Zhangir Azerbayev
squashed?
4365a98
raw
history blame
15.4 kB
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Mario Carneiro
-/
import linear_algebra.basic
import linear_algebra.basis
/-!
# Basics on bilinear maps
This file provides basics on bilinear maps. The most general form considered are maps that are
semilinear in both arguments. They are of type `M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P`, where `M` and `N`
are modules over `R` and `S` respectively, `P` is a module over both `Rβ‚‚` and `Sβ‚‚` with
commuting actions, and `ρ₁₂ : R β†’+* Rβ‚‚` and `σ₁₂ : S β†’+* Sβ‚‚`.
## Main declarations
* `linear_map.mkβ‚‚`: a constructor for bilinear maps,
taking an unbundled function together with proof witnesses of bilinearity
* `linear_map.flip`: turns a bilinear map `M Γ— N β†’ P` into `N Γ— M β†’ P`
* `linear_map.lcomp` and `linear_map.llcomp`: composition of linear maps as a bilinear map
* `linear_map.complβ‚‚`: composition of a bilinear map `M Γ— N β†’ P` with a linear map `Q β†’ M`
* `linear_map.comprβ‚‚`: composition of a bilinear map `M Γ— N β†’ P` with a linear map `Q β†’ N`
* `linear_map.lsmul`: scalar multiplication as a bilinear map `R Γ— M β†’ M`
## Tags
bilinear
-/
variables {ι₁ ΞΉβ‚‚ : Type*}
namespace linear_map
section semiring
-- the `β‚—` subscript variables are for special cases about linear (as opposed to semilinear) maps
variables {R : Type*} [semiring R] {S : Type*} [semiring S]
variables {Rβ‚‚ : Type*} [semiring Rβ‚‚] {Sβ‚‚ : Type*} [semiring Sβ‚‚]
variables {M : Type*} {N : Type*} {P : Type*}
variables {Mβ‚‚ : Type*} {Nβ‚‚ : Type*} {Pβ‚‚ : Type*}
variables {Nβ‚— : Type*} {Pβ‚— : Type*}
variables {M' : Type*} {N' : Type*} {P' : Type*}
variables [add_comm_monoid M] [add_comm_monoid N] [add_comm_monoid P]
variables [add_comm_monoid Mβ‚‚] [add_comm_monoid Nβ‚‚] [add_comm_monoid Pβ‚‚]
variables [add_comm_monoid Nβ‚—] [add_comm_monoid Pβ‚—]
variables [add_comm_group M'] [add_comm_group N'] [add_comm_group P']
variables [module R M] [module S N] [module Rβ‚‚ P] [module Sβ‚‚ P]
variables [module R Mβ‚‚] [module S Nβ‚‚] [module R Pβ‚‚] [module Sβ‚‚ Pβ‚‚]
variables [module R Pβ‚—] [module S Pβ‚—]
variables [module R M'] [module S N'] [module Rβ‚‚ P'] [module Sβ‚‚ P']
variables [smul_comm_class Sβ‚‚ Rβ‚‚ P] [smul_comm_class S R Pβ‚—] [smul_comm_class Sβ‚‚ Rβ‚‚ P']
variables [smul_comm_class Sβ‚‚ R Pβ‚‚]
variables {ρ₁₂ : R β†’+* Rβ‚‚} {σ₁₂ : S β†’+* Sβ‚‚}
variables (ρ₁₂ σ₁₂)
/-- Create a bilinear map from a function that is semilinear in each component.
