Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Yury Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury Kudryashov | |
-/ | |
import analysis.box_integral.partition.filter | |
import analysis.box_integral.partition.measure | |
import topology.uniform_space.compact_separated | |
/-! | |
# Integrals of Riemann, Henstock-Kurzweil, and McShane | |
In this file we define the integral of a function over a box in `ℝⁿ. The same definition works for | |
Riemann, Henstock-Kurzweil, and McShane integrals. | |
As usual, we represent `ℝⁿ` as the type of functions `ι → ℝ` for some finite type `ι`. A rectangular | |
box `(l, u]` in `ℝⁿ` is defined to be the set `{x : ι → ℝ | ∀ i, l i < x i ∧ x i ≤ u i}`, see | |
`box_integral.box`. | |
Let `vol` be a box-additive function on boxes in `ℝⁿ` with codomain `E →L[ℝ] F`. Given a function | |
`f : ℝⁿ → E`, a box `I` and a tagged partition `π` of this box, the *integral sum* of `f` over `π` | |
with respect to the volume `vol` is the sum of `vol J (f (π.tag J))` over all boxes of `π`. Here | |
`π.tag J` is the point (tag) in `ℝⁿ` associated with the box `J`. | |
The integral is defined as the limit of integral sums along a filter. Different filters correspond | |
to different integration theories. In order to avoid code duplication, all our definitions and | |
theorems take an argument `l : box_integral.integration_params`. This is a type that holds three | |
boolean values, and encodes eight filters including those corresponding to Riemann, | |
Henstock-Kurzweil, and McShane integrals. | |
Following the design of infinite sums (see `has_sum` and `tsum`), we define a predicate | |
`box_integral.has_integral` and a function `box_integral.integral` that returns a vector satisfying | |
the predicate or zero if the function is not integrable. | |
Then we prove some basic properties of box integrals (linearity, a formula for the integral of a | |
constant). We also prove a version of the Henstock-Sacks inequality (see | |
`box_integral.integrable.dist_integral_sum_le_of_mem_base_set` and | |
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq`), prove | |
integrability of continuous functions, and provide a criterion for integrability w.r.t. a | |
non-Riemann filter (e.g., Henstock-Kurzweil and McShane). | |
## Notation | |
- `ℝⁿ`: local notation for `ι → ℝ` | |
## Tags | |
integral | |
-/ | |
open_locale big_operators classical topological_space nnreal filter uniformity box_integral | |
open set finset function filter metric box_integral.integration_params | |
noncomputable theory | |
namespace box_integral | |
universes u v w | |
variables {ι : Type u} {E : Type v} {F : Type w} [normed_add_comm_group E] [normed_space ℝ E] | |
[normed_add_comm_group F] [normed_space ℝ F] {I J : box ι} {π : tagged_prepartition I} | |
open tagged_prepartition | |
local notation `ℝⁿ` := ι → ℝ | |
/-! | |
### Integral sum and its basic properties | |
-/ | |
/-- The integral sum of `f : ℝⁿ → E` over a tagged prepartition `π` w.r.t. box-additive volume `vol` | |
with codomain `E →L[ℝ] F` is the sum of `vol J (f (π.tag J))` over all boxes of `π`. -/ | |
def integral_sum (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) (π : tagged_prepartition I) : F := | |
∑ J in π.boxes, vol J (f (π.tag J)) | |
lemma integral_sum_bUnion_tagged (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) (π : prepartition I) | |
(πi : Π J, tagged_prepartition J) : | |
integral_sum f vol (π.bUnion_tagged πi) = ∑ J in π.boxes, integral_sum f vol (πi J) := | |
begin | |
refine (π.sum_bUnion_boxes _ _).trans (sum_congr rfl $ λ J hJ, sum_congr rfl $ λ J' hJ', _), | |
rw π.tag_bUnion_tagged hJ hJ' | |
end | |
lemma integral_sum_bUnion_partition (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) | |
(π : tagged_prepartition I) (πi : Π J, prepartition J) (hπi : ∀ J ∈ π, (πi J).is_partition) : | |
integral_sum f vol (π.bUnion_prepartition πi) = integral_sum f vol π := | |
begin | |
refine (π.to_prepartition.sum_bUnion_boxes _ _).trans (sum_congr rfl $ λ J hJ, _), | |
calc ∑ J' in (πi J).boxes, vol J' (f (π.tag $ π.to_prepartition.bUnion_index πi J')) | |
= ∑ J' in (πi J).boxes, vol J' (f (π.tag J)) : | |
sum_congr rfl (λ J' hJ', by rw [prepartition.bUnion_index_of_mem _ hJ hJ']) | |
... = vol J (f (π.tag J)) : | |
(vol.map ⟨λ g : E →L[ℝ] F, g (f (π.tag J)), rfl, λ _ _, rfl⟩).sum_partition_boxes | |
le_top (hπi J hJ) | |
end | |
lemma integral_sum_inf_partition (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) | |
(π : tagged_prepartition I) {π' : prepartition I} (h : π'.is_partition) : | |
integral_sum f vol (π.inf_prepartition π') = integral_sum f vol π := | |
integral_sum_bUnion_partition f vol π _ $ λ J hJ, h.restrict (prepartition.le_of_mem _ hJ) | |
lemma integral_sum_fiberwise {α} (g : box ι → α) (f : ℝⁿ → E) | |
(vol : ι →ᵇᵃ (E →L[ℝ] F)) (π : tagged_prepartition I) : | |
∑ y in π.boxes.image g, integral_sum f vol (π.filter (λ x, g x = y)) = integral_sum f vol π := | |
π.to_prepartition.sum_fiberwise g (λ J, vol J (f $ π.tag J)) | |
lemma integral_sum_sub_partitions (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) | |
{π₁ π₂ : tagged_prepartition I} (h₁ : π₁.is_partition) (h₂ : π₂.is_partition) : | |
integral_sum f vol π₁ - integral_sum f vol π₂ = | |
∑ J in (π₁.to_prepartition ⊓ π₂.to_prepartition).boxes, | |
