Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.4 kB
/-
Copyright (c) 2021 Yury Kudriashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudriashov, Malo JaffrΓ©
-/
import analysis.convex.function
/-!
# Slopes of convex functions
This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity
of their slopes.
The main use is to show convexity/concavity from monotonicity of the derivative.
-/
variables {π•œ : Type*} [linear_ordered_field π•œ] {s : set π•œ} {f : π•œ β†’ π•œ}
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of
`f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/
lemma convex_on.slope_mono_adjacent (hf : convex_on π•œ s f)
{x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) :
(f y - f x) / (y - x) ≀ (f z - f y) / (z - y) :=
begin
have hxz := hxy.trans hyz,
rw ←sub_pos at hxy hxz hyz,
suffices : f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y),
{ ring_nf at this ⊒, linarith },
set a := (z - y) / (z - x),
set b := (y - x) / (z - x),
have hy : a β€’ x + b β€’ z = y, by { field_simp, rw div_eq_iff; [ring, linarith] },
have key, from
hf.2 hx hz
(show 0 ≀ a, by apply div_nonneg; linarith)
(show 0 ≀ b, by apply div_nonneg; linarith)
(show a + b = 1, by { field_simp, rw div_eq_iff; [ring, linarith] }),
rw hy at key,
replace key := mul_le_mul_of_nonneg_left key hxz.le,
field_simp [hxy.ne', hyz.ne', hxz.ne', mul_comm (z - x) _] at key ⊒,
rw div_le_div_right,
{ linarith },
{ nlinarith }
end
/-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of
`f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/
lemma concave_on.slope_anti_adjacent (hf : concave_on π•œ s f) {x y z : π•œ} (hx : x ∈ s)
(hz : z ∈ s) (hxy : x < y) (hyz : y < z) :
(f z - f y) / (z - y) ≀ (f y - f x) / (y - x) :=
begin
rw [←neg_le_neg_iff, ←neg_sub_neg (f x), ←neg_sub_neg (f y)],
simp_rw [←pi.neg_apply, ←neg_div, neg_sub],
exact convex_on.slope_mono_adjacent hf.neg hx hz hxy hyz,
end
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the
secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on
`[x, z]`. -/
lemma strict_convex_on.slope_strict_mono_adjacent (hf : strict_convex_on π•œ s f)
{x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) :
(f y - f x) / (y - x) < (f z - f y) / (z - y) :=
begin
have hxz := hxy.trans hyz,
have hxz' := hxz.ne,
rw ←sub_pos at hxy hxz hyz,
suffices : f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y),
{ ring_nf at this ⊒, linarith },
set a := (z - y) / (z - x),
set b := (y - x) / (z - x),
have hy : a β€’ x + b β€’ z = y, by { field_simp, rw div_eq_iff; [ring, linarith] },
have key, from
hf.2 hx hz hxz' (div_pos hyz hxz) (div_pos hxy hxz)
(show a + b = 1, by { field_simp, rw div_eq_iff; [ring, linarith] }),
rw hy at key,
replace key := mul_lt_mul_of_pos_left key hxz,
field_simp [hxy.ne', hyz.ne', hxz.ne', mul_comm (z - x) _] at key ⊒,
rw div_lt_div_right,
{ linarith },
{ nlinarith }
end
/-- If `f : π•œ β†’ π•œ` is strictly concave, then for any three points `x < y < z` the slope of the
secant line of `f` on `[x, y]` is strictly greater than the slope of the secant line of `f` on
`[x, z]`. -/
lemma strict_concave_on.slope_anti_adjacent (hf : strict_concave_on π•œ s f)
{x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) :
(f z - f y) / (z - y) < (f y - f x) / (y - x) :=
begin
rw [←neg_lt_neg_iff, ←neg_sub_neg (f x), ←neg_sub_neg (f y)],
simp_rw [←pi.neg_apply, ←neg_div, neg_sub],
exact strict_convex_on.slope_strict_mono_adjacent hf.neg hx hz hxy hyz,
end
/-- If for any three points `x < y < z`, the slope of the secant line of `f : π•œ β†’ π•œ` on `[x, y]` is
