Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Jacobi symbols for N and Z, taking in Legendre symbols as a special case. *) | |
(* ========================================================================= *) | |
needs "Library/primitive.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Some fairly generic lemmas, but it's not quite clear where to put them. *) | |
(* ------------------------------------------------------------------------- *) | |
let COPRIME_IPRODUCT = prove | |
(`!s (a:A->int) n. | |
(!i. i IN s ==> coprime(n,a i)) ==> coprime(n,iproduct s a)`, | |
REPEAT GEN_TAC THEN | |
MP_TAC(ISPECL [`\i:int. coprime(n,i)`; `a:A->int`; `s:A->bool`] | |
IPRODUCT_CLOSED) THEN | |
REWRITE_TAC[INT_COPRIME_1; IMP_CONJ] THEN DISCH_THEN MATCH_MP_TAC THEN | |
CONV_TAC INTEGER_RULE);; | |
let CONG_IPRODUCT = prove | |
(`!s (a:A->int) (b:A->int) n. | |
FINITE s /\ | |
(!i. i IN s ==> (a i == b i) (mod n)) | |
==> (iproduct s a == iproduct s b) (mod n)`, | |
REPEAT STRIP_TAC THEN MP_TAC(ISPECL | |
[`\i j:int. (i == j) (mod n)`; `a:A->int`; `b:A->int`; `s:A->bool`] | |
IPRODUCT_RELATED) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN | |
CONV_TAC INTEGER_RULE);; | |
(* ------------------------------------------------------------------------- *) | |
(* The definition over N (with the range still being Z). *) | |
(* ------------------------------------------------------------------------- *) | |
let jacobi = new_definition | |
`(jacobi:num#num->int)(a,n) = | |
if n = 0 then if a = 1 then &1 else &0 | |
else iproduct {p | prime p /\ p divides n} | |
(\p. (if p divides a then &0 | |
else if ?x. (x EXP 2 == a) (mod p) then &1 | |
else --(&1)) pow index p n)`;; | |
let JACOBI_BOUND = prove | |
(`!a n. abs(jacobi(a,n)) <= &1`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[jacobi] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC INT_REDUCE_CONV) THEN | |
ASM_SIMP_TAC[GSYM IPRODUCT_ABS; FINITE_SPECIAL_DIVISORS] THEN | |
MATCH_MP_TAC IPRODUCT_LE_1 THEN | |
ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; FORALL_IN_GSPEC; INT_ABS_POS] THEN | |
X_GEN_TAC `p:num` THEN STRIP_TAC THEN REWRITE_TAC[INT_ABS_POW] THEN | |
MATCH_MP_TAC INT_POW_1_LE THEN INT_ARITH_TAC);; | |
let JACOBI_CASES = prove | |
(`!a n. jacobi(a,n) = -- &1 \/ jacobi(a,n) = &0 \/ jacobi(a,n) = &1`, | |
MP_TAC JACOBI_BOUND THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
INT_ARITH_TAC);; | |
let JACOBI_PRIME = prove | |
(`!a p. prime p | |
==> jacobi(a,p) = | |
if p divides a then &0 | |
else if ?x. (x EXP 2 == a) (mod p) then &1 | |
else --(&1)`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[jacobi; PRIME_IMP_NZ] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{x | P x /\ Q x} = {x | ~(P x ==> ~Q x)}`] THEN | |
ASM_SIMP_TAC[DIVIDES_PRIME_PRIME] THEN | |
REWRITE_TAC[MESON[] `~(prime q ==> ~(q = p)) <=> prime p /\ q = p`] THEN | |
ASM_REWRITE_TAC[SING_GSPEC; IPRODUCT_SING; INDEX_REFL] THEN | |
ASM_CASES_TAC `p <= 1` THEN ASM_REWRITE_TAC[INT_POW_1] THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ASM_ARITH_TAC);; | |
let JACOBI = prove | |
(`!a n. jacobi(a,n) = | |
if n = 0 then if a = 1 then &1 else &0 | |
else iproduct {p | prime p /\ p divides n} | |
(\p. jacobi(a,p) pow index p n)`, | |
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [jacobi] THEN | |
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC IPRODUCT_EQ THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN | |
SIMP_TAC[JACOBI_PRIME]);; | |
let JACOBI_ALT = prove | |
(`!s a n. | |
FINITE s /\ | |
{p | prime p /\ p divides n} SUBSET s /\ | |
s SUBSET {p | prime p} | |
==> jacobi(a,n) = iproduct s (\p. jacobi(a,p) pow index p n)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL | |
[REWRITE_TAC[CONJ_ASSOC] THEN | |
DISCH_THEN(MP_TAC o CONJUNCT1) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP FINITE_SUBSET) THEN | |
MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN | |
ASM_REWRITE_TAC[GSYM INFINITE; PRIMES_INFINITE; DIVIDES_0]; | |
STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [JACOBI] THEN | |
ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN | |
MATCH_MP_TAC IPRODUCT_SUPERSET THEN ASM_REWRITE_TAC[] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN_ELIM_THM]) THEN | |
ASM_SIMP_TAC[IN_ELIM_THM; IMP_CONJ; INDEX_ZERO; INT_POW]]);; | |
let JACOBI_EQ_0 = prove | |
(`!a n. jacobi(a,n) = &0 <=> ~coprime(a,n)`, | |
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [JACOBI] THEN | |
ASM_CASES_TAC `n = 0` THENL | |
[ASM_REWRITE_TAC[COPRIME_0] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC INT_REDUCE_CONV; | |
ASM_SIMP_TAC[IPRODUCT_EQ_0; FINITE_SPECIAL_DIVISORS] THEN | |
REWRITE_TAC[EXISTS_IN_GSPEC; INT_POW_EQ_0] THEN | |
REWRITE_TAC[COPRIME_PRIME_EQ; NOT_FORALL_THM] THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `p:num` THEN ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `(p:num) divides n` THEN ASM_REWRITE_TAC[INDEX_EQ_0] THEN | |
ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN | |
ASM_SIMP_TAC[JACOBI_PRIME] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
CONV_TAC INT_REDUCE_CONV]);; | |
let JACOBI_ZERO = prove | |
(`!a b. ~coprime(a,n) ==> jacobi(a,n) = &0`, | |
REWRITE_TAC[JACOBI_EQ_0]);; | |
let JACOBI_1 = prove | |
(`(!n. jacobi(1,n) = &1) /\ | |
(!a. jacobi(a,1) = &1)`, | |
REPEAT STRIP_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [JACOBI] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN | |
SIMP_TAC[INDEX_1; INT_POW; IPRODUCT_ONE] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC IPRODUCT_EQ_1 THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN | |
X_GEN_TAC `p:num` THEN STRIP_TAC THEN | |
ASM_SIMP_TAC[JACOBI_PRIME; DIVIDES_ONE] THEN | |
ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN | |
SUBGOAL_THEN `?x. (x EXP 2 == 1) (mod p)` | |
(fun th -> REWRITE_TAC[th; INT_POW_ONE]) THEN | |
EXISTS_TAC `1` THEN CONV_TAC NUM_REDUCE_CONV THEN | |
REWRITE_TAC[CONG_REFL]);; | |
let JACOBI_0 = prove | |
(`(!n. jacobi(0,n) = if n = 1 then &1 else &0) /\ | |
(!a. jacobi(a,0) = if a = 1 then &1 else &0)`, | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[JACOBI_1] THEN | |
