Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
43.3 kB
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.box_integral.partition.filter
import analysis.box_integral.partition.measure
import topology.uniform_space.compact_separated
/-!
# Integrals of Riemann, Henstock-Kurzweil, and McShane
In this file we define the integral of a function over a box in `ℝⁿ. The same definition works for
Riemann, Henstock-Kurzweil, and McShane integrals.
As usual, we represent `ℝⁿ` as the type of functions `ι → ℝ` for some finite type `ι`. A rectangular
box `(l, u]` in `ℝⁿ` is defined to be the set `{x : ι → ℝ | ∀ i, l i < x i ∧ x i ≤ u i}`, see
`box_integral.box`.
Let `vol` be a box-additive function on boxes in `ℝⁿ` with codomain `E →L[ℝ] F`. Given a function
`f : ℝⁿ → E`, a box `I` and a tagged partition `π` of this box, the *integral sum* of `f` over `π`
with respect to the volume `vol` is the sum of `vol J (f (π.tag J))` over all boxes of `π`. Here
`π.tag J` is the point (tag) in `ℝⁿ` associated with the box `J`.
The integral is defined as the limit of integral sums along a filter. Different filters correspond
to different integration theories. In order to avoid code duplication, all our definitions and
theorems take an argument `l : box_integral.integration_params`. This is a type that holds three
boolean values, and encodes eight filters including those corresponding to Riemann,
Henstock-Kurzweil, and McShane integrals.
Following the design of infinite sums (see `has_sum` and `tsum`), we define a predicate
`box_integral.has_integral` and a function `box_integral.integral` that returns a vector satisfying
the predicate or zero if the function is not integrable.
Then we prove some basic properties of box integrals (linearity, a formula for the integral of a
constant). We also prove a version of the Henstock-Sacks inequality (see
`box_integral.integrable.dist_integral_sum_le_of_mem_base_set` and
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq`), prove
integrability of continuous functions, and provide a criterion for integrability w.r.t. a
non-Riemann filter (e.g., Henstock-Kurzweil and McShane).
## Notation
- `ℝⁿ`: local notation for `ι → ℝ`
## Tags
integral
-/
open_locale big_operators classical topological_space nnreal filter uniformity box_integral
open set finset function filter metric box_integral.integration_params
noncomputable theory
namespace box_integral
universes u v w
variables {ι : Type u} {E : Type v} {F : Type w} [normed_add_comm_group E] [normed_space ℝ E]
[normed_add_comm_group F] [normed_space ℝ F] {I J : box ι} {π : tagged_prepartition I}
open tagged_prepartition
local notation `ℝⁿ` := ι → ℝ
/-!
### Integral sum and its basic properties
-/
/-- The integral sum of `f : ℝⁿ → E` over a tagged prepartition `π` w.r.t. box-additive volume `vol`
with codomain `E →L[ℝ] F` is the sum of `vol J (f (π.tag J))` over all boxes of `π`. -/
def integral_sum (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) (π : tagged_prepartition I) : F :=
∑ J in π.boxes, vol J (f (π.tag J))
lemma integral_sum_bUnion_tagged (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) (π : prepartition I)
(πi : Π J, tagged_prepartition J) :
integral_sum f vol (π.bUnion_tagged πi) = ∑ J in π.boxes, integral_sum f vol (πi J) :=
begin
refine (π.sum_bUnion_boxes _ _).trans (sum_congr rfl $ λ J hJ, sum_congr rfl $ λ J' hJ', _),
rw π.tag_bUnion_tagged hJ hJ'
end
lemma integral_sum_bUnion_partition (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(π : tagged_prepartition I) (πi : Π J, prepartition J) (hπi : ∀ J ∈ π, (πi J).is_partition) :
integral_sum f vol (π.bUnion_prepartition πi) = integral_sum f vol π :=
begin
refine (π.to_prepartition.sum_bUnion_boxes _ _).trans (sum_congr rfl $ λ J hJ, _),
calc ∑ J' in (πi J).boxes, vol J' (f (π.tag $ π.to_prepartition.bUnion_index πi J'))
= ∑ J' in (πi J).boxes, vol J' (f (π.tag J)) :
sum_congr rfl (λ J' hJ', by rw [prepartition.bUnion_index_of_mem _ hJ hJ'])
... = vol J (f (π.tag J)) :
(vol.map ⟨λ g : E →L[ℝ] F, g (f (π.tag J)), rfl, λ _ _, rfl⟩).sum_partition_boxes
le_top (hπi J hJ)
end
lemma integral_sum_inf_partition (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(π : tagged_prepartition I) {π' : prepartition I} (h : π'.is_partition) :
integral_sum f vol (π.inf_prepartition π') = integral_sum f vol π :=
integral_sum_bUnion_partition f vol π _ $ λ J hJ, h.restrict (prepartition.le_of_mem _ hJ)
lemma integral_sum_fiberwise {α} (g : box ι → α) (f : ℝⁿ → E)
(vol : ι →ᵇᵃ (E →L[ℝ] F)) (π : tagged_prepartition I) :
∑ y in π.boxes.image g, integral_sum f vol (π.filter (λ x, g x = y)) = integral_sum f vol π :=
π.to_prepartition.sum_fiberwise g (λ J, vol J (f $ π.tag J))
lemma integral_sum_sub_partitions (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
{π₁ π₂ : tagged_prepartition I} (h₁ : π₁.is_partition) (h₂ : π₂.is_partition) :
integral_sum f vol π₁ - integral_sum f vol π₂ =
∑ J in (π₁.to_prepartition ⊓ π₂.to_prepartition).boxes,
(vol J (f $ (π₁.inf_prepartition π₂.to_prepartition).tag J) -
vol J (f $ (π₂.inf_prepartition π₁.to_prepartition).tag J)) :=
begin
rw [← integral_sum_inf_partition f vol π₁ h₂,
← integral_sum_inf_partition f vol π₂ h₁, integral_sum, integral_sum,
finset.sum_sub_distrib],
simp only [inf_prepartition_to_prepartition, _root_.inf_comm]
end
@[simp] lemma integral_sum_disj_union (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
{π₁ π₂ : tagged_prepartition I} (h : disjoint π₁.Union π₂.Union) :
integral_sum f vol (π₁.disj_union π₂ h) = integral_sum f vol π₁ + integral_sum f vol π₂ :=
begin
refine (prepartition.sum_disj_union_boxes h _).trans
(congr_arg2 (+) (sum_congr rfl $ λ J hJ, _) (sum_congr rfl $ λ J hJ, _)),
{ rw disj_union_tag_of_mem_left _ hJ },
{ rw disj_union_tag_of_mem_right _ hJ }
end
@[simp] lemma integral_sum_add (f g : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(π : tagged_prepartition I) :
integral_sum (f + g) vol π = integral_sum f vol π + integral_sum g vol π :=
by simp only [integral_sum, pi.add_apply, (vol _).map_add, finset.sum_add_distrib]
@[simp] lemma integral_sum_neg (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(π : tagged_prepartition I) :
integral_sum (-f) vol π = -integral_sum f vol π :=
by simp only [integral_sum, pi.neg_apply, (vol _).map_neg, finset.sum_neg_distrib]
@[simp] lemma integral_sum_smul (c : ℝ) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(π : tagged_prepartition I) :
integral_sum (c • f) vol π = c • integral_sum f vol π :=
by simp only [integral_sum, finset.smul_sum, pi.smul_apply, continuous_linear_map.map_smul]
variables [fintype ι]
/-!
