Zhangir Azerbayev
squashed?
4365a98
raw
history blame
63.3 kB
/-
Copyright (c) 2021 Kexing Ying. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying
-/
import measure_theory.measure.complex
import measure_theory.measure.sub
import measure_theory.decomposition.jordan
import measure_theory.measure.with_density_vector_measure
import measure_theory.function.ae_eq_of_integral
/-!
# Lebesgue decomposition
This file proves the Lebesgue decomposition theorem. The Lebesgue decomposition theorem states that,
given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable
function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`.
The Lebesgue decomposition provides the Radon-Nikodym theorem readily.
## Main definitions
* `measure_theory.measure.have_lebesgue_decomposition` : A pair of measures `μ` and `ν` is said
to `have_lebesgue_decomposition` if there exist a measure `ξ` and a measurable function `f`,
such that `ξ` is mutually singular with respect to `ν` and `μ = ξ + ν.with_density f`
* `measure_theory.measure.singular_part` : If a pair of measures `have_lebesgue_decomposition`,
then `singular_part` chooses the measure from `have_lebesgue_decomposition`, otherwise it
returns the zero measure.
* `measure_theory.measure.rn_deriv`: If a pair of measures
`have_lebesgue_decomposition`, then `rn_deriv` chooses the measurable function from
`have_lebesgue_decomposition`, otherwise it returns the zero function.
* `measure_theory.signed_measure.have_lebesgue_decomposition` : A signed measure `s` and a
measure `μ` is said to `have_lebesgue_decomposition` if both the positive part and negative
part of `s` `have_lebesgue_decomposition` with respect to `μ`.
* `measure_theory.signed_measure.singular_part` : The singular part between a signed measure `s`
and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ`
minus the singular part of the negative part of `s` with respect to `μ`.
* `measure_theory.signed_measure.rn_deriv` : The Radon-Nikodym derivative of a signed
measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of
`s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with
respect to `μ`.
## Main results
* `measure_theory.measure.have_lebesgue_decomposition_of_sigma_finite` :
the Lebesgue decomposition theorem.
* `measure_theory.measure.eq_singular_part` : Given measures `μ` and `ν`, if `s` is a measure
mutually singular to `ν` and `f` is a measurable function such that `μ = s + fν`, then
`s = μ.singular_part ν`.
* `measure_theory.measure.eq_rn_deriv` : Given measures `μ` and `ν`, if `s` is a
measure mutually singular to `ν` and `f` is a measurable function such that `μ = s + fν`,
then `f = μ.rn_deriv ν`.
* `measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq` :
the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure.
# Tags
Lebesgue decomposition theorem
-/
noncomputable theory
open_locale classical measure_theory nnreal ennreal
open set
variables {α β : Type*} {m : measurable_space α} {μ ν : measure_theory.measure α}
include m
namespace measure_theory
namespace measure
/-- A pair of measures `μ` and `ν` is said to `have_lebesgue_decomposition` if there exists a
measure `ξ` and a measurable function `f`, such that `ξ` is mutually singular with respect to
`ν` and `μ = ξ + ν.with_density f`. -/
class have_lebesgue_decomposition (μ ν : measure α) : Prop :=
(lebesgue_decomposition :
∃ (p : measure α × (α → ℝ≥0∞)), measurable p.2 ∧ p.1 ⊥ₘ ν ∧ μ = p.1 + ν.with_density p.2)
/-- If a pair of measures `have_lebesgue_decomposition`, then `singular_part` chooses the
measure from `have_lebesgue_decomposition`, otherwise it returns the zero measure. For sigma-finite
measures, `μ = μ.singular_part ν + ν.with_density (μ.rn_deriv ν)`. -/
@[irreducible]
def singular_part (μ ν : measure α) : measure α :=
if h : have_lebesgue_decomposition μ ν then (classical.some h.lebesgue_decomposition).1 else 0
/-- If a pair of measures `have_lebesgue_decomposition`, then `rn_deriv` chooses the
measurable function from `have_lebesgue_decomposition`, otherwise it returns the zero function.