See `mkβ‚‚'` and `mkβ‚‚` for the linear case. -/
def mkβ‚‚'β‚›β‚— (f : M β†’ N β†’ P)
(H1 : βˆ€ m₁ mβ‚‚ n, f (m₁ + mβ‚‚) n = f m₁ n + f mβ‚‚ n)
(H2 : βˆ€ (c:R) m n, f (c β€’ m) n = (ρ₁₂ c) β€’ f m n)
(H3 : βˆ€ m n₁ nβ‚‚, f m (n₁ + nβ‚‚) = f m n₁ + f m nβ‚‚)
(H4 : βˆ€ (c:S) m n, f m (c β€’ n) = (σ₁₂ c) β€’ f m n) : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P :=
{ to_fun := Ξ» m, { to_fun := f m, map_add' := H3 m, map_smul' := Ξ» c, H4 c m},
map_add' := Ξ» m₁ mβ‚‚, linear_map.ext $ H1 m₁ mβ‚‚,
map_smul' := Ξ» c m, linear_map.ext $ H2 c m }
variables {ρ₁₂ σ₁₂}
@[simp] theorem mkβ‚‚'β‚›β‚—_apply
(f : M β†’ N β†’ P) {H1 H2 H3 H4} (m : M) (n : N) :
(mkβ‚‚'β‚›β‚— ρ₁₂ σ₁₂ f H1 H2 H3 H4 : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) m n = f m n := rfl
variables (R S)
/-- Create a bilinear map from a function that is linear in each component.
See `mkβ‚‚` for the special case where both arguments come from modules over the same ring. -/
def mkβ‚‚' (f : M β†’ N β†’ Pβ‚—)
(H1 : βˆ€ m₁ mβ‚‚ n, f (m₁ + mβ‚‚) n = f m₁ n + f mβ‚‚ n)
(H2 : βˆ€ (c:R) m n, f (c β€’ m) n = c β€’ f m n)
(H3 : βˆ€ m n₁ nβ‚‚, f m (n₁ + nβ‚‚) = f m n₁ + f m nβ‚‚)
(H4 : βˆ€ (c:S) m n, f m (c β€’ n) = c β€’ f m n) : M β†’β‚—[R] N β†’β‚—[S] Pβ‚— :=
mkβ‚‚'β‚›β‚— (ring_hom.id R) (ring_hom.id S) f H1 H2 H3 H4
variables {R S}
@[simp] theorem mkβ‚‚'_apply
(f : M β†’ N β†’ Pβ‚—) {H1 H2 H3 H4} (m : M) (n : N) :
(mkβ‚‚' R S f H1 H2 H3 H4 : M β†’β‚—[R] N β†’β‚—[S] Pβ‚—) m n = f m n := rfl
theorem extβ‚‚ {f g : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P}
(H : βˆ€ m n, f m n = g m n) : f = g :=
linear_map.ext (Ξ» m, linear_map.ext $ Ξ» n, H m n)
lemma congr_funβ‚‚ {f g : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P} (h : f = g) (x y) : f x y = g x y :=
linear_map.congr_fun (linear_map.congr_fun h x) y
section
local attribute [instance] smul_comm_class.symm
/-- Given a linear map from `M` to linear maps from `N` to `P`, i.e., a bilinear map from `M Γ— N` to
`P`, change the order of variables and get a linear map from `N` to linear maps from `M` to `P`. -/
def flip (f : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) : N β†’β‚›β‚—[σ₁₂] M β†’β‚›β‚—[ρ₁₂] P :=
mkβ‚‚'β‚›β‚— σ₁₂ ρ₁₂ (Ξ» n m, f m n)
(Ξ» n₁ nβ‚‚ m, (f m).map_add _ _)
(Ξ» c n m, (f m).map_smulβ‚›β‚— _ _)
(Ξ» n m₁ mβ‚‚, by rw f.map_add; refl)
(Ξ» c n m, by rw f.map_smulβ‚›β‚—; refl)
end
@[simp] theorem flip_apply (f : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) (m : M) (n : N) : flip f n m = f m n := rfl
@[simp] lemma flip_flip [smul_comm_class Rβ‚‚ Sβ‚‚ P] (f : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) :
f.flip.flip = f := linear_map.extβ‚‚ (Ξ» x y, ((f.flip).flip_apply _ _).trans (f.flip_apply _ _))
open_locale big_operators
variables {R}
theorem flip_inj {f g : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P} (H : flip f = flip g) : f = g :=
extβ‚‚ $ Ξ» m n, show flip f n m = flip g n m, by rw H
theorem map_zeroβ‚‚ (f : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) (y) : f 0 y = 0 :=