(vol J (f $ (π₁.inf_prepartition π₂.to_prepartition).tag J) - | |
vol J (f $ (π₂.inf_prepartition π₁.to_prepartition).tag J)) := | |
begin | |
rw [← integral_sum_inf_partition f vol π₁ h₂, | |
← integral_sum_inf_partition f vol π₂ h₁, integral_sum, integral_sum, | |
finset.sum_sub_distrib], | |
simp only [inf_prepartition_to_prepartition, _root_.inf_comm] | |
end | |
@[simp] lemma integral_sum_disj_union (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) | |
{π₁ π₂ : tagged_prepartition I} (h : disjoint π₁.Union π₂.Union) : | |
integral_sum f vol (π₁.disj_union π₂ h) = integral_sum f vol π₁ + integral_sum f vol π₂ := | |
begin | |
refine (prepartition.sum_disj_union_boxes h _).trans | |
(congr_arg2 (+) (sum_congr rfl $ λ J hJ, _) (sum_congr rfl $ λ J hJ, _)), | |
{ rw disj_union_tag_of_mem_left _ hJ }, | |
{ rw disj_union_tag_of_mem_right _ hJ } | |
end | |
@[simp] lemma integral_sum_add (f g : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) | |
(π : tagged_prepartition I) : | |
integral_sum (f + g) vol π = integral_sum f vol π + integral_sum g vol π := | |
by simp only [integral_sum, pi.add_apply, (vol _).map_add, finset.sum_add_distrib] | |
@[simp] lemma integral_sum_neg (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) | |
(π : tagged_prepartition I) : | |
integral_sum (-f) vol π = -integral_sum f vol π := | |
by simp only [integral_sum, pi.neg_apply, (vol _).map_neg, finset.sum_neg_distrib] | |
@[simp] lemma integral_sum_smul (c : ℝ) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) | |
(π : tagged_prepartition I) : | |
integral_sum (c • f) vol π = c • integral_sum f vol π := | |
by simp only [integral_sum, finset.smul_sum, pi.smul_apply, continuous_linear_map.map_smul] | |
variables [fintype ι] | |
/-! | |
### Basic integrability theory | |
-/ | |
/-- The predicate `has_integral I l f vol y` says that `y` is the integral of `f` over `I` along `l` | |
w.r.t. volume `vol`. This means that integral sums of `f` tend to `𝓝 y` along | |
`box_integral.integration_params.to_filter_Union I ⊤`. -/ | |
def has_integral (I : box ι) (l : integration_params) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) | |
(y : F) : Prop := | |
tendsto (integral_sum f vol) (l.to_filter_Union I ⊤) (𝓝 y) | |
/-- A function is integrable if there exists a vector that satisfies the `has_integral` | |
predicate. -/ | |
def integrable (I : box ι) (l : integration_params) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) := | |
∃ y, has_integral I l f vol y | |
/-- The integral of a function `f` over a box `I` along a filter `l` w.r.t. a volume `vol`. Returns | |
zero on non-integrable functions. -/ | |
def integral (I : box ι) (l : integration_params) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) := | |
if h : integrable I l f vol then h.some else 0 | |
variables {l : integration_params} {f g : ℝⁿ → E} {vol : ι →ᵇᵃ (E →L[ℝ] F)} {y y' : F} | |
/-- Reinterpret `box_integral.has_integral` as `filter.tendsto`, e.g., dot-notation theorems | |
that are shadowed in the `box_integral.has_integral` namespace. -/ | |
lemma has_integral.tendsto (h : has_integral I l f vol y) : | |
tendsto (integral_sum f vol) (l.to_filter_Union I ⊤) (𝓝 y) := h | |
/-- The `ε`-`δ` definition of `box_integral.has_integral`. -/ | |
lemma has_integral_iff : has_integral I l f vol y ↔ | |
∀ ε > (0 : ℝ), ∃ r : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ), (∀ c, l.r_cond (r c)) ∧ | |
∀ c π, l.mem_base_set I c (r c) π → is_partition π → dist (integral_sum f vol π) y ≤ ε := | |
((l.has_basis_to_filter_Union_top I).tendsto_iff nhds_basis_closed_ball).trans $ | |
by simp [@forall_swap ℝ≥0 (tagged_prepartition I)] | |
/-- Quite often it is more natural to prove an estimate of the form `a * ε`, not `ε` in the RHS of | |
`box_integral.has_integral_iff`, so we provide this auxiliary lemma. -/ | |
lemma has_integral_of_mul (a : ℝ) (h : ∀ ε : ℝ, 0 < ε → | |
∃ r: ℝ≥0 → ℝⁿ → Ioi (0 : ℝ), (∀ c, l.r_cond (r c)) ∧ ∀ c π, l.mem_base_set I c (r c) π → | |
is_partition π → dist (integral_sum f vol π) y ≤ a * ε) : | |
has_integral I l f vol y := | |
begin | |
refine has_integral_iff.2 (λ ε hε, _), | |
rcases exists_pos_mul_lt hε a with ⟨ε', hε', ha⟩, | |
rcases h ε' hε' with ⟨r, hr, H⟩, | |
exact ⟨r, hr, λ c π hπ hπp, (H c π hπ hπp).trans ha.le⟩ | |
end | |
lemma integrable_iff_cauchy [complete_space F] : | |
integrable I l f vol ↔ cauchy ((l.to_filter_Union I ⊤).map (integral_sum f vol)) := | |
cauchy_map_iff_exists_tendsto.symm | |
/-- In a complete space, a function is integrable if and only if its integral sums form a Cauchy | |
net. Here we restate this fact in terms of `∀ ε > 0, ∃ r, ...`. -/ | |
lemma integrable_iff_cauchy_basis [complete_space F] : | |
integrable I l f vol ↔ ∀ ε > (0 : ℝ), ∃ r : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ), (∀ c, l.r_cond (r c)) ∧ | |
∀ c₁ c₂ π₁ π₂, l.mem_base_set I c₁ (r c₁) π₁ → π₁.is_partition → l.mem_base_set I c₂ (r c₂) π₂ → | |
π₂.is_partition → dist (integral_sum f vol π₁) (integral_sum f vol π₂) ≤ ε := | |
begin | |
rw [integrable_iff_cauchy, cauchy_map_iff', | |
(l.has_basis_to_filter_Union_top _).prod_self.tendsto_iff uniformity_basis_dist_le], | |
refine forall₂_congr (λ ε ε0, exists_congr $ λ r, _), | |
simp only [exists_prop, prod.forall, set.mem_Union, exists_imp_distrib, | |
prod_mk_mem_set_prod_eq, and_imp, mem_inter_eq, mem_set_of_eq], | |