less than the slope of the secant line of `f` on `[x, z]`, then `f` is convex. -/
lemma convex_on_of_slope_mono_adjacent (hs : convex π•œ s)
(hf : βˆ€ {x y z : π•œ}, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’
(f y - f x) / (y - x) ≀ (f z - f y) / (z - y)) :
convex_on π•œ s f :=
linear_order.convex_on_of_lt hs
begin
assume x z hx hz hxz a b ha hb hab,
let y := a * x + b * z,
have hxy : x < y,
{ rw [← one_mul x, ← hab, add_mul],
exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _ },
have hyz : y < z,
{ rw [← one_mul z, ← hab, add_mul],
exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _ },
have : (f y - f x) * (z - y) ≀ (f z - f y) * (y - x),
from (div_le_div_iff (sub_pos.2 hxy) (sub_pos.2 hyz)).1 (hf hx hz hxy hyz),
have hxz : 0 < z - x, from sub_pos.2 (hxy.trans hyz),
have ha : (z - y) / (z - x) = a,
{ rw [eq_comm, ← sub_eq_iff_eq_add'] at hab,
simp_rw [div_eq_iff hxz.ne', y, ←hab], ring },
have hb : (y - x) / (z - x) = b,
{ rw [eq_comm, ← sub_eq_iff_eq_add] at hab,
simp_rw [div_eq_iff hxz.ne', y, ←hab], ring },
rwa [sub_mul, sub_mul, sub_le_iff_le_add', ← add_sub_assoc, le_sub_iff_add_le, ← mul_add,
sub_add_sub_cancel, ← le_div_iff hxz, add_div, mul_div_assoc, mul_div_assoc, mul_comm (f x),
mul_comm (f z), ha, hb] at this,
end
/-- If for any three points `x < y < z`, the slope of the secant line of `f : π•œ β†’ π•œ` on `[x, y]` is
greater than the slope of the secant line of `f` on `[x, z]`, then `f` is concave. -/
lemma concave_on_of_slope_anti_adjacent (hs : convex π•œ s)
(hf : βˆ€ {x y z : π•œ}, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’
(f z - f y) / (z - y) ≀ (f y - f x) / (y - x)) : concave_on π•œ s f :=
begin
rw ←neg_convex_on_iff,
refine convex_on_of_slope_mono_adjacent hs (Ξ» x y z hx hz hxy hyz, _),
rw ←neg_le_neg_iff,
simp_rw [←neg_div, neg_sub, pi.neg_apply, neg_sub_neg],
exact hf hx hz hxy hyz,
end
/-- If for any three points `x < y < z`, the slope of the secant line of `f : π•œ β†’ π•œ` on `[x, y]` is
strictly less than the slope of the secant line of `f` on `[x, z]`, then `f` is strictly convex. -/
lemma strict_convex_on_of_slope_strict_mono_adjacent (hs : convex π•œ s)
(hf : βˆ€ {x y z : π•œ}, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’
(f y - f x) / (y - x) < (f z - f y) / (z - y)) :
strict_convex_on π•œ s f :=
linear_order.strict_convex_on_of_lt hs
begin
assume x z hx hz hxz a b ha hb hab,
let y := a * x + b * z,
have hxy : x < y,
{ rw [← one_mul x, ← hab, add_mul],
exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _ },
have hyz : y < z,
{ rw [← one_mul z, ← hab, add_mul],
exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _ },
have : (f y - f x) * (z - y) < (f z - f y) * (y - x),
from (div_lt_div_iff (sub_pos.2 hxy) (sub_pos.2 hyz)).1 (hf hx hz hxy hyz),
have hxz : 0 < z - x, from sub_pos.2 (hxy.trans hyz),
have ha : (z - y) / (z - x) = a,
{ rw [eq_comm, ← sub_eq_iff_eq_add'] at hab,
simp_rw [div_eq_iff hxz.ne', y, ←hab], ring },
have hb : (y - x) / (z - x) = b,
{ rw [eq_comm, ← sub_eq_iff_eq_add] at hab,
simp_rw [div_eq_iff hxz.ne', y, ←hab], ring },
rwa [sub_mul, sub_mul, sub_lt_iff_lt_add', ← add_sub_assoc, lt_sub_iff_add_lt, ← mul_add,
sub_add_sub_cancel, ← lt_div_iff hxz, add_div, mul_div_assoc, mul_div_assoc, mul_comm (f x),
mul_comm (f z), ha, hb] at this,
end
/-- If for any three points `x < y < z`, the slope of the secant line of `f : π•œ β†’ π•œ` on `[x, y]` is
strictly greater than the slope of the secant line of `f` on `[x, z]`, then `f` is strictly concave.