### Basic integrability theory
-/
/-- The predicate `has_integral I l f vol y` says that `y` is the integral of `f` over `I` along `l`
w.r.t. volume `vol`. This means that integral sums of `f` tend to `𝓝 y` along
`box_integral.integration_params.to_filter_Union I ⊤`. -/
def has_integral (I : box ι) (l : integration_params) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(y : F) : Prop :=
tendsto (integral_sum f vol) (l.to_filter_Union I ⊤) (𝓝 y)
/-- A function is integrable if there exists a vector that satisfies the `has_integral`
predicate. -/
def integrable (I : box ι) (l : integration_params) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) :=
∃ y, has_integral I l f vol y
/-- The integral of a function `f` over a box `I` along a filter `l` w.r.t. a volume `vol`. Returns
zero on non-integrable functions. -/
def integral (I : box ι) (l : integration_params) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) :=
if h : integrable I l f vol then h.some else 0
variables {l : integration_params} {f g : ℝⁿ → E} {vol : ι →ᵇᵃ (E →L[ℝ] F)} {y y' : F}
/-- Reinterpret `box_integral.has_integral` as `filter.tendsto`, e.g., dot-notation theorems
that are shadowed in the `box_integral.has_integral` namespace. -/
lemma has_integral.tendsto (h : has_integral I l f vol y) :
tendsto (integral_sum f vol) (l.to_filter_Union I ⊤) (𝓝 y) := h
/-- The `ε`-`δ` definition of `box_integral.has_integral`. -/
lemma has_integral_iff : has_integral I l f vol y ↔
∀ ε > (0 : ℝ), ∃ r : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ), (∀ c, l.r_cond (r c)) ∧
∀ c π, l.mem_base_set I c (r c) π → is_partition π → dist (integral_sum f vol π) y ≤ ε :=
((l.has_basis_to_filter_Union_top I).tendsto_iff nhds_basis_closed_ball).trans $
by simp [@forall_swap ℝ≥0 (tagged_prepartition I)]
/-- Quite often it is more natural to prove an estimate of the form `a * ε`, not `ε` in the RHS of
`box_integral.has_integral_iff`, so we provide this auxiliary lemma. -/
lemma has_integral_of_mul (a : ℝ) (h : ∀ ε : ℝ, 0 < ε →
∃ r: ℝ≥0 → ℝⁿ → Ioi (0 : ℝ), (∀ c, l.r_cond (r c)) ∧ ∀ c π, l.mem_base_set I c (r c) π →
is_partition π → dist (integral_sum f vol π) y ≤ a * ε) :
has_integral I l f vol y :=
begin
refine has_integral_iff.2 (λ ε hε, _),
rcases exists_pos_mul_lt hε a with ⟨ε', hε', ha⟩,
rcases h ε'' with ⟨r, hr, H⟩,
exact ⟨r, hr, λ c π hπ hπp, (H c π hπ hπp).trans ha.le⟩
end
lemma integrable_iff_cauchy [complete_space F] :
integrable I l f vol ↔ cauchy ((l.to_filter_Union I ⊤).map (integral_sum f vol)) :=
cauchy_map_iff_exists_tendsto.symm
/-- In a complete space, a function is integrable if and only if its integral sums form a Cauchy
net. Here we restate this fact in terms of `∀ ε > 0, ∃ r, ...`. -/
lemma integrable_iff_cauchy_basis [complete_space F] :
integrable I l f vol ↔ ∀ ε > (0 : ℝ), ∃ r : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ), (∀ c, l.r_cond (r c)) ∧
∀ c₁ c₂ π₁ π₂, l.mem_base_set I c₁ (r c₁) π₁ → π₁.is_partition → l.mem_base_set I c₂ (r c₂) π₂ →
π₂.is_partition → dist (integral_sum f vol π₁) (integral_sum f vol π₂) ≤ ε :=
begin
rw [integrable_iff_cauchy, cauchy_map_iff',
(l.has_basis_to_filter_Union_top _).prod_self.tendsto_iff uniformity_basis_dist_le],
refine forall₂_congr (λ ε ε0, exists_congr $ λ r, _),
simp only [exists_prop, prod.forall, set.mem_Union, exists_imp_distrib,
prod_mk_mem_set_prod_eq, and_imp, mem_inter_eq, mem_set_of_eq],
exact and_congr iff.rfl ⟨λ H c₁ c₂ π₁ π₂ h₁ hU₁ h₂ hU₂, H π₁ π₂ c₁ h₁ hU₁ c₂ h₂ hU₂,
λ H π₁ π₂ c₁ h₁ hU₁ c₂ h₂ hU₂, H c₁ c₂ π₁ π₂ h₁ hU₁ h₂ hU₂⟩
end
lemma has_integral.mono {l₁ l₂ : integration_params} (h : has_integral I l₁ f vol y)
(hl : l₂ ≤ l₁) : has_integral I l₂ f vol y :=
h.mono_left $ integration_params.to_filter_Union_mono _ hl _
protected lemma integrable.has_integral (h : integrable I l f vol) :
has_integral I l f vol (integral I l f vol) :=
by { rw [integral, dif_pos h], exact classical.some_spec h }
lemma integrable.mono {l'} (h : integrable I l f vol) (hle : l' ≤ l) : integrable I l' f vol :=
⟨_, h.has_integral.mono hle⟩
lemma has_integral.unique (h : has_integral I l f vol y) (h' : has_integral I l f vol y') :
y = y' :=
tendsto_nhds_unique h h'
lemma has_integral.integrable (h : has_integral I l f vol y) : integrable I l f vol := ⟨_, h⟩
lemma has_integral.integral_eq (h : has_integral I l f vol y) :
integral I l f vol = y :=
h.integrable.has_integral.unique h
lemma has_integral.add (h : has_integral I l f vol y) (h' : has_integral I l g vol y') :
has_integral I l (f + g) vol (y + y') :=
by simpa only [has_integral, ← integral_sum_add] using h.add h'
lemma integrable.add (hf : integrable I l f vol) (hg : integrable I l g vol) :
integrable I l (f + g) vol :=
(hf.has_integral.add hg.has_integral).integrable
lemma integral_add (hf : integrable I l f vol) (hg : integrable I l g vol) :
integral I l (f + g) vol = integral I l f vol + integral I l g vol :=
(hf.has_integral.add hg.has_integral).integral_eq
lemma has_integral.neg (hf : has_integral I l f vol y) : has_integral I l (-f) vol (-y) :=
