Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.3 kB
/-
Copyright (c) 2020 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import analysis.normed_space.hahn_banach.extension
import analysis.normed_space.is_R_or_C
import analysis.locally_convex.polar
/-!
# The topological dual of a normed space
In this file we define the topological dual `normed_space.dual` of a normed space, and the
continuous linear map `normed_space.inclusion_in_double_dual` from a normed space into its double
dual.
For base field `π•œ = ℝ` or `π•œ = β„‚`, this map is actually an isometric embedding; we provide a
version `normed_space.inclusion_in_double_dual_li` of the map which is of type a bundled linear
isometric embedding, `E β†’β‚—α΅’[π•œ] (dual π•œ (dual π•œ E))`.
Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the
theory for `seminormed_add_comm_group` and we specialize to `normed_add_comm_group` when needed.
## Main definitions
* `inclusion_in_double_dual` and `inclusion_in_double_dual_li` are the inclusion of a normed space
in its double dual, considered as a bounded linear map and as a linear isometry, respectively.
* `polar π•œ s` is the subset of `dual π•œ E` consisting of those functionals `x'` for which
`βˆ₯x' zβˆ₯ ≀ 1` for every `z ∈ s`.
## Tags
dual
-/
noncomputable theory
open_locale classical topological_space
universes u v
namespace normed_space
section general
variables (π•œ : Type*) [nontrivially_normed_field π•œ]
variables (E : Type*) [seminormed_add_comm_group E] [normed_space π•œ E]
variables (F : Type*) [normed_add_comm_group F] [normed_space π•œ F]
/-- The topological dual of a seminormed space `E`. -/
@[derive [inhabited, seminormed_add_comm_group, normed_space π•œ]] def dual := E β†’L[π•œ] π•œ
instance : continuous_linear_map_class (dual π•œ E) π•œ E π•œ :=
continuous_linear_map.continuous_semilinear_map_class
instance : has_coe_to_fun (dual π•œ E) (Ξ» _, E β†’ π•œ) := continuous_linear_map.to_fun
instance : normed_add_comm_group (dual π•œ F) := continuous_linear_map.to_normed_add_comm_group
instance [finite_dimensional π•œ E] : finite_dimensional π•œ (dual π•œ E) :=
continuous_linear_map.finite_dimensional
/-- The inclusion of a normed space in its double (topological) dual, considered
as a bounded linear map. -/
def inclusion_in_double_dual : E β†’L[π•œ] (dual π•œ (dual π•œ E)) :=
continuous_linear_map.apply π•œ π•œ
@[simp] lemma dual_def (x : E) (f : dual π•œ E) : inclusion_in_double_dual π•œ E x f = f x := rfl
lemma inclusion_in_double_dual_norm_eq :
βˆ₯inclusion_in_double_dual π•œ Eβˆ₯ = βˆ₯(continuous_linear_map.id π•œ (dual π•œ E))βˆ₯ :=
continuous_linear_map.op_norm_flip _
lemma inclusion_in_double_dual_norm_le : βˆ₯inclusion_in_double_dual π•œ Eβˆ₯ ≀ 1 :=
by { rw inclusion_in_double_dual_norm_eq, exact continuous_linear_map.norm_id_le }
lemma double_dual_bound (x : E) : βˆ₯(inclusion_in_double_dual π•œ E) xβˆ₯ ≀ βˆ₯xβˆ₯ :=
by simpa using continuous_linear_map.le_of_op_norm_le _ (inclusion_in_double_dual_norm_le π•œ E) x
/-- The dual pairing as a bilinear form. -/
def dual_pairing : (dual π•œ E) β†’β‚—[π•œ] E β†’β‚—[π•œ] π•œ := continuous_linear_map.coe_lm π•œ
@[simp] lemma dual_pairing_apply {v : dual π•œ E} {x : E} : dual_pairing π•œ E v x = v x := rfl
lemma dual_pairing_separating_left : (dual_pairing π•œ E).separating_left :=
begin
rw [linear_map.separating_left_iff_ker_eq_bot, linear_map.ker_eq_bot],
exact continuous_linear_map.coe_injective,
end
end general
section bidual_isometry
variables (π•œ : Type v) [is_R_or_C π•œ]
{E : Type u} [normed_add_comm_group E] [normed_space π•œ E]
/-- If one controls the norm of every `f x`, then one controls the norm of `x`.