For sigma-finite measures, `μ = μ.singular_part ν + ν.with_density (μ.rn_deriv ν)`.-/
@[irreducible]
def rn_deriv (μ ν : measure α) : α → ℝ≥0∞ :=
if h : have_lebesgue_decomposition μ ν then (classical.some h.lebesgue_decomposition).2 else 0
lemma have_lebesgue_decomposition_spec (μ ν : measure α)
[h : have_lebesgue_decomposition μ ν] :
measurable (μ.rn_deriv ν) ∧ (μ.singular_part ν) ⊥ₘ ν ∧
μ = (μ.singular_part ν) + ν.with_density (μ.rn_deriv ν) :=
begin
rw [singular_part, rn_deriv, dif_pos h, dif_pos h],
exact classical.some_spec h.lebesgue_decomposition,
end
lemma have_lebesgue_decomposition_add (μ ν : measure α)
[have_lebesgue_decomposition μ ν] :
μ = (μ.singular_part ν) + ν.with_density (μ.rn_deriv ν) :=
(have_lebesgue_decomposition_spec μ ν).2.2
instance have_lebesgue_decomposition_smul
(μ ν : measure α) [have_lebesgue_decomposition μ ν] (r : ℝ≥0) :
(r • μ).have_lebesgue_decomposition ν :=
{ lebesgue_decomposition :=
begin
obtain ⟨hmeas, hsing, hadd⟩ := have_lebesgue_decomposition_spec μ ν,
refine ⟨⟨r • μ.singular_part ν, r • μ.rn_deriv ν⟩, _, hsing.smul _, _⟩,
{ change measurable ((r : ℝ≥0∞) • _), -- cannot remove this line
exact hmeas.const_smul _ },
{ change _ = (r : ℝ≥0∞) • _ + ν.with_density ((r : ℝ≥0∞) • _),
rw [with_density_smul _ hmeas, ← smul_add, ← hadd],
refl }
end }
@[measurability]
lemma measurable_rn_deriv (μ ν : measure α) :
measurable $ μ.rn_deriv ν :=
begin
by_cases h : have_lebesgue_decomposition μ ν,
{ exactI (have_lebesgue_decomposition_spec μ ν).1 },
{ rw [rn_deriv, dif_neg h],
exact measurable_zero }
end
lemma mutually_singular_singular_part (μ ν : measure α) :
μ.singular_part ν ⊥ₘ ν :=
begin
by_cases h : have_lebesgue_decomposition μ ν,
{ exactI (have_lebesgue_decomposition_spec μ ν).2.1 },
{ rw [singular_part, dif_neg h],
exact mutually_singular.zero_left }
end
lemma singular_part_le (μ ν : measure α) : μ.singular_part ν ≤ μ :=
begin
by_cases hl : have_lebesgue_decomposition μ ν,
{ casesI (have_lebesgue_decomposition_spec μ ν).2 with _ h,
conv_rhs { rw h },
exact measure.le_add_right le_rfl },
{ rw [singular_part, dif_neg hl],
exact measure.zero_le μ }
end
lemma with_density_rn_deriv_le (μ ν : measure α) :
ν.with_density (μ.rn_deriv ν) ≤ μ :=
begin
by_cases hl : have_lebesgue_decomposition μ ν,
{ casesI (have_lebesgue_decomposition_spec μ ν).2 with _ h,
conv_rhs { rw h },
exact measure.le_add_left le_rfl },
{ rw [rn_deriv, dif_neg hl, with_density_zero],
exact measure.zero_le μ }
end
instance [is_finite_measure μ] : is_finite_measure (μ.singular_part ν) :=
is_finite_measure_of_le μ $ singular_part_le μ ν
instance [sigma_finite μ] : sigma_finite (μ.singular_part ν) :=
sigma_finite_of_le μ $ singular_part_le μ ν
instance [topological_space α] [is_locally_finite_measure μ] :
is_locally_finite_measure (μ.singular_part ν) :=
is_locally_finite_measure_of_le $ singular_part_le μ ν
instance [is_finite_measure μ] : is_finite_measure (ν.with_density $ μ.rn_deriv ν) :=
is_finite_measure_of_le μ $ with_density_rn_deriv_le μ ν