(flip f y).map_zero
theorem map_negβ‚‚ (f : M' β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P') (x y) : f (-x) y = -f x y :=
(flip f y).map_neg _
theorem map_subβ‚‚ (f : M' β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P') (x y z) : f (x - y) z = f x z - f y z :=
(flip f z).map_sub _ _
theorem map_addβ‚‚ (f : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) (x₁ xβ‚‚ y) : f (x₁ + xβ‚‚) y = f x₁ y + f xβ‚‚ y :=
(flip f y).map_add _ _
theorem map_smulβ‚‚ (f : Mβ‚‚ β†’β‚—[R] Nβ‚‚ β†’β‚›β‚—[σ₁₂] Pβ‚‚) (r : R) (x y) : f (r β€’ x) y = r β€’ f x y :=
(flip f y).map_smul _ _
theorem map_smulβ‚›β‚—β‚‚ (f : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) (r : R) (x y) : f (r β€’ x) y = (ρ₁₂ r) β€’ f x y :=
(flip f y).map_smulβ‚›β‚— _ _
theorem map_sumβ‚‚ {ΞΉ : Type*} (f : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) (t : finset ΞΉ) (x : ΞΉ β†’ M) (y) :
f (βˆ‘ i in t, x i) y = βˆ‘ i in t, f (x i) y :=
(flip f y).map_sum
/-- Restricting a bilinear map in the second entry -/
def dom_restrictβ‚‚ (f : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) (q : submodule S N) :
M β†’β‚›β‚—[ρ₁₂] q β†’β‚›β‚—[σ₁₂] P :=
{ to_fun := Ξ» m, (f m).dom_restrict q,
map_add' := Ξ» m₁ mβ‚‚, linear_map.ext $ Ξ» _, by simp only [map_add, dom_restrict_apply, add_apply],
map_smul' := Ξ» c m, linear_map.ext $ Ξ» _, by simp only [f.map_smulβ‚›β‚—, dom_restrict_apply,
smul_apply]}
lemma dom_restrictβ‚‚_apply (f : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) (q : submodule S N) (x : M) (y : q) :
f.dom_restrictβ‚‚ q x y = f x y := rfl
/-- Restricting a bilinear map in both components -/
def dom_restrict₁₂ (f : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) (p : submodule R M) (q : submodule S N) :
p β†’β‚›β‚—[ρ₁₂] q β†’β‚›β‚—[σ₁₂] P := (f.dom_restrict p).dom_restrictβ‚‚ q
lemma dom_restrict₁₂_apply (f : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P) (p : submodule R M) (q : submodule S N)
(x : p) (y : q) : f.dom_restrict₁₂ p q x y = f x y := rfl
end semiring
section comm_semiring
variables {R : Type*} [comm_semiring R] {Rβ‚‚ : Type*} [comm_semiring Rβ‚‚]
variables {R₃ : Type*} [comm_semiring R₃] {Rβ‚„ : Type*} [comm_semiring Rβ‚„]
variables {M : Type*} {N : Type*} {P : Type*} {Q : Type*}
variables {Mβ‚— : Type*} {Nβ‚— : Type*} {Pβ‚— : Type*} {Qβ‚— Qβ‚—': Type*}
variables [add_comm_monoid M] [add_comm_monoid N] [add_comm_monoid P] [add_comm_monoid Q]
variables [add_comm_monoid Mβ‚—] [add_comm_monoid Nβ‚—] [add_comm_monoid Pβ‚—]
variables [add_comm_monoid Qβ‚—] [add_comm_monoid Qβ‚—']
variables [module R M] [module Rβ‚‚ N] [module R₃ P] [module Rβ‚„ Q]
variables [module R Mβ‚—] [module R Nβ‚—] [module R Pβ‚—] [module R Qβ‚—] [module R Qβ‚—']
variables {σ₁₂ : R β†’+* Rβ‚‚} {σ₂₃ : Rβ‚‚ β†’+* R₃} {σ₁₃ : R β†’+* R₃}
variables {Οƒβ‚„β‚‚ : Rβ‚„ β†’+* Rβ‚‚} {σ₄₃ : Rβ‚„ β†’+* R₃}
variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] [ring_hom_comp_triple Οƒβ‚„β‚‚ σ₂₃ σ₄₃]
variables (R)
/-- Create a bilinear map from a function that is linear in each component.
