Zhangir Azerbayev
squashed?
4365a98
raw
history blame
24.8 kB
/-
Copyright (c) 2020 Anatole Dedecker. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anatole Dedecker
-/
import analysis.calculus.mean_value
/-!
# L'Hôpital's rule for 0/0 indeterminate forms
In this file, we prove several forms of "L'Hopital's rule" for computing 0/0
indeterminate forms. The proof of `has_deriv_at.lhopital_zero_right_on_Ioo`
is based on the one given in the corresponding
[Wikibooks](https://en.wikibooks.org/wiki/Calculus/L%27H%C3%B4pital%27s_Rule)
chapter, and all other statements are derived from this one by composing by
carefully chosen functions.
Note that the filter `f'/g'` tends to isn't required to be one of `𝓝 a`,
`at_top` or `at_bot`. In fact, we give a slightly stronger statement by
allowing it to be any filter on `ℝ`.
Each statement is available in a `has_deriv_at` form and a `deriv` form, which
is denoted by each statement being in either the `has_deriv_at` or the `deriv`
namespace.
## Tags
L'Hôpital's rule, L'Hopital's rule
-/
open filter set
open_locale filter topological_space pointwise
variables {a b : ℝ} (hab : a < b) {l : filter ℝ} {f f' g g' : ℝ → ℝ}
/-!
## Interval-based versions
We start by proving statements where all conditions (derivability, `g' ≠ 0`) have
to be satisfied on an explicitly-provided interval.
-/
namespace has_deriv_at
include hab
theorem lhopital_zero_right_on_Ioo
(hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioo a b, has_deriv_at g (g' x) x)
(hg' : ∀ x ∈ Ioo a b, g' x ≠ 0)
(hfa : tendsto f (𝓝[>] a) (𝓝 0)) (hga : tendsto g (𝓝[>] a) (𝓝 0))
(hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[>] a) l) :
tendsto (λ x, (f x) / (g x)) (𝓝[>] a) l :=
begin
have sub : ∀ x ∈ Ioo a b, Ioo a x ⊆ Ioo a b := λ x hx, Ioo_subset_Ioo (le_refl a) (le_of_lt hx.2),
have hg : ∀ x ∈ (Ioo a b), g x ≠ 0,
{ intros x hx h,
have : tendsto g (𝓝[<] x) (𝓝 0),
{ rw [← h, ← nhds_within_Ioo_eq_nhds_within_Iio hx.1],
exact ((hgg' x hx).continuous_at.continuous_within_at.mono $ sub x hx).tendsto },
obtain ⟨y, hyx, hy⟩ : ∃ c ∈ Ioo a x, g' c = 0,
from exists_has_deriv_at_eq_zero' hx.1 hga this (λ y hy, hgg' y $ sub x hx hy),
exact hg' y (sub x hx hyx) hy },
have : ∀ x ∈ Ioo a b, ∃ c ∈ Ioo a x, (f x) * (g' c) = (g x) * (f' c),
{ intros x hx,
rw [← sub_zero (f x), ← sub_zero (g x)],
exact exists_ratio_has_deriv_at_eq_ratio_slope' g g' hx.1 f f'
(λ y hy, hgg' y $ sub x hx hy) (λ y hy, hff' y $ sub x hx hy) hga hfa
(tendsto_nhds_within_of_tendsto_nhds (hgg' x hx).continuous_at.tendsto)
(tendsto_nhds_within_of_tendsto_nhds (hff' x hx).continuous_at.tendsto) },
choose! c hc using this,
have : ∀ x ∈ Ioo a b, ((λ x', (f' x') / (g' x')) ∘ c) x = f x / g x,
{ intros x hx,