instance [sigma_finite μ] : sigma_finite (ν.with_density $ μ.rn_deriv ν) :=
sigma_finite_of_le μ $ with_density_rn_deriv_le μ ν
instance [topological_space α] [is_locally_finite_measure μ] :
is_locally_finite_measure (ν.with_density $ μ.rn_deriv ν) :=
is_locally_finite_measure_of_le $ with_density_rn_deriv_le μ ν
lemma lintegral_rn_deriv_lt_top_of_measure_ne_top
{μ : measure α} (ν : measure α) {s : set α} (hs : μ s ≠ ∞) :
∫⁻ x in s, μ.rn_deriv ν x ∂ν < ∞ :=
begin
by_cases hl : have_lebesgue_decomposition μ ν,
{ haveI := hl,
obtain ⟨-, -, hadd⟩ := have_lebesgue_decomposition_spec μ ν,
suffices : ∫⁻ x in to_measurable μ s, μ.rn_deriv ν x ∂ν < ∞,
from lt_of_le_of_lt (lintegral_mono_set (subset_to_measurable _ _)) this,
rw [← with_density_apply _ (measurable_set_to_measurable _ _)],
refine lt_of_le_of_lt
(le_add_left le_rfl : _ ≤ μ.singular_part ν (to_measurable μ s) +
ν.with_density (μ.rn_deriv ν) (to_measurable μ s)) _,
rw [← measure.add_apply, ← hadd, measure_to_measurable],
exact hs.lt_top },
{ erw [measure.rn_deriv, dif_neg hl, lintegral_zero],
exact with_top.zero_lt_top },
end
lemma lintegral_rn_deriv_lt_top
(μ ν : measure α) [is_finite_measure μ] :
∫⁻ x, μ.rn_deriv ν x ∂ν < ∞ :=
begin
rw [← set_lintegral_univ],
exact lintegral_rn_deriv_lt_top_of_measure_ne_top _ (measure_lt_top _ _).ne,
end
/-- The Radon-Nikodym derivative of a sigma-finite measure `μ` with respect to another
measure `ν` is `ν`-almost everywhere finite. -/
theorem rn_deriv_lt_top (μ ν : measure α) [sigma_finite μ] :
∀ᵐ x ∂ν, μ.rn_deriv ν x < ∞ :=
begin
suffices : ∀ n, ∀ᵐ x ∂ν, x ∈ spanning_sets μ n → μ.rn_deriv ν x < ∞,
{ filter_upwards [ae_all_iff.2 this] with _ hx using hx _ (mem_spanning_sets_index _ _), },
assume n,
rw ← ae_restrict_iff' (measurable_spanning_sets _ _),
apply ae_lt_top (measurable_rn_deriv _ _),
refine (lintegral_rn_deriv_lt_top_of_measure_ne_top _ _).ne,
exact (measure_spanning_sets_lt_top _ _).ne
end
/-- Given measures `μ` and `ν`, if `s` is a measure mutually singular to `ν` and `f` is a
measurable function such that `μ = s + fν`, then `s = μ.singular_part μ`.
This theorem provides the uniqueness of the `singular_part` in the Lebesgue decomposition theorem,
while `measure_theory.measure.eq_rn_deriv` provides the uniqueness of the
`rn_deriv`. -/
theorem eq_singular_part {s : measure α} {f : α → ℝ≥0∞} (hf : measurable f)
(hs : s ⊥ₘ ν) (hadd : μ = s + ν.with_density f) :
s = μ.singular_part ν :=
begin
haveI : have_lebesgue_decomposition μ ν := ⟨⟨⟨s, f⟩, hf, hs, hadd⟩⟩,
obtain ⟨hmeas, hsing, hadd'⟩ := have_lebesgue_decomposition_spec μ ν,
obtain ⟨⟨S, hS₁, hS₂, hS₃⟩, ⟨T, hT₁, hT₂, hT₃⟩⟩ := ⟨hs, hsing⟩,
rw hadd' at hadd,
have hνinter : ν (S ∩ T)ᶜ = 0,
{ rw compl_inter,
refine nonpos_iff_eq_zero.1 (le_trans (measure_union_le _ _) _),
rw [hT₃, hS₃, add_zero],
exact le_rfl },
have heq : s.restrict (S ∩ T)ᶜ = (μ.singular_part ν).restrict (S ∩ T)ᶜ,
{ ext1 A hA,
have hf : ν.with_density f (A ∩ (S ∩ T)ᶜ) = 0,
{ refine with_density_absolutely_continuous ν _ _,
