAC REAL_LT_MUL THEN REWRITE_TAC[REAL_OF_NUM_LT; ARITH] THEN | |
MATCH_MP_TAC REAL_INV_POS THEN | |
REWRITE_TAC[REAL_OF_NUM_LT; FACT_LT]]; | |
MATCH_MP_TAC REAL_LTE_TRANS THEN | |
EXISTS_TAC `&5 * abs(inv(&(FACT m))) * abs(x pow m)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LT_RMUL_IMP THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(exp(&1))` THEN | |
ASM_REWRITE_TAC[real_abs; REAL_EXP_POS_LE; REAL_EXP_MONO_LE; | |
REAL_EXP_15] THEN | |
UNDISCH_TAC `abs(t) <= &1` THEN REAL_ARITH_TAC; | |
MATCH_MP_TAC REAL_LT_MUL THEN | |
ASM_REWRITE_TAC[GSYM ABS_NZ; REAL_POW_EQ_0] THEN | |
REWRITE_TAC[REAL_INV_EQ_0; REAL_OF_NUM_EQ] THEN | |
MP_TAC(SPEC `m:num` FACT_LT) THEN ARITH_TAC]; | |
MATCH_MP_TAC REAL_LE_LMUL_IMP THEN | |
REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
REWRITE_TAC[REAL_ABS_INV; ABS_N; REAL_LE_REFL] THEN | |
REWRITE_TAC[REAL_ABS_POW] THEN | |
MATCH_MP_TAC REAL_POW_1_LE THEN | |
ASM_REWRITE_TAC[REAL_ABS_POS]]]);; | |
let REAL_EXP_13 = prove | |
(`exp(&1) < &3`, | |
MP_TAC(INST [`&1`,`x:real`; `5`,`m:num`] TAYLOR_EXP_WEAK) THEN | |
CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN | |
REWRITE_TAC[ADD_CLAUSES] THEN | |
CONV_TAC(ONCE_DEPTH_CONV NUM_FACT_CONV) THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`b + e <= c ==> abs(a - b) < e ==> a < c`) THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV);; | |
let TAYLOR_EXP = prove | |
(`abs(x) <= &1 ==> | |
abs(exp(x) - sum(0,m) (\i. x pow i / &(FACT i))) < &3 * inv(&(FACT m))`, | |
DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `m:num` o MATCH_MP MCLAURIN_EXP_LE1) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[REAL_ARITH `abs((x + y) - x) = abs(y)`] THEN | |
REWRITE_TAC[real_div; REAL_ABS_MUL; GSYM REAL_MUL_ASSOC] THEN | |
ASM_CASES_TAC `x = &0` THENL | |
[ASM_REWRITE_TAC[] THEN | |
SPEC_TAC(`m:num`,`m:num`) THEN INDUCT_TAC THENL | |
[REWRITE_TAC[real_pow; FACT; ABS_N; REAL_INV_1; REAL_MUL_RID] THEN | |
ASM_REWRITE_TAC[real_abs; REAL_EXP_POS_LE] THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN | |
EXISTS_TAC `exp(&1)` THEN REWRITE_TAC[REAL_EXP_13] THEN | |
REWRITE_TAC[REAL_EXP_MONO_LE] THEN | |
UNDISCH_TAC `abs(t) <= &1` THEN REAL_ARITH_TAC; | |
REWRITE_TAC[POW_0; REAL_ABS_0; REAL_MUL_RZERO] THEN | |
MATCH_MP_TAC REAL_LT_MUL THEN REWRITE_TAC[REAL_OF_NUM_LT; ARITH] THEN | |
MATCH_MP_TAC REAL_INV_POS THEN | |
REWRITE_TAC[REAL_OF_NUM_LT; FACT_LT]]; | |
MATCH_MP_TAC REAL_LTE_TRANS THEN | |
EXISTS_TAC `&3 * abs(inv(&(FACT m))) * abs(x pow m)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LT_RMUL_IMP THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(exp(&1))` THEN | |
ASM_REWRITE_TAC[real_abs; REAL_EXP_POS_LE; REAL_EXP_MONO_LE; | |
REAL_EXP_13] THEN | |
UNDISCH_TAC `abs(t) <= &1` THEN REAL_ARITH_TAC; | |
MATCH_MP_TAC REAL_LT_MUL THEN | |
ASM_REWRITE_TAC[GSYM ABS_NZ; REAL_POW_EQ_0] THEN | |
REWRITE_TAC[REAL_INV_EQ_0; REAL_OF_NUM_EQ] THEN | |
MP_TAC(SPEC `m:num` FACT_LT) THEN ARITH_TAC]; | |
MATCH_MP_TAC REAL_LE_LMUL_IMP THEN | |
REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
REWRITE_TAC[REAL_ABS_INV; ABS_N; REAL_LE_REFL] THEN | |
REWRITE_TAC[REAL_ABS_POW] THEN | |
MATCH_MP_TAC REAL_POW_1_LE THEN | |
ASM_REWRITE_TAC[REAL_ABS_POS]]]);; | |
let TAYLOR_LN = prove | |
(`&0 <= x /\ x <= inv(&2 pow k) ==> | |
abs(ln(&1 + x) - sum(0,m) (\i. --(&1) pow i * x pow SUC i / &(SUC i))) | |
< inv(&2 pow (k * SUC m) * &(SUC m))`, | |
let lemma = INST [`1`,`k:num`] (SYM(SPEC_ALL SUM_REINDEX)) in | |
STRIP_TAC THEN | |
UNDISCH_TAC `&0 <= x` THEN REWRITE_TAC[REAL_LE_LT] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THENL | |
[ALL_TAC; | |
REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_MUL_RZERO; real_div] THEN | |
REWRITE_TAC[SUM_0; REAL_ADD_RID; REAL_SUB_LZERO; LN_1] THEN | |
REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_0] THEN | |
SIMP_TAC[REAL_LT_INV_EQ; REAL_LT_MUL; REAL_POW_LT; REAL_OF_NUM_LT; | |
LT_0; ARITH]] THEN | |
SUBGOAL_THEN `!i. --(&1) pow i = --(&1) pow (SUC(SUC i))` | |
(fun th -> ONCE_REWRITE_TAC[th]) THENL | |
[REWRITE_TAC[real_pow; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN | |
REWRITE_TAC[REAL_MUL_LID]; ALL_TAC] THEN | |
REWRITE_TAC[ADD1; lemma] THEN | |
REWRITE_TAC[ADD_CLAUSES] THEN | |
ONCE_REWRITE_TAC[SUM_DIFF] THEN | |
CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN | |
REWRITE_TAC[real_div; REAL_INV_0; REAL_MUL_RZERO] THEN | |
REWRITE_TAC[GSYM ADD1] THEN | |
MP_TAC(SPECL [`x:real`; `SUC m`] MCLAURIN_LN_POS) THEN | |
ASM_REWRITE_TAC[LT_0] THEN | |
ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM ADD1] THEN | |
REWRITE_TAC[GSYM real_div] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[REAL_SUB_RZERO; REAL_ARITH `(a + b) - a = b`] THEN | |
REWRITE_TAC[real_div; REAL_ABS_MUL; REAL_ABS_INV; REAL_ABS_POW] THEN | |
REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM; REAL_POW_ONE] THEN | |
REWRITE_TAC[REAL_MUL_LID; REAL_INV_MUL; GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC | |
`inv (&2 pow (k * SUC m)) * inv (&(SUC m)) * inv(abs(&1 + t) pow SUC m)` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN | |
SIMP_TAC[REAL_LE_MUL; REAL_LE_INV_EQ; REAL_POS; REAL_ABS_POS; | |
REAL_POW_LE] THEN | |
REWRITE_TAC[GSYM REAL_POW_INV] THEN | |
REWRITE_TAC[GSYM REAL_POW_POW] THEN | |
MATCH_MP_TAC REAL_POW_LE2 THEN | |
ASM_SIMP_TAC[REAL_POW_INV; real_abs; REAL_LT_IMP_LE]; | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LT_LMUL THEN | |
SIMP_TAC[REAL_LT_MUL; REAL_LT_INV_EQ; REAL_OF_NUM_LT; LT_0; REAL_POW_LT; | |
ARITH] THEN | |
REWRITE_TAC[GSYM REAL_POW_INV; GSYM REAL_ABS_INV] THEN | |
SUBGOAL_THEN `abs(inv(&1 + t)) < &1` ASSUME_TAC THENL | |
[REWRITE_TAC[REAL_ABS_INV] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_1] THEN | |
MATCH_MP_TAC REAL_LT_INV2 THEN | |
UNDISCH_TAC `&0 < t` THEN REAL_ARITH_TAC; | |
SUBST1_TAC(SYM(SPEC `SUC m` REAL_POW_ONE)) THEN | |
MATCH_MP_TAC REAL_POW_LT2 THEN | |
ASM_REWRITE_TAC[REAL_POW_ONE; NOT_SUC; REAL_ABS_POS]]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Leading from the summation to the actual function. *) | |
(* ------------------------------------------------------------------------- *) | |
let APPROX_LEMMA1 = prove | |
(`abs(f(x:real) - sum(0,m) (\i. P i x)) < inv(&2 pow (n + 2)) /\ | |
abs(u - &2 pow (n + e + 2) * sum(0,m) (\i. P i x)) <= &k * &m /\ | |
&k * &m <= &2 pow e /\ | |
abs(s * &2 pow (e + 2) - u) <= &2 pow (e + 1) | |
==> abs(s - &2 pow n * f(x)) < &1`, | |
STRIP_TAC THEN MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN | |
EXISTS_TAC `&2 pow (n + e + 2)` THEN | |
REWRITE_TAC[REAL_LT_POW2] THEN | |
REWRITE_TAC[REAL_ABS_LEMMA; REAL_SUB_LDISTRIB; REAL_MUL_RID] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN (MATCH_MP_TAC o GEN_ALL) | |
(REAL_ARITH `abs(a - b) + abs(b - c) < d ==> abs(a - c) < d`) THEN | |
EXISTS_TAC `&2 pow n * u` THEN | |
CONV_TAC(funpow 4 RAND_CONV num_CONV) THEN | |
REWRITE_TAC[ADD_CLAUSES; real_pow; REAL_MUL_2] THEN | |
MATCH_MP_TAC REAL_LET_ADD2 THEN CONJ_TAC THENL | |
[ONCE_REWRITE_TAC[REAL_POW_ADD] THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [REAL_MUL_SYM] THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC; GSYM REAL_SUB_LDISTRIB] THEN | |
REWRITE_TAC[GSYM REAL_ABS_LEMMA] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2]; | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC; GSYM REAL_SUB_LDISTRIB] THEN | |
GEN_REWRITE_TAC RAND_CONV [REAL_POW_ADD] THEN | |
REWRITE_TAC[GSYM REAL_ABS_LEMMA] THEN | |
MATCH_MP_TAC REAL_LT_LMUL THEN REWRITE_TAC[REAL_LT_POW2] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN (MATCH_MP_TAC o GEN_ALL) | |
(REAL_ARITH `abs(a - b) + abs(b - c) < d ==> abs(a - c) < d`) THEN | |
EXISTS_TAC | |
`&2 pow (n + e + 2) * sum(0,m) (\i. P i (x:real))` THEN | |
GEN_REWRITE_TAC RAND_CONV [REAL_POW_ADD] THEN | |
GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN | |
REWRITE_TAC[REAL_POW_1; REAL_MUL_2] THEN | |
MATCH_MP_TAC REAL_LET_ADD2 THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&k * &m` THEN | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; GSYM REAL_ABS_LEMMA] THEN | |
ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM ADD_ASSOC] THEN | |
ONCE_REWRITE_TAC[REAL_POW_ADD] THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
MATCH_MP_TAC REAL_LT_LMUL THEN | |
REWRITE_TAC[REAL_LT_POW2] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN | |
EXISTS_TAC `inv(&2 pow (n + 2))` THEN | |
REWRITE_TAC[REAL_LT_INV_EQ; REAL_LT_POW2] THEN | |
REWRITE_TAC[REAL_MUL_RID; REAL_MUL_ASSOC] THEN | |
ONCE_REWRITE_TAC[REAL_ABS_SUB] THEN | |
SUBGOAL_THEN `inv(&2 pow (n + 2)) * &2 pow (n + 2) = &1` | |
(fun th -> ASM_REWRITE_TAC[th; REAL_MUL_LID]) THEN | |