This is a shorthand for `mkβ‚‚'` for the common case when `R = S`. -/
def mkβ‚‚ (f : M β†’ Nβ‚— β†’ Pβ‚—)
(H1 : βˆ€ m₁ mβ‚‚ n, f (m₁ + mβ‚‚) n = f m₁ n + f mβ‚‚ n)
(H2 : βˆ€ (c:R) m n, f (c β€’ m) n = c β€’ f m n)
(H3 : βˆ€ m n₁ nβ‚‚, f m (n₁ + nβ‚‚) = f m n₁ + f m nβ‚‚)
(H4 : βˆ€ (c:R) m n, f m (c β€’ n) = c β€’ f m n) : M β†’β‚—[R] Nβ‚— β†’β‚—[R] Pβ‚— :=
mkβ‚‚' R R f H1 H2 H3 H4
@[simp] theorem mkβ‚‚_apply
(f : M β†’ Nβ‚— β†’ Pβ‚—) {H1 H2 H3 H4} (m : M) (n : Nβ‚—) :
(mkβ‚‚ R f H1 H2 H3 H4 : M β†’β‚—[R] Nβ‚— β†’β‚—[R] Pβ‚—) m n = f m n := rfl
variables (R M N P)
/-- Given a linear map from `M` to linear maps from `N` to `P`, i.e., a bilinear map `M β†’ N β†’ P`,
change the order of variables and get a linear map from `N` to linear maps from `M` to `P`. -/
def lflip : (M β†’β‚›β‚—[σ₁₃] N β†’β‚›β‚—[σ₂₃] P) β†’β‚—[R₃] N β†’β‚›β‚—[σ₂₃] M β†’β‚›β‚—[σ₁₃] P :=
{ to_fun := flip, map_add' := Ξ» _ _, rfl, map_smul' := Ξ» _ _, rfl }
variables {R M N P}
variables (f : M β†’β‚›β‚—[σ₁₃] N β†’β‚›β‚—[σ₂₃] P)
@[simp] theorem lflip_apply (m : M) (n : N) : lflip R M N P f n m = f m n := rfl
variables (R Pβ‚—)
/-- Composing a linear map `M β†’ N` and a linear map `N β†’ P` to form a linear map `M β†’ P`. -/
def lcomp (f : M β†’β‚—[R] Nβ‚—) : (Nβ‚— β†’β‚—[R] Pβ‚—) β†’β‚—[R] M β†’β‚—[R] Pβ‚— :=
flip $ linear_map.comp (flip id) f
variables {R Pβ‚—}
@[simp] theorem lcomp_apply (f : M β†’β‚—[R] Nβ‚—) (g : Nβ‚— β†’β‚—[R] Pβ‚—) (x : M) :
lcomp R Pβ‚— f g x = g (f x) := rfl
theorem lcomp_apply' (f : M β†’β‚—[R] Nβ‚—) (g : Nβ‚— β†’β‚—[R] Pβ‚—) :
lcomp R Pβ‚— f g = g βˆ˜β‚— f := rfl
variables (P σ₂₃)
/-- Composing a semilinear map `M β†’ N` and a semilinear map `N β†’ P` to form a semilinear map
`M β†’ P` is itself a linear map. -/
def lcompβ‚›β‚— (f : M β†’β‚›β‚—[σ₁₂] N) : (N β†’β‚›β‚—[σ₂₃] P) β†’β‚—[R₃] M β†’β‚›β‚—[σ₁₃] P :=
flip $ linear_map.comp (flip id) f
variables {P σ₂₃}
include σ₁₃
@[simp] theorem lcompβ‚›β‚—_apply (f : M β†’β‚›β‚—[σ₁₂] N) (g : N β†’β‚›β‚—[σ₂₃] P) (x : M) :
lcompβ‚›β‚— P σ₂₃ f g x = g (f x) := rfl
omit σ₁₃
variables (R M Nβ‚— Pβ‚—)