rw ← nonpos_iff_eq_zero,
exact hνinter ▸ measure_mono (inter_subset_right _ _) },
have hrn : ν.with_density (μ.rn_deriv ν) (A ∩ (S ∩ T)ᶜ) = 0,
{ refine with_density_absolutely_continuous ν _ _,
rw ← nonpos_iff_eq_zero,
exact hνinter ▸ measure_mono (inter_subset_right _ _) },
rw [restrict_apply hA, restrict_apply hA, ← add_zero (s (A ∩ (S ∩ T)ᶜ)), ← hf,
← add_apply, ← hadd, add_apply, hrn, add_zero] },
have heq' : ∀ A : set α, measurable_set A → s A = s.restrict (S ∩ T)ᶜ A,
{ intros A hA,
have hsinter : s (A ∩ (S ∩ T)) = 0,
{ rw ← nonpos_iff_eq_zero,
exact hS₂ ▸ measure_mono ((inter_subset_right _ _).trans (inter_subset_left _ _)) },
rw [restrict_apply hA, ← diff_eq, ae_disjoint.measure_diff_left hsinter] },
ext1 A hA,
have hμinter : μ.singular_part ν (A ∩ (S ∩ T)) = 0,
{ rw ← nonpos_iff_eq_zero,
exact hT₂ ▸ measure_mono ((inter_subset_right _ _).trans (inter_subset_right _ _)) },
rw [heq' A hA, heq, restrict_apply hA, ← diff_eq, ae_disjoint.measure_diff_left hμinter]
end
lemma singular_part_zero (ν : measure α) : (0 : measure α).singular_part ν = 0 :=
begin
refine (eq_singular_part measurable_zero mutually_singular.zero_left _).symm,
rw [zero_add, with_density_zero],
end
lemma singular_part_smul (μ ν : measure α) (r : ℝ≥0) :
(r • μ).singular_part ν = r • (μ.singular_part ν) :=
begin
by_cases hr : r = 0,
{ rw [hr, zero_smul, zero_smul, singular_part_zero] },
by_cases hl : have_lebesgue_decomposition μ ν,
{ haveI := hl,
refine (eq_singular_part ((measurable_rn_deriv μ ν).const_smul (r : ℝ≥0∞))
(mutually_singular.smul r (have_lebesgue_decomposition_spec _ _).2.1) _).symm,
rw [with_density_smul _ (measurable_rn_deriv _ _), ← smul_add,
← have_lebesgue_decomposition_add μ ν, ennreal.smul_def] },
{ rw [singular_part, singular_part, dif_neg hl, dif_neg, smul_zero],
refine λ hl', hl _,
rw ← inv_smul_smul₀ hr μ,
exact @measure.have_lebesgue_decomposition_smul _ _ _ _ hl' _ }
end
lemma singular_part_add (μ₁ μ₂ ν : measure α)
[have_lebesgue_decomposition μ₁ ν] [have_lebesgue_decomposition μ₂ ν] :
(μ₁ + μ₂).singular_part ν = μ₁.singular_part ν + μ₂.singular_part ν :=
begin
refine (eq_singular_part
((measurable_rn_deriv μ₁ ν).add (measurable_rn_deriv μ₂ ν))
((have_lebesgue_decomposition_spec _ _).2.1.add_left (have_lebesgue_decomposition_spec _ _).2.1)
_).symm,
erw with_density_add_left (measurable_rn_deriv μ₁ ν),
conv_rhs { rw [add_assoc, add_comm (μ₂.singular_part ν), ← add_assoc, ← add_assoc] },
rw [← have_lebesgue_decomposition_add μ₁ ν, add_assoc,
add_comm (ν.with_density (μ₂.rn_deriv ν)),
← have_lebesgue_decomposition_add μ₂ ν]
end
lemma singular_part_with_density (ν : measure α) {f : α → ℝ≥0∞} (hf : measurable f) :
(ν.with_density f).singular_part ν = 0 :=
begin
have : ν.with_density f = 0 + ν.with_density f, by rw zero_add,
exact (eq_singular_part hf mutually_singular.zero_left this).symm,
end
/-- Given measures `μ` and `ν`, if `s` is a measure mutually singular to `ν` and `f` is a
measurable function such that `μ = s + fν`, then `f = μ.rn_deriv ν`.