MATCH_MP_TAC REAL_MUL_LINV THEN REWRITE_TAC[REAL_POW_EQ_0] THEN | |
REWRITE_TAC[DE_MORGAN_THM] THEN DISJ1_TAC THEN REAL_ARITH_TAC]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Approximation theorems. *) | |
(* ------------------------------------------------------------------------- *) | |
let APPROX_EXP = prove | |
(`(n + e + 2 = p) /\ | |
&3 * &2 pow (n + 2) <= &(FACT m) /\ | |
&2 * &m <= &2 pow e /\ | |
abs(x) <= &1 /\ | |
abs(s - &2 pow p * x) < &1 /\ | |
(t(0) = &2 pow p) /\ | |
(!k. SUC k < m ==> | |
&2 * abs(t(SUC k) * &2 pow p * &(SUC k) - s * t(k)) | |
<= &2 pow p * &(SUC k)) /\ | |
abs(u * &2 pow (e + 2) - sum(0,m) t) <= &2 pow (e + 1) | |
==> abs(u - &2 pow n * exp(x)) < &1`, | |
STRIP_TAC THEN MATCH_MP_TAC(GEN_ALL APPROX_LEMMA1) THEN | |
MAP_EVERY EXISTS_TAC | |
[`\i x. x pow i / &(FACT i)`; `2`; `m:num`; `sum(0,m) t`; `e:num`] THEN | |
ASM_REWRITE_TAC[BETA_THM] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&3 * inv(&(FACT m))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC TAYLOR_EXP THEN ASM_REWRITE_TAC[]; | |
SUBST1_TAC(SYM(SPEC `&3` REAL_INV_INV)) THEN | |
REWRITE_TAC[GSYM REAL_INV_MUL] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_LT_POW2] THEN | |
MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `&3` THEN | |
REWRITE_TAC[REAL_MUL_ASSOC] THEN | |
REWRITE_TAC[MATCH_MP REAL_MUL_RINV (REAL_ARITH `~(&3 = &0)`)] THEN | |
ASM_REWRITE_TAC[REAL_MUL_LID] THEN REAL_ARITH_TAC]; | |
MATCH_MP_TAC STEPS_EXP THEN ASM_REWRITE_TAC[]]);; | |
let APPROX_LN = prove | |
(`~(k = 0) /\ | |
(n + e + 2 = p) /\ | |
&2 pow (n + 2) <= &2 pow (k * SUC m) * &(SUC m) /\ | |
&3 * &m <= &2 pow e /\ | |
(&0 <= x /\ x <= inv(&2 pow k)) /\ | |
abs(s - &2 pow p * --x) < &1 /\ | |
(t(0) = --s) /\ | |
(!k. SUC k < m ==> | |
&2 * abs(t(SUC k) * &2 pow p * &(SUC(SUC k)) - | |
&(SUC k) * s * t(k)) | |
<= &2 pow p * &(SUC(SUC k))) /\ | |
abs(u * &2 pow (e + 2) - sum(0,m) t) <= &2 pow (e + 1) | |
==> abs(u - &2 pow n * ln(&1 + x)) < &1`, | |
STRIP_TAC THEN | |
(MATCH_MP_TAC o GEN_ALL o BETA_RULE) | |
(INST [`\x. ln(&1 + x):real`,`f:real->real`] APPROX_LEMMA1) THEN | |
MAP_EVERY EXISTS_TAC | |
[`\i x. (--(&1)) pow i * x pow (SUC i) / &(SUC i)`; | |
`3`; `m:num`; `sum(0,m) t`; `e:num`] THEN | |
ASM_REWRITE_TAC[BETA_THM] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LTE_TRANS THEN | |
EXISTS_TAC `inv(&2 pow (k * SUC m) * &(SUC m))` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC TAYLOR_LN THEN ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_LT_POW2]]; | |
MATCH_MP_TAC STEPS_LN THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `2 <= (n + e + 2)` MP_TAC THENL | |
[REWRITE_TAC[ADD_ASSOC] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN | |
REWRITE_TAC[LE_ADD]; | |
SUBGOAL_THEN `abs(x) <= &1 / &2` (fun th -> ASM_REWRITE_TAC[th]) THEN | |
ASM_REWRITE_TAC[real_abs] THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `inv(&2 pow k)` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_POW_1] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_LT_POW2] THEN | |
MATCH_MP_TAC REAL_POW_MONO THEN | |
REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN | |
UNDISCH_TAC `~(k = 0)` THEN ARITH_TAC]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Eliminate trivial definitions. *) | |
(* ------------------------------------------------------------------------- *) | |
let ELIMINATE_DEF = | |
let x_tm = `x:num` | |
and a_tm = `&0` | |
and sconv = REWRITE_CONV[ARITH] in | |
fun tdefs th -> | |
if tdefs = [] then th else | |
let ctm = | |
itlist (fun tm acc -> | |
let l,r = (rand F_F I) (dest_eq tm) in | |
mk_cond(mk_eq(x_tm,l),r,acc)) tdefs a_tm in | |
let atm = mk_abs(x_tm,ctm) in | |
let ttm = rator(lhs(hd tdefs)) in | |
let tth = ASSUME(mk_eq(ttm,atm)) in | |
let ths = map | |
(EQT_ELIM o CONV_RULE(RAND_CONV sconv) o SUBS_CONV[tth]) tdefs in | |
let dth = PROVE_HYP (end_itlist CONJ ths) th in | |
MP (INST [atm,ttm] (DISCH_ALL dth)) (REFL atm);; | |
(* ------------------------------------------------------------------------- *) | |
(* Overall conversion. *) | |
(* ------------------------------------------------------------------------- *) | |
let realcalc_cache = ref [];; | |
let REALCALC_CONV,thm_eval,raw_eval,thm_wrap = | |
let a_tm = `a:real` and n_tm = `n:num` and n'_tm = `n':num` | |
and m_tm = `m:num` | |