rcases hc x hx with ⟨h₁, h₂⟩,
field_simp [hg x hx, hg' (c x) ((sub x hx) h₁)],
simp only [h₂],
rwa mul_comm },
have cmp : ∀ x ∈ Ioo a b, a < c x ∧ c x < x,
from λ x hx, (hc x hx).1,
rw ← nhds_within_Ioo_eq_nhds_within_Ioi hab,
apply tendsto_nhds_within_congr this,
simp only,
apply hdiv.comp,
refine tendsto_nhds_within_of_tendsto_nhds_of_eventually_within _
(tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds
(tendsto_nhds_within_of_tendsto_nhds tendsto_id) _ _) _,
all_goals
{ apply eventually_nhds_within_of_forall,
intros x hx,
have := cmp x hx,
try {simp},
linarith [this] }
end
theorem lhopital_zero_right_on_Ico
(hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioo a b, has_deriv_at g (g' x) x)
(hcf : continuous_on f (Ico a b)) (hcg : continuous_on g (Ico a b))
(hg' : ∀ x ∈ Ioo a b, g' x ≠ 0)
(hfa : f a = 0) (hga : g a = 0)
(hdiv : tendsto (λ x, (f' x) / (g' x)) (nhds_within a (Ioi a)) l) :
tendsto (λ x, (f x) / (g x)) (nhds_within a (Ioi a)) l :=
begin
refine lhopital_zero_right_on_Ioo hab hff' hgg' hg' _ _ hdiv,
{ rw [← hfa, ← nhds_within_Ioo_eq_nhds_within_Ioi hab],
exact ((hcf a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto },
{ rw [← hga, ← nhds_within_Ioo_eq_nhds_within_Ioi hab],
exact ((hcg a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto },
end
theorem lhopital_zero_left_on_Ioo
(hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioo a b, has_deriv_at g (g' x) x)
(hg' : ∀ x ∈ Ioo a b, g' x ≠ 0)
(hfb : tendsto f (nhds_within b (Iio b)) (𝓝 0)) (hgb : tendsto g (nhds_within b (Iio b)) (𝓝 0))
(hdiv : tendsto (λ x, (f' x) / (g' x)) (nhds_within b (Iio b)) l) :
tendsto (λ x, (f x) / (g x)) (nhds_within b (Iio b)) l :=
begin
-- Here, we essentially compose by `has_neg.neg`. The following is mostly technical details.
have hdnf : ∀ x ∈ -Ioo a b, has_deriv_at (f ∘ has_neg.neg) (f' (-x) * (-1)) x,
from λ x hx, comp x (hff' (-x) hx) (has_deriv_at_neg x),
have hdng : ∀ x ∈ -Ioo a b, has_deriv_at (g ∘ has_neg.neg) (g' (-x) * (-1)) x,
from λ x hx, comp x (hgg' (-x) hx) (has_deriv_at_neg x),
rw preimage_neg_Ioo at hdnf,
rw preimage_neg_Ioo at hdng,
have := lhopital_zero_right_on_Ioo (neg_lt_neg hab) hdnf hdng
(by { intros x hx h,
apply hg' _ (by {rw ← preimage_neg_Ioo at hx, exact hx}),
rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h })
(hfb.comp tendsto_neg_nhds_within_Ioi_neg)
(hgb.comp tendsto_neg_nhds_within_Ioi_neg)
(by { simp only [neg_div_neg_eq, mul_one, mul_neg],
exact (tendsto_congr $ λ x, rfl).mp (hdiv.comp tendsto_neg_nhds_within_Ioi_neg) }),
have := this.comp tendsto_neg_nhds_within_Iio,
unfold function.comp at this,
simpa only [neg_neg]
end
theorem lhopital_zero_left_on_Ioc
(hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioo a b, has_deriv_at g (g' x) x)