by simpa only [has_integral, ← integral_sum_neg] using hf.neg
lemma integrable.neg (hf : integrable I l f vol) : integrable I l (-f) vol :=
hf.has_integral.neg.integrable
lemma integrable.of_neg (hf : integrable I l (-f) vol) : integrable I l f vol := neg_neg f ▸ hf.neg
@[simp] lemma integrable_neg : integrable I l (-f) vol ↔ integrable I l f vol :=
⟨λ h, h.of_neg, λ h, h.neg⟩
@[simp] lemma integral_neg : integral I l (-f) vol = -integral I l f vol :=
if h : integrable I l f vol then h.has_integral.neg.integral_eq
else by rw [integral, integral, dif_neg h, dif_neg (mt integrable.of_neg h), neg_zero]
lemma has_integral.sub (h : has_integral I l f vol y) (h' : has_integral I l g vol y') :
has_integral I l (f - g) vol (y - y') :=
by simpa only [sub_eq_add_neg] using h.add h'.neg
lemma integrable.sub (hf : integrable I l f vol) (hg : integrable I l g vol) :
integrable I l (f - g) vol :=
(hf.has_integral.sub hg.has_integral).integrable
lemma integral_sub (hf : integrable I l f vol) (hg : integrable I l g vol) :
integral I l (f - g) vol = integral I l f vol - integral I l g vol :=
(hf.has_integral.sub hg.has_integral).integral_eq
lemma has_integral_const (c : E) : has_integral I l (λ _, c) vol (vol I c) :=
tendsto_const_nhds.congr' $ (l.eventually_is_partition I).mono $ λ π hπ,
((vol.map ⟨λ g : E →L[ℝ] F, g c, rfl, λ _ _, rfl⟩).sum_partition_boxes le_top hπ).symm
@[simp] lemma integral_const (c : E) : integral I l (λ _, c) vol = vol I c :=
(has_integral_const c).integral_eq
lemma integrable_const (c : E) : integrable I l (λ _, c) vol :=
⟨_, has_integral_const c⟩
lemma has_integral_zero : has_integral I l (λ _, (0:E)) vol 0 :=
by simpa only [← (vol I).map_zero] using has_integral_const (0 : E)
lemma integrable_zero : integrable I l (λ _, (0:E)) vol := ⟨0, has_integral_zero⟩
lemma integral_zero : integral I l (λ _, (0:E)) vol = 0 := has_integral_zero.integral_eq
lemma has_integral_sum {α : Type*} {s : finset α} {f : α → ℝⁿ → E} {g : α → F}
(h : ∀ i ∈ s, has_integral I l (f i) vol (g i)) :
has_integral I l (λ x, ∑ i in s, f i x) vol (∑ i in s, g i) :=
begin
induction s using finset.induction_on with a s ha ihs, { simp [has_integral_zero] },
simp only [finset.sum_insert ha], rw finset.forall_mem_insert at h,
exact h.1.add (ihs h.2)
end
lemma has_integral.smul (hf : has_integral I l f vol y) (c : ℝ) :
has_integral I l (c • f) vol (c • y) :=
by simpa only [has_integral, ← integral_sum_smul]
using (tendsto_const_nhds : tendsto _ _ (𝓝 c)).smul hf
lemma integrable.smul (hf : integrable I l f vol) (c : ℝ) :
integrable I l (c • f) vol :=
(hf.has_integral.smul c).integrable
lemma integrable.of_smul {c : ℝ} (hf : integrable I l (c • f) vol) (hc : c ≠ 0) :
integrable I l f vol :=
by { convert hf.smul c⁻¹, ext x, simp only [pi.smul_apply, inv_smul_smul₀ hc] }
@[simp] lemma integral_smul (c : ℝ) : integral I l (λ x, c • f x) vol = c • integral I l f vol :=
begin
rcases eq_or_ne c 0 with rfl | hc, { simp only [zero_smul, integral_zero] },
by_cases hf : integrable I l f vol,
{ exact (hf.has_integral.smul c).integral_eq },
{ have : ¬integrable I l (λ x, c • f x) vol, from mt (λ h, h.of_smul hc) hf,
rw [integral, integral, dif_neg hf, dif_neg this, smul_zero] }
end
open measure_theory
/-- The integral of a nonnegative function w.r.t. a volume generated by a locally-finite measure is
nonnegative. -/
lemma integral_nonneg {g : ℝⁿ → ℝ} (hg : ∀ x ∈ I.Icc, 0 ≤ g x)
(μ : measure ℝⁿ) [is_locally_finite_measure μ] :
0 ≤ integral I l g μ.to_box_additive.to_smul :=
begin
by_cases hgi : integrable I l g μ.to_box_additive.to_smul,
{ refine ge_of_tendsto' hgi.has_integral (λ π, sum_nonneg $ λ J hJ, _),
exact mul_nonneg ennreal.to_real_nonneg (hg _ $ π.tag_mem_Icc _) },
{ rw [integral, dif_neg hgi] }
end
/-- If `∥f x∥ ≤ g x` on `[l, u]` and `g` is integrable, then the norm of the integral of `f` is less
than or equal to the integral of `g`. -/
lemma norm_integral_le_of_norm_le {g : ℝⁿ → ℝ} (hle : ∀ x ∈ I.Icc, ∥f x∥ ≤ g x)
(μ : measure ℝⁿ) [is_locally_finite_measure μ]
(hg : integrable I l g μ.to_box_additive.to_smul) :
∥(integral I l f μ.to_box_additive.to_smul : E)∥ ≤
integral I l g μ.to_box_additive.to_smul :=
begin
by_cases hfi : integrable.{u v v} I l f μ.to_box_additive.to_smul,
{ refine le_of_tendsto_of_tendsto' hfi.has_integral.norm hg.has_integral (λ π, _),
refine norm_sum_le_of_le _ (λ J hJ, _),
simp only [box_additive_map.to_smul_apply, norm_smul, smul_eq_mul, real.norm_eq_abs,
μ.to_box_additive_apply, abs_of_nonneg ennreal.to_real_nonneg],
exact mul_le_mul_of_nonneg_left (hle _ $ π.tag_mem_Icc _) ennreal.to_real_nonneg },
{ rw [integral, dif_neg hfi, norm_zero],
exact integral_nonneg (λ x hx, (norm_nonneg _).trans (hle x hx)) μ }
end
lemma norm_integral_le_of_le_const {c : ℝ} (hc : ∀ x ∈ I.Icc, ∥f x∥ ≤ c)
(μ : measure ℝⁿ) [is_locally_finite_measure μ] :
∥(integral I l f μ.to_box_additive.to_smul : E)∥ ≤ (μ I).to_real * c :=
by simpa only [integral_const]
using norm_integral_le_of_norm_le hc μ (integrable_const c)
/-!
