Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.73 kB
/-
Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import topology.instances.real
import order.filter.archimedean
/-!
# Convergence of subadditive sequences
A subadditive sequence `u : ℕ → ℝ` is a sequence satisfying `u (m + n) ≤ u m + u n` for all `m, n`.
We define this notion as `subadditive u`, and prove in `subadditive.tendsto_lim` that, if `u n / n`
is bounded below, then it converges to a limit (that we denote by `subadditive.lim` for
convenience). This result is known as Fekete's lemma in the literature.
-/
noncomputable theory
open set filter
open_locale topological_space
/-- A real-valued sequence is subadditive if it satisfies the inequality `u (m + n) ≤ u m + u n`
for all `m, n`. -/
def subadditive (u : ℕ → ℝ) : Prop :=
∀ m n, u (m + n) ≤ u m + u n
namespace subadditive
variables {u : ℕ → ℝ} (h : subadditive u)
include h
/-- The limit of a bounded-below subadditive sequence. The fact that the sequence indeed tends to
this limit is given in `subadditive.tendsto_lim` -/
@[irreducible, nolint unused_arguments]
protected def lim := Inf ((λ (n : ℕ), u n / n) '' (Ici 1))
lemma lim_le_div (hbdd : bdd_below (range (λ n, u n / n))) {n : ℕ} (hn : n0) :
h.lim ≤ u n / n :=
begin
rw subadditive.lim,
apply cInf_le _ _,
{ rcases hbdd with ⟨c, hc⟩,
exact ⟨c, λ x hx, hc (image_subset_range _ _ hx)⟩ },
{ apply mem_image_of_mem,
exact zero_lt_iff.2 hn }
end
lemma apply_mul_add_le (k n r) : u (k * n + r) ≤ k * u n + u r :=
begin
induction k with k IH, { simp only [nat.cast_zero, zero_mul, zero_add] },
calc
u ((k+1) * n + r)
= u (n + (k * n + r)) : by { congr' 1, ring }
... ≤ u n + u (k * n + r) : h _ _
... ≤ u n + (k * u n + u r) : add_le_add_left IH _
... = (k+1 : ℕ) * u n + u r : by simp; ring
end
lemma eventually_div_lt_of_div_lt {L : ℝ} {n : ℕ} (hn : n0) (hL : u n / n < L) :
∀ᶠ p in at_top, u p / p < L :=
begin
have I : ∀ (i : ℕ), 0 < i → (i : ℝ) ≠ 0,
{ assume i hi, simp only [hi.ne', ne.def, nat.cast_eq_zero, not_false_iff] },
obtain ⟨w, nw, wL⟩ : ∃ w, u n / n < w ∧ w < L := exists_between hL,
obtain ⟨x, hx⟩ : ∃ x, ∀ i < n, u i - i * w ≤ x,
{ obtain ⟨x, hx⟩ : bdd_above (↑(finset.image (λ i, u i - i * w) (finset.range n))) :=
finset.bdd_above _,
refine ⟨x, λ i hi, _⟩,
simp only [upper_bounds, mem_image, and_imp, forall_exists_index, mem_set_of_eq,
forall_apply_eq_imp_iff₂, finset.mem_range, finset.mem_coe, finset.coe_image] at hx,
exact hx _ hi },
have A : ∀ (p : ℕ), u p ≤ p * w + x,
{ assume p,
let s := p / n,
let r := p % n,
have hp : p = s * n + r, by rw [mul_comm, nat.div_add_mod],
calc u p = u (s * n + r) : by rw hp
... ≤ s * u n + u r : h.apply_mul_add_le _ _ _
... = s * n * (u n / n) + u r : by { field_simp [I _ hn.bot_lt], ring }
... ≤ s * n * w + u r : add_le_add_right
(mul_le_mul_of_nonneg_left nw.le (mul_nonneg (nat.cast_nonneg _) (nat.cast_nonneg _))) _
... = (s * n + r) * w + (u r - r * w) : by ring
... = p * w + (u r - r * w) : by { rw hp, simp only [nat.cast_add, nat.cast_mul] }
... ≤ p * w + x : add_le_add_left (hx _ (nat.mod_lt _ hn.bot_lt)) _ },
have B : ∀ᶠ p in at_top, u p / p ≤ w + x / p,
{ refine eventually_at_top.21, λ p hp, _⟩,
simp only [I p hp, ne.def, not_false_iff] with field_simps,
refine div_le_div_of_le_of_nonneg _ (nat.cast_nonneg _),
rw mul_comm,
exact A _ },
have C : ∀ᶠ (p : ℕ) in at_top, w + x / p < L,
{ have : tendsto (λ (p : ℕ), w + x / p) at_top (𝓝 (w + 0)) :=
tendsto_const_nhds.add (tendsto_const_nhds.div_at_top tendsto_coe_nat_at_top_at_top),
rw add_zero at this,
exact (tendsto_order.1 this).2 _ wL },
filter_upwards [B, C] with _ hp h'p using hp.trans_lt h'p,
end
/-- Fekete's lemma: a subadditive sequence which is bounded below converges. -/
theorem tendsto_lim (hbdd : bdd_below (range (λ n, u n / n))) :
tendsto (λ n, u n / n) at_top (𝓝 h.lim) :=
begin
refine tendsto_order.2 ⟨λ l hl, _, λ L hL, _⟩,
{ refine eventually_at_top.2
1, λ n hn, hl.trans_le (h.lim_le_div hbdd ((zero_lt_one.trans_le hn).ne'))⟩ },
{ obtain ⟨n, npos, hn⟩ : ∃ (n : ℕ), 0 < n ∧ u n / n < L,
{ rw subadditive.lim at hL,
rcases exists_lt_of_cInf_lt (by simp) hL with ⟨x, hx, xL⟩,
rcases (mem_image _ _ _).1 hx with ⟨n, hn, rfl⟩,
exact ⟨n, zero_lt_one.trans_le hn, xL⟩ },
exact h.eventually_div_lt_of_div_lt npos.ne' hn }
end
end subadditive