and b_tm = `b:real` and e_tm = `e:num` | |
and c_tm = `c:real` | |
and neg_tm = `(--)` | |
and abs_tm = `abs` | |
and inv_tm = `inv` | |
and sqrt_tm = `sqrt` | |
and add_tm = `(+)` | |
and mul_tm = `(*)` | |
and sub_tm = `(-)` | |
and exp_tm = `exp:real->real` | |
and ln_tm = `ln:real->real` | |
and add1_tm = `(+) (&1)` | |
and pow2_tm = `(pow) (&2)` | |
and one_tm = `&1` | |
and lt_tm = `(<)` in | |
let INTEGER_PROVE = | |
EQT_ELIM o REWRITE_CONV[REAL_EQ_NEG2; GSYM EXISTS_REFL; | |
EXISTS_OR_THM; REAL_OF_NUM_EQ] in | |
let ndiv x y = | |
let q = quo_num x y in | |
let r = x -/ (q */ y) in | |
if le_num (abs_num(Int 2 */ r)) (abs_num y) then q | |
else if le_num (abs_num(Int 2 */ (r -/ y))) (abs_num y) then q +/ Int 1 | |
else if le_num (abs_num(Int 2 */ (r +/ y))) (abs_num y) then q -/ Int 1 | |
else let s = (string_of_num x)^" and "^(string_of_num y) in | |
failwith ("ndiv: "^s) in | |
let raw_wrap (f:num->num) = (ref(Int(-1),Int 0),f) in | |
let raw_eval(r,(f:num->num)) n = | |
let (n0,y0) = !r in | |
if le_num n n0 then ndiv y0 (power_num (Int 2) (n0 -/ n)) | |
else let y = f n in (r := (n,y); y) in | |
let thm_eval = | |
let SUC_tm = `SUC` | |
and mk_add = mk_binop `(+):num->num->num` in | |
fun (r,(f:num->thm)) n -> | |
let (n0,y0th) = !r in | |
if le_num n n0 then | |
if n =/ n0 then y0th else | |
let th1 = NUM_SUC_CONV | |
(mk_comb(SUC_tm,mk_numeral(n0 -/ (n +/ Int 1)))) in | |
let th2 = MATCH_MP REALCALC_DOWNGRADE th1 in | |
let th3 = NUM_ADD_CONV(mk_add(mk_numeral(n)) (mk_numeral(n0 -/ n))) in | |
let th4 = MATCH_MP th2 th3 in | |
let th5 = MATCH_MP th4 y0th in | |
let tm5 = fst(dest_imp(concl th5)) in | |
let tm5a,tm5b = dest_comb tm5 in | |
let th6 = REAL_INT_POW_CONV tm5b in | |
let tm5c = rand(rand tm5a) in | |
let tm5d,tm5e = dest_comb tm5c in | |
let tm5f,tm5g = dest_comb(rand tm5d) in | |
let tm5h = rand(rand tm5f) in | |
let bin = mk_realintconst | |
(ndiv (dest_realintconst tm5e) (power_num (Int 2) (dest_numeral tm5h))) in | |
let th7 = AP_TERM (rator(rand tm5f)) th1 in | |
let th8 = GEN_REWRITE_RULE LAND_CONV [CONJUNCT2 real_pow] th7 in | |
let th9 = SYM(GEN_REWRITE_RULE (LAND_CONV o RAND_CONV) [th6] th8) in | |
let th10 = TRANS th9 (REAL_INT_MUL_CONV (rand(concl th9))) in | |
let th11 = AP_THM (AP_TERM (rator tm5f) th10) bin in | |
let th12 = TRANS th11 (REAL_INT_MUL_CONV (rand(concl th11))) in | |
let th13 = AP_THM (AP_TERM (rator tm5d) th12) tm5e in | |
let th14 = TRANS th13 (REAL_INT_SUB_CONV (rand(concl th13))) in | |
let th15 = AP_TERM (rator(rand tm5a)) th14 in | |
let th16 = TRANS th15 (REAL_INT_ABS_CONV (rand(concl th15))) in | |
let th17 = MK_COMB(AP_TERM (rator tm5a) th16,th6) in | |
let th18 = TRANS th17 (REAL_INT_LE_CONV (rand(concl th17))) in | |
MATCH_MP th5 (EQT_ELIM th18) | |
else let yth = f n in (r := (n,yth); yth) in | |
let thm_wrap (f:num->thm) = (ref(Int(-1),TRUTH),f) in | |
let find_msd = | |
let rec find_msd n f = | |
if Int 1 </ abs_num(raw_eval f n) then n | |
else find_msd (n +/ Int 1) f in | |
find_msd (Int 0) in | |
let find_acc = | |
let rec find_msd n f = | |
if Int 32 </ abs_num(raw_eval f n) then n | |
else find_msd (n +/ Int 1) f in | |
find_msd (Int 0) in | |
let find_ubound f = | |
let k = find_acc f in | |
let a = abs_num(raw_eval f k) in | |
k -/ log2 (a +/ Int 1) in | |
let REALCALC_EXP_CONV = | |
let t_tm = `t:num->real` | |
and n_tm = `n:num` | |
and m_tm = `m:num` | |
and e_tm = `e:num` | |
and p_tm = `p:num` | |
and s_tm = `s:real` | |
and u_tm = `u:real` | |
and x_tm = `x:real` in | |
let rec calculate_m acc i r = | |
if acc >=/ r then i else | |
let i' = i +/ Int 1 in | |
calculate_m (i' */ acc) i' r in | |
let calculate_exp_sequence = | |
let rec calculate_exp_sequence p2 s i = | |
if i </ Int 0 then [] | |
else if i =/ Int 0 then [p2] else | |
let acc = calculate_exp_sequence p2 s (i -/ Int 1) in | |
let t = hd acc in | |
let t' = ndiv (s */ t) (p2 */ i) in | |
t'::acc in | |
fun p s m -> let p2 = power_num (Int 2) p in | |
rev(calculate_exp_sequence p2 s (m -/ Int 1)) in | |
let pth = prove | |
(`abs(x) <= &1 ==> | |
abs(s - &2 pow p * x) < &1 ==> | |
(n + e + 2 = p) /\ | |
&3 * &2 pow (n + 2) <= &(FACT m) /\ | |
&2 * &m <= &2 pow e /\ | |
(t(0) = &2 pow p) /\ | |
(!k. SUC k < m ==> | |
&2 * abs(t(SUC k) * &2 pow p * &(SUC k) - s * t(k)) | |
<= &2 pow p * &(SUC k)) /\ | |