(hcf : continuous_on f (Ioc a b)) (hcg : continuous_on g (Ioc a b))
(hg' : ∀ x ∈ Ioo a b, g' x ≠ 0)
(hfb : f b = 0) (hgb : g b = 0)
(hdiv : tendsto (λ x, (f' x) / (g' x)) (nhds_within b (Iio b)) l) :
tendsto (λ x, (f x) / (g x)) (nhds_within b (Iio b)) l :=
begin
refine lhopital_zero_left_on_Ioo hab hff' hgg' hg' _ _ hdiv,
{ rw [← hfb, ← nhds_within_Ioo_eq_nhds_within_Iio hab],
exact ((hcf b $ right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto },
{ rw [← hgb, ← nhds_within_Ioo_eq_nhds_within_Iio hab],
exact ((hcg b $ right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto },
end
omit hab
theorem lhopital_zero_at_top_on_Ioi
(hff' : ∀ x ∈ Ioi a, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioi a, has_deriv_at g (g' x) x)
(hg' : ∀ x ∈ Ioi a, g' x ≠ 0)
(hftop : tendsto f at_top (𝓝 0)) (hgtop : tendsto g at_top (𝓝 0))
(hdiv : tendsto (λ x, (f' x) / (g' x)) at_top l) :
tendsto (λ x, (f x) / (g x)) at_top l :=
begin
obtain ⟨ a', haa', ha'⟩ : ∃ a', a < a' ∧ 0 < a' :=
1 + max a 0, ⟨lt_of_le_of_lt (le_max_left a 0) (lt_one_add _),
lt_of_le_of_lt (le_max_right a 0) (lt_one_add _)⟩⟩,
have fact1 : ∀ (x:ℝ), x ∈ Ioo 0 a'⁻¹ → x ≠ 0 := λ _ hx, (ne_of_lt hx.1).symm,
have fact2 : ∀ x ∈ Ioo 0 a'⁻¹, a < x⁻¹,
from λ _ hx, lt_trans haa' ((lt_inv ha' hx.1).mpr hx.2),
have hdnf : ∀ x ∈ Ioo 0 a'⁻¹, has_deriv_at (f ∘ has_inv.inv) (f' (x⁻¹) * (-(x^2)⁻¹)) x,
from λ x hx, comp x (hff' (x⁻¹) $ fact2 x hx) (has_deriv_at_inv $ fact1 x hx),
have hdng : ∀ x ∈ Ioo 0 a'⁻¹, has_deriv_at (g ∘ has_inv.inv) (g' (x⁻¹) * (-(x^2)⁻¹)) x,
from λ x hx, comp x (hgg' (x⁻¹) $ fact2 x hx) (has_deriv_at_inv $ fact1 x hx),
have := lhopital_zero_right_on_Ioo (inv_pos.mpr ha') hdnf hdng
(by { intros x hx,
refine mul_ne_zero _ (neg_ne_zero.mpr $ inv_ne_zero $ pow_ne_zero _ $ fact1 x hx),
exact hg' _ (fact2 x hx) })
(hftop.comp tendsto_inv_zero_at_top)
(hgtop.comp tendsto_inv_zero_at_top)
(by { refine (tendsto_congr' _).mp (hdiv.comp tendsto_inv_zero_at_top),
rw eventually_eq_iff_exists_mem,
use [Ioi 0, self_mem_nhds_within],
intros x hx,
unfold function.comp,
erw mul_div_mul_right,
refine neg_ne_zero.mpr (inv_ne_zero $ pow_ne_zero _ $ ne_of_gt hx) }),
have := this.comp tendsto_inv_at_top_zero',
unfold function.comp at this,
simpa only [inv_inv],
end
theorem lhopital_zero_at_bot_on_Iio
(hff' : ∀ x ∈ Iio a, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Iio a, has_deriv_at g (g' x) x)
(hg' : ∀ x ∈ Iio a, g' x ≠ 0)
(hfbot : tendsto f at_bot (𝓝 0)) (hgbot : tendsto g at_bot (𝓝 0))
(hdiv : tendsto (λ x, (f' x) / (g' x)) at_bot l) :
tendsto (λ x, (f x) / (g x)) at_bot l :=
begin
-- Here, we essentially compose by `has_neg.neg`. The following is mostly technical details.