ASM_REWRITE_TAC[JACOBI_EQ_0; COPRIME_0]);; | |
let JACOBI_2_CASES = prove | |
(`!a. jacobi(a,2) = if ODD a then &1 else &0`, | |
GEN_TAC THEN SIMP_TAC[JACOBI_PRIME; PRIME_2; DIVIDES_2; GSYM NOT_EVEN] THEN | |
ASM_CASES_TAC `EVEN a` THEN ASM_REWRITE_TAC[CONG_MOD_2] THEN | |
REWRITE_TAC[EVEN_EXP; ARITH_EQ] THEN REWRITE_TAC[NOT_EVEN] THEN | |
MESON_TAC[ODD]);; | |
let JACOBI_2 = prove | |
(`!a. jacobi(a,2) = &(a MOD 2)`, | |
GEN_TAC THEN REWRITE_TAC[JACOBI_2_CASES; MOD_2_CASES] THEN | |
REWRITE_TAC[GSYM NOT_ODD; COND_SWAP] THEN MESON_TAC[]);; | |
let JACOBI_EULER = prove | |
(`!a p. prime p /\ ~(p = 2) | |
==> (jacobi(a,p) == &a pow ((p - 1) DIV 2)) (mod &p)`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[EULER_CRITERION; JACOBI_PRIME] THEN | |
COND_CASES_TAC THENL | |
[REWRITE_TAC[INTEGER_RULE `(&0:int == a) (mod p) <=> p divides a`] THEN | |
ASM_SIMP_TAC[INT_OF_NUM_POW; GSYM num_divides; PRIME_DIVEXP_EQ] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `((a EXP ((p - 1) DIV 2)) EXP 2 == 1) (mod p)` MP_TAC THENL | |
[MP_TAC(SPECL [`a:num`; `p:num`] FERMAT_LITTLE_PRIME) THEN | |
ASM_SIMP_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] PRIME_COPRIME_EQ] THEN | |
REWRITE_TAC[EXP_EXP] THEN | |
SUBGOAL_THEN `(p - 1) DIV 2 * 2 = p - 1` (fun th -> REWRITE_TAC[th]) THEN | |
REWRITE_TAC[GSYM DIVIDES_DIV_MULT; DIVIDES_2; EVEN_SUB; ARITH] THEN | |
ASM_MESON_TAC[PRIME_ODD; NOT_EVEN]; | |
ALL_TAC] THEN | |
MP_TAC(SPECL [`p:num`; `1`; `a EXP ((p - 1) DIV 2)`] | |
CONG_SQUARE_1_PRIME_POWER) THEN | |
ASM_REWRITE_TAC[EXP_1] THEN DISCH_THEN SUBST1_TAC THEN | |
ASM_CASES_TAC `(a EXP ((p - 1) DIV 2) == 1) (mod p)` THEN | |
ASM_REWRITE_TAC[] THENL | |
[REWRITE_TAC[GSYM num_congruent; INT_OF_NUM_POW] THEN | |
ASM_MESON_TAC[CONG_SYM]; | |
REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_POW] THEN | |
ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; LE_1; PRIME_IMP_NZ] THEN | |
CONV_TAC INTEGER_RULE]);; | |
let JACOBI_EULER_ALT = prove | |
(`!a p. prime p | |
==> (jacobi(a,p) == &a pow (if p = 2 then 1 else (p - 1) DIV 2)) | |
(mod &p)`, | |
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[JACOBI_EULER] THEN | |
DISCH_THEN(K ALL_TAC) THEN ASM_REWRITE_TAC[INT_POW_1; JACOBI_2_CASES] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM num_congruent; CONG_MOD_2_ALT] THEN | |
CONV_TAC NUM_REDUCE_CONV);; | |
let JACOBI_RMUL = prove | |
(`!a m n. jacobi(a,m * n) = jacobi(a,m) * jacobi(a,n)`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `a = 1` THEN ASM_REWRITE_TAC[JACOBI_1; INT_MUL_LID] THEN | |
ASM_CASES_TAC `m = 0` THEN | |
ASM_REWRITE_TAC[MULT_CLAUSES; JACOBI_0; INT_MUL_LZERO] THEN | |
ASM_CASES_TAC `n = 0` THEN | |
ASM_REWRITE_TAC[MULT_CLAUSES; JACOBI_0; INT_MUL_RZERO] THEN | |
MP_TAC(SPECL [`{p | prime p /\ p divides m * n}`; `a:num`] JACOBI_ALT) THEN | |
DISCH_THEN(fun th -> | |
MP_TAC(SPEC `m:num` th) THEN MP_TAC(SPEC `n:num` th)) THEN | |
ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; MULT_EQ_0] THEN | |
SIMP_TAC[SUBSET; IN_ELIM_THM; DIVIDES_LMUL; DIVIDES_RMUL] THEN | |
REPEAT(DISCH_THEN SUBST1_TAC) THEN | |
GEN_REWRITE_TAC LAND_CONV [JACOBI] THEN | |
ASM_REWRITE_TAC[MULT_EQ_0] THEN | |
ASM_SIMP_TAC[GSYM IPRODUCT_MUL; FINITE_SPECIAL_DIVISORS; MULT_EQ_0] THEN | |
MATCH_MP_TAC IPRODUCT_EQ THEN | |
REWRITE_TAC[FORALL_IN_GSPEC; GSYM INT_POW_ADD] THEN | |
ASM_SIMP_TAC[INDEX_MUL]);; | |
let JACOBI_LMUL = prove | |
(`!a b n. jacobi(a * b,n) = jacobi(a,n) * jacobi(b,n)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL | |
[ASM_REWRITE_TAC[JACOBI_0; MULT_EQ_1] THEN | |
MAP_EVERY ASM_CASES_TAC [`a = 1`; `b = 1`] THEN | |
ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV; | |
ONCE_REWRITE_TAC[JACOBI] THEN ASM_REWRITE_TAC[]] THEN | |
ASM_SIMP_TAC[GSYM IPRODUCT_MUL; FINITE_SPECIAL_DIVISORS] THEN | |
MATCH_MP_TAC IPRODUCT_EQ THEN | |
REWRITE_TAC[FORALL_IN_GSPEC; GSYM INT_POW_MUL] THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN | |
X_GEN_TAC `p:num` THEN DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN | |
ASM_CASES_TAC `p = 2` THENL | |
[ASM_REWRITE_TAC[JACOBI_2_CASES; ODD_MULT] THEN | |
MAP_EVERY ASM_CASES_TAC [`ODD a`; `ODD b`] THEN | |
ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV; | |
MATCH_MP_TAC INT_CONG_IMP_EQ THEN EXISTS_TAC `&p:int` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC(INT_ARITH | |
`abs(x:int) <= &1 /\ abs(y) <= &1 /\ &3 <= p ==> abs(x - y) < p`) THEN | |
REWRITE_TAC[INT_OF_NUM_LE; JACOBI_BOUND] THEN | |
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[ODD_PRIME; PRIME_ODD]] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM INT_MUL_LID] THEN | |
REWRITE_TAC[INT_ABS_MUL] THEN MATCH_MP_TAC INT_LE_MUL2 THEN | |
REWRITE_TAC[JACOBI_BOUND; INT_ABS_POS]; | |
MP_TAC(SPECL [`a * b:num`; `p:num`] JACOBI_EULER) THEN | |
MP_TAC(SPECL [`b:num`; `p:num`] JACOBI_EULER) THEN | |
MP_TAC(SPECL [`a:num`; `p:num`] JACOBI_EULER) THEN | |
ASM_REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN MATCH_MP_TAC(INTEGER_RULE | |
`(a' * b':int == c') (mod p) | |
==> (a == a') (mod p) /\ (b == b') (mod p) /\ (c == c') (mod p) | |
==> (c == a * b) (mod p)`) THEN | |
REWRITE_TAC[GSYM INT_POW_MUL; GSYM INT_OF_NUM_MUL] THEN | |
CONV_TAC INTEGER_RULE]]);; | |
let JACOBI_REXP = prove | |
(`!a n k. jacobi(a,n EXP k) = jacobi(a,n) pow k`, | |
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[EXP; JACOBI_RMUL; JACOBI_1; INT_POW]);; | |
let JACOBI_LEXP = prove | |
(`!a n k. jacobi(a EXP k,n) = jacobi(a,n) pow k`, | |
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[EXP; JACOBI_LMUL; JACOBI_1; INT_POW] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[INT_MUL_RZERO]);; | |
let JACOBI_EXP_2 = prove | |
(`!a k. jacobi(a,2 EXP k) = if k = 0 then &1 else &(a MOD 2)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[JACOBI_REXP; JACOBI_2] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[INT_POW] THEN | |
REWRITE_TAC[INT_OF_NUM_POW; INT_OF_NUM_EQ] THEN | |
REWRITE_TAC[MOD_2_CASES] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[EXP_ZERO; EXP_ONE]);; | |
let JACOBI_EXP_2_ALT = prove | |