abs(u * &2 pow (e + 2) - sum(0,m) t) <= &2 pow (e + 1) | |
==> abs(u - &2 pow n * exp(x)) < &1`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC APPROX_EXP THEN | |
ASM_REWRITE_TAC[]) in | |
let LEFT_ZERO_RULE = | |
ONCE_REWRITE_RULE[prove(`0 + n = n`,REWRITE_TAC[ADD_CLAUSES])] in | |
fun (fn1,fn2) -> | |
let raw_fn n = | |
let m = calculate_m (Int 1) (Int 0) | |
(Int 3 */ (power_num (Int 2) (n +/ Int 2))) in | |
let e = log2 (Int 2 */ m) in | |
let p = n +/ e +/ Int 2 in | |
let s = raw_eval fn1 p in | |
let seq = calculate_exp_sequence p s m in | |
let u0 = itlist (+/) seq (Int 0) in | |
ndiv u0 (power_num (Int 2) (e +/ Int 2)) | |
and thm_fn n = | |
let m = calculate_m (Int 1) (Int 0) | |
(Int 3 */ (power_num (Int 2) (n +/ Int 2))) in | |
let e = log2 (Int 2 */ m) in | |
let p = n +/ e +/ Int 2 in | |
let sth = thm_eval fn2 p in | |
let tm1 = rand(lhand(concl sth)) in | |
let s_num = lhand tm1 in | |
let x_num = rand(rand tm1) in | |
let s = dest_realintconst s_num in | |
let seq = calculate_exp_sequence p s m in | |
let u0 = itlist (+/) seq (Int 0) in | |
let u = ndiv u0 (power_num (Int 2) (e +/ Int 2)) in | |
let m_num = mk_numeral m | |
and n_num = mk_numeral n | |
and e_num = mk_numeral e | |
and p_num = mk_numeral p | |
and u_num = mk_realintconst u in | |
let tdefs = map2 (fun a b -> mk_eq(mk_comb(t_tm,mk_small_numeral a), | |
mk_realintconst b)) (0--(length seq - 1)) seq in | |
let p2th = REAL_INT_POW_CONV (mk_comb(pow2_tm,p_num)) in | |
let th0 = INST [m_num,m_tm; n_num,n_tm; e_num,e_tm; | |
x_num,x_tm; p_num,p_tm; s_num,s_tm; u_num,u_tm] pth in | |
let th0' = MP th0 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th0)))) in | |
let th1 = MP th0' sth in | |
let th2 = CONV_RULE (ONCE_DEPTH_CONV EXPAND_RANGE_CONV) th1 in | |
let th3 = LEFT_ZERO_RULE | |
(CONV_RULE (ONCE_DEPTH_CONV REAL_SUM_CONV) th2) in | |
let ths = try CONJUNCTS(ASSUME(list_mk_conj tdefs)) | |
with Failure _ -> [] in | |
let th4 = SUBS (p2th::ths) th3 in | |
let th5 = CONV_RULE (LAND_CONV | |
(DEPTH_CONV NUM_ADD_CONV THENC | |
ONCE_DEPTH_CONV NUM_FACT_CONV THENC | |
REAL_INT_REDUCE_CONV)) th4 in | |
MP (ELIMINATE_DEF tdefs th5) TRUTH in | |
raw_wrap raw_fn,thm_wrap thm_fn in | |
let REALCALC_LN_CONV = | |
let t_tm = `t:num->real` | |
and n_tm = `n:num` | |
and m_tm = `m:num` | |
and e_tm = `e:num` | |
and p_tm = `p:num` | |
and s_tm = `s:real` | |
and u_tm = `u:real` | |
and k_tm = `k:num` | |
and x_tm = `x:real` in | |
let rec calculate_m acc k2 m r = | |
if acc */ (m +/ Int 1) >=/ r then m else | |
calculate_m (k2 */ acc) k2 (m +/ Int 1) r in | |
let calculate_ln_sequence = | |
let rec calculate_ln_sequence p2 s i = | |
if i </ Int 0 then [] | |
else if i =/ Int 0 then [s] else | |
let acc = calculate_ln_sequence p2 s (i -/ Int 1) in | |
let t = hd acc in | |
let t' = ndiv (Int(-1) */ s */ t */ i) (p2 */ (i +/ Int 1)) in | |
t'::acc in | |
fun p s m -> let p2 = power_num (Int 2) p in | |
rev(calculate_ln_sequence p2 s (m -/ Int 1)) in | |
let pth = prove | |
(`&0 <= x /\ x <= inv(&2 pow k) ==> | |
abs(s - &2 pow p * x) < &1 ==> | |
~(k = 0) /\ | |
(n + e + 2 = p) /\ | |
&2 pow (n + 2) <= &2 pow (k * SUC m) * &(SUC m) /\ | |
&3 * &m <= &2 pow e /\ | |
(t(0) = s) /\ | |
(!k. SUC k < m ==> | |
&2 * abs(t(SUC k) * &2 pow p * &(SUC(SUC k)) - | |
&(SUC k) * --s * t(k)) | |
<= &2 pow p * &(SUC(SUC k))) /\ | |
abs(u * &2 pow (e + 2) - sum(0,m) t) <= &2 pow (e + 1) | |
==> abs(u - &2 pow n * ln(&1 + x)) < &1`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC(INST [`--s`,`s:real`] APPROX_LN) THEN | |
ASM_REWRITE_TAC[REAL_NEG_NEG] THEN | |
REWRITE_TAC[REAL_MUL_RNEG] THEN | |
REWRITE_TAC[REAL_ARITH `abs(--a - --b) = abs(a - b)`] THEN | |
ASM_REWRITE_TAC[]) in | |
let LEFT_ZERO_RULE = | |
ONCE_REWRITE_RULE[prove(`0 + n = n`,REWRITE_TAC[ADD_CLAUSES])] in | |
let pow2_tm = `(pow) (&2)` in | |
let default_tdefs = [`t 0 = &0`] in | |
fun (fn1,fn2) -> | |
let raw_fn n = | |
let k = find_ubound fn1 in | |
if k </ Int 1 then failwith "ln of number not provably <= 1/2" else | |
let k2 = power_num (Int 2) k in | |
let m = calculate_m k2 k2 (Int 0) (power_num (Int 2) (n +/ Int 2)) in | |
let e = log2 (Int 3 */ m) in | |
let p = n +/ e +/ Int 2 in | |
let s = raw_eval fn1 p in | |
let seq = calculate_ln_sequence p s m in | |
let u0 = itlist (+/) seq (Int 0) in | |