have hdnf : ∀ x ∈ -Iio a, has_deriv_at (f ∘ has_neg.neg) (f' (-x) * (-1)) x,
from λ x hx, comp x (hff' (-x) hx) (has_deriv_at_neg x),
have hdng : ∀ x ∈ -Iio a, has_deriv_at (g ∘ has_neg.neg) (g' (-x) * (-1)) x,
from λ x hx, comp x (hgg' (-x) hx) (has_deriv_at_neg x),
rw preimage_neg_Iio at hdnf,
rw preimage_neg_Iio at hdng,
have := lhopital_zero_at_top_on_Ioi hdnf hdng
(by { intros x hx h,
apply hg' _ (by {rw ← preimage_neg_Iio at hx, exact hx}),
rwa [mul_comm, ← neg_eq_neg_one_mul, neg_eq_zero] at h })
(hfbot.comp tendsto_neg_at_top_at_bot)
(hgbot.comp tendsto_neg_at_top_at_bot)
(by { simp only [mul_one, mul_neg, neg_div_neg_eq],
exact (tendsto_congr $ λ x, rfl).mp (hdiv.comp tendsto_neg_at_top_at_bot) }),
have := this.comp tendsto_neg_at_bot_at_top,
unfold function.comp at this,
simpa only [neg_neg],
end
end has_deriv_at
namespace deriv
include hab
theorem lhopital_zero_right_on_Ioo
(hdf : differentiable_on ℝ f (Ioo a b)) (hg' : ∀ x ∈ Ioo a b, deriv g x ≠ 0)
(hfa : tendsto f (𝓝[>] a) (𝓝 0)) (hga : tendsto g (𝓝[>] a) (𝓝 0))
(hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[>] a) l) :
tendsto (λ x, (f x) / (g x)) (𝓝[>] a) l :=
begin
have hdf : ∀ x ∈ Ioo a b, differentiable_at ℝ f x,
from λ x hx, (hdf x hx).differentiable_at (Ioo_mem_nhds hx.1 hx.2),
have hdg : ∀ x ∈ Ioo a b, differentiable_at ℝ g x,
from λ x hx, classical.by_contradiction (λ h, hg' x hx (deriv_zero_of_not_differentiable_at h)),
exact has_deriv_at.lhopital_zero_right_on_Ioo hab (λ x hx, (hdf x hx).has_deriv_at)
(λ x hx, (hdg x hx).has_deriv_at) hg' hfa hga hdiv
end
theorem lhopital_zero_right_on_Ico
(hdf : differentiable_on ℝ f (Ioo a b))
(hcf : continuous_on f (Ico a b)) (hcg : continuous_on g (Ico a b))
(hg' : ∀ x ∈ (Ioo a b), (deriv g) x ≠ 0)
(hfa : f a = 0) (hga : g a = 0)
(hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (nhds_within a (Ioi a)) l) :
tendsto (λ x, (f x) / (g x)) (nhds_within a (Ioi a)) l :=
begin
refine lhopital_zero_right_on_Ioo hab hdf hg' _ _ hdiv,
{ rw [← hfa, ← nhds_within_Ioo_eq_nhds_within_Ioi hab],
exact ((hcf a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto },
{ rw [← hga, ← nhds_within_Ioo_eq_nhds_within_Ioi hab],
exact ((hcg a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto },
end
theorem lhopital_zero_left_on_Ioo
(hdf : differentiable_on ℝ f (Ioo a b))
(hg' : ∀ x ∈ (Ioo a b), (deriv g) x ≠ 0)
(hfb : tendsto f (nhds_within b (Iio b)) (𝓝 0)) (hgb : tendsto g (nhds_within b (Iio b)) (𝓝 0))
(hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (nhds_within b (Iio b)) l) :
tendsto (λ x, (f x) / (g x)) (nhds_within b (Iio b)) l :=
begin
have hdf : ∀ x ∈ Ioo a b, differentiable_at ℝ f x,
from λ x hx, (hdf x hx).differentiable_at (Ioo_mem_nhds hx.1 hx.2),
have hdg : ∀ x ∈ Ioo a b, differentiable_at ℝ g x,
from λ x hx, classical.by_contradiction (λ h, hg' x hx (deriv_zero_of_not_differentiable_at h)),