This theorem provides the uniqueness of the `rn_deriv` in the Lebesgue decomposition
theorem, while `measure_theory.measure.eq_singular_part` provides the uniqueness of the
`singular_part`. Here, the uniqueness is given in terms of the measures, while the uniqueness in
terms of the functions is given in `eq_rn_deriv`. -/
theorem eq_with_density_rn_deriv {s : measure α} {f : α → ℝ≥0∞} (hf : measurable f)
(hs : s ⊥ₘ ν) (hadd : μ = s + ν.with_density f) :
ν.with_density f = ν.with_density (μ.rn_deriv ν) :=
begin
haveI : have_lebesgue_decomposition μ ν := ⟨⟨⟨s, f⟩, hf, hs, hadd⟩⟩,
obtain ⟨hmeas, hsing, hadd'⟩ := have_lebesgue_decomposition_spec μ ν,
obtain ⟨⟨S, hS₁, hS₂, hS₃⟩, ⟨T, hT₁, hT₂, hT₃⟩⟩ := ⟨hs, hsing⟩,
rw hadd' at hadd,
have hνinter : ν (S ∩ T)ᶜ = 0,
{ rw compl_inter,
refine nonpos_iff_eq_zero.1 (le_trans (measure_union_le _ _) _),
rw [hT₃, hS₃, add_zero],
exact le_rfl },
have heq : (ν.with_density f).restrict (S ∩ T) =
(ν.with_density (μ.rn_deriv ν)).restrict (S ∩ T),
{ ext1 A hA,
have hs : s (A ∩ (S ∩ T)) = 0,
{ rw ← nonpos_iff_eq_zero,
exact hS₂ ▸ measure_mono ((inter_subset_right _ _).trans (inter_subset_left _ _)) },
have hsing : μ.singular_part ν (A ∩ (S ∩ T)) = 0,
{ rw ← nonpos_iff_eq_zero,
exact hT₂ ▸ measure_mono
((inter_subset_right _ _).trans (inter_subset_right _ _)) },
rw [restrict_apply hA, restrict_apply hA, ← add_zero (ν.with_density f (A ∩ (S ∩ T))),
← hs, ← add_apply, add_comm, ← hadd, add_apply, hsing, zero_add] },
have heq' : ∀ A : set α, measurable_set A →
ν.with_density f A = (ν.with_density f).restrict (S ∩ T) A,
{ intros A hA,
have hνfinter : ν.with_density f (A ∩ (S ∩ T)ᶜ) = 0,
{ rw ← nonpos_iff_eq_zero,
exact with_density_absolutely_continuous ν f hνinter ▸
measure_mono (inter_subset_right _ _) },
rw [restrict_apply hA, ← add_zero (ν.with_density f (A ∩ (S ∩ T))), ← hνfinter,
← diff_eq, measure_inter_add_diff _ (hS₁.inter hT₁)] },
ext1 A hA,
have hνrn : ν.with_density (μ.rn_deriv ν) (A ∩ (S ∩ T)ᶜ) = 0,
{ rw ← nonpos_iff_eq_zero,
exact with_density_absolutely_continuous ν (μ.rn_deriv ν) hνinter ▸
measure_mono (inter_subset_right _ _) },
rw [heq' A hA, heq, ← add_zero ((ν.with_density (μ.rn_deriv ν)).restrict (S ∩ T) A),
← hνrn, restrict_apply hA, ← diff_eq, measure_inter_add_diff _ (hS₁.inter hT₁)]
end
/-- Given measures `μ` and `ν`, if `s` is a measure mutually singular to `ν` and `f` is a
measurable function such that `μ = s + fν`, then `f = μ.rn_deriv ν`.
This theorem provides the uniqueness of the `rn_deriv` in the Lebesgue decomposition
theorem, while `measure_theory.measure.eq_singular_part` provides the uniqueness of the
`singular_part`. Here, the uniqueness is given in terms of the functions, while the uniqueness in
terms of the functions is given in `eq_with_density_rn_deriv`. -/
theorem eq_rn_deriv [sigma_finite ν] {s : measure α} {f : α → ℝ≥0∞} (hf : measurable f)
(hs : s ⊥ₘ ν) (hadd : μ = s + ν.with_density f) :
f =ᵐ[ν] μ.rn_deriv ν :=
begin
refine ae_eq_of_forall_set_lintegral_eq_of_sigma_finite hf (measurable_rn_deriv μ ν) _,
assume a ha h'a,
calc ∫⁻ (x : α) in a, f x ∂ν = ν.with_density f a : (with_density_apply f ha).symm
... = ν.with_density (μ.rn_deriv ν) a : by rw eq_with_density_rn_deriv hf hs hadd
... = ∫⁻ (x : α) in a, μ.rn_deriv ν x ∂ν : with_density_apply _ ha
end
/-- The Radon-Nikodym derivative of `f ν` with respect to `ν` is `f`. -/
theorem rn_deriv_with_density (ν : measure α) [sigma_finite ν] {f : α → ℝ≥0∞} (hf : measurable f) :
(ν.with_density f).rn_deriv ν =ᵐ[ν] f :=
begin
have : ν.with_density f = 0 + ν.with_density f, by rw zero_add,
exact (eq_rn_deriv hf mutually_singular.zero_left this).symm,
end
/-- The Radon-Nikodym derivative of the restriction of a measure to a measurable set is the
indicator function of this set. -/
theorem rn_deriv_restrict (ν : measure α) [sigma_finite ν] {s : set α} (hs : measurable_set s) :
(ν.restrict s).rn_deriv ν =ᵐ[ν] s.indicator 1 :=
begin
rw ← with_density_indicator_one hs,
exact rn_deriv_with_density _ (measurable_one.indicator hs)
end
open vector_measure signed_measure
/-- If two finite measures `μ` and `ν` are not mutually singular, there exists some `ε > 0` and
a measurable set `E`, such that `ν(E) > 0` and `E` is positive with respect to `μ - εν`.