exact and_congr iff.rfl ⟨λ H c₁ c₂ π₁ π₂ h₁ hU₁ h₂ hU₂, H π₁ π₂ c₁ h₁ hU₁ c₂ h₂ hU₂, | |
λ H π₁ π₂ c₁ h₁ hU₁ c₂ h₂ hU₂, H c₁ c₂ π₁ π₂ h₁ hU₁ h₂ hU₂⟩ | |
end | |
lemma has_integral.mono {l₁ l₂ : integration_params} (h : has_integral I l₁ f vol y) | |
(hl : l₂ ≤ l₁) : has_integral I l₂ f vol y := | |
h.mono_left $ integration_params.to_filter_Union_mono _ hl _ | |
protected lemma integrable.has_integral (h : integrable I l f vol) : | |
has_integral I l f vol (integral I l f vol) := | |
by { rw [integral, dif_pos h], exact classical.some_spec h } | |
lemma integrable.mono {l'} (h : integrable I l f vol) (hle : l' ≤ l) : integrable I l' f vol := | |
⟨_, h.has_integral.mono hle⟩ | |
lemma has_integral.unique (h : has_integral I l f vol y) (h' : has_integral I l f vol y') : | |
y = y' := | |
tendsto_nhds_unique h h' | |
lemma has_integral.integrable (h : has_integral I l f vol y) : integrable I l f vol := ⟨_, h⟩ | |
lemma has_integral.integral_eq (h : has_integral I l f vol y) : | |
integral I l f vol = y := | |
h.integrable.has_integral.unique h | |
lemma has_integral.add (h : has_integral I l f vol y) (h' : has_integral I l g vol y') : | |
has_integral I l (f + g) vol (y + y') := | |
by simpa only [has_integral, ← integral_sum_add] using h.add h' | |
lemma integrable.add (hf : integrable I l f vol) (hg : integrable I l g vol) : | |
integrable I l (f + g) vol := | |
(hf.has_integral.add hg.has_integral).integrable | |
lemma integral_add (hf : integrable I l f vol) (hg : integrable I l g vol) : | |
integral I l (f + g) vol = integral I l f vol + integral I l g vol := | |
(hf.has_integral.add hg.has_integral).integral_eq | |
lemma has_integral.neg (hf : has_integral I l f vol y) : has_integral I l (-f) vol (-y) := | |
by simpa only [has_integral, ← integral_sum_neg] using hf.neg | |
lemma integrable.neg (hf : integrable I l f vol) : integrable I l (-f) vol := | |
hf.has_integral.neg.integrable | |
lemma integrable.of_neg (hf : integrable I l (-f) vol) : integrable I l f vol := neg_neg f ▸ hf.neg | |
@[simp] lemma integrable_neg : integrable I l (-f) vol ↔ integrable I l f vol := | |
⟨λ h, h.of_neg, λ h, h.neg⟩ | |
@[simp] lemma integral_neg : integral I l (-f) vol = -integral I l f vol := | |
if h : integrable I l f vol then h.has_integral.neg.integral_eq | |
else by rw [integral, integral, dif_neg h, dif_neg (mt integrable.of_neg h), neg_zero] | |
lemma has_integral.sub (h : has_integral I l f vol y) (h' : has_integral I l g vol y') : | |
has_integral I l (f - g) vol (y - y') := | |
by simpa only [sub_eq_add_neg] using h.add h'.neg | |
lemma integrable.sub (hf : integrable I l f vol) (hg : integrable I l g vol) : | |
integrable I l (f - g) vol := | |
(hf.has_integral.sub hg.has_integral).integrable | |
lemma integral_sub (hf : integrable I l f vol) (hg : integrable I l g vol) : | |
integral I l (f - g) vol = integral I l f vol - integral I l g vol := | |
(hf.has_integral.sub hg.has_integral).integral_eq | |
lemma has_integral_const (c : E) : has_integral I l (λ _, c) vol (vol I c) := | |
tendsto_const_nhds.congr' $ (l.eventually_is_partition I).mono $ λ π hπ, | |
((vol.map ⟨λ g : E →L[ℝ] F, g c, rfl, λ _ _, rfl⟩).sum_partition_boxes le_top hπ).symm | |
@[simp] lemma integral_const (c : E) : integral I l (λ _, c) vol = vol I c := | |
(has_integral_const c).integral_eq | |
lemma integrable_const (c : E) : integrable I l (λ _, c) vol := | |
⟨_, has_integral_const c⟩ | |
lemma has_integral_zero : has_integral I l (λ _, (0:E)) vol 0 := | |
by simpa only [← (vol I).map_zero] using has_integral_const (0 : E) | |
lemma integrable_zero : integrable I l (λ _, (0:E)) vol := ⟨0, has_integral_zero⟩ | |
lemma integral_zero : integral I l (λ _, (0:E)) vol = 0 := has_integral_zero.integral_eq | |
lemma has_integral_sum {α : Type*} {s : finset α} {f : α → ℝⁿ → E} {g : α → F} | |
(h : ∀ i ∈ s, has_integral I l (f i) vol (g i)) : | |
has_integral I l (λ x, ∑ i in s, f i x) vol (∑ i in s, g i) := | |
begin | |
induction s using finset.induction_on with a s ha ihs, { simp [has_integral_zero] }, | |
simp only [finset.sum_insert ha], rw finset.forall_mem_insert at h, | |
exact h.1.add (ihs h.2) | |
end | |
lemma has_integral.smul (hf : has_integral I l f vol y) (c : ℝ) : | |
has_integral I l (c • f) vol (c • y) := | |
by simpa only [has_integral, ← integral_sum_smul] | |
using (tendsto_const_nhds : tendsto _ _ (𝓝 c)).smul hf | |
lemma integrable.smul (hf : integrable I l f vol) (c : ℝ) : | |
integrable I l (c • f) vol := | |
(hf.has_integral.smul c).integrable | |
lemma integrable.of_smul {c : ℝ} (hf : integrable I l (c • f) vol) (hc : c ≠ 0) : | |
integrable I l f vol := | |
by { convert hf.smul c⁻¹, ext x, simp only [pi.smul_apply, inv_smul_smul₀ hc] } | |
@[simp] lemma integral_smul (c : ℝ) : integral I l (λ x, c • f x) vol = c • integral I l f vol := | |
begin | |
rcases eq_or_ne c 0 with rfl | hc, { simp only [zero_smul, integral_zero] }, | |
by_cases hf : integrable I l f vol, | |
{ exact (hf.has_integral.smul c).integral_eq }, | |
{ have : ¬integrable I l (λ x, c • f x) vol, from mt (λ h, h.of_smul hc) hf, | |
rw [integral, integral, dif_neg hf, dif_neg this, smul_zero] } | |
end | |
open measure_theory | |
/-- The integral of a nonnegative function w.r.t. a volume generated by a locally-finite measure is | |
nonnegative. -/ | |