exact has_deriv_at.lhopital_zero_left_on_Ioo hab (λ x hx, (hdf x hx).has_deriv_at)
(λ x hx, (hdg x hx).has_deriv_at) hg' hfb hgb hdiv
end
omit hab
theorem lhopital_zero_at_top_on_Ioi
(hdf : differentiable_on ℝ f (Ioi a))
(hg' : ∀ x ∈ (Ioi a), (deriv g) x ≠ 0)
(hftop : tendsto f at_top (𝓝 0)) (hgtop : tendsto g at_top (𝓝 0))
(hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) at_top l) :
tendsto (λ x, (f x) / (g x)) at_top l :=
begin
have hdf : ∀ x ∈ Ioi a, differentiable_at ℝ f x,
from λ x hx, (hdf x hx).differentiable_at (Ioi_mem_nhds hx),
have hdg : ∀ x ∈ Ioi a, differentiable_at ℝ g x,
from λ x hx, classical.by_contradiction (λ h, hg' x hx (deriv_zero_of_not_differentiable_at h)),
exact has_deriv_at.lhopital_zero_at_top_on_Ioi (λ x hx, (hdf x hx).has_deriv_at)
(λ x hx, (hdg x hx).has_deriv_at) hg' hftop hgtop hdiv,
end
theorem lhopital_zero_at_bot_on_Iio
(hdf : differentiable_on ℝ f (Iio a))
(hg' : ∀ x ∈ (Iio a), (deriv g) x ≠ 0)
(hfbot : tendsto f at_bot (𝓝 0)) (hgbot : tendsto g at_bot (𝓝 0))
(hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) at_bot l) :
tendsto (λ x, (f x) / (g x)) at_bot l :=
begin
have hdf : ∀ x ∈ Iio a, differentiable_at ℝ f x,
from λ x hx, (hdf x hx).differentiable_at (Iio_mem_nhds hx),
have hdg : ∀ x ∈ Iio a, differentiable_at ℝ g x,
from λ x hx, classical.by_contradiction (λ h, hg' x hx (deriv_zero_of_not_differentiable_at h)),
exact has_deriv_at.lhopital_zero_at_bot_on_Iio (λ x hx, (hdf x hx).has_deriv_at)
(λ x hx, (hdg x hx).has_deriv_at) hg' hfbot hgbot hdiv,
end
end deriv
/-!
## Generic versions
The following statements no longer any explicit interval, as they only require
conditions holding eventually.
-/
namespace has_deriv_at
/-- L'Hôpital's rule for approaching a real from the right, `has_deriv_at` version -/
theorem lhopital_zero_nhds_right
(hff' : ∀ᶠ x in 𝓝[>] a, has_deriv_at f (f' x) x)
(hgg' : ∀ᶠ x in 𝓝[>] a, has_deriv_at g (g' x) x)
(hg' : ∀ᶠ x in 𝓝[>] a, g' x ≠ 0)
(hfa : tendsto f (𝓝[>] a) (𝓝 0)) (hga : tendsto g (𝓝[>] a) (𝓝 0))
(hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[>] a) l) :
tendsto (λ x, (f x) / (g x)) (𝓝[>] a) l :=
begin
rw eventually_iff_exists_mem at *,
rcases hff' with ⟨s₁, hs₁, hff'⟩,
rcases hgg' with ⟨s₂, hs₂, hgg'⟩,
rcases hg' with ⟨s₃, hs₃, hg'⟩,
let s := s₁ ∩ s₂ ∩ s₃,
have hs : s ∈ 𝓝[>] a := inter_mem (inter_mem hs₁ hs₂) hs₃,
rw mem_nhds_within_Ioi_iff_exists_Ioo_subset at hs,
rcases hs with ⟨u, hau, hu⟩,
refine lhopital_zero_right_on_Ioo hau _ _ _ hfa hga hdiv;
intros x hx;
apply_assumption;
exact (hu hx).1.1 <|> exact (hu hx).1.2 <|> exact (hu hx).2
end
/-- L'Hôpital's rule for approaching a real from the left, `has_deriv_at` version -/
theorem lhopital_zero_nhds_left
(hff' : ∀ᶠ x in 𝓝[<] a, has_deriv_at f (f' x) x)
(hgg' : ∀ᶠ x in 𝓝[<] a, has_deriv_at g (g' x) x)
(hg' : ∀ᶠ x in 𝓝[<] a, g' x ≠ 0)