(`!a k. jacobi(a,2 EXP k) = if k = 0 \/ ODD a then &1 else &0`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[JACOBI_REXP; JACOBI_2_CASES] THEN | |
ASM_CASES_TAC `ODD a` THEN ASM_REWRITE_TAC[INT_POW_ONE; INT_POW_ZERO]);; | |
let JACOBI_NPRODUCT_RIGHT = prove | |
(`!a (n:A->num) k. | |
FINITE k | |
==> jacobi(a,nproduct k n) = iproduct k (\i. jacobi(a,n i))`, | |
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
ASM_SIMP_TAC[NPRODUCT_CLAUSES; JACOBI_RMUL; JACOBI_1; IPRODUCT_CLAUSES]);; | |
let JACOBI_NPRODUCT_LEFT = prove | |
(`!(a:A->num) n k. | |
FINITE k | |
==> jacobi(nproduct k a,n) = iproduct k (\i. jacobi(a i,n))`, | |
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
ASM_SIMP_TAC[NPRODUCT_CLAUSES; JACOBI_LMUL; JACOBI_1; IPRODUCT_CLAUSES]);; | |
let JACOBI_CONG = prove | |
(`!a b n. (a == b) (mod n) ==> jacobi(a,n) = jacobi(b,n)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[CONG_MOD_0] THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[jacobi] THEN MATCH_MP_TAC IPRODUCT_EQ THEN | |
REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN | |
REWRITE_TAC[NUMBER_RULE `p divides a <=> (0 == a) (mod p)`] THEN | |
MP_TAC(NUMBER_RULE | |
`p divides n /\ (a:num == b) (mod n) ==> (a == b) (mod p)`) THEN | |
ASM_MESON_TAC[CONG_TRANS; CONG_SYM]);; | |
let JACOBI_MOD_GEN = prove | |
(`!a m n. n divides m ==> jacobi(a MOD m,n) = jacobi(a,n)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC JACOBI_CONG THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NUMBER_RULE | |
`(n:num) divides m ==> (x == y) (mod m) ==> (x == y) (mod n)`)) THEN | |
REWRITE_TAC[CONG_LMOD; CONG_REFL]);; | |
let JACOBI_MOD = prove | |
(`!a n. jacobi(a MOD n,n) = jacobi(a,n)`, | |
SIMP_TAC[JACOBI_MOD_GEN; DIVIDES_REFL]);; | |
let JACOBI_SQUARED = prove | |
(`(!a n. jacobi(a EXP 2,n) = if coprime(a,n) then &1 else &0) /\ | |
(!a n. jacobi(a,n EXP 2) = if coprime(a,n) then &1 else &0)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[EXP_2; JACOBI_LMUL; JACOBI_RMUL] THEN | |
ONCE_REWRITE_TAC[GSYM COND_SWAP] THEN REWRITE_TAC[GSYM JACOBI_EQ_0] THEN | |
MP_TAC(SPECL [`a:num`; `n:num`] JACOBI_CASES) THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV);; | |
let JACOBI_MINUS1 = prove | |
(`!n. ODD n ==> jacobi(n - 1,n) = --(&1) pow ((n - 1) DIV 2)`, | |
MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN | |
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[JACOBI_0] THEN | |
CONV_TAC INT_REDUCE_CONV THEN CONV_TAC NUM_REDUCE_CONV THEN | |
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN | |
ASM_CASES_TAC `ODD n` THEN ASM_REWRITE_TAC[ODD_MULT] THEN | |
ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[ARITH] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[JACOBI_RMUL] THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN | |
SUBGOAL_THEN `jacobi(p * n - 1,n) = jacobi (n - 1,n)` SUBST1_TAC THENL | |
[MATCH_MP_TAC JACOBI_CONG THEN MATCH_MP_TAC CONG_SUB THEN | |
REPLICATE_TAC 2 (CONJ_TAC THENL [CONV_TAC NUMBER_RULE; ALL_TAC]) THEN | |
ASM_REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; MULT_EQ_0]; | |
ASM_REWRITE_TAC[]] THEN | |
SUBGOAL_THEN `jacobi (p * n - 1,p) = --(&1) pow ((p - 1) DIV 2)` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC INT_CONG_IMP_EQ THEN EXISTS_TAC `&p:int` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC(INT_ARITH | |
`abs(x:int) <= &1 /\ abs(y) <= &1 /\ &3 <= p ==> abs(x - y) < p`) THEN | |
REWRITE_TAC[INT_OF_NUM_LE; JACOBI_BOUND] THEN | |
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[ODD_PRIME; PRIME_ODD]] THEN | |
REWRITE_TAC[INT_ABS_POW; INT_ABS_NEG; INT_POW_ONE; INT_ABS_NUM] THEN | |
REWRITE_TAC[INT_LE_REFL]; | |
MP_TAC(SPECL [`p * n - 1`; `p:num`] JACOBI_EULER_ALT) THEN | |
ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] INT_CONG_TRANS) THEN | |
MATCH_MP_TAC INT_CONG_POW THEN | |
ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; LE_1; MULT_EQ_0] THEN | |
REWRITE_TAC[GSYM INT_OF_NUM_MUL] THEN CONV_TAC INTEGER_RULE]; | |
REWRITE_TAC[GSYM INT_POW_ADD] THEN | |
REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN | |
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REPEAT(FIRST_X_ASSUM | |
(CHOOSE_THEN SUBST_ALL_TAC o REWRITE_RULE[ODD_EXISTS])) THEN | |
REWRITE_TAC[SUC_SUB1; ADD_CLAUSES; MULT_CLAUSES] THEN | |
REWRITE_TAC[GSYM LEFT_ADD_DISTRIB; GSYM MULT_ASSOC] THEN | |
REWRITE_TAC[ARITH_RULE `(2 * n) DIV 2 = n`] THEN | |
REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH]]);; | |
let JACOBI_MINUS1_CASES = prove | |
(`!n. ODD n | |
==> jacobi(n - 1,n) = | |
if (n == 1) (mod 4) then &1 else -- &1`, | |
SIMP_TAC[JACOBI_MINUS1] THEN | |
SIMP_TAC[ODD_EXISTS; ADD1; LEFT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[ARITH_RULE `((2 * n + 1) - 1) DIV 2 = n`] THEN | |
SIMP_TAC[ARITH_EQ; ARITH_RULE `4 = 2 * 2`; NUMBER_RULE | |
`~(t = 0) ==> ((t * n + 1 == 1) (mod (t * t)) <=> t divides n)`] THEN | |
REWRITE_TAC[INT_POW_NEG; INT_POW_ONE; DIVIDES_2]);; | |
let JACOBI_GAUSS_LEMMA = prove | |
(`!a p. prime p /\ ~(p = 2) | |
==> jacobi(a,p) = | |
if coprime(a,p) | |
then --(&1) pow CARD {x | x IN 1 .. (p - 1) DIV 2 /\ | |
(p - 1) DIV 2 < (a * x) MOD p} | |
else &0`, | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[JACOBI_EQ_0] THEN | |
SUBGOAL_THEN `ODD(p)` MP_TAC THENL | |
[ASM_MESON_TAC[PRIME_ODD; ODD_PRIME]; | |
REWRITE_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM]] THEN | |
X_GEN_TAC `r:num` THEN REWRITE_TAC[ADD1] THEN | |
DISCH_THEN(ASSUME_TAC o SYM) THEN | |
MATCH_MP_TAC INT_CONG_IMP_EQ THEN EXISTS_TAC `&p:int` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC(INT_ARITH | |
`abs(x:int) <= &1 /\ abs(y) <= &1 /\ &3 <= p ==> abs(x - y) < p`) THEN | |
REWRITE_TAC[INT_OF_NUM_LE; JACOBI_BOUND] THEN | |
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[ODD_PRIME; PRIME_ODD]] THEN | |
SIMP_TAC[INT_ABS_POW; INT_ABS_NEG; INT_POW_ONE; INT_ABS_NUM; INT_LE_REFL]; | |
ALL_TAC] THEN | |
MP_TAC(SPECL [`a:num`; `p:num`] JACOBI_EULER) THEN | |
ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] INT_CONG_TRANS) THEN | |
SUBGOAL_THEN `(p - 1) DIV 2 = r` SUBST1_TAC THENL | |
[EXPAND_TAC "p" THEN ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC(INTEGER_RULE | |