Compare `continuous_linear_map.op_norm_le_bound`. -/
lemma norm_le_dual_bound (x : E) {M : ℝ} (hMp: 0 ≀ M) (hM : βˆ€ (f : dual π•œ E), βˆ₯f xβˆ₯ ≀ M * βˆ₯fβˆ₯) :
βˆ₯xβˆ₯ ≀ M :=
begin
classical,
by_cases h : x = 0,
{ simp only [h, hMp, norm_zero] },
{ obtain ⟨f, hf₁, hfx⟩ : βˆƒ f : E β†’L[π•œ] π•œ, βˆ₯fβˆ₯ = 1 ∧ f x = βˆ₯xβˆ₯ := exists_dual_vector π•œ x h,
calc βˆ₯xβˆ₯ = βˆ₯(βˆ₯xβˆ₯ : π•œ)βˆ₯ : is_R_or_C.norm_coe_norm.symm
... = βˆ₯f xβˆ₯ : by rw hfx
... ≀ M * βˆ₯fβˆ₯ : hM f
... = M : by rw [hf₁, mul_one] }
end
lemma eq_zero_of_forall_dual_eq_zero {x : E} (h : βˆ€ f : dual π•œ E, f x = (0 : π•œ)) : x = 0 :=
norm_le_zero_iff.mp (norm_le_dual_bound π•œ x le_rfl (Ξ» f, by simp [h f]))
lemma eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 ↔ βˆ€ g : dual π•œ E, g x = 0 :=
⟨λ hx, by simp [hx], Ξ» h, eq_zero_of_forall_dual_eq_zero π•œ h⟩
/-- See also `geometric_hahn_banach_point_point`. -/
lemma eq_iff_forall_dual_eq {x y : E} :
x = y ↔ βˆ€ g : dual π•œ E, g x = g y :=
begin
rw [← sub_eq_zero, eq_zero_iff_forall_dual_eq_zero π•œ (x - y)],
simp [sub_eq_zero],
end
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/
def inclusion_in_double_dual_li : E β†’β‚—α΅’[π•œ] (dual π•œ (dual π•œ E)) :=
{ norm_map' := begin
intros x,
apply le_antisymm,
{ exact double_dual_bound π•œ E x },
rw continuous_linear_map.norm_def,
refine le_cInf continuous_linear_map.bounds_nonempty _,
rintros c ⟨hc1, hc2⟩,
exact norm_le_dual_bound π•œ x hc1 hc2
end,
.. inclusion_in_double_dual π•œ E }
end bidual_isometry
section polar_sets
open metric set normed_space
/-- Given a subset `s` in a normed space `E` (over a field `π•œ`), the polar
`polar π•œ s` is the subset of `dual π•œ E` consisting of those functionals which
evaluate to something of norm at most one at all points `z ∈ s`. -/
def polar (π•œ : Type*) [nontrivially_normed_field π•œ]
{E : Type*} [seminormed_add_comm_group E] [normed_space π•œ E] : set E β†’ set (dual π•œ E) :=
(dual_pairing π•œ E).flip.polar
variables (π•œ : Type*) [nontrivially_normed_field π•œ]
variables {E : Type*} [seminormed_add_comm_group E] [normed_space π•œ E]
lemma mem_polar_iff {x' : dual π•œ E} (s : set E) : x' ∈ polar π•œ s ↔ βˆ€ z ∈ s, βˆ₯x' zβˆ₯ ≀ 1 := iff.rfl
@[simp] lemma polar_univ : polar π•œ (univ : set E) = {(0 : dual π•œ E)} :=
(dual_pairing π•œ E).flip.polar_univ
(linear_map.flip_separating_right.mpr (dual_pairing_separating_left π•œ E))
lemma is_closed_polar (s : set E) : is_closed (polar π•œ s) :=
begin
dunfold normed_space.polar,
simp only [linear_map.polar_eq_Inter, linear_map.flip_apply],
refine is_closed_bInter (Ξ» z hz, _),
exact is_closed_Iic.preimage (continuous_linear_map.apply π•œ π•œ z).continuous.norm
end
@[simp] lemma polar_closure (s : set E) : polar π•œ (closure s) = polar π•œ s :=
((dual_pairing π•œ E).flip.polar_antitone subset_closure).antisymm $
(dual_pairing π•œ E).flip.polar_gc.l_le $
closure_minimal ((dual_pairing π•œ E).flip.polar_gc.le_u_l s) $
by simpa [linear_map.flip_flip]
using (is_closed_polar _ _).preimage (inclusion_in_double_dual π•œ E).continuous