(hfa : tendsto f (𝓝[<] a) (𝓝 0)) (hga : tendsto g (𝓝[<] a) (𝓝 0))
(hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[<] a) l) :
tendsto (λ x, (f x) / (g x)) (𝓝[<] a) l :=
begin
rw eventually_iff_exists_mem at *,
rcases hff' with ⟨s₁, hs₁, hff'⟩,
rcases hgg' with ⟨s₂, hs₂, hgg'⟩,
rcases hg' with ⟨s₃, hs₃, hg'⟩,
let s := s₁ ∩ s₂ ∩ s₃,
have hs : s ∈ 𝓝[<] a := inter_mem (inter_mem hs₁ hs₂) hs₃,
rw mem_nhds_within_Iio_iff_exists_Ioo_subset at hs,
rcases hs with ⟨l, hal, hl⟩,
refine lhopital_zero_left_on_Ioo hal _ _ _ hfa hga hdiv;
intros x hx;
apply_assumption;
exact (hl hx).1.1 <|> exact (hl hx).1.2 <|> exact (hl hx).2
end
/-- L'Hôpital's rule for approaching a real, `has_deriv_at` version. This
does not require anything about the situation at `a` -/
theorem lhopital_zero_nhds'
(hff' : ∀ᶠ x in 𝓝[univ \ {a}] a, has_deriv_at f (f' x) x)
(hgg' : ∀ᶠ x in 𝓝[univ \ {a}] a, has_deriv_at g (g' x) x)
(hg' : ∀ᶠ x in 𝓝[univ \ {a}] a, g' x ≠ 0)
(hfa : tendsto f (𝓝[univ \ {a}] a) (𝓝 0)) (hga : tendsto g (𝓝[univ \ {a}] a) (𝓝 0))
(hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[univ \ {a}] a) l) :
tendsto (λ x, (f x) / (g x)) (𝓝[univ \ {a}] a) l :=
begin
have : univ \ {a} = Iio a ∪ Ioi a,
{ ext, rw [mem_diff_singleton, eq_true_intro $ mem_univ x, true_and, ne_iff_lt_or_gt], refl },
simp only [this, nhds_within_union, tendsto_sup, eventually_sup] at *,
exact ⟨lhopital_zero_nhds_left hff'.1 hgg'.1 hg'.1 hfa.1 hga.1 hdiv.1,
lhopital_zero_nhds_right hff'.2 hgg'.2 hg'.2 hfa.2 hga.2 hdiv.2
end
/-- **L'Hôpital's rule** for approaching a real, `has_deriv_at` version -/
theorem lhopital_zero_nhds
(hff' : ∀ᶠ x in 𝓝 a, has_deriv_at f (f' x) x)
(hgg' : ∀ᶠ x in 𝓝 a, has_deriv_at g (g' x) x)
(hg' : ∀ᶠ x in 𝓝 a, g' x ≠ 0)
(hfa : tendsto f (𝓝 a) (𝓝 0)) (hga : tendsto g (𝓝 a) (𝓝 0))
(hdiv : tendsto (λ x, f' x / g' x) (𝓝 a) l) :
tendsto (λ x, f x / g x) (𝓝[univ \ {a}] a) l :=
begin
apply @lhopital_zero_nhds' _ _ _ f' _ g';
apply eventually_nhds_within_of_eventually_nhds <|> apply tendsto_nhds_within_of_tendsto_nhds;
assumption
end
/-- L'Hôpital's rule for approaching +∞, `has_deriv_at` version -/
theorem lhopital_zero_at_top
(hff' : ∀ᶠ x in at_top, has_deriv_at f (f' x) x)
(hgg' : ∀ᶠ x in at_top, has_deriv_at g (g' x) x)
(hg' : ∀ᶠ x in at_top, g' x ≠ 0)
(hftop : tendsto f at_top (𝓝 0)) (hgtop : tendsto g at_top (𝓝 0))
(hdiv : tendsto (λ x, (f' x) / (g' x)) at_top l) :
tendsto (λ x, (f x) / (g x)) at_top l :=
begin
rw eventually_iff_exists_mem at *,
rcases hff' with ⟨s₁, hs₁, hff'⟩,
rcases hgg' with ⟨s₂, hs₂, hgg'⟩,
rcases hg' with ⟨s₃, hs₃, hg'⟩,
let s := s₁ ∩ s₂ ∩ s₃,
have hs : s ∈ at_top := inter_mem (inter_mem hs₁ hs₂) hs₃,
rw mem_at_top_sets at hs,
rcases hs with ⟨l, hl⟩,
have hl' : Ioi l ⊆ s := λ x hx, hl x (le_of_lt hx),
refine lhopital_zero_at_top_on_Ioi _ _ (λ x hx, hg' x $ (hl' hx).2) hftop hgtop hdiv;
intros x hx;
apply_assumption;