ndiv u0 (power_num (Int 2) (e +/ Int 2)) | |
and thm_fn n = | |
let k = find_ubound fn1 in | |
if k </ Int 1 then failwith "ln of number not provably <= 1/2" else | |
let k2 = power_num (Int 2) k in | |
let m = calculate_m k2 k2 (Int 0) (power_num (Int 2) (n +/ Int 2)) in | |
let e = log2 (Int 3 */ m) in | |
let p = n +/ e +/ Int 2 in | |
let sth = thm_eval fn2 p in | |
let tm1 = rand(lhand(concl sth)) in | |
let s_num = lhand tm1 in | |
let x_num = rand(rand tm1) in | |
let s = dest_realintconst s_num in | |
let seq = calculate_ln_sequence p s m in | |
let u0 = itlist (+/) seq (Int 0) in | |
let u = ndiv u0 (power_num (Int 2) (e +/ Int 2)) in | |
let m_num = mk_numeral m | |
and n_num = mk_numeral n | |
and e_num = mk_numeral e | |
and p_num = mk_numeral p | |
and k_num = mk_numeral k | |
and u_num = mk_realintconst u in | |
let tdefs0 = map2 (fun a b -> mk_eq(mk_comb(t_tm,mk_small_numeral a), | |
mk_realintconst b)) (0--(length seq - 1)) seq in | |
let tdefs = if tdefs0 = [] then default_tdefs else tdefs0 in | |
let p2th = REAL_INT_POW_CONV (mk_comb(pow2_tm,p_num)) in | |
let th0 = INST [m_num,m_tm; n_num,n_tm; e_num,e_tm; k_num,k_tm; | |
x_num,x_tm; p_num,p_tm; s_num,s_tm; u_num,u_tm] pth in | |
let th0' = MP th0 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th0)))) in | |
let th1 = MP th0' sth in | |
let th2 = CONV_RULE (ONCE_DEPTH_CONV EXPAND_RANGE_CONV) th1 in | |
let th3 = LEFT_ZERO_RULE | |
(CONV_RULE (ONCE_DEPTH_CONV REAL_SUM_CONV) th2) in | |
let ths = try CONJUNCTS(ASSUME(list_mk_conj tdefs)) | |
with Failure _ -> [] in | |
let th4 = SUBS (p2th::ths) th3 in | |
let th5 = CONV_RULE (LAND_CONV | |
(NUM_REDUCE_CONV THENC | |
REAL_INT_REDUCE_CONV)) th4 in | |
MP (ELIMINATE_DEF tdefs th5) TRUTH in | |
raw_wrap raw_fn,thm_wrap thm_fn in | |
let REALCALC_SQRT_CONV = | |
let num_sqrt = | |
let rec isolate_sqrt (a,b) y = | |
if abs_num(a -/ b) <=/ Int 1 then | |
if abs_num(a */ a -/ y) <=/ a then a else b | |
else | |
let c = quo_num (a +/ b) (Int 2) in | |
if c */ c <=/ y then isolate_sqrt (c,b) y | |
else isolate_sqrt (a,c) y in | |
fun n -> isolate_sqrt (Int 0,n) n in | |
let MATCH_pth = MATCH_MP REALCALC_SQRT in | |
let b_tm = `b:real` in | |
let PROVE_1_LE_SQRT = | |
let pth = prove | |
(`&1 <= x ==> &1 <= sqrt(x)`, | |
DISCH_THEN(fun th -> | |
ASSUME_TAC(MATCH_MP (REAL_ARITH `&1 <= x ==> &0 <= x`) th) THEN | |
MP_TAC th) THEN | |
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[REAL_NOT_LE] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN `x = sqrt(x) pow 2` SUBST1_TAC THENL | |
[CONV_TAC SYM_CONV THEN ASM_REWRITE_TAC[SQRT_POW2]; | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN | |
REWRITE_TAC[POW_2] THEN MATCH_MP_TAC REAL_LT_MUL2 THEN | |
ASM_SIMP_TAC[SQRT_POS_LE]]) in | |
let tac = REPEAT(MATCH_MP_TAC pth) THEN CONV_TAC REAL_RAT_LE_CONV in | |
fun tm -> try prove(tm,tac) | |
with Failure _ -> failwith "Need root body >= &1" in | |
fun (fn1,fn2) -> | |
let raw_fn n = | |
num_sqrt(power_num (Int 2) n */ raw_eval fn1 n) | |
and thm_fn n = | |
let th1 = MATCH_pth(thm_eval fn2 n) in | |
let th2 = MP th1 (PROVE_1_LE_SQRT(lhand(concl th1))) in | |
let th3 = CONV_RULE(funpow 2 LAND_CONV | |
(funpow 2 RAND_CONV REAL_RAT_REDUCE_CONV)) th2 in | |
let k = dest_realintconst(rand(rand(lhand(lhand(concl th3))))) in | |
let th4 = INST [mk_realintconst(num_sqrt k),b_tm] th3 in | |
MP th4 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th4)))) in | |
raw_wrap raw_fn,thm_wrap thm_fn in | |
let rec REALCALC_CONV tm = | |
try assoc tm (!realcalc_cache) with Failure _ -> | |
if is_ratconst tm then | |
let x = rat_of_term tm in | |
let raw_fn acc = | |
floor_num ((power_num (Int 2) acc) */ x) | |
and thm_fn acc = | |
let a = floor_num ((power_num (Int 2) acc) */ x) in | |
let atm = mk_realintconst a in | |
let rtm = mk_comb(mk_comb(mul_tm,mk_comb(pow2_tm,mk_numeral acc)),tm) in | |
let btm = mk_comb(abs_tm,mk_comb(mk_comb(sub_tm,atm),rtm)) in | |
let ftm = mk_comb(mk_comb(lt_tm,btm),one_tm) in | |
EQT_ELIM(REAL_RAT_REDUCE_CONV ftm) in | |
raw_wrap raw_fn,thm_wrap thm_fn else | |
let lop,r = dest_comb tm in | |
if lop = neg_tm then | |
let rfn,tfn = REALCALC_CONV r in | |
let raw_fn acc = | |
minus_num (raw_eval rfn acc) | |
and thm_fn acc = | |
let th1 = thm_eval tfn acc in | |
let th2 = MATCH_MP REALCALC_NEG th1 in | |