This lemma is useful for the Lebesgue decomposition theorem. -/
lemma exists_positive_of_not_mutually_singular
(μ ν : measure α) [is_finite_measure μ] [is_finite_measure ν] (h : ¬ μ ⊥ₘ ν) :
∃ ε : ℝ≥0, 0 < ε ∧ ∃ E : set α, measurable_set E ∧ 0 < ν E ∧
0 ≤[E] μ.to_signed_measure - (ε • ν).to_signed_measure :=
begin
-- for all `n : ℕ`, obtain the Hahn decomposition for `μ - (1 / n) ν`
have : ∀ n : ℕ, ∃ i : set α, measurable_set i ∧
0 ≤[i] (μ.to_signed_measure - ((1 / (n + 1) : ℝ≥0) • ν).to_signed_measure) ∧
(μ.to_signed_measure - ((1 / (n + 1) : ℝ≥0) • ν).to_signed_measure) ≤[iᶜ] 0,
{ intro, exact exists_compl_positive_negative _ },
choose f hf₁ hf₂ hf₃ using this,
-- set `A` to be the intersection of all the negative parts of obtained Hahn decompositions
-- and we show that `μ A = 0`
set A := ⋂ n, (f n)ᶜ with hA₁,
have hAmeas : measurable_set A,
{ exact measurable_set.Inter (λ n, (hf₁ n).compl) },
have hA₂ : ∀ n : ℕ, (μ.to_signed_measure - ((1 / (n + 1) : ℝ≥0) • ν).to_signed_measure) ≤[A] 0,
{ intro n, exact restrict_le_restrict_subset _ _ (hf₁ n).compl (hf₃ n) (Inter_subset _ _) },
have hA₃ : ∀ n : ℕ, μ A ≤ (1 / (n + 1) : ℝ≥0) * ν A,
{ intro n,
have := nonpos_of_restrict_le_zero _ (hA₂ n),
rwa [to_signed_measure_sub_apply hAmeas, sub_nonpos, ennreal.to_real_le_to_real] at this,
exacts [ne_of_lt (measure_lt_top _ _), ne_of_lt (measure_lt_top _ _)] },
have hμ : μ A = 0,
{ lift μ A to ℝ≥0 using ne_of_lt (measure_lt_top _ _) with μA,
lift ν A to ℝ≥0 using ne_of_lt (measure_lt_top _ _) with νA,
rw ennreal.coe_eq_zero,
by_cases hb : 0 < νA,
{ suffices : ∀ b, 0 < b → μA ≤ b,
{ by_contra,
have h' := this (μA / 2) (nnreal.half_pos (zero_lt_iff.2 h)),
rw ← @not_not (μA ≤ μA / 2) at h',
exact h' (not_le.2 (nnreal.half_lt_self h)) },
intros c hc,
have : ∃ n : ℕ, 1 / (n + 1 : ℝ) < c * νA⁻¹, refine exists_nat_one_div_lt _,
{ refine mul_pos hc _,
rw _root_.inv_pos, exact hb },
rcases this with ⟨n, hn⟩,
have hb₁ : (0 : ℝ) < νA⁻¹, { rw _root_.inv_pos, exact hb },
have h' : 1 / (↑n + 1) * νA < c,
{ rw [← nnreal.coe_lt_coe, ← mul_lt_mul_right hb₁, nnreal.coe_mul, mul_assoc,
← nnreal.coe_inv, ← nnreal.coe_mul, _root_.mul_inv_cancel, ← nnreal.coe_mul,
mul_one, nnreal.coe_inv],
{ exact hn },
{ exact ne.symm (ne_of_lt hb) } },
refine le_trans _ (le_of_lt h'),
rw [← ennreal.coe_le_coe, ennreal.coe_mul],
exact hA₃ n },
{ rw [not_lt, le_zero_iff] at hb,
specialize hA₃ 0,
simp [hb, le_zero_iff] at hA₃,
assumption } },
-- since `μ` and `ν` are not mutually singular, `μ A = 0` implies `ν Aᶜ > 0`
rw mutually_singular at h, push_neg at h,
have := h _ hAmeas hμ,
simp_rw [hA₁, compl_Inter, compl_compl] at this,
-- as `Aᶜ = ⋃ n, f n`, `ν Aᶜ > 0` implies there exists some `n` such that `ν (f n) > 0`
obtain ⟨n, hn⟩ := exists_measure_pos_of_not_measure_Union_null this,
-- thus, choosing `f n` as the set `E` suffices
exact ⟨1 / (n + 1), by simp, f n, hf₁ n, hn, hf₂ n⟩,
end
namespace lebesgue_decomposition
/-- Given two measures `μ` and `ν`, `measurable_le μ ν` is the set of measurable
functions `f`, such that, for all measurable sets `A`, `∫⁻ x in A, f x ∂μ ≤ ν A`.
