Zhangir Azerbayev
squashed?
4365a98
raw
history blame
16 kB
/-
Copyright (c) 2021 YaΓ«l Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: YaΓ«l Dillies
-/
import analysis.convex.basic
import topology.algebra.order.basic
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open set
open_locale convex pointwise
variables {π•œ 𝕝 E F Ξ² : Type*}
open function set
open_locale convex
section ordered_semiring
variables [ordered_semiring π•œ] [topological_space E] [topological_space F]
section add_comm_monoid
variables [add_comm_monoid E] [add_comm_monoid F]
section has_smul
variables (π•œ) [has_smul π•œ E] [has_smul π•œ F] (s : set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def strict_convex : Prop :=
s.pairwise $ Ξ» x y, βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ a β€’ x + b β€’ y ∈ interior s
variables {π•œ s} {x y : E} {a b : π•œ}
lemma strict_convex_iff_open_segment_subset :
strict_convex π•œ s ↔ s.pairwise (Ξ» x y, open_segment π•œ x y βŠ† interior s) :=
forallβ‚…_congr $ Ξ» x hx y hy hxy, (open_segment_subset_iff π•œ).symm
lemma strict_convex.open_segment_subset (hs : strict_convex π•œ s) (hx : x ∈ s) (hy : y ∈ s)
(h : x β‰  y) :
open_segment π•œ x y βŠ† interior s :=
strict_convex_iff_open_segment_subset.1 hs hx hy h
lemma strict_convex_empty : strict_convex π•œ (βˆ… : set E) := pairwise_empty _
lemma strict_convex_univ : strict_convex π•œ (univ : set E) :=
begin
intros x hx y hy hxy a b ha hb hab,
rw interior_univ,
exact mem_univ _,
end
protected lemma strict_convex.eq (hs : strict_convex π•œ s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a)
(hb : 0 < b) (hab : a + b = 1) (h : a β€’ x + b β€’ y βˆ‰ interior s) : x = y :=
hs.eq hx hy $ Ξ» H, h $ H ha hb hab
protected lemma strict_convex.inter {t : set E} (hs : strict_convex π•œ s) (ht : strict_convex π•œ t) :
strict_convex π•œ (s ∩ t) :=
begin
intros x hx y hy hxy a b ha hb hab,
rw interior_inter,
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩,
end
lemma directed.strict_convex_Union {ΞΉ : Sort*} {s : ΞΉ β†’ set E} (hdir : directed (βŠ†) s)
(hs : βˆ€ ⦃i : ι⦄, strict_convex π•œ (s i)) :
strict_convex π•œ (⋃ i, s i) :=
begin
rintro x hx y hy hxy a b ha hb hab,
rw mem_Union at hx hy,
obtain ⟨i, hx⟩ := hx,
obtain ⟨j, hy⟩ := hy,
obtain ⟨k, hik, hjk⟩ := hdir i j,
exact interior_mono (subset_Union s k) (hs (hik hx) (hjk hy) hxy ha hb hab),
end
lemma directed_on.strict_convex_sUnion {S : set (set E)} (hdir : directed_on (βŠ†) S)
(hS : βˆ€ s ∈ S, strict_convex π•œ s) :
strict_convex π•œ (⋃₀ S) :=
begin
rw sUnion_eq_Union,
exact (directed_on_iff_directed.1 hdir).strict_convex_Union (Ξ» s, hS _ s.2),
end
end has_smul
section module
variables [module π•œ E] [module π•œ F] {s : set E}
protected lemma strict_convex.convex (hs : strict_convex π•œ s) : convex π•œ s :=
convex_iff_pairwise_pos.2 $ Ξ» x hx y hy hxy a b ha hb hab, interior_subset $ hs hx hy hxy ha hb hab
/-- An open convex set is strictly convex. -/
protected lemma convex.strict_convex (h : is_open s) (hs : convex π•œ s) : strict_convex π•œ s :=
Ξ» x hx y hy _ a b ha hb hab, h.interior_eq.symm β–Έ hs hx hy ha.le hb.le hab
lemma is_open.strict_convex_iff (h : is_open s) : strict_convex π•œ s ↔ convex π•œ s :=
⟨strict_convex.convex, convex.strict_convex h⟩
lemma strict_convex_singleton (c : E) : strict_convex π•œ ({c} : set E) := pairwise_singleton _ _
lemma set.subsingleton.strict_convex (hs : s.subsingleton) : strict_convex π•œ s := hs.pairwise _
lemma strict_convex.linear_image [semiring 𝕝] [module 𝕝 E] [module 𝕝 F]
[linear_map.compatible_smul E F π•œ 𝕝] (hs : strict_convex π•œ s) (f : E β†’β‚—[𝕝] F)
(hf : is_open_map f) :
strict_convex π•œ (f '' s) :=
begin
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab,
refine hf.image_interior_subset _ ⟨a β€’ x + b β€’ y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩,