try EQ_MP (LAND_CONV(RAND_CONV(LAND_CONV REAL_INT_NEG_CONV)) (concl th2)) | |
th2 | |
with Failure _ -> th2 in | |
raw_wrap raw_fn,thm_wrap thm_fn | |
else if lop = abs_tm then | |
let rfn,tfn = REALCALC_CONV r in | |
let raw_fn acc = | |
abs_num (raw_eval rfn acc) | |
and thm_fn acc = | |
let th1 = thm_eval tfn acc in | |
let th2 = MATCH_MP REALCALC_ABS th1 in | |
CONV_RULE (LAND_CONV(RAND_CONV(LAND_CONV REAL_INT_ABS_CONV))) th2 in | |
raw_wrap raw_fn,thm_wrap thm_fn | |
else if lop = sqrt_tm then | |
REALCALC_SQRT_CONV(REALCALC_CONV r) | |
else if lop = inv_tm then | |
let rfn,tfn = REALCALC_CONV r in | |
let x0 = raw_eval rfn (Int 0) in | |
let ax0 = abs_num x0 in | |
let r = log2(ax0) -/ Int 1 in | |
let get_ek(acc) = | |
if r < Int 0 then | |
let p = find_msd rfn in | |
let e = acc +/ p +/ Int 1 in | |
let k = e +/ p in e,k | |
else | |
let k = let k0 = acc +/ Int 1 -/ (Int 2 */ r) in | |
if k0 </ Int 0 then Int 0 else k0 in | |
let e = r +/ k in e,k in | |
let raw_fn acc = | |
let _,k = get_ek(acc) in | |
let nk2 = power_num (Int 2) (acc +/ k) in | |
ndiv nk2 (raw_eval rfn k) in | |
let thm_fn acc = | |
let e,k = get_ek(acc) in | |
let nk2 = power_num (Int 2) (acc +/ k) in | |
let th1 = thm_eval tfn k in | |
let atm = lhand(rand(lhand(concl th1))) in | |
let a = dest_realintconst atm in | |
let b = ndiv nk2 a in | |
let btm = mk_realintconst b in | |
let etm = mk_numeral e in | |
let ntm = mk_numeral acc in | |
let th2 = MATCH_MP REALCALC_INV th1 in | |
let th3 = INST [btm,b_tm; etm,e_tm; ntm,n_tm] th2 in | |
let th4 = MP th3 (INTEGER_PROVE(lhand(concl th3))) in | |
let th5 = MP th4 (INTEGER_PROVE(lhand(concl th4))) in | |
let th6 = MP th5 (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th5)))) in | |
let th7 = MP th6 (EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th6)))) in | |
MP th7 | |
(EQT_ELIM(((LAND_CONV (funpow 4 RAND_CONV NUM_ADD_CONV) THENC | |
REAL_INT_REDUCE_CONV) (lhand(concl th7))))) in | |
raw_wrap raw_fn,thm_wrap thm_fn | |
else if lop = exp_tm then | |
let rfn,tfn = REALCALC_CONV r in | |
REALCALC_EXP_CONV (rfn,tfn) | |
else if lop = ln_tm then | |
let r1,r2 = dest_comb r in | |
if r1 = add1_tm then | |
let rfn,tfn = REALCALC_CONV r2 in | |
REALCALC_LN_CONV (rfn,tfn) | |
else | |
failwith "Can only do logs like ln(&1 + x) for small rational x" else | |
let op,l = dest_comb lop in | |
if op = add_tm then | |
let rfn1,tfn1 = REALCALC_CONV l | |
and rfn2,tfn2 = REALCALC_CONV r in | |
let raw_fn acc = | |
let acc' = acc +/ Int 2 in | |
ndiv (raw_eval rfn1 acc' +/ raw_eval rfn2 acc') (Int 4) | |
and thm_fn acc = | |
let acc' = acc +/ Int 2 in | |
let th1 = INST [mk_numeral acc,n_tm] REALCALC_ADD in | |
let th2 = MATCH_MP th1 (NUM_ADD_CONV (lhand(lhand(concl th1)))) in | |
let th3 = thm_eval tfn1 acc' in | |
let th4 = MATCH_MP th2 th3 in | |
let th5 = thm_eval tfn2 acc' in | |
let th6 = MATCH_MP th4 th5 in | |
let n1 = dest_realintconst(lhand(rand(lhand(concl th3)))) | |
and n2 = dest_realintconst(lhand(rand(lhand(concl th5)))) in | |
let ci = mk_realintconst(ndiv (n1 +/ n2) (Int 4)) in | |
let th7 = INST [ci,c_tm] th6 in | |
let th8 = EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th7))) in | |
MP th7 th8 in | |
raw_wrap raw_fn,thm_wrap thm_fn | |
else if op = mul_tm then | |
let rfn1,tfn1 = REALCALC_CONV l | |
and rfn2,tfn2 = REALCALC_CONV r in | |
let get_kl(acc) = | |
let n' = acc +/ Int 2 in | |
let r = quo_num n' (Int 2) in | |
let s = n' -/ r in | |
let p = log2(abs_num(raw_eval rfn1 r)) | |
and q = log2(abs_num(raw_eval rfn2 s)) in | |
let k = q +/ r +/ Int 1 | |
and l = p +/ s +/ Int 1 in | |
if p =/ Int 0 && q = Int 0 then | |
if k </ l then k +/ Int 1,l else k,l +/ Int 1 | |
else k,l in | |
let raw_fn acc = | |
let k,l = get_kl acc in | |
let m = (k +/ l) -/ acc in | |
ndiv (raw_eval rfn1 k */ raw_eval rfn2 l) (power_num (Int 2) m) in | |
let thm_fn acc = | |
let k,l = get_kl acc in | |
let m = (k +/ l) -/ acc in | |
let th1a = thm_eval tfn1 k | |
and th1b = thm_eval tfn2 l in | |
let a = dest_realintconst(lhand(rand(lhand(concl th1a)))) | |
and b = dest_realintconst(lhand(rand(lhand(concl th1b)))) in | |
let c = ndiv (a */ b) (power_num (Int 2) m) in | |
let ntm = mk_numeral acc | |
and mtm = mk_numeral m | |
and ctm = mk_realintconst c in | |
let th1 = MATCH_MP REALCALC_MUL th1a in | |