This is useful for the Lebesgue decomposition theorem. -/
def measurable_le (μ ν : measure α) : set (α → ℝ≥0∞) :=
{ f | measurable f ∧ ∀ (A : set α) (hA : measurable_set A), ∫⁻ x in A, f x ∂μ ≤ ν A }
lemma zero_mem_measurable_le : (0 : α → ℝ≥0∞) ∈ measurable_le μ ν :=
⟨measurable_zero, λ A hA, by simp⟩
lemma sup_mem_measurable_le {f g : α → ℝ≥0∞}
(hf : f ∈ measurable_le μ ν) (hg : g ∈ measurable_le μ ν) :
(λ a, f a ⊔ g a) ∈ measurable_le μ ν :=
begin
simp_rw ennreal.sup_eq_max,
refine ⟨measurable.max hf.1 hg.1, λ A hA, _⟩,
have h₁ := hA.inter (measurable_set_le hf.1 hg.1),
have h₂ := hA.inter (measurable_set_lt hg.1 hf.1),
rw [set_lintegral_max hf.1 hg.1],
refine (add_le_add (hg.2 _ h₁) (hf.2 _ h₂)).trans_eq _,
{ simp only [← not_le, ← compl_set_of, ← diff_eq],
exact measure_inter_add_diff _ (measurable_set_le hf.1 hg.1) }
end
lemma supr_succ_eq_sup {α} (f : ℕ → α → ℝ≥0∞) (m : ℕ) (a : α) :
(⨆ (k : ℕ) (hk : k ≤ m + 1), f k a) = f m.succ a ⊔ ⨆ (k : ℕ) (hk : k ≤ m), f k a :=
begin
ext x,
simp only [option.mem_def, ennreal.some_eq_coe],
split; intro h; rw ← h, symmetry,
all_goals
{ set c := (⨆ (k : ℕ) (hk : k ≤ m + 1), f k a) with hc,
set d := (f m.succ a ⊔ ⨆ (k : ℕ) (hk : k ≤ m), f k a) with hd,
rw [@le_antisymm_iff ℝ≥0∞, hc, hd], -- Specifying the type is weirdly necessary
refine ⟨_, _⟩,
{ refine supr₂_le (λ n hn, _),
rcases nat.of_le_succ hn with (h | h),
{ exact le_sup_of_le_right (le_supr₂ n h) },
{ exact h ▸ le_sup_left } },
{ refine sup_le _ (bsupr_mono $ λ n hn, hn.trans m.le_succ),
convert @le_supr₂ _ _ (λ i, i ≤ m + 1) _ _ m.succ le_rfl,
refl } }
end
lemma supr_mem_measurable_le
(f : ℕ → α → ℝ≥0∞) (hf : ∀ n, f n ∈ measurable_le μ ν) (n : ℕ) :
(λ x, ⨆ k (hk : k ≤ n), f k x) ∈ measurable_le μ ν :=
begin
induction n with m hm,
{ refine ⟨_, _⟩,
{ simp [(hf 0).1] },
{ intros A hA, simp [(hf 0).2 A hA] } },
{ have : (λ (a : α), ⨆ (k : ℕ) (hk : k ≤ m + 1), f k a) =
(λ a, f m.succ a ⊔ ⨆ (k : ℕ) (hk : k ≤ m), f k a),
{ exact funext (λ _, supr_succ_eq_sup _ _ _) },
refine ⟨measurable_supr (λ n, measurable.supr_Prop _ (hf n).1), λ A hA, _⟩,
rw this, exact (sup_mem_measurable_le (hf m.succ) hm).2 A hA }
end
lemma supr_mem_measurable_le'
(f : ℕ → α → ℝ≥0∞) (hf : ∀ n, f n ∈ measurable_le μ ν) (n : ℕ) :
(⨆ k (hk : k ≤ n), f k) ∈ measurable_le μ ν :=
begin
convert supr_mem_measurable_le f hf n,
ext, simp
end
section supr_lemmas --TODO: these statements should be moved elsewhere
omit m
lemma supr_monotone {α : Type*} (f : ℕ → α → ℝ≥0∞) :
monotone (λ n x, ⨆ k (hk : k ≤ n), f k x) :=
λ n m hnm x, bsupr_mono $ λ i, ge_trans hnm
lemma supr_monotone' {α : Type*} (f : ℕ → α → ℝ≥0∞) (x : α) :
monotone (λ n, ⨆ k (hk : k ≤ n), f k x) :=
λ n m hnm, supr_monotone f hnm x
lemma supr_le_le {α : Type*} (f : ℕ → α → ℝ≥0∞) (n k : ℕ) (hk : k ≤ n) :