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
end
lemma strict_convex.is_linear_image (hs : strict_convex π•œ s) {f : E β†’ F} (h : is_linear_map π•œ f)
(hf : is_open_map f) :
strict_convex π•œ (f '' s) :=
hs.linear_image (h.mk' f) hf
lemma strict_convex.linear_preimage {s : set F} (hs : strict_convex π•œ s) (f : E β†’β‚—[π•œ] F)
(hf : continuous f) (hfinj : injective f) :
strict_convex π•œ (s.preimage f) :=
begin
intros x hx y hy hxy a b ha hb hab,
refine preimage_interior_subset_interior_preimage hf _,
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul],
exact hs hx hy (hfinj.ne hxy) ha hb hab,
end
lemma strict_convex.is_linear_preimage {s : set F} (hs : strict_convex π•œ s) {f : E β†’ F}
(h : is_linear_map π•œ f) (hf : continuous f) (hfinj : injective f) :
strict_convex π•œ (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
section linear_ordered_cancel_add_comm_monoid
variables [topological_space Ξ²] [linear_ordered_cancel_add_comm_monoid Ξ²] [order_topology Ξ²]
[module π•œ Ξ²] [ordered_smul π•œ Ξ²]
lemma strict_convex_Iic (r : Ξ²) : strict_convex π•œ (Iic r) :=
begin
rintro x (hx : x ≀ r) y (hy : y ≀ r) hxy a b ha hb hab,
refine (subset_interior_iff_subset_of_open is_open_Iio).2 Iio_subset_Iic_self _,
rw ←convex.combo_self hab r,
obtain rfl | hx := hx.eq_or_lt,
{ exact add_lt_add_left (smul_lt_smul_of_pos (hy.lt_of_ne hxy.symm) hb) _ },
obtain rfl | hy := hy.eq_or_lt,
{ exact add_lt_add_right (smul_lt_smul_of_pos hx ha) _ },
{ exact add_lt_add (smul_lt_smul_of_pos hx ha) (smul_lt_smul_of_pos hy hb) }
end
lemma strict_convex_Ici (r : Ξ²) : strict_convex π•œ (Ici r) := @strict_convex_Iic π•œ Ξ²α΅’α΅ˆ _ _ _ _ _ _ r
lemma strict_convex_Icc (r s : Ξ²) : strict_convex π•œ (Icc r s) :=
(strict_convex_Ici r).inter $ strict_convex_Iic s
lemma strict_convex_Iio (r : Ξ²) : strict_convex π•œ (Iio r) :=
(convex_Iio r).strict_convex is_open_Iio
lemma strict_convex_Ioi (r : Ξ²) : strict_convex π•œ (Ioi r) :=
(convex_Ioi r).strict_convex is_open_Ioi
lemma strict_convex_Ioo (r s : Ξ²) : strict_convex π•œ (Ioo r s) :=
(strict_convex_Ioi r).inter $ strict_convex_Iio s
lemma strict_convex_Ico (r s : Ξ²) : strict_convex π•œ (Ico r s) :=
(strict_convex_Ici r).inter $ strict_convex_Iio s
lemma strict_convex_Ioc (r s : Ξ²) : strict_convex π•œ (Ioc r s) :=
(strict_convex_Ioi r).inter $ strict_convex_Iic s
lemma strict_convex_interval (r s : Ξ²) : strict_convex π•œ (interval r s) :=
strict_convex_Icc _ _
end linear_ordered_cancel_add_comm_monoid
end module
end add_comm_monoid
section add_cancel_comm_monoid
variables [add_cancel_comm_monoid E] [has_continuous_add E] [module π•œ E] {s : set E}
/-- The translation of a strictly convex set is also strictly convex. -/
lemma strict_convex.preimage_add_right (hs : strict_convex π•œ s) (z : E) :
strict_convex π•œ ((Ξ» x, z + x) ⁻¹' s) :=
begin
intros x hx y hy hxy a b ha hb hab,
refine preimage_interior_subset_interior_preimage (continuous_add_left _) _,
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab,
rwa [smul_add, smul_add, add_add_add_comm, ←add_smul, hab, one_smul] at h,
end
/-- The translation of a strictly convex set is also strictly convex. -/
lemma strict_convex.preimage_add_left (hs : strict_convex π•œ s) (z : E) :
strict_convex π•œ ((Ξ» x, x + z) ⁻¹' s) :=
by simpa only [add_comm] using hs.preimage_add_right z
end add_cancel_comm_monoid
section add_comm_group
variables [add_comm_group E] [add_comm_group F] [module π•œ E] [module π•œ F]
section continuous_add
variables [has_continuous_add E] {s t : set E}
lemma strict_convex.add (hs : strict_convex π•œ s) (ht : strict_convex π•œ t) :
strict_convex π•œ (s + t) :=
begin
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab,
rw [smul_add, smul_add, add_add_add_comm],
