Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.2 kB
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.calculus.deriv
import analysis.analytic.basic
import analysis.calculus.cont_diff
/-!
# Frechet derivatives of analytic functions.
A function expressible as a power series at a point has a Frechet derivative there.
Also the special case in terms of `deriv` when the domain is 1-dimensional.
-/
open filter asymptotics
open_locale ennreal
variables {π•œ : Type*} [nontrivially_normed_field π•œ]
variables {E : Type*} [normed_add_comm_group E] [normed_space π•œ E]
variables {F : Type*} [normed_add_comm_group F] [normed_space π•œ F]
section fderiv
variables {p : formal_multilinear_series π•œ E F} {r : ℝβ‰₯0∞}
variables {f : E β†’ F} {x : E} {s : set E}
lemma has_fpower_series_at.has_strict_fderiv_at (h : has_fpower_series_at f p x) :
has_strict_fderiv_at f (continuous_multilinear_curry_fin1 π•œ E F (p 1)) x :=
begin
refine h.is_O_image_sub_norm_mul_norm_sub.trans_is_o (is_o.of_norm_right _),
refine is_o_iff_exists_eq_mul.2 ⟨λ y, βˆ₯y - (x, x)βˆ₯, _, eventually_eq.rfl⟩,
refine (continuous_id.sub continuous_const).norm.tendsto' _ _ _,
rw [_root_.id, sub_self, norm_zero]
end
lemma has_fpower_series_at.has_fderiv_at (h : has_fpower_series_at f p x) :
has_fderiv_at f (continuous_multilinear_curry_fin1 π•œ E F (p 1)) x :=
h.has_strict_fderiv_at.has_fderiv_at
lemma has_fpower_series_at.differentiable_at (h : has_fpower_series_at f p x) :
differentiable_at π•œ f x :=
h.has_fderiv_at.differentiable_at
lemma analytic_at.differentiable_at : analytic_at π•œ f x β†’ differentiable_at π•œ f x
| ⟨p, hp⟩ := hp.differentiable_at
lemma analytic_at.differentiable_within_at (h : analytic_at π•œ f x) :
differentiable_within_at π•œ f s x :=
h.differentiable_at.differentiable_within_at
lemma has_fpower_series_at.fderiv_eq (h : has_fpower_series_at f p x) :
fderiv π•œ f x = continuous_multilinear_curry_fin1 π•œ E F (p 1) :=
h.has_fderiv_at.fderiv
lemma has_fpower_series_on_ball.differentiable_on [complete_space F]
(h : has_fpower_series_on_ball f p x r) :
differentiable_on π•œ f (emetric.ball x r) :=
Ξ» y hy, (h.analytic_at_of_mem hy).differentiable_within_at
lemma analytic_on.differentiable_on (h : analytic_on π•œ f s) :
differentiable_on π•œ f s :=
Ξ» y hy, (h y hy).differentiable_within_at
lemma has_fpower_series_on_ball.has_fderiv_at [complete_space F]
(h : has_fpower_series_on_ball f p x r) {y : E} (hy : (βˆ₯yβˆ₯β‚Š : ℝβ‰₯0∞) < r) :
has_fderiv_at f (continuous_multilinear_curry_fin1 π•œ E F (p.change_origin y 1)) (x + y) :=
(h.change_origin hy).has_fpower_series_at.has_fderiv_at
lemma has_fpower_series_on_ball.fderiv_eq [complete_space F]
(h : has_fpower_series_on_ball f p x r) {y : E} (hy : (βˆ₯yβˆ₯β‚Š : ℝβ‰₯0∞) < r) :
fderiv π•œ f (x + y) = continuous_multilinear_curry_fin1 π•œ E F (p.change_origin y 1) :=
(h.has_fderiv_at hy).fderiv
/-- If a function has a power series on a ball, then so does its derivative. -/
lemma has_fpower_series_on_ball.fderiv [complete_space F]
(h : has_fpower_series_on_ball f p x r) :
has_fpower_series_on_ball (fderiv π•œ f)
((continuous_multilinear_curry_fin1 π•œ E F : (E [Γ—1]β†’L[π•œ] F) β†’L[π•œ] (E β†’L[π•œ] F))
.comp_formal_multilinear_series (p.change_origin_series 1)) x r :=
begin
suffices A : has_fpower_series_on_ball
(Ξ» z, continuous_multilinear_curry_fin1 π•œ E F (p.change_origin (z - x) 1))