# Henstock-Sacks inequality and integrability on subboxes
Henstock-Sacks inequality for Henstock-Kurzweil integral says the following. Let `f` be a function
integrable on a box `I`; let `r : ℝⁿ → (0, ∞)` be a function such that for any tagged partition of
`I` subordinate to `r`, the integral sum over this partition is `ε`-close to the integral. Then for
any tagged prepartition (i.e. a finite collections of pairwise disjoint subboxes of `I` with tagged
points) `π`, the integral sum over `π` differs from the integral of `f` over the part of `I` covered
by `π` by at most `ε`. The actual statement in the library is a bit more complicated to make it work
for any `box_integral.integration_params`. We formalize several versions of this inequality in
`box_integral.integrable.dist_integral_sum_le_of_mem_base_set`,
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq`, and
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set`.
Instead of using predicate assumptions on `r`, we define
`box_integral.integrable.convergence_r (h : integrable I l f vol) (ε : ℝ) (c : ℝ≥0) : ℝⁿ → (0, ∞)`
to be a function `r` such that
- if `l.bRiemann`, then `r` is a constant;
- if `ε > 0`, then for any tagged partition `π` of `I` subordinate to `r` (more precisely,
satisfying the predicate `l.mem_base_set I c r`), the integral sum of `f` over `π` differs from
the integral of `f` over `I` by at most `ε`.
The proof is mostly based on
[Russel A. Gordon, *The integrals of Lebesgue, Denjoy, Perron, and Henstock*][Gordon55].
-/
namespace integrable
/-- If `ε > 0`, then `box_integral.integrable.convergence_r` is a function `r : ℝ≥0 → ℝⁿ → (0, ∞)`
such that for every `c : ℝ≥0`, for every tagged partition `π` subordinate to `r` (and satisfying
additional distortion estimates if `box_integral.integration_params.bDistortion l = tt`), the
corresponding integral sum is `ε`-close to the integral.
If `box.integral.integration_params.bRiemann = tt`, then `r c x` does not depend on `x`. If `ε ≤ 0`,
then we use `r c x = 1`. -/
def convergence_r (h : integrable I l f vol) (ε : ℝ) : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ) :=
if hε : 0 < ε then (has_integral_iff.1 h.has_integral ε hε).some
else λ _ _, ⟨1, set.mem_Ioi.2 zero_lt_one⟩
variables {c c₁ c₂ : ℝ≥0} {ε ε₁ ε₂ : ℝ} {π₁ π₂ : tagged_prepartition I}
lemma convergence_r_cond (h : integrable I l f vol) (ε : ℝ) (c : ℝ≥0) :
l.r_cond (h.convergence_r ε c) :=
begin
rw convergence_r, split_ifs with h₀,
exacts [(has_integral_iff.1 h.has_integral ε h₀).some_spec.1 _, λ _ x, rfl]
end
lemma dist_integral_sum_integral_le_of_mem_base_set (h : integrable I l f vol) (h₀ : 0 < ε)
(hπ : l.mem_base_set I c (h.convergence_r ε c) π) (hπp : π.is_partition) :
dist (integral_sum f vol π) (integral I l f vol) ≤ ε :=
begin
rw [convergence_r, dif_pos h₀] at hπ,
exact (has_integral_iff.1 h.has_integral ε h₀).some_spec.2 c _ hπ hπp
end
/-- **Henstock-Sacks inequality**. Let `r₁ r₂ : ℝⁿ → (0, ∞)` be function such that for any tagged
*partition* of `I` subordinate to `rₖ`, `k=1,2`, the integral sum of `f` over this partition differs
from the integral of `f` by at most `εₖ`. Then for any two tagged *prepartition* `π₁ π₂` subordinate
to `r₁` and `r₂` respectively and covering the same part of `I`, the integral sums of `f` over these
prepartitions differ from each other by at most `ε₁ + ε₂`.
The actual statement
- uses `box_integral.integrable.convergence_r` instead of a predicate assumption on `r`;
- uses `box_integral.integration_params.mem_base_set` instead of “subordinate to `r`” to
account for additional requirements like being a Henstock partition or having a bounded
distortion.
See also `box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq` and
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set`.