obtain rfl | hvx := eq_or_ne v x,
{ refine interior_mono (add_subset_add (singleton_subset_iff.2 hv) subset.rfl) _,
rw [convex.combo_self hab, singleton_add],
exact (is_open_map_add_left _).image_interior_subset _
(mem_image_of_mem _ $ ht hw hy (ne_of_apply_ne _ h) ha hb hab) },
exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) $
ht.convex hw hy ha.le hb.le hab)
end
lemma strict_convex.add_left (hs : strict_convex π•œ s) (z : E) :
strict_convex π•œ ((Ξ» x, z + x) '' s) :=
by simpa only [singleton_add] using (strict_convex_singleton z).add hs
lemma strict_convex.add_right (hs : strict_convex π•œ s) (z : E) :
strict_convex π•œ ((Ξ» x, x + z) '' s) :=
by simpa only [add_comm] using hs.add_left z
/-- The translation of a strictly convex set is also strictly convex. -/
lemma strict_convex.vadd (hs : strict_convex π•œ s) (x : E) : strict_convex π•œ (x +α΅₯ s) :=
hs.add_left x
end continuous_add
section continuous_smul
variables [linear_ordered_field 𝕝] [module 𝕝 E] [has_continuous_const_smul 𝕝 E]
[linear_map.compatible_smul E E π•œ 𝕝] {s : set E} {x : E}
lemma strict_convex.smul (hs : strict_convex π•œ s) (c : 𝕝) : strict_convex π•œ (c β€’ s) :=
begin
obtain rfl | hc := eq_or_ne c 0,
{ exact (subsingleton_zero_smul_set _).strict_convex },
{ exact hs.linear_image (linear_map.lsmul _ _ c) (is_open_map_smulβ‚€ hc) }
end
lemma strict_convex.affinity [has_continuous_add E] (hs : strict_convex π•œ s) (z : E) (c : 𝕝) :
strict_convex π•œ (z +α΅₯ c β€’ s) :=
(hs.smul c).vadd z
end continuous_smul
end add_comm_group
end ordered_semiring
section ordered_comm_semiring
variables [ordered_comm_semiring π•œ] [topological_space E]
section add_comm_group
variables [add_comm_group E] [module π•œ E] [no_zero_smul_divisors π•œ E]
[has_continuous_const_smul π•œ E] {s : set E}
lemma strict_convex.preimage_smul (hs : strict_convex π•œ s) (c : π•œ) :
strict_convex π•œ ((Ξ» z, c β€’ z) ⁻¹' s) :=
begin
classical,
obtain rfl | hc := eq_or_ne c 0,
{ simp_rw [zero_smul, preimage_const],
split_ifs,
{ exact strict_convex_univ },
{ exact strict_convex_empty } },
refine hs.linear_preimage (linear_map.lsmul _ _ c) _ (smul_right_injective E hc),
unfold linear_map.lsmul linear_map.mkβ‚‚ linear_map.mkβ‚‚' linear_map.mkβ‚‚'β‚›β‚—,
exact continuous_const_smul _,
end
end add_comm_group
end ordered_comm_semiring
section ordered_ring
variables [ordered_ring π•œ] [topological_space E] [topological_space F]
section add_comm_group
variables [add_comm_group E] [add_comm_group F] [module π•œ E] [module π•œ F] {s t : set E} {x y : E}
lemma strict_convex.eq_of_open_segment_subset_frontier [nontrivial π•œ] [densely_ordered π•œ]
(hs : strict_convex π•œ s) (hx : x ∈ s) (hy : y ∈ s) (h : open_segment π•œ x y βŠ† frontier s) :
x = y :=
begin
obtain ⟨a, haβ‚€, haβ‚βŸ© := densely_ordered.dense (0 : π•œ) 1 zero_lt_one,
classical,
by_contra hxy,
exact (h ⟨a, 1 - a, haβ‚€, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy haβ‚€ (sub_pos_of_lt ha₁) $ add_sub_cancel'_right _ _),
end
lemma strict_convex.add_smul_mem (hs : strict_convex π•œ s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y β‰  0) {t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) :
x + t β€’ y ∈ interior s :=
begin
have h : x + t β€’ y = (1 - t) β€’ x + t β€’ (x + y),
{ rw [smul_add, ←add_assoc, ←add_smul, sub_add_cancel, one_smul] },
rw h,
refine hs hx hxy (Ξ» h, hy $ add_left_cancel _) (sub_pos_of_lt ht₁) htβ‚€ (sub_add_cancel _ _),
exact x,
rw [←h, add_zero],
end
lemma strict_convex.smul_mem_of_zero_mem (hs : strict_convex π•œ s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hxβ‚€ : x β‰  0) {t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) :
t β€’ x ∈ interior s :=
by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hxβ‚€ htβ‚€ ht₁