`!c:int. x pow 2 = &1 /\ coprime(p,c) /\ (a * x * c == c) (mod p) | |
==> (a == x) (mod p)`) THEN | |
EXISTS_TAC `iproduct (1..r) (\i. &i)` THEN REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[ONCE_REWRITE_RULE[MULT_SYM] INT_POW_POW] THEN | |
REWRITE_TAC[GSYM INT_POW_POW] THEN CONV_TAC INT_REDUCE_CONV THEN | |
REWRITE_TAC[INT_POW_ONE]; | |
MATCH_MP_TAC COPRIME_IPRODUCT THEN | |
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; GSYM num_coprime] THEN | |
X_GEN_TAC `i:num` THEN STRIP_TAC THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN | |
MATCH_MP_TAC PRIME_COPRIME_LT THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC; | |
GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV o LAND_CONV o RAND_CONV) | |
[GSYM CARD_NUMSEG_1] THEN | |
SIMP_TAC[GSYM IPRODUCT_CONST; FINITE_RESTRICT; FINITE_NUMSEG] THEN | |
REWRITE_TAC[IPRODUCT_RESTRICT_SET]] THEN | |
MP_TAC(ISPECL | |
[`(\i. &i):num->int`; | |
`(\x. if x <= r then x else p - x) o (\x. (a * x) MOD p)`; | |
`1..r`] IPRODUCT_INJECTION) THEN | |
REWRITE_TAC[o_THM; FINITE_NUMSEG] THEN ANTS_TAC THENL | |
[CONJ_TAC THENL | |
[GEN_TAC THEN REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THENL | |
[ALL_TAC; EXPAND_TAC "p" THEN ARITH_TAC] THEN | |
REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN COND_CASES_TAC THENL | |
[ALL_TAC; ASM_MESON_TAC[DIVISION; NOT_LE; SUB_EQ_0; PRIME_0]] THEN | |
ASM_SIMP_TAC[GSYM DIVIDES_MOD; PRIME_IMP_NZ] THEN | |
ASM_SIMP_TAC[PRIME_DIVPROD_EQ] THEN STRIP_TAC THENL | |
[ASM_MESON_TAC[coprime; DIVIDES_REFL; PRIME_1]; | |
ASM_MESON_TAC[DIVIDES_LE; ARITH_RULE `~(1 <= 0)`; | |
ARITH_RULE `~(2 * r + 1 <= i /\ i <= r)`]]; | |
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN REWRITE_TAC[IN_NUMSEG] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_IMP_EQ THEN | |
EXISTS_TAC `p:num` THEN REPEAT(CONJ_TAC THENL | |
[ASM_MESON_TAC[ARITH_RULE `i <= r ==> i < 2 * r + 1`] ; ALL_TAC]) THEN | |
MATCH_MP_TAC CONG_MULT_LCANCEL THEN EXISTS_TAC `a:num` THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE | |
`(if a then x else p - x) = (if b then y else p - y) ==> x < p /\ y < p | |
==> x:num = y \/ x + y = p`)) THEN | |
ASM_SIMP_TAC[MOD_LT_EQ; PRIME_IMP_NZ] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[ASM_MESON_TAC[CONG]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o C AP_THM `p:num` o AP_TERM `(MOD)`) THEN | |
ASM_SIMP_TAC[MOD_ADD_MOD] THEN ASM_SIMP_TAC[GSYM CONG] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP CONG_DIVIDES) THEN | |
ASM_SIMP_TAC[GSYM LEFT_ADD_DISTRIB; PRIME_DIVPROD_EQ; DIVIDES_REFL] THEN | |
STRIP_TAC THENL | |
[ASM_MESON_TAC[coprime; DIVIDES_REFL; PRIME_1]; ALL_TAC] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN | |
ASM_SIMP_TAC[ARITH_RULE `1 <= i ==> ~(i + j = 0)`] THEN | |
MAP_EVERY UNDISCH_TAC [`i:num <= r`; `j:num <= r`; `2 * r + 1 = p`] THEN | |
ARITH_TAC]; | |
DISCH_THEN(fun th -> GEN_REWRITE_TAC (LAND_CONV) [GSYM th])] THEN | |
SIMP_TAC[GSYM IPRODUCT_MUL; FINITE_NUMSEG; o_DEF] THEN | |
MATCH_MP_TAC CONG_IPRODUCT THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN | |
X_GEN_TAC `i:num` THEN STRIP_TAC THEN | |
REWRITE_TAC[COND_SWAP; GSYM NOT_LE] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; MOD_LT_EQ; PRIME_IMP_NZ; INT_OF_NUM_EQ; | |
LT_IMP_LE; INT_MUL_LID; INT_MUL_LNEG; INT_MUL_RNEG] THEN | |
REWRITE_TAC[INTEGER_RULE `(--x:int == p - a) (mod p) <=> (x == a) (mod p)`; | |
GSYM INT_OF_NUM_REM; GSYM INT_OF_NUM_MUL] THEN | |
REWRITE_TAC[INT_CONG_RREM; INT_CONG_REFL]);; | |
let JACOBI_OF_2 = prove | |
(`!n. jacobi(2,n) = if EVEN n then &0 else --(&1) pow ((n EXP 2 - 1) DIV 8)`, | |
let lemma0 = prove | |
(`!n. ODD n ==> 8 divides (n EXP 2 - 1)`, | |
GEN_TAC THEN REWRITE_TAC[ODD_EXISTS; ADD1; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `m:num` THEN DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[ARITH_RULE `(2 * n + 1) EXP 2 - 1 = 4 * (n EXP 2 + n)`] THEN | |
REWRITE_TAC[ARITH_RULE `8 = 4 * 2`] THEN MATCH_MP_TAC DIVIDES_MUL_L THEN | |
REWRITE_TAC[DIVIDES_2; EVEN_ADD; EVEN_EXP; ARITH_EQ]) in | |
let lemma1 = prove | |
(`!m n. ODD m /\ ODD n | |
==> (EVEN(((m * n) EXP 2 - 1) DIV 8) <=> | |
EVEN((m EXP 2 - 1) DIV 8 + (n EXP 2 - 1) DIV 8))`, | |
REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[GSYM DIV_ADD; lemma0; GSYM DIVIDES_2] THEN | |
ASM_SIMP_TAC[DIVIDES_DIVIDES_DIV; lemma0; ODD_MULT; DIVIDES_ADD] THEN | |
SUBGOAL_THEN | |
`(m * n) EXP 2 - 1 = | |
(m EXP 2 - 1) * (n EXP 2 - 1) + (m EXP 2 - 1) + (n EXP 2 - 1)` | |
SUBST1_TAC THENL | |
[ASM_SIMP_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_ADD; | |
GSYM INT_OF_NUM_MUL; GSYM INT_OF_NUM_SUB; LE_1; | |
MULT_EQ_0; EXP_2; MESON[ODD] `ODD n ==> ~(n = 0)`] THEN | |
INT_ARITH_TAC; | |
MATCH_MP_TAC(NUMBER_RULE | |
`(d:num) divides a ==> (d divides (a + b) <=> d divides b)`) THEN | |
MATCH_MP_TAC(NUMBER_RULE | |
`e divides d /\ d divides a /\ d divides b | |
==> d * e divides a * b`) THEN | |
ASM_SIMP_TAC[lemma0] THEN REWRITE_TAC[DIVIDES_2; ARITH]]) in | |
GEN_TAC THEN COND_CASES_TAC THENL | |
[ASM_REWRITE_TAC[JACOBI_EQ_0; COPRIME_2; GSYM NOT_EVEN]; | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EVEN])] THEN | |
SPEC_TAC(`n:num`,`n:num`) THEN MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN | |
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[JACOBI_1] THEN | |
CONV_TAC INT_REDUCE_CONV THEN | |
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN | |
ASM_CASES_TAC `ODD n` THEN ASM_REWRITE_TAC[ODD_MULT] THEN | |
ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[ARITH] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[JACOBI_RMUL] THEN | |
ASM_SIMP_TAC[JACOBI_GAUSS_LEMMA; COPRIME_2; IN_NUMSEG] THEN | |
ONCE_REWRITE_TAC[TAUT `(p /\ q) /\ r <=> ~(p /\ q ==> ~r)`] THEN | |
ASM_SIMP_TAC[PRIME_IMP_NZ; MOD_LT; ARITH_RULE | |
`1 <= x /\ x <= (p - 1) DIV 2 ==> 2 * x < p`] THEN | |
REWRITE_TAC[NOT_IMP; ARITH_RULE | |
`(1 <= x /\ x <= b) /\ c < 2 * x <=> c DIV 2 + 1 <= x /\ x <= b`] THEN | |
REWRITE_TAC[GSYM numseg; CARD_NUMSEG] THEN | |
REWRITE_TAC[GSYM INT_POW_ADD] THEN REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN | |
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