-/
lemma dist_integral_sum_le_of_mem_base_set (h : integrable I l f vol)
(hpos₁ : 0 < ε₁) (hpos₂ : 0 < ε₂) (h₁ : l.mem_base_set I c₁ (h.convergence_r ε₁ c₁) π₁)
(h₂ : l.mem_base_set I c₂ (h.convergence_r ε₂ c₂) π₂) (HU : π₁.Union = π₂.Union) :
dist (integral_sum f vol π₁) (integral_sum f vol π₂) ≤ ε₁ + ε₂ :=
begin
rcases h₁.exists_common_compl h₂ HU with ⟨π, hπU, hπc₁, hπc₂⟩,
set r : ℝⁿ → Ioi (0 : ℝ) := λ x, min (h.convergence_r ε₁ c₁ x) (h.convergence_r ε₂ c₂ x),
have hr : l.r_cond r := (h.convergence_r_cond _ c₁).min (h.convergence_r_cond _ c₂),
set πr := π.to_subordinate r,
have H₁ : dist (integral_sum f vol (π₁.union_compl_to_subordinate π hπU r))
(integral I l f vol) ≤ ε₁,
from h.dist_integral_sum_integral_le_of_mem_base_set hpos₁
(h₁.union_compl_to_subordinate (λ _ _, min_le_left _ _) hπU hπc₁)
(is_partition_union_compl_to_subordinate _ _ _ _),
rw HU at hπU,
have H₂ : dist (integral_sum f vol (π₂.union_compl_to_subordinate π hπU r))
(integral I l f vol) ≤ ε₂,
from h.dist_integral_sum_integral_le_of_mem_base_set hpos₂
(h₂.union_compl_to_subordinate (λ _ _, min_le_right _ _) hπU hπc₂)
(is_partition_union_compl_to_subordinate _ _ _ _),
simpa [union_compl_to_subordinate] using (dist_triangle_right _ _ _).trans (add_le_add H₁ H₂)
end
/-- If `f` is integrable on `I` along `l`, then for two sufficiently fine tagged prepartitions
(in the sense of the filter `box_integral.integration_params.to_filter l I`) such that they cover
the same part of `I`, the integral sums of `f` over `π₁` and `π₂` are very close to each other. -/
lemma tendsto_integral_sum_to_filter_prod_self_inf_Union_eq_uniformity (h : integrable I l f vol) :
tendsto
(λ π : tagged_prepartition I × tagged_prepartition I,
(integral_sum f vol π.1, integral_sum f vol π.2))
((l.to_filter I ×ᶠ l.to_filter I) ⊓ 𝓟 {π | π.1.Union = π.2.Union}) (𝓤 F) :=
begin
refine (((l.has_basis_to_filter I).prod_self.inf_principal _).tendsto_iff
uniformity_basis_dist_le).2 (λ ε ε0, _),
replace ε0 := half_pos ε0,
use [h.convergence_r (ε / 2), h.convergence_r_cond (ε / 2)], rintro ⟨π₁, π₂⟩ ⟨⟨h₁, h₂⟩, hU⟩,
rw ← add_halves ε,
exact h.dist_integral_sum_le_of_mem_base_set ε0 ε0 h₁.some_spec h₂.some_spec hU
end
/-- If `f` is integrable on a box `I` along `l`, then for any fixed subset `s` of `I` that can be
represented as a finite union of boxes, the integral sums of `f` over tagged prepartitions that
cover exactly `s` form a Cauchy “sequence” along `l`. -/
lemma cauchy_map_integral_sum_to_filter_Union (h : integrable I l f vol) (π₀ : prepartition I) :
cauchy ((l.to_filter_Union I π₀).map (integral_sum f vol)) :=
begin
refine ⟨infer_instance, _⟩,
rw [prod_map_map_eq, ← to_filter_inf_Union_eq, ← prod_inf_prod, prod_principal_principal],
exact h.tendsto_integral_sum_to_filter_prod_self_inf_Union_eq_uniformity.mono_left
(inf_le_inf_left _ $ principal_mono.2 $ λ π h, h.1.trans h.2.symm)
end
variable [complete_space F]
lemma to_subbox_aux (h : integrable I l f vol) (hJ : J ≤ I) :
∃ y : F, has_integral J l f vol y ∧
tendsto (integral_sum f vol) (l.to_filter_Union I (prepartition.single I J hJ)) (𝓝 y) :=
begin
refine (cauchy_map_iff_exists_tendsto.1
(h.cauchy_map_integral_sum_to_filter_Union (prepartition.single I J hJ))).imp (λ y hy, ⟨_, hy⟩),
convert hy.comp (l.tendsto_embed_box_to_filter_Union_top hJ) -- faster than `exact` here
end
/-- If `f` is integrable on a box `I`, then it is integrable on any subbox of `I`. -/
lemma to_subbox (h : integrable I l f vol) (hJ : J ≤ I) : integrable J l f vol :=
(h.to_subbox_aux hJ).imp $ λ y, and.left
/-- If `f` is integrable on a box `I`, then integral sums of `f` over tagged prepartitions
that cover exactly a subbox `J ≤ I` tend to the integral of `f` over `J` along `l`. -/
lemma tendsto_integral_sum_to_filter_Union_single (h : integrable I l f vol) (hJ : J ≤ I) :
tendsto (integral_sum f vol) (l.to_filter_Union I (prepartition.single I J hJ))
(𝓝 $ integral J l f vol) :=
let ⟨y, h₁, h₂⟩ := h.to_subbox_aux hJ in h₁.integral_eq.symm ▸ h₂
/-- **Henstock-Sacks inequality**. Let `r : ℝⁿ → (0, ∞)` be a function such that for any tagged
*partition* of `I` subordinate to `r`, the integral sum of `f` over this partition differs from the
integral of `f` by at most `ε`. Then for any tagged *prepartition* `π` subordinate to `r`, the
integral sum of `f` over this prepartition differs from the integral of `f` over the part of `I`
covered by `π` by at most `ε`.
The actual statement
- uses `box_integral.integrable.convergence_r` instead of a predicate assumption on `r`;
- uses `box_integral.integration_params.mem_base_set` instead of “subordinate to `r`” to
account for additional requirements like being a Henstock partition or having a bounded
distortion;
- takes an extra argument `π₀ : prepartition I` and an assumption `π.Union = π₀.Union` instead of
using `π.to_prepartition`.