lemma integral_nonneg {g : ℝⁿ → ℝ} (hg : ∀ x ∈ I.Icc, 0 ≤ g x) | |
(μ : measure ℝⁿ) [is_locally_finite_measure μ] : | |
0 ≤ integral I l g μ.to_box_additive.to_smul := | |
begin | |
by_cases hgi : integrable I l g μ.to_box_additive.to_smul, | |
{ refine ge_of_tendsto' hgi.has_integral (λ π, sum_nonneg $ λ J hJ, _), | |
exact mul_nonneg ennreal.to_real_nonneg (hg _ $ π.tag_mem_Icc _) }, | |
{ rw [integral, dif_neg hgi] } | |
end | |
/-- If `∥f x∥ ≤ g x` on `[l, u]` and `g` is integrable, then the norm of the integral of `f` is less | |
than or equal to the integral of `g`. -/ | |
lemma norm_integral_le_of_norm_le {g : ℝⁿ → ℝ} (hle : ∀ x ∈ I.Icc, ∥f x∥ ≤ g x) | |
(μ : measure ℝⁿ) [is_locally_finite_measure μ] | |
(hg : integrable I l g μ.to_box_additive.to_smul) : | |
∥(integral I l f μ.to_box_additive.to_smul : E)∥ ≤ | |
integral I l g μ.to_box_additive.to_smul := | |
begin | |
by_cases hfi : integrable.{u v v} I l f μ.to_box_additive.to_smul, | |
{ refine le_of_tendsto_of_tendsto' hfi.has_integral.norm hg.has_integral (λ π, _), | |
refine norm_sum_le_of_le _ (λ J hJ, _), | |
simp only [box_additive_map.to_smul_apply, norm_smul, smul_eq_mul, real.norm_eq_abs, | |
μ.to_box_additive_apply, abs_of_nonneg ennreal.to_real_nonneg], | |
exact mul_le_mul_of_nonneg_left (hle _ $ π.tag_mem_Icc _) ennreal.to_real_nonneg }, | |
{ rw [integral, dif_neg hfi, norm_zero], | |
exact integral_nonneg (λ x hx, (norm_nonneg _).trans (hle x hx)) μ } | |
end | |
lemma norm_integral_le_of_le_const {c : ℝ} (hc : ∀ x ∈ I.Icc, ∥f x∥ ≤ c) | |
(μ : measure ℝⁿ) [is_locally_finite_measure μ] : | |
∥(integral I l f μ.to_box_additive.to_smul : E)∥ ≤ (μ I).to_real * c := | |
by simpa only [integral_const] | |
using norm_integral_le_of_norm_le hc μ (integrable_const c) | |
/-! | |
# Henstock-Sacks inequality and integrability on subboxes | |
Henstock-Sacks inequality for Henstock-Kurzweil integral says the following. Let `f` be a function | |
integrable on a box `I`; let `r : ℝⁿ → (0, ∞)` be a function such that for any tagged partition of | |
`I` subordinate to `r`, the integral sum over this partition is `ε`-close to the integral. Then for | |
any tagged prepartition (i.e. a finite collections of pairwise disjoint subboxes of `I` with tagged | |
points) `π`, the integral sum over `π` differs from the integral of `f` over the part of `I` covered | |
by `π` by at most `ε`. The actual statement in the library is a bit more complicated to make it work | |
for any `box_integral.integration_params`. We formalize several versions of this inequality in | |
`box_integral.integrable.dist_integral_sum_le_of_mem_base_set`, | |
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq`, and | |
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set`. | |
Instead of using predicate assumptions on `r`, we define | |
`box_integral.integrable.convergence_r (h : integrable I l f vol) (ε : ℝ) (c : ℝ≥0) : ℝⁿ → (0, ∞)` | |
to be a function `r` such that | |
- if `l.bRiemann`, then `r` is a constant; | |
- if `ε > 0`, then for any tagged partition `π` of `I` subordinate to `r` (more precisely, | |
satisfying the predicate `l.mem_base_set I c r`), the integral sum of `f` over `π` differs from | |
the integral of `f` over `I` by at most `ε`. | |
The proof is mostly based on | |
[Russel A. Gordon, *The integrals of Lebesgue, Denjoy, Perron, and Henstock*][Gordon55]. | |
-/ | |
namespace integrable | |
/-- If `ε > 0`, then `box_integral.integrable.convergence_r` is a function `r : ℝ≥0 → ℝⁿ → (0, ∞)` | |
such that for every `c : ℝ≥0`, for every tagged partition `π` subordinate to `r` (and satisfying | |
additional distortion estimates if `box_integral.integration_params.bDistortion l = tt`), the | |
corresponding integral sum is `ε`-close to the integral. | |
If `box.integral.integration_params.bRiemann = tt`, then `r c x` does not depend on `x`. If `ε ≤ 0`, | |
then we use `r c x = 1`. -/ | |
def convergence_r (h : integrable I l f vol) (ε : ℝ) : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ) := | |
if hε : 0 < ε then (has_integral_iff.1 h.has_integral ε hε).some | |
else λ _ _, ⟨1, set.mem_Ioi.2 zero_lt_one⟩ | |
variables {c c₁ c₂ : ℝ≥0} {ε ε₁ ε₂ : ℝ} {π₁ π₂ : tagged_prepartition I} | |
lemma convergence_r_cond (h : integrable I l f vol) (ε : ℝ) (c : ℝ≥0) : | |
l.r_cond (h.convergence_r ε c) := | |
begin | |
rw convergence_r, split_ifs with h₀, | |
exacts [(has_integral_iff.1 h.has_integral ε h₀).some_spec.1 _, λ _ x, rfl] | |
end | |
lemma dist_integral_sum_integral_le_of_mem_base_set (h : integrable I l f vol) (h₀ : 0 < ε) | |
(hπ : l.mem_base_set I c (h.convergence_r ε c) π) (hπp : π.is_partition) : | |
dist (integral_sum f vol π) (integral I l f vol) ≤ ε := | |
begin | |
rw [convergence_r, dif_pos h₀] at hπ, | |
exact (has_integral_iff.1 h.has_integral ε h₀).some_spec.2 c _ hπ hπp | |
end | |
/-- **Henstock-Sacks inequality**. Let `r₁ r₂ : ℝⁿ → (0, ∞)` be function such that for any tagged | |
*partition* of `I` subordinate to `rₖ`, `k=1,2`, the integral sum of `f` over this partition differs | |
from the integral of `f` by at most `εₖ`. Then for any two tagged *prepartition* `π₁ π₂` subordinate | |
to `r₁` and `r₂` respectively and covering the same part of `I`, the integral sums of `f` over these | |
prepartitions differ from each other by at most `ε₁ + ε₂`. | |
The actual statement | |