/-- Composing a linear map `M β†’ N` and a linear map `N β†’ P` to form a linear map `M β†’ P`. -/
def llcomp : (Nβ‚— β†’β‚—[R] Pβ‚—) β†’β‚—[R] (M β†’β‚—[R] Nβ‚—) β†’β‚—[R] M β†’β‚—[R] Pβ‚— :=
flip { to_fun := lcomp R Pβ‚—,
map_add' := Ξ» f f', extβ‚‚ $ Ξ» g x, g.map_add _ _,
map_smul' := Ξ» (c : R) f, extβ‚‚ $ Ξ» g x, g.map_smul _ _ }
variables {R M Nβ‚— Pβ‚—}
section
@[simp] theorem llcomp_apply (f : Nβ‚— β†’β‚—[R] Pβ‚—) (g : M β†’β‚—[R] Nβ‚—) (x : M) :
llcomp R M Nβ‚— Pβ‚— f g x = f (g x) := rfl
theorem llcomp_apply' (f : Nβ‚— β†’β‚—[R] Pβ‚—) (g : M β†’β‚—[R] Nβ‚—) :
llcomp R M Nβ‚— Pβ‚— f g = f βˆ˜β‚— g := rfl
end
/-- Composing a linear map `Q β†’ N` and a bilinear map `M β†’ N β†’ P` to
form a bilinear map `M β†’ Q β†’ P`. -/
def complβ‚‚ (g : Q β†’β‚›β‚—[Οƒβ‚„β‚‚] N) : M β†’β‚›β‚—[σ₁₃] Q β†’β‚›β‚—[σ₄₃] P := (lcompβ‚›β‚— _ _ g).comp f
include σ₄₃
@[simp] theorem complβ‚‚_apply (g : Q β†’β‚›β‚—[Οƒβ‚„β‚‚] N) (m : M) (q : Q) :
f.complβ‚‚ g m q = f m (g q) := rfl
omit σ₄₃
/-- Composing linear maps `Q β†’ M` and `Q' β†’ N` with a bilinear map `M β†’ N β†’ P` to
form a bilinear map `Q β†’ Q' β†’ P`. -/
def compl₁₂ (f : Mβ‚— β†’β‚—[R] Nβ‚— β†’β‚—[R] Pβ‚—) (g : Qβ‚— β†’β‚—[R] Mβ‚—) (g' : Qβ‚—' β†’β‚—[R] Nβ‚—) :
Qβ‚— β†’β‚—[R] Qβ‚—' β†’β‚—[R] Pβ‚— :=
(f.comp g).complβ‚‚ g'
@[simp] theorem compl₁₂_apply (f : Mβ‚— β†’β‚—[R] Nβ‚— β†’β‚—[R] Pβ‚—) (g : Qβ‚— β†’β‚—[R] Mβ‚—) (g' : Qβ‚—' β†’β‚—[R] Nβ‚—)
(x : Qβ‚—) (y : Qβ‚—') : f.compl₁₂ g g' x y = f (g x) (g' y) := rfl
lemma compl₁₂_inj {f₁ fβ‚‚ : Mβ‚— β†’β‚—[R] Nβ‚— β†’β‚—[R] Pβ‚—} {g : Qβ‚— β†’β‚—[R] Mβ‚—} {g' : Qβ‚—' β†’β‚—[R] Nβ‚—}
(hβ‚— : function.surjective g) (hα΅£ : function.surjective g') :
f₁.compl₁₂ g g' = fβ‚‚.compl₁₂ g g' ↔ f₁ = fβ‚‚ :=
begin
split; intros h,
{ -- B₁.comp l r = Bβ‚‚.comp l r β†’ B₁ = Bβ‚‚
ext x y,
cases hβ‚— x with x' hx, subst hx,
cases hα΅£ y with y' hy, subst hy,
convert linear_map.congr_funβ‚‚ h x' y' },
{ -- B₁ = Bβ‚‚ β†’ B₁.comp l r = Bβ‚‚.comp l r
subst h },
end
/-- Composing a linear map `P β†’ Q` and a bilinear map `M β†’ N β†’ P` to
form a bilinear map `M β†’ N β†’ Q`. -/