ASM_SIMP_TAC[EVEN_ADD; lemma1] THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[ARITH_RULE `(n + 1) - (n DIV 2 + 1) = n DIV 2 + n MOD 2`] THEN | |
UNDISCH_TAC `ODD p` THEN | |
REWRITE_TAC[ODD_EXISTS; ADD1; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `t:num` THEN DISCH_THEN SUBST1_TAC THEN | |
SIMP_TAC[ADD_SUB; DIV_MULT; ARITH_EQ] THEN | |
REWRITE_TAC[ARITH_RULE | |
`((2 * n + 1) EXP 2 - 1) DIV 8 = (n EXP 2 + n) DIV 2`] THEN | |
MP_TAC(SPEC `t:num` (REWRITE_RULE[EVEN_EXISTS; ODD_EXISTS] EVEN_OR_ODD)) THEN | |
REWRITE_TAC[ADD1; OR_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `q:num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
SIMP_TAC[MOD_MULT_ADD; DIV_MULT_ADD; ARITH_EQ; DIV_MULT; MOD_MULT] THEN | |
REWRITE_TAC[ARITH_RULE `((2 * q) EXP 2) DIV 2 = 2 * q * q`] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH] THEN | |
REWRITE_TAC[ARITH_RULE | |
`((2 * q + 1) EXP 2 + 2 * q + 1) DIV 2 = | |
2 * q EXP 2 + 3 * q + 1`] THEN | |
REWRITE_TAC[EVEN_ADD; EVEN_MULT; EVEN_EXP; ARITH]);; | |
let JACOBI_OF_2_CASES = prove | |
(`!n. jacobi(2,n) = | |
if EVEN n then &0 | |
else if (n == 1) (mod 8) \/ (n == 7) (mod 8) then &1 else --(&1)`, | |
GEN_TAC THEN REWRITE_TAC[JACOBI_OF_2] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EVEN]) THEN | |
SIMP_TAC[ODD_EXISTS; ADD1; LEFT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[ARITH_RULE | |
`((2 * m + 1) EXP 2 - 1) DIV 8 = (m * (m + 1)) DIV 2`] THEN | |
X_GEN_TAC `m:num` THEN DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[NUMBER_RULE `(n + 1 == 1) (mod p) <=> (n == 0) (mod p)`] THEN | |
REWRITE_TAC[NUMBER_RULE `(n + 1 == 7) (mod p) <=> (n == 6) (mod p)`] THEN | |
REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN | |
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
MP_TAC(SPEC `m:num` | |
(REWRITE_RULE[EVEN_EXISTS; ODD_EXISTS; ADD1] EVEN_OR_ODD)) THEN | |
DISCH_THEN(DISJ_CASES_THEN (X_CHOOSE_THEN `p:num` SUBST1_TAC)) THENL | |
[REWRITE_TAC[ARITH_RULE `((2 * p) * (2 * p + 1)) DIV 2 = p * (2 * p + 1)`]; | |
REWRITE_TAC[ARITH_RULE `((2 * p + 1) * ((2 * p + 1) + 1)) DIV 2 = | |
(p + 1) * (2 * p + 1)`]] THEN | |
MP_TAC(GEN `n:num` (SPECL [`2`; `n:num`; `4`] DIVIDES_LMUL2_EQ)) THEN | |
REWRITE_TAC[GSYM DIVIDES_2] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN | |
REWRITE_TAC[DIVIDES_MOD; CONG] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
(W(fun(asl,w) -> SUBGOAL_THEN (subst [`p MOD 8`,`p:num`] w) MP_TAC) THENL | |
[ALL_TAC; | |
MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [ALL_TAC; BINOP_TAC] THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM CONG] THEN | |
REPEAT(MATCH_MP_TAC CONG_ADD ORELSE MATCH_MP_TAC CONG_MULT THEN | |
REPEAT CONJ_TAC THEN REWRITE_TAC[CONG_REFL; CONG_LMOD])]) THEN | |
MP_TAC(ARITH_RULE `p MOD 8 < 8`) THEN SPEC_TAC(`p MOD 8`,`k:num`) THEN | |
CONV_TAC EXPAND_CASES_CONV THEN CONV_TAC NUM_REDUCE_CONV);; | |
let JACOBI_RECIPROCITY_ALT = prove | |
(`!m n. ODD m /\ ODD n | |
==> jacobi(m,n) * jacobi(n,m) = | |
if coprime(m,n) then --(&1) pow ((m - 1) DIV 2 * (n - 1) DIV 2) | |
else &0`, | |
let lemma0 = prove | |
(`!n. ODD n ==> 2 divides (n - 1)`, | |
SIMP_TAC[DIVIDES_2; EVEN_SUB; GSYM NOT_EVEN; ARITH]) in | |
let lemma1 = prove | |
(`!m n. ODD m /\ ODD n | |
==> (EVEN((m * n - 1) DIV 2) <=> | |
EVEN((m - 1) DIV 2 + (n - 1) DIV 2))`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM DIV_ADD; DIVIDES_2; lemma0] THEN | |
ASM_SIMP_TAC[DIVIDES_DIVIDES_DIV; GSYM DIVIDES_2; | |
ODD_MULT; DIVIDES_ADD; lemma0] THEN | |
MATCH_MP_TAC(NUMBER_RULE | |
`d divides a * b /\ a * b + a + b = c | |
==> (d divides c <=> d divides (a + b))`) THEN | |
ASM_SIMP_TAC[DIVIDES_MUL2; lemma0] THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ODD_EXISTS])) THEN | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[SUC_SUB1; MULT_CLAUSES; ADD_CLAUSES] THEN ARITH_TAC) in | |
let flemma = prove | |
(`!r s p. FINITE {x,y | x IN 1..r /\ y IN 1..s /\ p x y}`, | |
REPEAT GEN_TAC THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `(1..r) CROSS (1..s)` THEN | |
REWRITE_TAC[FINITE_CROSS_EQ; FINITE_NUMSEG] THEN | |
SIMP_TAC[SUBSET; FORALL_IN_GSPEC; IN_CROSS]) in | |
let glemma = prove | |
(`!p q r s. prime p /\ prime q /\ coprime(p,q) /\ | |
2 * r + 1 = p /\ 2 * s + 1 = q | |
==> jacobi(q,p) = | |
-- &1 pow CARD {x,y | x IN 1..r /\ y IN 1..s /\ | |
q * x < p * y /\ p * y <= q * x + r}`, | |
ONCE_REWRITE_TAC[COPRIME_SYM] THEN REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`q:num`; `p:num`] JACOBI_GAUSS_LEMMA) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[EXPAND_TAC "p" THEN DISCH_THEN(MP_TAC o AP_TERM `EVEN`) THEN | |
REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH]; | |
DISCH_THEN SUBST1_TAC THEN AP_TERM_TAC] THEN | |
SUBGOAL_THEN `(p - 1) DIV 2 = r` SUBST1_TAC THENL | |
[EXPAND_TAC "p" THEN ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC | |
`CARD {x,y | x IN 1..r /\ y IN 1..s /\ | |
y = (q * x) DIV p + 1 /\ r < (q * x) MOD p}` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_IMAGE_INJ_EQ THEN EXISTS_TAC `\(x:num,y:num). x` THEN | |
REWRITE_TAC[FORALL_IN_GSPEC; EXISTS_UNIQUE_THM; IN_NUMSEG; flemma; | |
IMP_CONJ; RIGHT_FORALL_IMP_THM; EXISTS_IN_GSPEC] THEN | |
CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN | |
X_GEN_TAC `x:num` THEN DISCH_TAC THEN DISCH_TAC THEN DISCH_TAC THEN | |
SIMP_TAC[PAIR_EQ] THEN EXISTS_TAC `x:num` THEN | |
EXISTS_TAC `(q * x) DIV p + 1` THEN | |
ASM_REWRITE_TAC[ARITH_RULE `1 <= n + 1`] THEN | |
SUBGOAL_THEN `p * (q * x) DIV p + r < q * r` MP_TAC THENL | |
[MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `q * x:num` THEN | |
ASM_REWRITE_TAC[LE_MULT_LCANCEL] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN | |
ASM_MESON_TAC[PRIME_IMP_NZ; LT_ADD_LCANCEL; DIVISION]; | |
MAP_EVERY EXPAND_TAC ["p"; "q"] THEN DISCH_THEN(MP_TAC o MATCH_MP | |
(ARITH_RULE `(2 * r + 1) * d + r < (2 * s + 1) * r | |
==> (2 * r) * d < (2 * r) * s`)) THEN | |
SIMP_TAC[LT_MULT_LCANCEL; ARITH_RULE `x < y ==> x + 1 <= y`]]; | |
AP_TERM_TAC THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_PAIR_THM; FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`x:num`; `y:num`] THEN | |