- uses `box_integral.integrable.convergence_r` instead of a predicate assumption on `r`; | |
- uses `box_integral.integration_params.mem_base_set` instead of “subordinate to `r`” to | |
account for additional requirements like being a Henstock partition or having a bounded | |
distortion. | |
See also `box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq` and | |
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set`. | |
-/ | |
lemma dist_integral_sum_le_of_mem_base_set (h : integrable I l f vol) | |
(hpos₁ : 0 < ε₁) (hpos₂ : 0 < ε₂) (h₁ : l.mem_base_set I c₁ (h.convergence_r ε₁ c₁) π₁) | |
(h₂ : l.mem_base_set I c₂ (h.convergence_r ε₂ c₂) π₂) (HU : π₁.Union = π₂.Union) : | |
dist (integral_sum f vol π₁) (integral_sum f vol π₂) ≤ ε₁ + ε₂ := | |
begin | |
rcases h₁.exists_common_compl h₂ HU with ⟨π, hπU, hπc₁, hπc₂⟩, | |
set r : ℝⁿ → Ioi (0 : ℝ) := λ x, min (h.convergence_r ε₁ c₁ x) (h.convergence_r ε₂ c₂ x), | |
have hr : l.r_cond r := (h.convergence_r_cond _ c₁).min (h.convergence_r_cond _ c₂), | |
set πr := π.to_subordinate r, | |
have H₁ : dist (integral_sum f vol (π₁.union_compl_to_subordinate π hπU r)) | |
(integral I l f vol) ≤ ε₁, | |
from h.dist_integral_sum_integral_le_of_mem_base_set hpos₁ | |
(h₁.union_compl_to_subordinate (λ _ _, min_le_left _ _) hπU hπc₁) | |
(is_partition_union_compl_to_subordinate _ _ _ _), | |
rw HU at hπU, | |
have H₂ : dist (integral_sum f vol (π₂.union_compl_to_subordinate π hπU r)) | |
(integral I l f vol) ≤ ε₂, | |
from h.dist_integral_sum_integral_le_of_mem_base_set hpos₂ | |
(h₂.union_compl_to_subordinate (λ _ _, min_le_right _ _) hπU hπc₂) | |
(is_partition_union_compl_to_subordinate _ _ _ _), | |
simpa [union_compl_to_subordinate] using (dist_triangle_right _ _ _).trans (add_le_add H₁ H₂) | |
end | |
/-- If `f` is integrable on `I` along `l`, then for two sufficiently fine tagged prepartitions | |
(in the sense of the filter `box_integral.integration_params.to_filter l I`) such that they cover | |
the same part of `I`, the integral sums of `f` over `π₁` and `π₂` are very close to each other. -/ | |
lemma tendsto_integral_sum_to_filter_prod_self_inf_Union_eq_uniformity (h : integrable I l f vol) : | |
tendsto | |
(λ π : tagged_prepartition I × tagged_prepartition I, | |
(integral_sum f vol π.1, integral_sum f vol π.2)) | |
((l.to_filter I ×ᶠ l.to_filter I) ⊓ 𝓟 {π | π.1.Union = π.2.Union}) (𝓤 F) := | |
begin | |
refine (((l.has_basis_to_filter I).prod_self.inf_principal _).tendsto_iff | |
uniformity_basis_dist_le).2 (λ ε ε0, _), | |
replace ε0 := half_pos ε0, | |
use [h.convergence_r (ε / 2), h.convergence_r_cond (ε / 2)], rintro ⟨π₁, π₂⟩ ⟨⟨h₁, h₂⟩, hU⟩, | |
rw ← add_halves ε, | |
exact h.dist_integral_sum_le_of_mem_base_set ε0 ε0 h₁.some_spec h₂.some_spec hU | |
end | |
/-- If `f` is integrable on a box `I` along `l`, then for any fixed subset `s` of `I` that can be | |
represented as a finite union of boxes, the integral sums of `f` over tagged prepartitions that | |
cover exactly `s` form a Cauchy “sequence” along `l`. -/ | |
lemma cauchy_map_integral_sum_to_filter_Union (h : integrable I l f vol) (π₀ : prepartition I) : | |
cauchy ((l.to_filter_Union I π₀).map (integral_sum f vol)) := | |
begin | |
refine ⟨infer_instance, _⟩, | |
rw [prod_map_map_eq, ← to_filter_inf_Union_eq, ← prod_inf_prod, prod_principal_principal], | |
exact h.tendsto_integral_sum_to_filter_prod_self_inf_Union_eq_uniformity.mono_left | |
(inf_le_inf_left _ $ principal_mono.2 $ λ π h, h.1.trans h.2.symm) | |
end | |
variable [complete_space F] | |
lemma to_subbox_aux (h : integrable I l f vol) (hJ : J ≤ I) : | |
∃ y : F, has_integral J l f vol y ∧ | |
tendsto (integral_sum f vol) (l.to_filter_Union I (prepartition.single I J hJ)) (𝓝 y) := | |
begin | |
refine (cauchy_map_iff_exists_tendsto.1 | |
(h.cauchy_map_integral_sum_to_filter_Union (prepartition.single I J hJ))).imp (λ y hy, ⟨_, hy⟩), | |
convert hy.comp (l.tendsto_embed_box_to_filter_Union_top hJ) -- faster than `exact` here | |
end | |
/-- If `f` is integrable on a box `I`, then it is integrable on any subbox of `I`. -/ | |
lemma to_subbox (h : integrable I l f vol) (hJ : J ≤ I) : integrable J l f vol := | |
(h.to_subbox_aux hJ).imp $ λ y, and.left | |
/-- If `f` is integrable on a box `I`, then integral sums of `f` over tagged prepartitions | |
that cover exactly a subbox `J ≤ I` tend to the integral of `f` over `J` along `l`. -/ | |
lemma tendsto_integral_sum_to_filter_Union_single (h : integrable I l f vol) (hJ : J ≤ I) : | |
tendsto (integral_sum f vol) (l.to_filter_Union I (prepartition.single I J hJ)) | |
(𝓝 $ integral J l f vol) := | |
let ⟨y, h₁, h₂⟩ := h.to_subbox_aux hJ in h₁.integral_eq.symm ▸ h₂ | |
/-- **Henstock-Sacks inequality**. Let `r : ℝⁿ → (0, ∞)` be a function such that for any tagged | |
*partition* of `I` subordinate to `r`, the integral sum of `f` over this partition differs from the | |
integral of `f` by at most `ε`. Then for any tagged *prepartition* `π` subordinate to `r`, the | |
integral sum of `f` over this prepartition differs from the integral of `f` over the part of `I` | |
covered by `π` by at most `ε`. | |
The actual statement | |
- uses `box_integral.integrable.convergence_r` instead of a predicate assumption on `r`; | |
- uses `box_integral.integration_params.mem_base_set` instead of “subordinate to `r`” to | |