def comprβ‚‚ (f : M β†’β‚—[R] Nβ‚— β†’β‚—[R] Pβ‚—) (g : Pβ‚— β†’β‚—[R] Qβ‚—) : M β†’β‚—[R] Nβ‚— β†’β‚—[R] Qβ‚— :=
(llcomp R Nβ‚— Pβ‚— Qβ‚— g) βˆ˜β‚— f
@[simp] theorem comprβ‚‚_apply (f : M β†’β‚—[R] Nβ‚— β†’β‚—[R] Pβ‚—) (g : Pβ‚— β†’β‚—[R] Qβ‚—) (m : M) (n : Nβ‚—) :
f.comprβ‚‚ g m n = g (f m n) := rfl
variables (R M)
/-- Scalar multiplication as a bilinear map `R β†’ M β†’ M`. -/
def lsmul : R β†’β‚—[R] M β†’β‚—[R] M :=
mkβ‚‚ R (β€’) add_smul (Ξ» _ _ _, mul_smul _ _ _) smul_add
(Ξ» r s m, by simp only [smul_smul, smul_eq_mul, mul_comm])
variables {R M}
@[simp] theorem lsmul_apply (r : R) (m : M) : lsmul R M r m = r β€’ m := rfl
end comm_semiring
section comm_ring
variables {R Rβ‚‚ S Sβ‚‚ M N P : Type*}
variables [comm_ring R] [comm_ring S] [comm_ring Rβ‚‚] [comm_ring Sβ‚‚]
variables [add_comm_group M] [add_comm_group N] [add_comm_group P]
variables [module R M] [module S N] [module Rβ‚‚ P] [module Sβ‚‚ P]
variables [smul_comm_class Sβ‚‚ Rβ‚‚ P]
variables {ρ₁₂ : R β†’+* Rβ‚‚} {σ₁₂ : S β†’+* Sβ‚‚}
variables (b₁ : basis ι₁ R M) (bβ‚‚ : basis ΞΉβ‚‚ S N)
lemma lsmul_injective [no_zero_smul_divisors R M] {x : R} (hx : x β‰  0) :
function.injective (lsmul R M x) :=
smul_right_injective _ hx
lemma ker_lsmul [no_zero_smul_divisors R M] {a : R} (ha : a β‰  0) :
(linear_map.lsmul R M a).ker = βŠ₯ :=
linear_map.ker_eq_bot_of_injective (linear_map.lsmul_injective ha)
/-- Two bilinear maps are equal when they are equal on all basis vectors. -/
lemma ext_basis {B B' : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P}
(h : βˆ€ i j, B (b₁ i) (bβ‚‚ j) = B' (b₁ i) (bβ‚‚ j)) : B = B' :=
b₁.ext $ Ξ» i, bβ‚‚.ext $ Ξ» j, h i j
/-- Write out `B x y` as a sum over `B (b i) (b j)` if `b` is a basis. -/
lemma sum_repr_mul_repr_mul {B : M β†’β‚›β‚—[ρ₁₂] N β†’β‚›β‚—[σ₁₂] P} (x y) :
(b₁.repr x).sum (Ξ» i xi, (bβ‚‚.repr y).sum (Ξ» j yj, (ρ₁₂ xi) β€’ (σ₁₂ yj) β€’ B (b₁ i) (bβ‚‚ j))) =
B x y :=
begin
conv_rhs { rw [← b₁.total_repr x, ← bβ‚‚.total_repr y] },
simp_rw [finsupp.total_apply, finsupp.sum, map_sumβ‚‚, map_sum,
linear_map.map_smulβ‚›β‚—β‚‚, linear_map.map_smulβ‚›β‚—],
end
end comm_ring
end linear_map