((continuous_multilinear_curry_fin1 π•œ E F : (E [Γ—1]β†’L[π•œ] F) β†’L[π•œ] (E β†’L[π•œ] F))
.comp_formal_multilinear_series (p.change_origin_series 1)) x r,
{ apply A.congr,
assume z hz,
dsimp,
rw [← h.fderiv_eq, add_sub_cancel'_right],
simpa only [edist_eq_coe_nnnorm_sub, emetric.mem_ball] using hz},
suffices B : has_fpower_series_on_ball (Ξ» z, p.change_origin (z - x) 1)
(p.change_origin_series 1) x r,
from (continuous_multilinear_curry_fin1 π•œ E F).to_continuous_linear_equiv
.to_continuous_linear_map.comp_has_fpower_series_on_ball B,
simpa using ((p.has_fpower_series_on_ball_change_origin 1 (h.r_pos.trans_le h.r_le)).mono
h.r_pos h.r_le).comp_sub x,
end
/-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/
lemma analytic_on.fderiv [complete_space F] (h : analytic_on π•œ f s) :
analytic_on π•œ (fderiv π•œ f) s :=
begin
assume y hy,
rcases h y hy with ⟨p, r, hp⟩,
exact hp.fderiv.analytic_at,
end
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/
lemma analytic_on.iterated_fderiv [complete_space F] (h : analytic_on π•œ f s) (n : β„•) :
analytic_on π•œ (iterated_fderiv π•œ n f) s :=
begin
induction n with n IH,
{ rw iterated_fderiv_zero_eq_comp,
exact ((continuous_multilinear_curry_fin0 π•œ E F).symm : F β†’L[π•œ] (E [Γ—0]β†’L[π•œ] F))
.comp_analytic_on h },
{ rw iterated_fderiv_succ_eq_comp_left,
apply (continuous_multilinear_curry_left_equiv π•œ (Ξ» (i : fin (n + 1)), E) F)
.to_continuous_linear_equiv.to_continuous_linear_map.comp_analytic_on,
exact IH.fderiv }
end
/-- An analytic function is infinitely differentiable. -/
lemma analytic_on.cont_diff_on [complete_space F] (h : analytic_on π•œ f s) {n : with_top β„•} :
cont_diff_on π•œ n f s :=
begin
let t := {x | analytic_at π•œ f x},
suffices : cont_diff_on π•œ n f t, from this.mono h,
have H : analytic_on π•œ f t := Ξ» x hx, hx,
have t_open : is_open t := is_open_analytic_at π•œ f,
apply cont_diff_on_of_continuous_on_differentiable_on,
{ assume m hm,
apply (H.iterated_fderiv m).continuous_on.congr,
assume x hx,
exact iterated_fderiv_within_of_is_open _ t_open hx },
{ assume m hm,
apply (H.iterated_fderiv m).differentiable_on.congr,
assume x hx,
exact iterated_fderiv_within_of_is_open _ t_open hx }
end
end fderiv
section deriv
variables {p : formal_multilinear_series π•œ π•œ F} {r : ℝβ‰₯0∞}
variables {f : π•œ β†’ F} {x : π•œ} {s : set π•œ}
protected lemma has_fpower_series_at.has_strict_deriv_at (h : has_fpower_series_at f p x) :
has_strict_deriv_at f (p 1 (Ξ» _, 1)) x :=
h.has_strict_fderiv_at.has_strict_deriv_at
protected lemma has_fpower_series_at.has_deriv_at (h : has_fpower_series_at f p x) :
has_deriv_at f (p 1 (Ξ» _, 1)) x :=
h.has_strict_deriv_at.has_deriv_at
protected lemma has_fpower_series_at.deriv (h : has_fpower_series_at f p x) :
deriv f x = p 1 (Ξ» _, 1) :=
h.has_deriv_at.deriv
/-- If a function is analytic on a set `s`, so is its derivative. -/
lemma analytic_on.deriv [complete_space F] (h : analytic_on π•œ f s) :
analytic_on π•œ (deriv f) s :=
(continuous_linear_map.apply π•œ F (1 : π•œ)).comp_analytic_on h.fderiv
/-- If a function is analytic on a set `s`, so are its successive derivatives. -/
lemma analytic_on.iterated_deriv [complete_space F] (h : analytic_on π•œ f s) (n : β„•) :
analytic_on π•œ (deriv^[n] f) s :=
begin
induction n with n IH,
{ exact h },
{ simpa only [function.iterate_succ', function.comp_app] using IH.deriv }
end
end deriv