-/
lemma strict_concave_on_of_slope_strict_anti_adjacent (hs : convex π•œ s)
(hf : βˆ€ {x y z : π•œ}, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’
(f z - f y) / (z - y) < (f y - f x) / (y - x)) : strict_concave_on π•œ s f :=
begin
rw ←neg_strict_convex_on_iff,
refine strict_convex_on_of_slope_strict_mono_adjacent hs (Ξ» x y z hx hz hxy hyz, _),
rw ←neg_lt_neg_iff,
simp_rw [←neg_div, neg_sub, pi.neg_apply, neg_sub_neg],
exact hf hx hz hxy hyz,
end
/-- A function `f : π•œ β†’ π•œ` is convex iff for any three points `x < y < z` the slope of the secant
line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/
lemma convex_on_iff_slope_mono_adjacent :
convex_on π•œ s f ↔ convex π•œ s ∧
βˆ€ ⦃x y z : π•œβ¦„, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’
(f y - f x) / (y - x) ≀ (f z - f y) / (z - y) :=
⟨λ h, ⟨h.1, λ x y z, h.slope_mono_adjacent⟩, λ h, convex_on_of_slope_mono_adjacent h.1 h.2⟩
/-- A function `f : π•œ β†’ π•œ` is concave iff for any three points `x < y < z` the slope of the secant
line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/
lemma concave_on_iff_slope_anti_adjacent :
concave_on π•œ s f ↔ convex π•œ s ∧
βˆ€ ⦃x y z : π•œβ¦„, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’
(f z - f y) / (z - y) ≀ (f y - f x) / (y - x) :=
⟨λ h, ⟨h.1, λ x y z, h.slope_anti_adjacent⟩, λ h, concave_on_of_slope_anti_adjacent h.1 h.2⟩
/-- A function `f : π•œ β†’ π•œ` is strictly convex iff for any three points `x < y < z` the slope of
the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on
`[x, z]`. -/
lemma strict_convex_on_iff_slope_strict_mono_adjacent :
strict_convex_on π•œ s f ↔ convex π•œ s ∧
βˆ€ ⦃x y z : π•œβ¦„, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’
(f y - f x) / (y - x) < (f z - f y) / (z - y) :=
⟨λ h, ⟨h.1, λ x y z, h.slope_strict_mono_adjacent⟩,
λ h, strict_convex_on_of_slope_strict_mono_adjacent h.1 h.2⟩
/-- A function `f : π•œ β†’ π•œ` is strictly concave iff for any three points `x < y < z` the slope of
the secant line of `f` on `[x, y]` is strictly greater than the slope of the secant line of `f` on
`[x, z]`. -/
lemma strict_concave_on_iff_slope_strict_anti_adjacent :
strict_concave_on π•œ s f ↔ convex π•œ s ∧
βˆ€ ⦃x y z : π•œβ¦„, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’
(f z - f y) / (z - y) < (f y - f x) / (y - x) :=
⟨λ h, ⟨h.1, λ x y z, h.slope_anti_adjacent⟩,
λ h, strict_concave_on_of_slope_strict_anti_adjacent h.1 h.2⟩