Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.6 kB
/-
Copyright (c) 2020 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot
-/
import analysis.specific_limits.basic
/-!
# Hofer's lemma
This is an elementary lemma about complete metric spaces. It is motivated by an
application to the bubbling-off analysis for holomorphic curves in symplectic topology.
We are *very* far away from having these applications, but the proof here is a nice
example of a proof needing to construct a sequence by induction in the middle of the proof.
## References:
* H. Hofer and C. Viterbo, *The Weinstein conjecture in the presence of holomorphic spheres*
-/
open_locale classical topological_space big_operators
open filter finset
local notation `d` := dist
lemma hofer {X: Type*} [metric_space X] [complete_space X]
(x : X) (ε : ℝ) (ε_pos : 0 < ε)
{ϕ : X → ℝ} (cont : continuous ϕ) (nonneg : ∀ y, 0 ≤ ϕ y) :
∃ (ε' > 0) (x' : X), ε' ≤ ε ∧
d x' x ≤ 2*ε ∧
ε * ϕ(x) ≤ ε' * ϕ x' ∧
∀ y, d x' y ≤ ε' → ϕ y ≤ 2*ϕ x' :=
begin
by_contradiction H,
have reformulation : ∀ x' (k : ℕ), ε * ϕ x ≤ ε / 2 ^ k * ϕ x' ↔ 2^k * ϕ x ≤ ϕ x',
{ intros x' k,
rw [div_mul_eq_mul_div, le_div_iff, mul_assoc, mul_le_mul_left ε_pos, mul_comm],
exact pow_pos (by norm_num) k, },
-- Now let's specialize to `ε/2^k`
replace H : ∀ k : ℕ, ∀ x', d x' x ≤ 2 * ε ∧ 2^k * ϕ x ≤ ϕ x' →
∃ y, d x' y ≤ ε/2^k ∧ 2 * ϕ x' < ϕ y,
{ intros k x',
push_neg at H,
simpa [reformulation] using
H (ε/2^k) (by simp [ε_pos, zero_lt_two]) x' (by simp [ε_pos, zero_lt_two, one_le_two]) },
clear reformulation,
haveI : nonempty X := ⟨x⟩,
choose! F hF using H, -- Use the axiom of choice
-- Now define u by induction starting at x, with u_{n+1} = F(n, u_n)
let u : ℕ → X := λ n, nat.rec_on n x F,
have hu0 : u 0 = x := rfl,
-- The properties of F translate to properties of u
have hu :
n,
d (u n) x ≤ 2 * ε ∧ 2^n * ϕ x ≤ ϕ (u n) →
d (u n) (u $ n + 1) ≤ ε / 2 ^ n ∧ 2 * ϕ (u n) < ϕ (u $ n + 1),
{ intro n,
exact hF n (u n) },
clear hF,
-- Key properties of u, to be proven by induction
have key : ∀ n, d (u n) (u (n + 1)) ≤ ε / 2 ^ n ∧ 2 * ϕ (u n) < ϕ (u (n + 1)),
{ intro n,
induction n using nat.case_strong_induction_on with n IH,
{ specialize hu 0,
simpa [hu0, mul_nonneg_iff, zero_le_one, ε_pos.le, le_refl] using hu },
have A : d (u (n+1)) x ≤ 2 * ε,
{ rw [dist_comm],
let r := range (n+1), -- range (n+1) = {0, ..., n}
calc
d (u 0) (u (n + 1))
≤ ∑ i in r, d (u i) (u $ i+1) : dist_le_range_sum_dist u (n + 1)
... ≤ ∑ i in r, ε/2^i : sum_le_sum (λ i i_in, (IH i $ nat.lt_succ_iff.mp $
finset.mem_range.mp i_in).1)
... = ∑ i in r, (1/2)^i*ε : by { congr' with i, field_simp }
... = (∑ i in r, (1/2)^i)*ε : finset.sum_mul.symm
... ≤ 2*ε : mul_le_mul_of_nonneg_right (sum_geometric_two_le _)
(le_of_lt ε_pos), },
have B : 2^(n+1) * ϕ x ≤ ϕ (u (n + 1)),
{ refine @geom_le (ϕ ∘ u) _ zero_le_two (n + 1) (λ m hm, _),
exact (IH _ $ nat.lt_add_one_iff.1 hm).2.le },
exact hu (n+1) ⟨A, B⟩, },
cases forall_and_distrib.mp key with key₁ key₂,
clear hu key,
-- Hence u is Cauchy
have cauchy_u : cauchy_seq u,
{ refine cauchy_seq_of_le_geometric _ ε one_half_lt_one (λ n, _),
simpa only [one_div, inv_pow] using key₁ n },
-- So u converges to some y
obtain ⟨y, limy⟩ : ∃ y, tendsto u at_top (𝓝 y),
from complete_space.complete cauchy_u,
-- And ϕ ∘ u goes to +∞
have lim_top : tendsto (ϕ ∘ u) at_top at_top,
{ let v := λ n, (ϕ ∘ u) (n+1),
suffices : tendsto v at_top at_top,
by rwa tendsto_add_at_top_iff_nat at this,
have hv₀ : 0 < v 0,
{ have : 0 ≤ ϕ (u 0) := nonneg x,
calc 02 * ϕ (u 0) : by linarith
... < ϕ (u (0 + 1)) : key0 },
apply tendsto_at_top_of_geom_le hv₀ one_lt_two,
exact λ n, (key₂ (n+1)).le },
-- But ϕ ∘ u also needs to go to ϕ(y)
have lim : tendsto (ϕ ∘ u) at_top (𝓝 (ϕ y)),
from tendsto.comp cont.continuous_at limy,
-- So we have our contradiction!
exact not_tendsto_at_top_of_tendsto_nhds lim lim_top,
end