lemma strict_convex.add_smul_sub_mem (h : strict_convex π•œ s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x β‰  y)
{t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) : x + t β€’ (y - x) ∈ interior s :=
begin
apply h.open_segment_subset hx hy hxy,
rw open_segment_eq_image',
exact mem_image_of_mem _ ⟨htβ‚€, htβ‚βŸ©,
end
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
lemma strict_convex.affine_preimage {s : set F} (hs : strict_convex π•œ s) {f : E →ᡃ[π•œ] F}
(hf : continuous f) (hfinj : injective f) :
strict_convex π•œ (f ⁻¹' s) :=
begin
intros x hx y hy hxy a b ha hb hab,
refine preimage_interior_subset_interior_preimage hf _,
rw [mem_preimage, convex.combo_affine_apply hab],
exact hs hx hy (hfinj.ne hxy) ha hb hab,
end
/-- The image of a strictly convex set under an affine map is strictly convex. -/
lemma strict_convex.affine_image (hs : strict_convex π•œ s) {f : E →ᡃ[π•œ] F} (hf : is_open_map f) :
strict_convex π•œ (f '' s) :=
begin
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab,
exact hf.image_interior_subset _ ⟨a β€’ x + b β€’ y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab,
convex.combo_affine_apply hab⟩⟩,
end
variables [topological_add_group E]
lemma strict_convex.neg (hs : strict_convex π•œ s) : strict_convex π•œ (-s) :=
hs.is_linear_preimage is_linear_map.is_linear_map_neg continuous_id.neg neg_injective
lemma strict_convex.sub (hs : strict_convex π•œ s) (ht : strict_convex π•œ t) :
strict_convex π•œ (s - t) :=
(sub_eq_add_neg s t).symm β–Έ hs.add ht.neg
end add_comm_group
end ordered_ring
section linear_ordered_field
variables [linear_ordered_field π•œ] [topological_space E]
section add_comm_group
variables [add_comm_group E] [add_comm_group F] [module π•œ E] [module π•œ F] {s : set E} {x : E}
/-- Alternative definition of set strict convexity, using division. -/
lemma strict_convex_iff_div :
strict_convex π•œ s ↔ s.pairwise
(Ξ» x y, βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ (a / (a + b)) β€’ x + (b / (a + b)) β€’ y ∈ interior s) :=
⟨λ h x hx y hy hxy a b ha hb, begin
apply h hx hy hxy (div_pos ha $ add_pos ha hb) (div_pos hb $ add_pos ha hb),
rw ←add_div,
exact div_self (add_pos ha hb).ne',
end, λ h x hx y hy hxy a b ha hb hab, by convert h hx hy hxy ha hb; rw [hab, div_one] ⟩
lemma strict_convex.mem_smul_of_zero_mem (hs : strict_convex π•œ s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hxβ‚€ : x β‰  0) {t : π•œ} (ht : 1 < t) :
x ∈ t β€’ interior s :=
begin
rw mem_smul_set_iff_inv_smul_memβ‚€ (zero_lt_one.trans ht).ne',
exact hs.smul_mem_of_zero_mem zero_mem hx hxβ‚€ (inv_pos.2 $ zero_lt_one.trans ht) (inv_lt_one ht),
end
end add_comm_group
end linear_ordered_field
/-!
#### Convex sets in an ordered space
Relates `convex` and `set.ord_connected`.
-/
section
variables [topological_space E]
/-- A set in a linear ordered field is strictly convex if and only if it is convex. -/
@[simp] lemma strict_convex_iff_convex [linear_ordered_field π•œ] [topological_space π•œ]
[order_topology π•œ] {s : set π•œ} :
strict_convex π•œ s ↔ convex π•œ s :=
begin
refine ⟨strict_convex.convex, λ hs, strict_convex_iff_open_segment_subset.2 (λ x hx y hy hxy, _)⟩,
obtain h | h := hxy.lt_or_lt,
{ refine (open_segment_subset_Ioo h).trans _,
rw ←interior_Icc,
exact interior_mono (Icc_subset_segment.trans $ hs.segment_subset hx hy) },
{ rw open_segment_symm,
refine (open_segment_subset_Ioo h).trans _,
rw ←interior_Icc,
exact interior_mono (Icc_subset_segment.trans $ hs.segment_subset hy hx) }
end
lemma strict_convex_iff_ord_connected [linear_ordered_field π•œ] [topological_space π•œ]
[order_topology π•œ] {s : set π•œ} :
strict_convex π•œ s ↔ s.ord_connected :=
strict_convex_iff_convex.trans convex_iff_ord_connected
alias strict_convex_iff_ord_connected ↔ strict_convex.ord_connected _
end