AP_TERM_TAC THEN AP_TERM_TAC THEN EQ_TAC THEN DISCH_TAC THENL | |
[MP_TAC(MATCH_MP PRIME_IMP_NZ (ASSUME `prime p`)) THEN | |
DISCH_THEN(MP_TAC o SPEC `q * x:num` o MATCH_MP DIVISION) THEN | |
FIRST_ASSUM(CONJUNCTS_THEN2 SUBST1_TAC MP_TAC) THEN | |
UNDISCH_TAC `2 * r + 1 = p` THEN ARITH_TAC; | |
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN SUBST_ALL_TAC THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`!p d. 2 * r + 1 = p /\ p * (d + 1) <= (d * p + m) + r | |
==> r < m`) THEN | |
MAP_EVERY EXISTS_TAC [`p:num`; `(q * x) DIV p`] THEN | |
ASM_MESON_TAC[DIVISION; PRIME_IMP_NZ]] THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`~(x <= y) /\ ~(y + 2 <= x) ==> x = y + 1`) THEN | |
REPEAT STRIP_TAC THENL | |
[SUBGOAL_THEN `y * p <= ((q * x) DIV p) * p` MP_TAC THENL | |
[ASM_SIMP_TAC[LE_MULT_RCANCEL; PRIME_IMP_NZ]; ALL_TAC]; | |
SUBGOAL_THEN `((q * x) DIV p + 2) * p <= y * p` MP_TAC THENL | |
[ASM_SIMP_TAC[LE_MULT_RCANCEL; PRIME_IMP_NZ]; ALL_TAC]] THEN | |
MP_TAC(MATCH_MP PRIME_IMP_NZ (ASSUME `prime p`)) THEN | |
DISCH_THEN(MP_TAC o SPEC `q * x:num` o MATCH_MP DIVISION) THEN | |
ASM_ARITH_TAC]]) in | |
let hlemma = prove | |
(`!p q r s. prime p /\ prime q /\ coprime(p,q) /\ | |
2 * r + 1 = p /\ 2 * s + 1 = q | |
==> jacobi(p,q) = | |
-- &1 pow CARD {x,y | x IN 1..r /\ y IN 1..s /\ | |
p * y < q * x /\ q * x <= p * y + s}`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`q:num`; `p:num`; `s:num`; `r:num`] glemma) THEN | |
ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN SUBST1_TAC THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC CARD_IMAGE_INJ_EQ THEN | |
EXISTS_TAC `\(x:num,y:num). (y,x)` THEN REWRITE_TAC[flemma] THEN | |
REWRITE_TAC[EXISTS_UNIQUE_THM; FORALL_PAIR_THM; EXISTS_PAIR_THM] THEN | |
SIMP_TAC[IN_ELIM_PAIR_THM; PAIR_EQ] THEN MESON_TAC[]) in | |
let rlemma = prove | |
(`!a b c d r s. | |
a UNION b UNION c UNION d = (1..r) CROSS (1..s) /\ | |
PAIRWISE DISJOINT [a;b;c;d] /\ CARD b = CARD c | |
==> ((EVEN(CARD a) <=> EVEN(CARD d)) <=> ~(ODD r /\ ODD s))`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `CARD(a:num#num->bool) + CARD(b:num#num->bool) + | |
CARD(c:num#num->bool) + CARD(d:num#num->bool) = r * s` | |
(fun th -> MP_TAC(AP_TERM `EVEN` th) THEN | |
ASM_REWRITE_TAC[EVEN_ADD; GSYM NOT_EVEN; EVEN_MULT] THEN | |
CONV_TAC TAUT) THEN | |
SUBGOAL_THEN | |
`FINITE(a:num#num->bool) /\ FINITE(b:num#num->bool) /\ | |
FINITE(c:num#num->bool) /\ FINITE(d:num#num->bool)` | |
STRIP_ASSUME_TAC THENL | |
[ASM_REWRITE_TAC[GSYM FINITE_UNION] THEN | |
REWRITE_TAC[FINITE_CROSS_EQ; FINITE_NUMSEG]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o AP_TERM `CARD:(num#num->bool)->num`) THEN | |
SIMP_TAC[CARD_CROSS; CARD_NUMSEG_1; FINITE_NUMSEG] THEN | |
DISCH_THEN(SUBST1_TAC o SYM) THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [PAIRWISE]) THEN | |
REWRITE_TAC[PAIRWISE; DISJOINT; ALL] THEN | |
ASM_SIMP_TAC[CARD_UNION; FINITE_UNION; SET_RULE | |
`a INTER (b UNION c) = {} <=> a INTER b = {} /\ a INTER c = {}`]) in | |
REPEAT GEN_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[INT_ENTIRE; JACOBI_EQ_0] THEN | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[GSYM IMP_CONJ_ALT; GSYM CONJ_ASSOC] THEN | |
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`n:num`; `m:num`] THEN | |
MATCH_MP_TAC COMPLETE_FACTOR_INDUCT THEN | |
CONV_TAC NUM_REDUCE_CONV THEN REPEAT CONJ_TAC THENL | |
[ASM_SIMP_TAC[COPRIME_1; JACOBI_1; MULT_CLAUSES; ODD] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC INT_REDUCE_CONV; | |
X_GEN_TAC `p:num` THEN DISCH_TAC; | |
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN | |
REWRITE_TAC[COPRIME_LMUL; COPRIME_RMUL; ODD_MULT; | |
JACOBI_LMUL; JACOBI_RMUL] THEN | |
ONCE_REWRITE_TAC[INT_ARITH | |
`(a * b) * (c * d):int = (a * c) * (b * d)`] THEN | |
SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN | |
X_GEN_TAC `q:num` THEN STRIP_TAC THEN REWRITE_TAC[GSYM INT_POW_POW] THEN | |
REWRITE_TAC[GSYM INT_POW_MUL] THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[GSYM INT_POW_ADD] THEN | |
REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN | |
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
ASM_SIMP_TAC[lemma1]] THEN | |
MATCH_MP_TAC COMPLETE_FACTOR_INDUCT THEN | |
CONV_TAC NUM_REDUCE_CONV THEN REPEAT CONJ_TAC THENL | |
[ASM_SIMP_TAC[COPRIME_1; JACOBI_1; MULT_CLAUSES; ODD] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC INT_REDUCE_CONV; | |
X_GEN_TAC `q:num` THEN DISCH_TAC THEN STRIP_TAC; | |
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN | |
REWRITE_TAC[COPRIME_LMUL; COPRIME_RMUL; ODD_MULT; | |
JACOBI_LMUL; JACOBI_RMUL] THEN | |
ONCE_REWRITE_TAC[INT_ARITH | |
`(a * b) * (c * d):int = (a * c) * (b * d)`] THEN | |
SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN STRIP_TAC THEN | |
ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM INT_POW_POW] THEN | |
REWRITE_TAC[GSYM INT_POW_MUL] THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[GSYM INT_POW_ADD] THEN | |
REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN | |
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
ASM_SIMP_TAC[lemma1]] THEN | |
MAP_EVERY UNDISCH_TAC [`ODD q`; `ODD p`] THEN | |
REWRITE_TAC[ODD_EXISTS; ADD1; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `r:num` THEN DISCH_THEN(ASSUME_TAC o SYM) THEN | |
X_GEN_TAC `s:num` THEN DISCH_THEN(ASSUME_TAC o SYM) THEN | |
MP_TAC(SPECL [`p:num`; `q:num`; `r:num`; `s:num`] glemma) THEN | |
MP_TAC(SPECL [`p:num`; `q:num`; `r:num`; `s:num`] hlemma) THEN | |
ASM_REWRITE_TAC[] THEN REPEAT(DISCH_THEN SUBST1_TAC) THEN | |
SUBGOAL_THEN `(p - 1) DIV 2 = r /\ (q - 1) DIV 2 = s` | |
(CONJUNCTS_THEN SUBST1_TAC) THENL | |
[MAP_EVERY EXPAND_TAC ["p"; "q"] THEN ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[GSYM INT_POW_ADD] THEN | |
REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN | |
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM NOT_ODD] THEN | |
REWRITE_TAC[EVEN_ADD; ODD_MULT] THEN | |
MATCH_MP_TAC rlemma THEN | |
EXISTS_TAC `{x,y | x IN 1..r /\ y IN 1..s /\ q * x + r < p * y}` THEN | |
EXISTS_TAC `{x,y | x IN 1..r /\ y IN 1..s /\ p * y + s < q * x}` THEN | |
REPEAT CONJ_TAC THEN | |