-/
lemma dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq (h : integrable I l f vol)
(h0 : 0 < ε) (hπ : l.mem_base_set I c (h.convergence_r ε c) π) {π₀ : prepartition I}
(hU : π.Union = π₀.Union) :
dist (integral_sum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε :=
begin
/- Let us prove that the distance is less than or equal to `ε + δ` for all positive `δ`. -/
refine le_of_forall_pos_le_add (λ δ δ0, _),
/- First we choose some constants. -/
set δ' : ℝ := δ / (π₀.boxes.card + 1),
have H0 : 0 < (π₀.boxes.card + 1 : ℝ) := nat.cast_add_one_pos _,
have δ'0 : 0 < δ' := div_pos δ0 H0,
set C := max π₀.distortion π₀.compl.distortion,
/- Next we choose a tagged partition of each `J ∈ π₀` such that the integral sum of `f` over this
partition is `δ'`-close to the integral of `f` over `J`. -/
have : ∀ J ∈ π₀, ∃ πi : tagged_prepartition J, πi.is_partition ∧
dist (integral_sum f vol πi) (integral J l f vol) ≤ δ' ∧
l.mem_base_set J C (h.convergence_r δ' C) πi,
{ intros J hJ,
have Hle : J ≤ I := π₀.le_of_mem hJ,
have HJi : integrable J l f vol := h.to_subbox Hle,
set r := λ x, min (h.convergence_r δ' C x) (HJi.convergence_r δ' C x),
have hr : l.r_cond r, from (h.convergence_r_cond _ C).min (HJi.convergence_r_cond _ C),
have hJd : J.distortion ≤ C, from le_trans (finset.le_sup hJ) (le_max_left _ _),
rcases l.exists_mem_base_set_is_partition J hJd r with ⟨πJ, hC, hp⟩,
have hC₁ : l.mem_base_set J C (HJi.convergence_r δ' C) πJ,
{ refine hC.mono J le_rfl le_rfl (λ x hx, _), exact min_le_right _ _ },
have hC₂ : l.mem_base_set J C (h.convergence_r δ' C) πJ,
{ refine hC.mono J le_rfl le_rfl (λ x hx, _), exact min_le_left _ _ },
exact ⟨πJ, hp, HJi.dist_integral_sum_integral_le_of_mem_base_set δ'0 hC₁ hp, hC₂⟩ },
/- Now we combine these tagged partitions into a tagged prepartition of `I` that covers the
same part of `I` as `π₀` and apply `box_integral.dist_integral_sum_le_of_mem_base_set` to
`π` and this prepartition. -/
choose! πi hπip hπiδ' hπiC,
have : l.mem_base_set I C (h.convergence_r δ' C) (π₀.bUnion_tagged πi),
from bUnion_tagged_mem_base_set hπiC hπip (λ _, le_max_right _ _),
have hU' : π.Union = (π₀.bUnion_tagged πi).Union,
from hU.trans (prepartition.Union_bUnion_partition _ hπip).symm,
have := h.dist_integral_sum_le_of_mem_base_set h0 δ'0 hπ this hU',
rw integral_sum_bUnion_tagged at this,
calc dist (integral_sum f vol π) (∑ J in π₀.boxes, integral J l f vol)
≤ dist (integral_sum f vol π) (∑ J in π₀.boxes, integral_sum f vol (πi J)) +
dist (∑ J in π₀.boxes, integral_sum f vol (πi J)) (∑ J in π₀.boxes, integral J l f vol) :
dist_triangle _ _ _
... ≤ (ε + δ') + ∑ J in π₀.boxes, δ' : add_le_add this (dist_sum_sum_le_of_le _ hπiδ')
... = ε + δ : by { field_simp [H0.ne'], ring }
end
/-- **Henstock-Sacks inequality**. Let `r : ℝⁿ → (0, ∞)` be a function such that for any tagged
*partition* of `I` subordinate to `r`, the integral sum of `f` over this partition differs from the
integral of `f` by at most `ε`. Then for any tagged *prepartition* `π` subordinate to `r`, the
integral sum of `f` over this prepartition differs from the integral of `f` over the part of `I`
covered by `π` by at most `ε`.
The actual statement
- uses `box_integral.integrable.convergence_r` instead of a predicate assumption on `r`;
- uses `box_integral.integration_params.mem_base_set` instead of “subordinate to `r`” to
account for additional requirements like being a Henstock partition or having a bounded
distortion;
-/
lemma dist_integral_sum_sum_integral_le_of_mem_base_set (h : integrable I l f vol)
(h0 : 0 < ε) (hπ : l.mem_base_set I c (h.convergence_r ε c) π) :
dist (integral_sum f vol π) (∑ J in π.boxes, integral J l f vol) ≤ ε :=
h.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq h0 hπ rfl
/-- Integral sum of `f` over a tagged prepartition `π` such that `π.Union = π₀.Union` tends to the
sum of integrals of `f` over the boxes of `π₀`. -/
lemma tendsto_integral_sum_sum_integral (h : integrable I l f vol) (π₀ : prepartition I) :
tendsto (integral_sum f vol) (l.to_filter_Union I π₀) (𝓝 $ ∑ J in π₀.boxes, integral J l f vol) :=
begin
refine ((l.has_basis_to_filter_Union I π₀).tendsto_iff nhds_basis_closed_ball).2 (λ ε ε0, _),
refine ⟨h.convergence_r ε, h.convergence_r_cond ε, _⟩,
simp only [mem_inter_eq, set.mem_Union, mem_set_of_eq],
rintro π ⟨c, hc, hU⟩,
exact h.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq ε0 hc hU
end
/-- If `f` is integrable on `I`, then `λ J, integral J l f vol` is box-additive on subboxes of `I`:
if `π₁`, `π₂` are two prepartitions of `I` covering the same part of `I`, then the sum of integrals
of `f` over the boxes of `π₁` is equal to the sum of integrals of `f` over the boxes of `π₂`.
See also `box_integral.integrable.to_box_additive` for a bundled version. -/
lemma sum_integral_congr (h : integrable I l f vol) {π₁ π₂ : prepartition I}
(hU : π₁.Union = π₂.Union) :
∑ J in π₁.boxes, integral J l f vol = ∑ J in π₂.boxes, integral J l f vol :=
begin
refine tendsto_nhds_unique (h.tendsto_integral_sum_sum_integral π₁) _,
rw l.to_filter_Union_congr _ hU,
exact h.tendsto_integral_sum_sum_integral π₂
end
/-- If `f` is integrable on `I`, then `λ J, integral J l f vol` is box-additive on subboxes of `I`:
if `π₁`, `π₂` are two prepartitions of `I` covering the same part of `I`, then the sum of integrals
of `f` over the boxes of `π₁` is equal to the sum of integrals of `f` over the boxes of `π₂`.
See also `box_integral.integrable.sum_integral_congr` for an unbundled version. -/
@[simps] def to_box_additive (h : integrable I l f vol) : ι →ᵇᵃ[I] F :=
{ to_fun := λ J, integral J l f vol,
sum_partition_boxes' := λ J hJ π hπ,
begin
replace hπ := hπ.Union_eq, rw ← prepartition.Union_top at hπ,
rw [(h.to_subbox (with_top.coe_le_coe.1 hJ)).sum_integral_congr hπ,
prepartition.top_boxes, sum_singleton]
end }
end integrable
open measure_theory
/-!