account for additional requirements like being a Henstock partition or having a bounded | |
distortion; | |
- takes an extra argument `π₀ : prepartition I` and an assumption `π.Union = π₀.Union` instead of | |
using `π.to_prepartition`. | |
-/ | |
lemma dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq (h : integrable I l f vol) | |
(h0 : 0 < ε) (hπ : l.mem_base_set I c (h.convergence_r ε c) π) {π₀ : prepartition I} | |
(hU : π.Union = π₀.Union) : | |
dist (integral_sum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε := | |
begin | |
/- Let us prove that the distance is less than or equal to `ε + δ` for all positive `δ`. -/ | |
refine le_of_forall_pos_le_add (λ δ δ0, _), | |
/- First we choose some constants. -/ | |
set δ' : ℝ := δ / (π₀.boxes.card + 1), | |
have H0 : 0 < (π₀.boxes.card + 1 : ℝ) := nat.cast_add_one_pos _, | |
have δ'0 : 0 < δ' := div_pos δ0 H0, | |
set C := max π₀.distortion π₀.compl.distortion, | |
/- Next we choose a tagged partition of each `J ∈ π₀` such that the integral sum of `f` over this | |
partition is `δ'`-close to the integral of `f` over `J`. -/ | |
have : ∀ J ∈ π₀, ∃ πi : tagged_prepartition J, πi.is_partition ∧ | |
dist (integral_sum f vol πi) (integral J l f vol) ≤ δ' ∧ | |
l.mem_base_set J C (h.convergence_r δ' C) πi, | |
{ intros J hJ, | |
have Hle : J ≤ I := π₀.le_of_mem hJ, | |
have HJi : integrable J l f vol := h.to_subbox Hle, | |
set r := λ x, min (h.convergence_r δ' C x) (HJi.convergence_r δ' C x), | |
have hr : l.r_cond r, from (h.convergence_r_cond _ C).min (HJi.convergence_r_cond _ C), | |
have hJd : J.distortion ≤ C, from le_trans (finset.le_sup hJ) (le_max_left _ _), | |
rcases l.exists_mem_base_set_is_partition J hJd r with ⟨πJ, hC, hp⟩, | |
have hC₁ : l.mem_base_set J C (HJi.convergence_r δ' C) πJ, | |
{ refine hC.mono J le_rfl le_rfl (λ x hx, _), exact min_le_right _ _ }, | |
have hC₂ : l.mem_base_set J C (h.convergence_r δ' C) πJ, | |
{ refine hC.mono J le_rfl le_rfl (λ x hx, _), exact min_le_left _ _ }, | |
exact ⟨πJ, hp, HJi.dist_integral_sum_integral_le_of_mem_base_set δ'0 hC₁ hp, hC₂⟩ }, | |
/- Now we combine these tagged partitions into a tagged prepartition of `I` that covers the | |
same part of `I` as `π₀` and apply `box_integral.dist_integral_sum_le_of_mem_base_set` to | |
`π` and this prepartition. -/ | |
choose! πi hπip hπiδ' hπiC, | |
have : l.mem_base_set I C (h.convergence_r δ' C) (π₀.bUnion_tagged πi), | |
from bUnion_tagged_mem_base_set hπiC hπip (λ _, le_max_right _ _), | |
have hU' : π.Union = (π₀.bUnion_tagged πi).Union, | |
from hU.trans (prepartition.Union_bUnion_partition _ hπip).symm, | |
have := h.dist_integral_sum_le_of_mem_base_set h0 δ'0 hπ this hU', | |
rw integral_sum_bUnion_tagged at this, | |
calc dist (integral_sum f vol π) (∑ J in π₀.boxes, integral J l f vol) | |
≤ dist (integral_sum f vol π) (∑ J in π₀.boxes, integral_sum f vol (πi J)) + | |
dist (∑ J in π₀.boxes, integral_sum f vol (πi J)) (∑ J in π₀.boxes, integral J l f vol) : | |
dist_triangle _ _ _ | |
... ≤ (ε + δ') + ∑ J in π₀.boxes, δ' : add_le_add this (dist_sum_sum_le_of_le _ hπiδ') | |
... = ε + δ : by { field_simp [H0.ne'], ring } | |
end | |
/-- **Henstock-Sacks inequality**. Let `r : ℝⁿ → (0, ∞)` be a function such that for any tagged | |
*partition* of `I` subordinate to `r`, the integral sum of `f` over this partition differs from the | |
integral of `f` by at most `ε`. Then for any tagged *prepartition* `π` subordinate to `r`, the | |
integral sum of `f` over this prepartition differs from the integral of `f` over the part of `I` | |
covered by `π` by at most `ε`. | |
The actual statement | |
- uses `box_integral.integrable.convergence_r` instead of a predicate assumption on `r`; | |
- uses `box_integral.integration_params.mem_base_set` instead of “subordinate to `r`” to | |
account for additional requirements like being a Henstock partition or having a bounded | |
distortion; | |
-/ | |
lemma dist_integral_sum_sum_integral_le_of_mem_base_set (h : integrable I l f vol) | |
(h0 : 0 < ε) (hπ : l.mem_base_set I c (h.convergence_r ε c) π) : | |
dist (integral_sum f vol π) (∑ J in π.boxes, integral J l f vol) ≤ ε := | |
h.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq h0 hπ rfl | |
/-- Integral sum of `f` over a tagged prepartition `π` such that `π.Union = π₀.Union` tends to the | |
sum of integrals of `f` over the boxes of `π₀`. -/ | |
lemma tendsto_integral_sum_sum_integral (h : integrable I l f vol) (π₀ : prepartition I) : | |
tendsto (integral_sum f vol) (l.to_filter_Union I π₀) (𝓝 $ ∑ J in π₀.boxes, integral J l f vol) := | |
begin | |
refine ((l.has_basis_to_filter_Union I π₀).tendsto_iff nhds_basis_closed_ball).2 (λ ε ε0, _), | |
refine ⟨h.convergence_r ε, h.convergence_r_cond ε, _⟩, | |
simp only [mem_inter_eq, set.mem_Union, mem_set_of_eq], | |
rintro π ⟨c, hc, hU⟩, | |
exact h.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq ε0 hc hU | |
end | |
/-- If `f` is integrable on `I`, then `λ J, integral J l f vol` is box-additive on subboxes of `I`: | |
if `π₁`, `π₂` are two prepartitions of `I` covering the same part of `I`, then the sum of integrals | |
of `f` over the boxes of `π₁` is equal to the sum of integrals of `f` over the boxes of `π₂`. | |
See also `box_integral.integrable.to_box_additive` for a bundled version. -/ | |
lemma sum_integral_congr (h : integrable I l f vol) {π₁ π₂ : prepartition I} | |