let th2 = MATCH_MP th1 th1b in | |
let th3 = INST [ntm,n_tm; mtm,m_tm; ctm,c_tm] th2 in | |
let th4 = MP th3 (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th3)))) in | |
let th5 = MP th4 (EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th4)))) in | |
MP th5 (EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th5)))) in | |
raw_wrap raw_fn,thm_wrap thm_fn | |
else failwith "No other operators work yet, sorry!" in | |
REALCALC_CONV,thm_eval,raw_eval,thm_wrap;; | |
(* ------------------------------------------------------------------------- *) | |
(* Apply some conversion before doing approximation. *) | |
(* ------------------------------------------------------------------------- *) | |
let REALCALC_PRECONV conv tm = | |
let th = conv tm in | |
let rfn,tfn = REALCALC_CONV (rand(concl th)) in | |
rfn, | |
thm_wrap(fun n -> | |
let th1 = thm_eval tfn n in | |
GEN_REWRITE_RULE (LAND_CONV o funpow 3 RAND_CONV) [SYM th] th1);; | |
(* ------------------------------------------------------------------------- *) | |
(* Calculate ordering relation between two expressions. *) | |
(* ------------------------------------------------------------------------- *) | |
let REALCALC_LT = prove | |
(`abs(a - &2 pow n * x) < &1 /\ abs(b - &2 pow n * y) < &1 | |
==> &2 <= abs(a - b) ==> (x < y <=> a < b)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `&2 pow n * x < &2 pow n * y` THEN CONJ_TAC THENL | |
[SIMP_TAC[REAL_LT_LMUL_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH]; | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC]);; | |
let REALCALC_LE = prove | |
(`abs(a - &2 pow n * x) < &1 /\ abs(b - &2 pow n * y) < &1 | |
==> &2 <= abs(a - b) ==> (x <= y <=> a <= b)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `&2 pow n * x <= &2 pow n * y` THEN CONJ_TAC THENL | |
[SIMP_TAC[REAL_LE_LMUL_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH]; | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC]);; | |
let REALCALC_GT = prove | |
(`abs(a - &2 pow n * x) < &1 /\ abs(b - &2 pow n * y) < &1 | |
==> &2 <= abs(a - b) ==> (x > y <=> a > b)`, | |
ONCE_REWRITE_TAC[CONJ_SYM; REAL_ABS_SUB] THEN | |
REWRITE_TAC[real_gt; REALCALC_LT]);; | |
let REALCALC_GE = prove | |
(`abs(a - &2 pow n * x) < &1 /\ abs(b - &2 pow n * y) < &1 | |
==> &2 <= abs(a - b) ==> (x >= y <=> a >= b)`, | |
ONCE_REWRITE_TAC[CONJ_SYM; REAL_ABS_SUB] THEN | |
REWRITE_TAC[real_ge; REALCALC_LE]);; | |
let REALCALC_EQ = prove | |
(`abs(a - &2 pow n * x) < &1 /\ abs(b - &2 pow n * y) < &1 | |
==> &2 <= abs(a - b) ==> ((x = y) <=> F)`, | |
ASM_CASES_TAC `x:real = y` THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; | |
let realcalc_rel_conv = | |
let pops = | |
[`(<)`,(</); `(<=)`,(<=/); | |
`(>)`,(>/); `(>=)`,(>=/); | |
`(=):real->real->bool`,(=/)] in | |
let rec find_n rfn1 rfn2 n = | |
if n >/ Int 1000 then | |
failwith "realcalc_rel_conv: too close to discriminate" else | |
if abs_num(raw_eval rfn1 n -/ raw_eval rfn2 n) >=/ Int 4 then n | |
else find_n rfn1 rfn2 (n +/ Int 1) in | |
fun tm -> | |
let lop,r = dest_comb tm in | |
let op,l = dest_comb lop in | |
let pop = | |
try assoc op pops | |
with Failure _ -> failwith "realcalc_rel_conv: unknown operator" in | |
let rfn1,tfn1 = REALCALC_CONV l | |
and rfn2,tfn2 = REALCALC_CONV r in | |
let n = find_n rfn1 rfn2 (Int 1) in | |
pop (raw_eval rfn1 n) (raw_eval rfn2 n);; | |
let REALCALC_REL_CONV = | |
let pths = | |
[`(<)`,REALCALC_LT; `(<=)`,REALCALC_LE; | |
`(>)`,REALCALC_GT; `(>=)`,REALCALC_GE; | |
`(=):real->real->bool`,REALCALC_EQ] in | |
let rec find_n rfn1 rfn2 n = | |
if n >/ Int 1000 then | |
failwith "realcalc_rel_conv: too close to discriminate" else | |
if abs_num(raw_eval rfn1 n -/ raw_eval rfn2 n) >=/ Int 4 then n | |
else find_n rfn1 rfn2 (n +/ Int 1) in | |
fun tm -> | |
let lop,r = dest_comb tm in | |
let op,l = dest_comb lop in | |
let pth = try assoc op pths | |
with Failure _ -> failwith "realcalc_rel_conv: unknown operator" in | |
let rfn1,tfn1 = REALCALC_CONV l | |
and rfn2,tfn2 = REALCALC_CONV r in | |
let n = find_n rfn1 rfn2 (Int 1) in | |
let th1 = thm_eval tfn1 n | |
and th2 = thm_eval tfn2 n in | |
let th3 = MATCH_MP pth (CONJ th1 th2) in | |
let th4 = MP th3 (EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th3)))) in | |
CONV_RULE(RAND_CONV REAL_RAT_REDUCE_CONV) th4;; | |