### Integrability conditions
-/
variable (l)
/-- A continuous function is box-integrable with respect to any locally finite measure.
This is true for any volume with bounded variation. -/
lemma integrable_of_continuous_on [complete_space E] {I : box ι} {f : ℝⁿ → E}
(hc : continuous_on f I.Icc) (μ : measure ℝⁿ) [is_locally_finite_measure μ] :
integrable.{u v v} I l f μ.to_box_additive.to_smul :=
begin
have huc := I.is_compact_Icc.uniform_continuous_on_of_continuous hc,
rw metric.uniform_continuous_on_iff_le at huc,
refine integrable_iff_cauchy_basis.2 (λ ε ε0, _),
rcases exists_pos_mul_lt ε0 (μ.to_box_additive I) with ⟨ε', ε0', hε⟩,
rcases huc ε' ε0' with ⟨δ, δ0 : 0 < δ, Hδ⟩,
refine ⟨λ _ _, ⟨δ / 2, half_pos δ0⟩, λ _ _ _, rfl, λ c₁ c₂ π₁ π₂ h₁ h₁p h₂ h₂p, _⟩,
simp only [dist_eq_norm, integral_sum_sub_partitions _ _ h₁p h₂p,
box_additive_map.to_smul_apply, ← smul_sub],
have : ∀ J ∈ π₁.to_prepartition ⊓ π₂.to_prepartition,
∥μ.to_box_additive J • (f ((π₁.inf_prepartition π₂.to_prepartition).tag J) -
f ((π₂.inf_prepartition π₁.to_prepartition).tag J))∥ ≤ μ.to_box_additive J * ε',
{ intros J hJ,
have : 0 ≤ μ.to_box_additive J, from ennreal.to_real_nonneg,
rw [norm_smul, real.norm_eq_abs, abs_of_nonneg this, ← dist_eq_norm],
refine mul_le_mul_of_nonneg_left _ this,
refine Hδ _ (tagged_prepartition.tag_mem_Icc _ _) _ (tagged_prepartition.tag_mem_Icc _ _) _,
rw [← add_halves δ],
refine (dist_triangle_left _ _ J.upper).trans (add_le_add (h₁.1 _ _ _) (h₂.1 _ _ _)),
{ exact prepartition.bUnion_index_mem _ hJ },
{ exact box.le_iff_Icc.1 (prepartition.le_bUnion_index _ hJ) J.upper_mem_Icc },
{ rw _root_.inf_comm at hJ,
exact prepartition.bUnion_index_mem _ hJ },
{ rw _root_.inf_comm at hJ,
exact box.le_iff_Icc.1 (prepartition.le_bUnion_index _ hJ) J.upper_mem_Icc } },
refine (norm_sum_le_of_le _ this).trans _,
rw [← finset.sum_mul, μ.to_box_additive.sum_partition_boxes le_top (h₁p.inf h₂p)],
exact hε.le
end
variable {l}
/-- This is an auxiliary lemma used to prove two statements at once. Use one of the next two
lemmas instead. -/
lemma has_integral_of_bRiemann_eq_ff_of_forall_is_o (hl : l.bRiemann = ff)
(B : ι →ᵇᵃ[I] ℝ) (hB0 : ∀ J, 0 ≤ B J) (g : ι →ᵇᵃ[I] F) (s : set ℝⁿ) (hs : s.countable)
(hlH : s.nonempty → l.bHenstock = tt)
(H₁ : ∀ (c : ℝ≥0) (x ∈ I.Icc ∩ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I,
J.Icc ⊆ metric.closed_ball x δ → x ∈ J.Icc →
(l.bDistortion → J.distortion ≤ c) → dist (vol J (f x)) (g J) ≤ ε)
(H₂ : ∀ (c : ℝ≥0) (x ∈ I.Icc \ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I,
J.Icc ⊆ metric.closed_ball x δ → (l.bHenstock → x ∈ J.Icc) →
(l.bDistortion → J.distortion ≤ c) → dist (vol J (f x)) (g J) ≤ ε * B J) :
has_integral I l f vol (g I) :=
begin
/- We choose `r x` differently for `x ∈ s` and `x ∉ s`.
For `x ∈ s`, we choose `εs` such that `∑' x : s, εs x < ε / 2 / 2 ^ #ι`, then choose `r x` so that
`dist (vol J (f x)) (g J) ≤ εs x` for `J` in the `r x`-neighborhood of `x`. This guarantees that
the sum of these distances over boxes `J` such that `π.tag J ∈ s` is less than `ε / 2`. We need an
additional multiplier `2 ^ #ι` because different boxes can have the same tag.
For `x ∉ s`, we choose `r x` so that `dist (vol (J (f x))) (g J) ≤ (ε / 2 / B I) * B J` for a box
`J` in the `δ`-neighborhood of `x`. -/
refine ((l.has_basis_to_filter_Union_top _).tendsto_iff metric.nhds_basis_closed_ball).2 _,
intros ε ε0,
simp only [subtype.exists'] at H₁ H₂,
choose! δ₁ Hδ₁ using H₁,
choose! δ₂ Hδ₂ using H₂,
have ε0' := half_pos ε0, have H0 : 0 < (2 ^ fintype.card ι : ℝ), from pow_pos zero_lt_two _,
rcases hs.exists_pos_forall_sum_le (div_pos ε0' H0) with ⟨εs, hεs0, hεs⟩,
simp only [le_div_iff' H0, mul_sum] at hεs,
rcases exists_pos_mul_lt ε0' (B I) with ⟨ε', ε'0, hεI⟩,
set δ : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ) := λ c x, if x ∈ s then δ₁ c x (εs x) else (δ₂ c) x ε',
refine ⟨δ, λ c, l.r_cond_of_bRiemann_eq_ff hl, _⟩,
simp only [set.mem_Union, mem_inter_eq, mem_set_of_eq],
rintro π ⟨c, hπδ, hπp⟩,
/- Now we split the sum into two parts based on whether `π.tag J` belongs to `s` or not. -/
rw [← g.sum_partition_boxes le_rfl hπp, mem_closed_ball, integral_sum,
← sum_filter_add_sum_filter_not π.boxes (λ J, π.tag J ∈ s),
← sum_filter_add_sum_filter_not π.boxes (λ J, π.tag J ∈ s), ← add_halves ε],
refine dist_add_add_le_of_le _ _,
{ unfreezingI { rcases s.eq_empty_or_nonempty with rfl|hsne }, { simp [ε0'.le] },
/- For the boxes such that `π.tag J ∈ s`, we use the fact that at most `2 ^ #ι` boxes have the
same tag. -/
specialize hlH hsne,
have : ∀ J ∈ π.boxes.filter (λ J, π.tag J ∈ s), dist (vol J (f $ π.tag J)) (g J) ≤ εs (π.tag J),
{ intros J hJ, rw finset.mem_filter at hJ, cases hJ with hJ hJs,
refine Hδ₁ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ (hεs0 _) _ (π.le_of_mem' _ hJ) _
(hπδ.2 hlH J hJ) (λ hD, (finset.le_sup hJ).trans (hπδ.3 hD)),
convert hπδ.1 J hJ, exact (dif_pos hJs).symm },
refine (dist_sum_sum_le_of_le _ this).trans _,
rw sum_comp,
refine (sum_le_sum _).trans (hεs _ _),
{ rintro b -,
rw [← nat.cast_two, ← nat.cast_pow, ← nsmul_eq_mul],
refine nsmul_le_nsmul (hεs0 _).le _,
refine (finset.card_le_of_subset _).trans ((hπδ.is_Henstock hlH).card_filter_tag_eq_le b),
exact filter_subset_filter _ (filter_subset _ _) },
{ rw [finset.coe_image, set.image_subset_iff],
exact λ J hJ, (finset.mem_filter.1 hJ).2 } },
/- Now we deal with boxes such that `π.tag J ∉ s`.