variables {π•œ}
/-- If `x'` is a dual element such that the norms `βˆ₯x' zβˆ₯` are bounded for `z ∈ s`, then a
small scalar multiple of `x'` is in `polar π•œ s`. -/
lemma smul_mem_polar {s : set E} {x' : dual π•œ E} {c : π•œ}
(hc : βˆ€ z, z ∈ s β†’ βˆ₯ x' z βˆ₯ ≀ βˆ₯cβˆ₯) : c⁻¹ β€’ x' ∈ polar π•œ s :=
begin
by_cases c_zero : c = 0, { simp only [c_zero, inv_zero, zero_smul],
exact (dual_pairing π•œ E).flip.zero_mem_polar _ },
have eq : βˆ€ z, βˆ₯ c⁻¹ β€’ (x' z) βˆ₯ = βˆ₯ c⁻¹ βˆ₯ * βˆ₯ x' z βˆ₯ := Ξ» z, norm_smul c⁻¹ _,
have le : βˆ€ z, z ∈ s β†’ βˆ₯ c⁻¹ β€’ (x' z) βˆ₯ ≀ βˆ₯ c⁻¹ βˆ₯ * βˆ₯ c βˆ₯,
{ intros z hzs,
rw eq z,
apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _), },
have cancel : βˆ₯ c⁻¹ βˆ₯ * βˆ₯ c βˆ₯ = 1,
by simp only [c_zero, norm_eq_zero, ne.def, not_false_iff,
inv_mul_cancel, norm_inv],
rwa cancel at le,
end
lemma polar_ball_subset_closed_ball_div {c : π•œ} (hc : 1 < βˆ₯cβˆ₯) {r : ℝ} (hr : 0 < r) :
polar π•œ (ball (0 : E) r) βŠ† closed_ball (0 : dual π•œ E) (βˆ₯cβˆ₯ / r) :=
begin
intros x' hx',
rw mem_polar_iff at hx',
simp only [polar, mem_set_of_eq, mem_closed_ball_zero_iff, mem_ball_zero_iff] at *,
have hcr : 0 < βˆ₯cβˆ₯ / r, from div_pos (zero_lt_one.trans hc) hr,
refine continuous_linear_map.op_norm_le_of_shell hr hcr.le hc (Ξ» x h₁ hβ‚‚, _),
calc βˆ₯x' xβˆ₯ ≀ 1 : hx' _ hβ‚‚
... ≀ (βˆ₯cβˆ₯ / r) * βˆ₯xβˆ₯ : (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa inv_div)
end
variables (π•œ)
lemma closed_ball_inv_subset_polar_closed_ball {r : ℝ} :
closed_ball (0 : dual π•œ E) r⁻¹ βŠ† polar π•œ (closed_ball (0 : E) r) :=
Ξ» x' hx' x hx,
calc βˆ₯x' xβˆ₯ ≀ βˆ₯x'βˆ₯ * βˆ₯xβˆ₯ : x'.le_op_norm x
... ≀ r⁻¹ * r :
mul_le_mul (mem_closed_ball_zero_iff.1 hx') (mem_closed_ball_zero_iff.1 hx)
(norm_nonneg _) (dist_nonneg.trans hx')
... = r / r : inv_mul_eq_div _ _
... ≀ 1 : div_self_le_one r
/-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with
inverse radius. -/
lemma polar_closed_ball {π•œ E : Type*} [is_R_or_C π•œ] [normed_add_comm_group E] [normed_space π•œ E]
{r : ℝ} (hr : 0 < r) :
polar π•œ (closed_ball (0 : E) r) = closed_ball (0 : dual π•œ E) r⁻¹ :=
begin
refine subset.antisymm _ (closed_ball_inv_subset_polar_closed_ball _),
intros x' h,
simp only [mem_closed_ball_zero_iff],
refine continuous_linear_map.op_norm_le_of_ball hr (inv_nonneg.mpr hr.le) (Ξ» z hz, _),
simpa only [one_div] using linear_map.bound_of_ball_bound' hr 1 x'.to_linear_map h z
end
/-- Given a neighborhood `s` of the origin in a normed space `E`, the dual norms
of all elements of the polar `polar π•œ s` are bounded by a constant. -/
lemma bounded_polar_of_mem_nhds_zero {s : set E} (s_nhd : s ∈ 𝓝 (0 : E)) :
bounded (polar π•œ s) :=
begin
obtain ⟨a, ha⟩ : βˆƒ a : π•œ, 1 < βˆ₯aβˆ₯ := normed_field.exists_one_lt_norm π•œ,
obtain ⟨r, r_pos, r_ball⟩ : βˆƒ (r : ℝ) (hr : 0 < r), ball 0 r βŠ† s :=
metric.mem_nhds_iff.1 s_nhd,
exact bounded_closed_ball.mono (((dual_pairing π•œ E).flip.polar_antitone r_ball).trans $
polar_ball_subset_closed_ball_div ha r_pos)
end
end polar_sets
end normed_space