exact (hl' hx).1.1 <|> exact (hl' hx).1.2
end
/-- L'Hôpital's rule for approaching -∞, `has_deriv_at` version -/
theorem lhopital_zero_at_bot
(hff' : ∀ᶠ x in at_bot, has_deriv_at f (f' x) x)
(hgg' : ∀ᶠ x in at_bot, has_deriv_at g (g' x) x)
(hg' : ∀ᶠ x in at_bot, g' x ≠ 0)
(hfbot : tendsto f at_bot (𝓝 0)) (hgbot : tendsto g at_bot (𝓝 0))
(hdiv : tendsto (λ x, (f' x) / (g' x)) at_bot l) :
tendsto (λ x, (f x) / (g x)) at_bot l :=
begin
rw eventually_iff_exists_mem at *,
rcases hff' with ⟨s₁, hs₁, hff'⟩,
rcases hgg' with ⟨s₂, hs₂, hgg'⟩,
rcases hg' with ⟨s₃, hs₃, hg'⟩,
let s := s₁ ∩ s₂ ∩ s₃,
have hs : s ∈ at_bot := inter_mem (inter_mem hs₁ hs₂) hs₃,
rw mem_at_bot_sets at hs,
rcases hs with ⟨l, hl⟩,
have hl' : Iio l ⊆ s := λ x hx, hl x (le_of_lt hx),
refine lhopital_zero_at_bot_on_Iio _ _ (λ x hx, hg' x $ (hl' hx).2) hfbot hgbot hdiv;
intros x hx;
apply_assumption;
exact (hl' hx).1.1 <|> exact (hl' hx).1.2
end
end has_deriv_at
namespace deriv
/-- **L'Hôpital's rule** for approaching a real from the right, `deriv` version -/
theorem lhopital_zero_nhds_right
(hdf : ∀ᶠ x in 𝓝[>] a, differentiable_at ℝ f x)
(hg' : ∀ᶠ x in 𝓝[>] a, deriv g x ≠ 0)
(hfa : tendsto f (𝓝[>] a) (𝓝 0)) (hga : tendsto g (𝓝[>] a) (𝓝 0))
(hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[>] a) l) :
tendsto (λ x, (f x) / (g x)) (𝓝[>] a) l :=
begin
have hdg : ∀ᶠ x in 𝓝[>] a, differentiable_at ℝ g x,
from hg'.mp (eventually_of_forall $
λ _ hg', classical.by_contradiction (λ h, hg' (deriv_zero_of_not_differentiable_at h))),
have hdf' : ∀ᶠ x in 𝓝[>] a, has_deriv_at f (deriv f x) x,
from hdf.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
have hdg' : ∀ᶠ x in 𝓝[>] a, has_deriv_at g (deriv g x) x,
from hdg.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
exact has_deriv_at.lhopital_zero_nhds_right hdf' hdg' hg' hfa hga hdiv
end
/-- **L'Hôpital's rule** for approaching a real from the left, `deriv` version -/
theorem lhopital_zero_nhds_left
(hdf : ∀ᶠ x in 𝓝[<] a, differentiable_at ℝ f x)
(hg' : ∀ᶠ x in 𝓝[<] a, deriv g x ≠ 0)
(hfa : tendsto f (𝓝[<] a) (𝓝 0)) (hga : tendsto g (𝓝[<] a) (𝓝 0))
(hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[<] a) l) :
tendsto (λ x, (f x) / (g x)) (𝓝[<] a) l :=
begin
have hdg : ∀ᶠ x in 𝓝[<] a, differentiable_at ℝ g x,
from hg'.mp (eventually_of_forall $
λ _ hg', classical.by_contradiction (λ h, hg' (deriv_zero_of_not_differentiable_at h))),
have hdf' : ∀ᶠ x in 𝓝[<] a, has_deriv_at f (deriv f x) x,
from hdf.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
have hdg' : ∀ᶠ x in 𝓝[<] a, has_deriv_at g (deriv g x) x,
from hdg.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
exact has_deriv_at.lhopital_zero_nhds_left hdf' hdg' hg' hfa hga hdiv
end
/-- **L'Hôpital's rule** for approaching a real, `deriv` version. This
does not require anything about the situation at `a` -/
theorem lhopital_zero_nhds'