(hU : π₁.Union = π₂.Union) : | |
∑ J in π₁.boxes, integral J l f vol = ∑ J in π₂.boxes, integral J l f vol := | |
begin | |
refine tendsto_nhds_unique (h.tendsto_integral_sum_sum_integral π₁) _, | |
rw l.to_filter_Union_congr _ hU, | |
exact h.tendsto_integral_sum_sum_integral π₂ | |
end | |
/-- If `f` is integrable on `I`, then `λ J, integral J l f vol` is box-additive on subboxes of `I`: | |
if `π₁`, `π₂` are two prepartitions of `I` covering the same part of `I`, then the sum of integrals | |
of `f` over the boxes of `π₁` is equal to the sum of integrals of `f` over the boxes of `π₂`. | |
See also `box_integral.integrable.sum_integral_congr` for an unbundled version. -/ | |
@[simps] def to_box_additive (h : integrable I l f vol) : ι →ᵇᵃ[I] F := | |
{ to_fun := λ J, integral J l f vol, | |
sum_partition_boxes' := λ J hJ π hπ, | |
begin | |
replace hπ := hπ.Union_eq, rw ← prepartition.Union_top at hπ, | |
rw [(h.to_subbox (with_top.coe_le_coe.1 hJ)).sum_integral_congr hπ, | |
prepartition.top_boxes, sum_singleton] | |
end } | |
end integrable | |
open measure_theory | |
/-! | |
### Integrability conditions | |
-/ | |
variable (l) | |
/-- A continuous function is box-integrable with respect to any locally finite measure. | |
This is true for any volume with bounded variation. -/ | |
lemma integrable_of_continuous_on [complete_space E] {I : box ι} {f : ℝⁿ → E} | |
(hc : continuous_on f I.Icc) (μ : measure ℝⁿ) [is_locally_finite_measure μ] : | |
integrable.{u v v} I l f μ.to_box_additive.to_smul := | |
begin | |
have huc := I.is_compact_Icc.uniform_continuous_on_of_continuous hc, | |
rw metric.uniform_continuous_on_iff_le at huc, | |
refine integrable_iff_cauchy_basis.2 (λ ε ε0, _), | |
rcases exists_pos_mul_lt ε0 (μ.to_box_additive I) with ⟨ε', ε0', hε⟩, | |
rcases huc ε' ε0' with ⟨δ, δ0 : 0 < δ, Hδ⟩, | |
refine ⟨λ _ _, ⟨δ / 2, half_pos δ0⟩, λ _ _ _, rfl, λ c₁ c₂ π₁ π₂ h₁ h₁p h₂ h₂p, _⟩, | |
simp only [dist_eq_norm, integral_sum_sub_partitions _ _ h₁p h₂p, | |
box_additive_map.to_smul_apply, ← smul_sub], | |
have : ∀ J ∈ π₁.to_prepartition ⊓ π₂.to_prepartition, | |
∥μ.to_box_additive J • (f ((π₁.inf_prepartition π₂.to_prepartition).tag J) - | |
f ((π₂.inf_prepartition π₁.to_prepartition).tag J))∥ ≤ μ.to_box_additive J * ε', | |
{ intros J hJ, | |
have : 0 ≤ μ.to_box_additive J, from ennreal.to_real_nonneg, | |
rw [norm_smul, real.norm_eq_abs, abs_of_nonneg this, ← dist_eq_norm], | |
refine mul_le_mul_of_nonneg_left _ this, | |
refine Hδ _ (tagged_prepartition.tag_mem_Icc _ _) _ (tagged_prepartition.tag_mem_Icc _ _) _, | |
rw [← add_halves δ], | |
refine (dist_triangle_left _ _ J.upper).trans (add_le_add (h₁.1 _ _ _) (h₂.1 _ _ _)), | |
{ exact prepartition.bUnion_index_mem _ hJ }, | |
{ exact box.le_iff_Icc.1 (prepartition.le_bUnion_index _ hJ) J.upper_mem_Icc }, | |
{ rw _root_.inf_comm at hJ, | |
exact prepartition.bUnion_index_mem _ hJ }, | |
{ rw _root_.inf_comm at hJ, | |
exact box.le_iff_Icc.1 (prepartition.le_bUnion_index _ hJ) J.upper_mem_Icc } }, | |
refine (norm_sum_le_of_le _ this).trans _, | |
rw [← finset.sum_mul, μ.to_box_additive.sum_partition_boxes le_top (h₁p.inf h₂p)], | |
exact hε.le | |
end | |
variable {l} | |
/-- This is an auxiliary lemma used to prove two statements at once. Use one of the next two | |
lemmas instead. -/ | |
lemma has_integral_of_bRiemann_eq_ff_of_forall_is_o (hl : l.bRiemann = ff) | |
(B : ι →ᵇᵃ[I] ℝ) (hB0 : ∀ J, 0 ≤ B J) (g : ι →ᵇᵃ[I] F) (s : set ℝⁿ) (hs : s.countable) | |
(hlH : s.nonempty → l.bHenstock = tt) | |
(H₁ : ∀ (c : ℝ≥0) (x ∈ I.Icc ∩ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I, | |
J.Icc ⊆ metric.closed_ball x δ → x ∈ J.Icc → | |
(l.bDistortion → J.distortion ≤ c) → dist (vol J (f x)) (g J) ≤ ε) | |
(H₂ : ∀ (c : ℝ≥0) (x ∈ I.Icc \ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I, | |
J.Icc ⊆ metric.closed_ball x δ → (l.bHenstock → x ∈ J.Icc) → | |
(l.bDistortion → J.distortion ≤ c) → dist (vol J (f x)) (g J) ≤ ε * B J) : | |
has_integral I l f vol (g I) := | |
begin | |
/- We choose `r x` differently for `x ∈ s` and `x ∉ s`. | |
For `x ∈ s`, we choose `εs` such that `∑' x : s, εs x < ε / 2 / 2 ^ #ι`, then choose `r x` so that | |
`dist (vol J (f x)) (g J) ≤ εs x` for `J` in the `r x`-neighborhood of `x`. This guarantees that | |
the sum of these distances over boxes `J` such that `π.tag J ∈ s` is less than `ε / 2`. We need an | |
additional multiplier `2 ^ #ι` because different boxes can have the same tag. | |
For `x ∉ s`, we choose `r x` so that `dist (vol (J (f x))) (g J) ≤ (ε / 2 / B I) * B J` for a box | |
`J` in the `δ`-neighborhood of `x`. -/ | |
refine ((l.has_basis_to_filter_Union_top _).tendsto_iff metric.nhds_basis_closed_ball).2 _, | |
intros ε ε0, | |
simp only [subtype.exists'] at H₁ H₂, | |
choose! δ₁ Hδ₁ using H₁, | |
choose! δ₂ Hδ₂ using H₂, | |
have ε0' := half_pos ε0, have H0 : 0 < (2 ^ fintype.card ι : ℝ), from pow_pos zero_lt_two _, | |
rcases hs.exists_pos_forall_sum_le (div_pos ε0' H0) with ⟨εs, hεs0, hεs⟩, | |
simp only [le_div_iff' H0, mul_sum] at hεs, | |
rcases exists_pos_mul_lt ε0' (B I) with ⟨ε', ε'0, hεI⟩, | |
set δ : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ) := λ c x, if x ∈ s then δ₁ c x (εs x) else (δ₂ c) x ε', | |
refine ⟨δ, λ c, l.r_cond_of_bRiemann_eq_ff hl, _⟩, | |
simp only [set.mem_Union, mem_inter_eq, mem_set_of_eq], | |
