Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Moritz Doll. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Moritz Doll | |
-/ | |
import topology.algebra.module.weak_dual | |
import analysis.normed.field.basic | |
import analysis.locally_convex.with_seminorms | |
/-! | |
# Weak Dual in Topological Vector Spaces | |
We prove that the weak topology induced by a bilinear form `B : E ββ[π] F ββ[π] π` is locally | |
convex and we explicit give a neighborhood basis in terms of the family of seminorms `Ξ» x, β₯B x yβ₯` | |
for `y : F`. | |
## Main definitions | |
* `linear_map.to_seminorm`: turn a linear form `f : E ββ[π] π` into a seminorm `Ξ» x, β₯f xβ₯`. | |
* `linear_map.to_seminorm_family`: turn a bilinear form `B : E ββ[π] F ββ[π] π` into a map | |
`F β seminorm π E`. | |
## Main statements | |
* `linear_map.has_basis_weak_bilin`: the seminorm balls of `B.to_seminorm_family` form a | |
neighborhood basis of `0` in the weak topology. | |
* `linear_map.to_seminorm_family.with_seminorms`: the topology of a weak space is induced by the | |
family of seminorm `B.to_seminorm_family`. | |
* `weak_bilin.locally_convex_space`: a spaced endowed with a weak topology is locally convex. | |
## References | |
* [Bourbaki, *Topological Vector Spaces*][bourbaki1987] | |
## Tags | |
weak dual, seminorm | |
-/ | |
variables {π E F ΞΉ : Type*} | |
open_locale topological_space | |
section bilin_form | |
namespace linear_map | |
variables [normed_field π] [add_comm_group E] [module π E] [add_comm_group F] [module π F] | |
/-- Construct a seminorm from a linear form `f : E ββ[π] π` over a normed field `π` by | |
`Ξ» x, β₯f xβ₯` -/ | |
def to_seminorm (f : E ββ[π] π) : seminorm π E := | |
(norm_seminorm π π).comp f | |
lemma coe_to_seminorm {f : E ββ[π] π} : | |
βf.to_seminorm = Ξ» x, β₯f xβ₯ := rfl | |
@[simp] lemma to_seminorm_apply {f : E ββ[π] π} {x : E} : | |
f.to_seminorm x = β₯f xβ₯ := rfl | |
lemma to_seminorm_ball_zero {f : E ββ[π] π} {r : β} : | |
seminorm.ball f.to_seminorm 0 r = { x : E | β₯f xβ₯ < r} := | |
by simp only [seminorm.ball_zero_eq, to_seminorm_apply] | |
lemma to_seminorm_comp (f : F ββ[π] π) (g : E ββ[π] F) : | |
f.to_seminorm.comp g = (f.comp g).to_seminorm := | |
by { ext, simp only [seminorm.comp_apply, to_seminorm_apply, coe_comp] } | |
/-- Construct a family of seminorms from a bilinear form. -/ | |
def to_seminorm_family (B : E ββ[π] F ββ[π] π) : seminorm_family π E F := | |
Ξ» y, (B.flip y).to_seminorm | |
@[simp] lemma to_seminorm_family_apply {B : E ββ[π] F ββ[π] π} {x y} : | |
(B.to_seminorm_family y) x = β₯B x yβ₯ := rfl | |
end linear_map | |
end bilin_form | |
section topology | |
variables [normed_field π] [add_comm_group E] [module π E] [add_comm_group F] [module π F] | |
variables [nonempty ΞΉ] | |
variables {B : E ββ[π] F ββ[π] π} | |
lemma linear_map.has_basis_weak_bilin (B : E ββ[π] F ββ[π] π) : | |
(π (0 : weak_bilin B)).has_basis B.to_seminorm_family.basis_sets id := | |
begin | |
let p := B.to_seminorm_family, | |
rw [nhds_induced, nhds_pi], | |
simp only [map_zero, linear_map.zero_apply], | |
have h := @metric.nhds_basis_ball π _ 0, | |
have h' := filter.has_basis_pi (Ξ» (i : F), h), | |
have h'' := filter.has_basis.comap (Ξ» x y, B x y) h', | |
refine h''.to_has_basis _ _, | |
{ rintros (U : set F Γ (F β β)) hU, | |
cases hU with hUβ hUβ, | |
simp only [id.def], | |
let U' := hUβ.to_finset, | |
by_cases hUβ : U.fst.nonempty, | |
{ have hUβ' : U'.nonempty := hUβ.nonempty_to_finset.mpr hUβ, | |
refine β¨(U'.sup p).ball 0 $ U'.inf' hUβ' U.snd, p.basis_sets_mem _ $ | |
(finset.lt_inf'_iff _).2 $ Ξ» y hy, hUβ y $ (hUβ.mem_to_finset).mp hy, Ξ» x hx y hy, _β©, | |
simp only [set.mem_preimage, set.mem_pi, mem_ball_zero_iff], | |
rw seminorm.mem_ball_zero at hx, | |
rw βlinear_map.to_seminorm_family_apply, | |
have hyU' : y β U' := (set.finite.mem_to_finset hUβ).mpr hy, | |
have hp : p y β€ U'.sup p := finset.le_sup hyU', | |
refine lt_of_le_of_lt (hp x) (lt_of_lt_of_le hx _), | |
exact finset.inf'_le _ hyU' }, | |
rw set.not_nonempty_iff_eq_empty.mp hUβ, | |
simp only [set.empty_pi, set.preimage_univ, set.subset_univ, and_true], | |
exact Exists.intro ((p 0).ball 0 1) (p.basis_sets_singleton_mem 0 one_pos) }, | |
rintros U (hU : U β p.basis_sets), | |
rw seminorm_family.basis_sets_iff at hU, | |
rcases hU with β¨s, r, hr, hUβ©, | |
rw hU, | |
refine β¨(s, Ξ» _, r), β¨by simp only [s.finite_to_set], Ξ» y hy, hrβ©, Ξ» x hx, _β©, | |
simp only [set.mem_preimage, set.mem_pi, finset.mem_coe, mem_ball_zero_iff] at hx, | |
simp only [id.def, seminorm.mem_ball, sub_zero], | |
refine seminorm.finset_sup_apply_lt hr (Ξ» y hy, _), | |
rw linear_map.to_seminorm_family_apply, | |
exact hx y hy, | |
end | |
lemma linear_map.weak_bilin_with_seminorms (B : E ββ[π] F ββ[π] π) : | |
with_seminorms (linear_map.to_seminorm_family B : F β seminorm π (weak_bilin B)) := | |
seminorm_family.with_seminorms_of_has_basis _ B.has_basis_weak_bilin | |
end topology | |
section locally_convex | |
variables [normed_field π] [add_comm_group E] [module π E] [add_comm_group F] [module π F] | |
variables [nonempty ΞΉ] [normed_space β π] [module β E] [is_scalar_tower β π E] | |
instance {B : E ββ[π] F ββ[π] π} : locally_convex_space β (weak_bilin B) := | |
seminorm_family.to_locally_convex_space (B.weak_bilin_with_seminorms) | |
end locally_convex | |