REWRITE_TAC[PAIRWISE; DISJOINT; EXTENSION; NOT_IN_EMPTY; FORALL_PAIR_THM; | |
ALL; IN_UNION; IN_CROSS; IN_ELIM_PAIR_THM; IN_INTER] | |
THENL | |
[MAP_EVERY X_GEN_TAC [`x:num`; `y:num`] THEN | |
MAP_EVERY ASM_CASES_TAC [`x IN 1..r`; `y IN 1..s`] THEN ASM_SIMP_TAC[] THEN | |
SUBGOAL_THEN `~(q * x:num = p * y)` | |
(fun th -> MP_TAC th THEN ARITH_TAC) THEN | |
DISCH_THEN(MP_TAC o AP_TERM `(divides) (p:num)`) THEN | |
ASM_SIMP_TAC[PRIME_DIVPROD_EQ; DIVIDES_REFL] THEN STRIP_TAC THENL | |
[ASM_MESON_TAC[DIVIDES_REFL; PRIME_1; coprime]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN | |
UNDISCH_TAC `x IN 1..r` THEN REWRITE_TAC[IN_NUMSEG] THEN | |
EXPAND_TAC "p" THEN ARITH_TAC; | |
ARITH_TAC; | |
MATCH_MP_TAC BIJECTIONS_CARD_EQ THEN | |
REPEAT(EXISTS_TAC `\(x,y). (r + 1) - x,(s + 1) - y`) THEN | |
REWRITE_TAC[flemma] THEN | |
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; IN_NUMSEG; PAIR_EQ] THEN | |
CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:num`; `y:num`] THEN | |
SIMP_TAC[ARITH_RULE `x <= y ==> (y + 1) - ((y + 1) - x) = x`] THEN | |
SIMP_TAC[ARITH_RULE | |
`1 <= x /\ x <= y ==> 1 <= (y + 1) - x /\ (y + 1) - x <= y`] THEN | |
REWRITE_TAC[LEFT_SUB_DISTRIB] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`x:num <= y /\ v + y + z < x + u ==> (y - x) + z < u - v`) THEN | |
ASM_SIMP_TAC[LE_MULT_LCANCEL; ARITH_RULE `x <= r ==> x <= r + 1`] THEN | |
REWRITE_TAC[ARITH_RULE `a + x:num < y + a <=> x < y`] THEN | |
REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM)) THEN | |
ASM_ARITH_TAC]);; | |
let JACOBI_RECIPROCITY = prove | |
(`!m n. ODD m /\ ODD n | |
==> jacobi(n,m) = | |
if coprime(m,n) | |
then --(&1) pow ((m - 1) DIV 2 * (n - 1) DIV 2) * jacobi(m,n) | |
else &0`, | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THENL | |
[ALL_TAC; ASM_MESON_TAC[JACOBI_EQ_0; COPRIME_SYM]] THEN | |
MATCH_MP_TAC(INT_RING | |
`!x y:int. | |
x pow 2 = &1 /\ y pow 2 = &1 /\ x * y = z | |
==> y = z * x`) THEN | |
ASM_SIMP_TAC[JACOBI_RECIPROCITY_ALT] THEN CONJ_TAC THEN | |
MATCH_MP_TAC(INT_RING | |
`(x:int = -- &1 \/ x = &0 \/ x = &1) /\ ~(x = &0) ==> x pow 2 = &1`) THEN | |
REWRITE_TAC[JACOBI_CASES] THEN ASM_REWRITE_TAC[JACOBI_EQ_0] THEN | |
ASM_MESON_TAC[ODD; COPRIME_SYM]);; | |
let JACOBI_EQ_1 = prove | |
(`!n a. coprime(a,n) /\ (?x. (x EXP 2 == a) (mod n)) | |
==> jacobi(a,n) = &1`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN | |
ASM_SIMP_TAC[COPRIME_0; JACOBI_1] THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[jacobi] THEN MATCH_MP_TAC IPRODUCT_EQ_1 THEN | |
REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN | |
MATCH_MP_TAC(MESON[INT_POW_ONE] `x:int = &1 ==> x pow n = &1`) THEN | |
COND_CASES_TAC THENL [ASM_MESON_TAC[COPRIME_PRIME_EQ]; ALL_TAC] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[NUMBER_RULE | |
`(a == b) (mod m) /\ n divides m ==> (a == b) (mod n)`]);; | |
let JACOBI_NE_MINUS1 = prove | |
(`!n a. (?x. (x EXP 2 == a) (mod n)) ==> ~(jacobi(a,n) = -- &1)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `coprime(a:num,n)` THEN | |
ASM_SIMP_TAC[JACOBI_ZERO; JACOBI_EQ_1] THEN CONV_TAC INT_REDUCE_CONV);; | |
(* ------------------------------------------------------------------------- *) | |
(* Integer version. The totalization at zero is a bit blunter; it's hard to *) | |
(* keep all the nice properties in the light of -1 * -1 = 1; we prioritize *) | |
(* simple complete multiplicativity over the relation with coprimality. *) | |
(* ------------------------------------------------------------------------- *) | |
let int_jacobi = new_definition | |
`int_jacobi(a,n) = | |
if n = &0 then &0 | |
else jacobi(num_of_int(a rem n),num_of_int(abs n))`;; | |
let INT_JACOBI_RNEG = prove | |
(`!a n. int_jacobi(a,--n) = int_jacobi(a,n)`, | |
REWRITE_TAC[int_jacobi; INT_ABS_NEG; INT_NEG_EQ_0; INT_REM_RNEG]);; | |
let INT_JACOBI_RABS = prove | |
(`!a n. int_jacobi(a,abs n) = int_jacobi(a,n)`, | |
REWRITE_TAC[int_jacobi; INT_ABS_ABS; INT_REM_RABS; INT_ABS_ZERO]);; | |
let INT_JACOBI_NUMS = prove | |
(`!a n. int_jacobi(&a,&n) = if n = 0 /\ a = 1 then &0 else jacobi(a,n)`, | |
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`n = 0`; `a = 1`] THEN | |
ASM_REWRITE_TAC[int_jacobi; JACOBI_0; JACOBI_1; INT_OF_NUM_EQ] THEN | |
REWRITE_TAC[int_jacobi; INT_ABS_NUM; INT_OF_NUM_REM; NUM_OF_INT_OF_NUM] THEN | |
ASM_REWRITE_TAC[INT_OF_NUM_EQ; JACOBI_0; MOD_ZERO; JACOBI_MOD; JACOBI_1]);; | |
let INT_JACOBI_BOUND = prove | |
(`!a n. abs(int_jacobi(a,n)) <= &1`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[int_jacobi] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[JACOBI_BOUND]) THEN | |
CONV_TAC INT_REDUCE_CONV);; | |
let INT_JACOBI_CASES = prove | |
(`!a n. int_jacobi(a,n) = -- &1 \/ | |
int_jacobi(a,n) = &0 \/ | |
int_jacobi(a,n) = &1`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[int_jacobi] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[JACOBI_CASES]) THEN | |
CONV_TAC INT_REDUCE_CONV);; | |
let INT_JACOBI_CONG = prove | |
(`!a b n. (a == b) (mod n) ==> int_jacobi(a,n) = int_jacobi(b,n)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[int_jacobi] THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC[INT_CONG_MOD_0] THEN | |
SIMP_TAC[GSYM INT_REM_EQ]);; | |
let INT_JACOBI_REM_GEN = prove | |
(`!a m n. n divides m ==> int_jacobi(a rem m,n) = int_jacobi(a,n)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC INT_JACOBI_CONG THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NUMBER_RULE | |
`(n:int) divides m ==> (x == y) (mod m) ==> (x == y) (mod n)`)) THEN | |
REWRITE_TAC[INT_CONG_LREM; INT_CONG_REFL]);; | |
let INT_JACOBI_REM = prove | |
(`!a n. int_jacobi(a rem n,n) = int_jacobi(a,n)`, | |
SIMP_TAC[INT_JACOBI_REM_GEN; INT_DIVIDES_REFL]);; | |
let INT_JACOBI_1 = prove | |
(`(!n. int_jacobi(&1,n) = if n = &0 then &0 else &1) /\ | |
(!a. int_jacobi(a,&1) = &1)`, | |
REWRITE_TAC[int_jacobi] THEN CONV_TAC INT_REDUCE_CONV THEN | |
REWRITE_TAC[NUM_OF_INT_OF_NUM; JACOBI_1] THEN | |
X_GEN_TAC `n:int` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `abs(n:int) = &1` THEN | |
ASM_REWRITE_TAC[NUM_OF_INT_OF_NUM; JACOBI_1] THEN | |
SUBGOAL_THEN `&1 rem n = &1` SUBST1_TAC THENL | |