In this case the estimate is straightforward. -/
have H₂ : ∀ J ∈ π.boxes.filter (λ J, π.tag J ∉ s), dist (vol J (f $ π.tag J)) (g J) ≤ ε' * B J,
{ intros J hJ, rw finset.mem_filter at hJ, cases hJ with hJ hJs,
refine Hδ₂ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ ε'0 _ (π.le_of_mem' _ hJ) _ (λ hH, hπδ.2 hH J hJ)
(λ hD, (finset.le_sup hJ).trans (hπδ.3 hD)),
convert hπδ.1 J hJ, exact (dif_neg hJs).symm },
refine (dist_sum_sum_le_of_le _ H₂).trans
((sum_le_sum_of_subset_of_nonneg (filter_subset _ _) _).trans _),
{ exact λ _ _ _, mul_nonneg ε'0.le (hB0 _) },
{ rw [← mul_sum, B.sum_partition_boxes le_rfl hπp, mul_comm],
exact hεI.le }
end
/-- A function `f` has Henstock (or `⊥`) integral over `I` is equal to the value of a box-additive
function `g` on `I` provided that `vol J (f x)` is sufficiently close to `g J` for sufficiently
small boxes `J ∋ x`. This lemma is useful to prove, e.g., to prove the Divergence theorem for
integral along `⊥`.
Let `l` be either `box_integral.integration_params.Henstock` or `⊥`. Let `g` a box-additive function
on subboxes of `I`. Suppose that there exists a nonnegative box-additive function `B` and a
countable set `s` with the following property.
For every `c : ℝ≥0`, a point `x ∈ I.Icc`, and a positive `ε` there exists `δ > 0` such that for any
box `J ≤ I` such that
- `x ∈ J.Icc ⊆ metric.closed_ball x δ`;
- if `l.bDistortion` (i.e., `l = ⊥`), then the distortion of `J` is less than or equal to `c`,
the distance between the term `vol J (f x)` of an integral sum corresponding to `J` and `g J` is
less than or equal to `ε` if `x ∈ s` and is less than or equal to `ε * B J` otherwise.
Then `f` is integrable on `I along `l` with integral `g I`. -/
lemma has_integral_of_le_Henstock_of_forall_is_o (hl : l ≤ Henstock) (B : ι →ᵇᵃ[I] ℝ)
(hB0 : ∀ J, 0 ≤ B J) (g : ι →ᵇᵃ[I] F) (s : set ℝⁿ) (hs : s.countable)
(H₁ : ∀ (c : ℝ≥0) (x ∈ I.Icc ∩ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I,
J.Icc ⊆ metric.closed_ball x δ → x ∈ J.Icc → (l.bDistortion → J.distortion ≤ c) →
dist (vol J (f x)) (g J) ≤ ε)
(H₂ : ∀ (c : ℝ≥0) (x ∈ I.Icc \ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I,
J.Icc ⊆ metric.closed_ball x δ → x ∈ J.Icc → (l.bDistortion → J.distortion ≤ c) →
dist (vol J (f x)) (g J) ≤ ε * B J) :
has_integral I l f vol (g I) :=
have A : l.bHenstock, from hl.2.1.resolve_left dec_trivial,
has_integral_of_bRiemann_eq_ff_of_forall_is_o (hl.1.resolve_right dec_trivial) B hB0 _ s hs (λ _, A)
H₁ $ by simpa only [A, true_implies_iff] using H₂
/-- Suppose that there exists a nonnegative box-additive function `B` with the following property.
For every `c : ℝ≥0`, a point `x ∈ I.Icc`, and a positive `ε` there exists `δ > 0` such that for any
box `J ≤ I` such that
- `J.Icc ⊆ metric.closed_ball x δ`;
- if `l.bDistortion` (i.e., `l = ⊥`), then the distortion of `J` is less than or equal to `c`,
the distance between the term `vol J (f x)` of an integral sum corresponding to `J` and `g J` is
less than or equal to `ε * B J`.
Then `f` is McShane integrable on `I` with integral `g I`. -/
lemma has_integral_McShane_of_forall_is_o (B : ι →ᵇᵃ[I] ℝ) (hB0 : ∀ J, 0 ≤ B J)
(g : ι →ᵇᵃ[I] F) (H : ∀ (c : ℝ≥0) (x ∈ I.Icc) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I,
J.Icc ⊆ metric.closed_ball x δ → dist (vol J (f x)) (g J) ≤ ε * B J) :
has_integral I McShane f vol (g I) :=
has_integral_of_bRiemann_eq_ff_of_forall_is_o rfl B hB0 g ∅ countable_empty (λ ⟨x, hx⟩, hx.elim)
(λ c x hx, hx.2.elim) $
by simpa only [McShane, coe_sort_ff, false_implies_iff, true_implies_iff, diff_empty] using H
end box_integral