(hdf : ∀ᶠ x in 𝓝[univ \ {a}] a, differentiable_at ℝ f x)
(hg' : ∀ᶠ x in 𝓝[univ \ {a}] a, deriv g x ≠ 0)
(hfa : tendsto f (𝓝[univ \ {a}] a) (𝓝 0)) (hga : tendsto g (𝓝[univ \ {a}] a) (𝓝 0))
(hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[univ \ {a}] a) l) :
tendsto (λ x, (f x) / (g x)) (𝓝[univ \ {a}] a) l :=
begin
have : univ \ {a} = Iio a ∪ Ioi a,
{ ext, rw [mem_diff_singleton, eq_true_intro $ mem_univ x, true_and, ne_iff_lt_or_gt], refl },
simp only [this, nhds_within_union, tendsto_sup, eventually_sup] at *,
exact ⟨lhopital_zero_nhds_left hdf.1 hg'.1 hfa.1 hga.1 hdiv.1,
lhopital_zero_nhds_right hdf.2 hg'.2 hfa.2 hga.2 hdiv.2⟩,
end
/-- **L'Hôpital's rule** for approaching a real, `deriv` version -/
theorem lhopital_zero_nhds
(hdf : ∀ᶠ x in 𝓝 a, differentiable_at ℝ f x)
(hg' : ∀ᶠ x in 𝓝 a, deriv g x ≠ 0)
(hfa : tendsto f (𝓝 a) (𝓝 0)) (hga : tendsto g (𝓝 a) (𝓝 0))
(hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝 a) l) :
tendsto (λ x, (f x) / (g x)) (𝓝[univ \ {a}] a) l :=
begin
apply lhopital_zero_nhds';
apply eventually_nhds_within_of_eventually_nhds <|> apply tendsto_nhds_within_of_tendsto_nhds;
assumption
end
/-- **L'Hôpital's rule** for approaching +∞, `deriv` version -/
theorem lhopital_zero_at_top
(hdf : ∀ᶠ (x : ℝ) in at_top, differentiable_at ℝ f x)
(hg' : ∀ᶠ (x : ℝ) in at_top, deriv g x ≠ 0)
(hftop : tendsto f at_top (𝓝 0)) (hgtop : tendsto g at_top (𝓝 0))
(hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) at_top l) :
tendsto (λ x, (f x) / (g x)) at_top l :=
begin
have hdg : ∀ᶠ x in at_top, differentiable_at ℝ g x,
from hg'.mp (eventually_of_forall $
λ _ hg', classical.by_contradiction (λ h, hg' (deriv_zero_of_not_differentiable_at h))),
have hdf' : ∀ᶠ x in at_top, has_deriv_at f (deriv f x) x,
from hdf.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
have hdg' : ∀ᶠ x in at_top, has_deriv_at g (deriv g x) x,
from hdg.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
exact has_deriv_at.lhopital_zero_at_top hdf' hdg' hg' hftop hgtop hdiv
end
/-- **L'Hôpital's rule** for approaching -∞, `deriv` version -/
theorem lhopital_zero_at_bot
(hdf : ∀ᶠ (x : ℝ) in at_bot, differentiable_at ℝ f x)
(hg' : ∀ᶠ (x : ℝ) in at_bot, deriv g x ≠ 0)
(hfbot : tendsto f at_bot (𝓝 0)) (hgbot : tendsto g at_bot (𝓝 0))
(hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) at_bot l) :
tendsto (λ x, (f x) / (g x)) at_bot l :=
begin
have hdg : ∀ᶠ x in at_bot, differentiable_at ℝ g x,
from hg'.mp (eventually_of_forall $
λ _ hg', classical.by_contradiction (λ h, hg' (deriv_zero_of_not_differentiable_at h))),
have hdf' : ∀ᶠ x in at_bot, has_deriv_at f (deriv f x) x,
from hdf.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
have hdg' : ∀ᶠ x in at_bot, has_deriv_at g (deriv g x) x,
from hdg.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
exact has_deriv_at.lhopital_zero_at_bot hdf' hdg' hg' hfbot hgbot hdiv
end
end deriv