[REWRITE_TAC[INT_REM_EQ_SELF] THEN ASM_INT_ARITH_TAC; | |
REWRITE_TAC[NUM_OF_INT_OF_NUM; JACOBI_1] THEN | |
SIMP_TAC[GSYM INT_OF_NUM_EQ; INT_OF_NUM_OF_INT; INT_ABS_POS] THEN | |
ASM_REWRITE_TAC[INT_ABS_ZERO]]);; | |
let INT_JACOBI_0 = prove | |
(`(!n. int_jacobi(&0,n) = if abs n = &1 then &1 else &0) /\ | |
(!a. int_jacobi(a,&0) = &0)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[int_jacobi] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[INT_REM_ZERO] THEN | |
REWRITE_TAC[NUM_OF_INT_OF_NUM; JACOBI_0] THEN | |
CONV_TAC INT_REDUCE_CONV THEN | |
SIMP_TAC[GSYM INT_OF_NUM_EQ; INT_OF_NUM_OF_INT; INT_ABS_POS]);; | |
let INT_JACOBI_RMUL = prove | |
(`!a m n. int_jacobi(a,m * n) = int_jacobi(a,m) * int_jacobi(a,n)`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `m:int = &0` THEN | |
ASM_REWRITE_TAC[INT_JACOBI_0; INT_MUL_LZERO] THEN | |
ASM_CASES_TAC `n:int = &0` THEN | |
ASM_REWRITE_TAC[INT_JACOBI_0; INT_MUL_RZERO] THEN | |
ASM_REWRITE_TAC[int_jacobi; INT_ENTIRE; INT_ABS_MUL] THEN | |
SIMP_TAC[NUM_OF_INT_MUL; INT_ABS_POS; JACOBI_RMUL] THEN | |
BINOP_TAC THEN MATCH_MP_TAC JACOBI_CONG THEN REWRITE_TAC[num_congruent] THEN | |
ASM_SIMP_TAC[INT_OF_NUM_OF_INT; INT_ABS_POS; INT_DIVISION; INT_ENTIRE] THEN | |
REWRITE_TAC[INT_CONG_MOD_ABS] THEN REWRITE_TAC[GSYM INT_REM_EQ] THEN | |
REWRITE_TAC[INT_REM_REM_MUL; INT_REM_REM]);; | |
let INT_JACOBI_LMUL = prove | |
(`!a b n. int_jacobi(a * b,n) = int_jacobi(a,n) * int_jacobi(b,n)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `n:int = &0` THEN | |
ASM_REWRITE_TAC[INT_JACOBI_0; INT_MUL_LZERO] THEN | |
ASM_REWRITE_TAC[int_jacobi; GSYM JACOBI_LMUL] THEN | |
MATCH_MP_TAC JACOBI_CONG THEN REWRITE_TAC[num_congruent] THEN | |
ASM_SIMP_TAC[INT_OF_NUM_OF_INT; INT_LE_MUL; INT_DIVISION; INT_ABS_POS; | |
GSYM INT_OF_NUM_MUL; INT_CONG_MOD_ABS] THEN | |
REWRITE_TAC[GSYM INT_REM_EQ; INT_REM_REM; INT_MUL_REM]);; | |
let INT_JACOBI_RPOW = prove | |
(`!a n k. int_jacobi(a,n pow k) = int_jacobi(a,n) pow k`, | |
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[INT_JACOBI_RMUL; INT_JACOBI_1; INT_POW]);; | |
let INT_JACOBI_LPOW = prove | |
(`!a n k. int_jacobi(a pow k,n) = | |
if n = &0 then &0 else int_jacobi(a,n) pow k`, | |
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[INT_JACOBI_LMUL; INT_JACOBI_1; INT_POW] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[INT_MUL_RZERO]);; | |
let INT_JACOBI_2 = prove | |
(`!a. int_jacobi(a,&2) = a rem &2`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM INT_JACOBI_REM] THEN | |
MP_TAC(SPEC `a:int` INT_REM_2_CASES) THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[INT_JACOBI_NUMS; JACOBI_2_CASES] THEN | |
CONV_TAC NUM_REDUCE_CONV);; | |
let INT_JACOBI_POW_2 = prove | |
(`!a k. int_jacobi(a,&2 pow k) = if k = 0 then &1 else a rem &2`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[INT_JACOBI_RPOW; INT_JACOBI_2] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[INT_POW] THEN | |
MP_TAC(SPEC `a:int` INT_REM_2_CASES) THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[INT_POW_ZERO; INT_POW_ONE]);; | |
let INT_JACOBI_EQ_0 = prove | |
(`!a n. int_jacobi(a,n) = &0 <=> coprime(a,n) ==> n = &0`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `n:int = &0` THEN ASM_REWRITE_TAC[INT_JACOBI_0] THEN | |
ONCE_REWRITE_TAC[GSYM INT_JACOBI_RABS; GSYM INT_COPRIME_RABS] THEN | |
ONCE_REWRITE_TAC[GSYM INT_COPRIME_LREM; GSYM INT_JACOBI_REM] THEN | |
SUBGOAL_THEN `&0 <= a rem abs n` MP_TAC THENL | |
[ASM_SIMP_TAC[INT_DIVISION; INT_ABS_ZERO]; | |
SPEC_TAC(`a rem abs n`,`x:int`)] THEN | |
SUBGOAL_THEN `&0 <= abs(n:int) /\ ~(abs n = &0)` MP_TAC THENL | |
[ASM_INT_ARITH_TAC; REWRITE_TAC[IMP_CONJ]] THEN | |
SPEC_TAC(`abs n:int`,`y:int`) THEN | |
REWRITE_TAC[GSYM INT_FORALL_POS] THEN | |
SIMP_TAC[INT_OF_NUM_EQ; INT_JACOBI_NUMS; GSYM num_coprime] THEN | |
SIMP_TAC[JACOBI_EQ_0]);; | |
let INT_JACOBI_MINUS1 = prove | |
(`!n. ~(&2 divides n) | |
==> int_jacobi(--(&1),n) = | |
if (abs n == &1) (mod &4) then &1 else -- &1`, | |
ONCE_REWRITE_TAC[GSYM INT_JACOBI_RABS; GSYM INT_DIVIDES_RABS] THEN | |
REWRITE_TAC[GSYM INT_FORALL_ABS; GSYM num_divides; GSYM num_congruent] THEN | |
SIMP_TAC[DIVIDES_2; NOT_EVEN; GSYM JACOBI_MINUS1_CASES] THEN | |
X_GEN_TAC `n:num` THEN | |
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ODD] THEN DISCH_TAC THEN | |
TRANS_TAC EQ_TRANS `int_jacobi(&n - &1,&n)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC INT_JACOBI_CONG THEN CONV_TAC INTEGER_RULE; | |
ASM_SIMP_TAC[INT_OF_NUM_EQ; INT_OF_NUM_SUB; LE_1; INT_JACOBI_NUMS]]);; | |
let INT_JACOBI_OF_2 = prove | |
(`!n. int_jacobi(&2,n) = | |
if &2 divides n then &0 | |
else if (abs n == &1) (mod &8) \/ (abs n == &7) (mod &8) then &1 | |
else --(&1)`, | |
ONCE_REWRITE_TAC[GSYM INT_JACOBI_RABS; GSYM INT_DIVIDES_RABS] THEN | |
REWRITE_TAC[GSYM INT_FORALL_ABS; GSYM num_divides; GSYM num_congruent] THEN | |
REWRITE_TAC[DIVIDES_2; GSYM JACOBI_OF_2_CASES] THEN | |
SIMP_TAC[INT_JACOBI_NUMS] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let INT_JACOBI_LNEG = prove | |
(`!n. ~(&2 divides n) | |
==> int_jacobi(--a,n) = | |
if (abs n == &1) (mod &4) then int_jacobi(a,n) | |
else --(int_jacobi(a,n))`, | |
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[INT_NEG_MINUS1] THEN | |
ASM_SIMP_TAC[INT_JACOBI_LMUL; INT_JACOBI_MINUS1] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN INT_ARITH_TAC);; | |
let INT_JACOBI_SQUARED = prove | |
(`(!a n. int_jacobi(a pow 2,n) = | |
if coprime(a,n) /\ ~(n = &0) then &1 else &0) /\ | |
(!a n. int_jacobi(a,n pow 2) = | |
if coprime(a,n) /\ ~(n = &0) then &1 else &0)`, | |
REWRITE_TAC[INT_JACOBI_LPOW; INT_JACOBI_RPOW] THEN | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n:int = &0` THEN | |
ASM_REWRITE_TAC[INT_JACOBI_EQ_0; INT_POW_EQ_0] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN | |
ASM_CASES_TAC `coprime(a:int,n)` THEN | |
ASM_REWRITE_TAC[INT_JACOBI_EQ_0; INT_POW_EQ_0] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN | |
MATCH_MP_TAC(INT_RING | |
`(x:int = -- &1 \/ x = &0 \/ x = &1) /\ ~(x = &0) ==> x pow 2 = &1`) THEN | |
REWRITE_TAC[INT_JACOBI_CASES] THEN ASM_REWRITE_TAC[INT_JACOBI_EQ_0]);; | |