rintro π ⟨c, hπδ, hπp⟩, | |
/- Now we split the sum into two parts based on whether `π.tag J` belongs to `s` or not. -/ | |
rw [← g.sum_partition_boxes le_rfl hπp, mem_closed_ball, integral_sum, | |
← sum_filter_add_sum_filter_not π.boxes (λ J, π.tag J ∈ s), | |
← sum_filter_add_sum_filter_not π.boxes (λ J, π.tag J ∈ s), ← add_halves ε], | |
refine dist_add_add_le_of_le _ _, | |
{ unfreezingI { rcases s.eq_empty_or_nonempty with rfl|hsne }, { simp [ε0'.le] }, | |
/- For the boxes such that `π.tag J ∈ s`, we use the fact that at most `2 ^ #ι` boxes have the | |
same tag. -/ | |
specialize hlH hsne, | |
have : ∀ J ∈ π.boxes.filter (λ J, π.tag J ∈ s), dist (vol J (f $ π.tag J)) (g J) ≤ εs (π.tag J), | |
{ intros J hJ, rw finset.mem_filter at hJ, cases hJ with hJ hJs, | |
refine Hδ₁ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ (hεs0 _) _ (π.le_of_mem' _ hJ) _ | |
(hπδ.2 hlH J hJ) (λ hD, (finset.le_sup hJ).trans (hπδ.3 hD)), | |
convert hπδ.1 J hJ, exact (dif_pos hJs).symm }, | |
refine (dist_sum_sum_le_of_le _ this).trans _, | |
rw sum_comp, | |
refine (sum_le_sum _).trans (hεs _ _), | |
{ rintro b -, | |
rw [← nat.cast_two, ← nat.cast_pow, ← nsmul_eq_mul], | |
refine nsmul_le_nsmul (hεs0 _).le _, | |
refine (finset.card_le_of_subset _).trans ((hπδ.is_Henstock hlH).card_filter_tag_eq_le b), | |
exact filter_subset_filter _ (filter_subset _ _) }, | |
{ rw [finset.coe_image, set.image_subset_iff], | |
exact λ J hJ, (finset.mem_filter.1 hJ).2 } }, | |
/- Now we deal with boxes such that `π.tag J ∉ s`. | |
In this case the estimate is straightforward. -/ | |
have H₂ : ∀ J ∈ π.boxes.filter (λ J, π.tag J ∉ s), dist (vol J (f $ π.tag J)) (g J) ≤ ε' * B J, | |
{ intros J hJ, rw finset.mem_filter at hJ, cases hJ with hJ hJs, | |
refine Hδ₂ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ ε'0 _ (π.le_of_mem' _ hJ) _ (λ hH, hπδ.2 hH J hJ) | |
(λ hD, (finset.le_sup hJ).trans (hπδ.3 hD)), | |
convert hπδ.1 J hJ, exact (dif_neg hJs).symm }, | |
refine (dist_sum_sum_le_of_le _ H₂).trans | |
((sum_le_sum_of_subset_of_nonneg (filter_subset _ _) _).trans _), | |
{ exact λ _ _ _, mul_nonneg ε'0.le (hB0 _) }, | |
{ rw [← mul_sum, B.sum_partition_boxes le_rfl hπp, mul_comm], | |
exact hεI.le } | |
end | |
/-- A function `f` has Henstock (or `⊥`) integral over `I` is equal to the value of a box-additive | |
function `g` on `I` provided that `vol J (f x)` is sufficiently close to `g J` for sufficiently | |
small boxes `J ∋ x`. This lemma is useful to prove, e.g., to prove the Divergence theorem for | |
integral along `⊥`. | |
Let `l` be either `box_integral.integration_params.Henstock` or `⊥`. Let `g` a box-additive function | |
on subboxes of `I`. Suppose that there exists a nonnegative box-additive function `B` and a | |
countable set `s` with the following property. | |
For every `c : ℝ≥0`, a point `x ∈ I.Icc`, and a positive `ε` there exists `δ > 0` such that for any | |
box `J ≤ I` such that | |
- `x ∈ J.Icc ⊆ metric.closed_ball x δ`; | |
- if `l.bDistortion` (i.e., `l = ⊥`), then the distortion of `J` is less than or equal to `c`, | |
the distance between the term `vol J (f x)` of an integral sum corresponding to `J` and `g J` is | |
less than or equal to `ε` if `x ∈ s` and is less than or equal to `ε * B J` otherwise. | |
Then `f` is integrable on `I along `l` with integral `g I`. -/ | |
lemma has_integral_of_le_Henstock_of_forall_is_o (hl : l ≤ Henstock) (B : ι →ᵇᵃ[I] ℝ) | |
(hB0 : ∀ J, 0 ≤ B J) (g : ι →ᵇᵃ[I] F) (s : set ℝⁿ) (hs : s.countable) | |
(H₁ : ∀ (c : ℝ≥0) (x ∈ I.Icc ∩ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I, | |
J.Icc ⊆ metric.closed_ball x δ → x ∈ J.Icc → (l.bDistortion → J.distortion ≤ c) → | |
dist (vol J (f x)) (g J) ≤ ε) | |
(H₂ : ∀ (c : ℝ≥0) (x ∈ I.Icc \ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I, | |
J.Icc ⊆ metric.closed_ball x δ → x ∈ J.Icc → (l.bDistortion → J.distortion ≤ c) → | |
dist (vol J (f x)) (g J) ≤ ε * B J) : | |
has_integral I l f vol (g I) := | |
have A : l.bHenstock, from hl.2.1.resolve_left dec_trivial, | |
has_integral_of_bRiemann_eq_ff_of_forall_is_o (hl.1.resolve_right dec_trivial) B hB0 _ s hs (λ _, A) | |
H₁ $ by simpa only [A, true_implies_iff] using H₂ | |
/-- Suppose that there exists a nonnegative box-additive function `B` with the following property. | |
For every `c : ℝ≥0`, a point `x ∈ I.Icc`, and a positive `ε` there exists `δ > 0` such that for any | |
box `J ≤ I` such that | |
- `J.Icc ⊆ metric.closed_ball x δ`; | |
- if `l.bDistortion` (i.e., `l = ⊥`), then the distortion of `J` is less than or equal to `c`, | |
the distance between the term `vol J (f x)` of an integral sum corresponding to `J` and `g J` is | |
less than or equal to `ε * B J`. | |
Then `f` is McShane integrable on `I` with integral `g I`. -/ | |
lemma has_integral_McShane_of_forall_is_o (B : ι →ᵇᵃ[I] ℝ) (hB0 : ∀ J, 0 ≤ B J) | |
(g : ι →ᵇᵃ[I] F) (H : ∀ (c : ℝ≥0) (x ∈ I.Icc) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I, | |
J.Icc ⊆ metric.closed_ball x δ → dist (vol J (f x)) (g J) ≤ ε * B J) : | |
has_integral I McShane f vol (g I) := | |
has_integral_of_bRiemann_eq_ff_of_forall_is_o rfl B hB0 g ∅ countable_empty (λ ⟨x, hx⟩, hx.elim) | |
(λ c x hx, hx.2.elim) $ | |
by simpa only [McShane, coe_sort_ff, false_implies_iff, true_implies_iff, diff_empty] using H | |
end box_integral | |