f k ≤ λ x, ⨆ k (hk : k ≤ n), f k x :=
λ x, le_supr₂ k hk
end supr_lemmas
/-- `measurable_le_eval μ ν` is the set of `∫⁻ x, f x ∂μ` for all `f ∈ measurable_le μ ν`. -/
def measurable_le_eval (μ ν : measure α) : set ℝ≥0∞ :=
(λ f : α → ℝ≥0∞, ∫⁻ x, f x ∂μ) '' measurable_le μ ν
end lebesgue_decomposition
open lebesgue_decomposition
/-- Any pair of finite measures `μ` and `ν`, `have_lebesgue_decomposition`. That is to say,
there exist a measure `ξ` and a measurable function `f`, such that `ξ` is mutually singular
with respect to `ν` and `μ = ξ + ν.with_density f`.
This is not an instance since this is also shown for the more general σ-finite measures with
`measure_theory.measure.have_lebesgue_decomposition_of_sigma_finite`. -/
theorem have_lebesgue_decomposition_of_finite_measure [is_finite_measure μ] [is_finite_measure ν] :
have_lebesgue_decomposition μ ν :=
⟨begin
have h := @exists_seq_tendsto_Sup _ _ _ _ _ (measurable_le_eval ν μ)
0, 0, zero_mem_measurable_le, by simp⟩ (order_top.bdd_above _),
choose g hmono hg₂ f hf₁ hf₂ using h,
-- we set `ξ` to be the supremum of an increasing sequence of functions obtained from above
set ξ := ⨆ n k (hk : k ≤ n), f k with hξ,
-- we see that `ξ` has the largest integral among all functions in `measurable_le`
have hξ₁ : Sup (measurable_le_eval ν μ) = ∫⁻ a, ξ a ∂ν,
{ have := @lintegral_tendsto_of_tendsto_of_monotone _ _ ν
(λ n, ⨆ k (hk : k ≤ n), f k) (⨆ n k (hk : k ≤ n), f k) _ _ _,
{ refine tendsto_nhds_unique _ this,
refine tendsto_of_tendsto_of_tendsto_of_le_of_le hg₂ tendsto_const_nhds _ _,
{ intro n, rw ← hf₂ n,
apply lintegral_mono,
simp only [supr_apply, supr_le_le f n n le_rfl] },
{ intro n,
exact le_Sup ⟨⨆ (k : ℕ) (hk : k ≤ n), f k, supr_mem_measurable_le' _ hf₁ _, rfl⟩ } },
{ intro n,
refine measurable.ae_measurable _,
convert (supr_mem_measurable_le _ hf₁ n).1,
ext, simp },
{ refine filter.eventually_of_forall (λ a, _),
simp [supr_monotone' f _] },
{ refine filter.eventually_of_forall (λ a, _),
simp [tendsto_at_top_supr (supr_monotone' f a)] } },
have hξm : measurable ξ,
{ convert measurable_supr (λ n, (supr_mem_measurable_le _ hf₁ n).1),
ext, simp [hξ] },
-- `ξ` is the `f` in the theorem statement and we set `μ₁` to be `μ - ν.with_density ξ`
-- since we need `μ₁ + ν.with_density ξ = μ`
set μ₁ := μ - ν.with_density ξ with hμ₁,
have hle : ν.with_density ξ ≤ μ,
{ intros B hB,
rw [hξ, with_density_apply _ hB],
simp_rw [supr_apply],
rw lintegral_supr (λ i, (supr_mem_measurable_le _ hf₁ i).1) (supr_monotone _),
exact supr_le (λ i, (supr_mem_measurable_le _ hf₁ i).2 B hB) },
haveI : is_finite_measure (ν.with_density ξ),
{ refine is_finite_measure_with_density _,
have hle' := hle univ measurable_set.univ,
rw [with_density_apply _ measurable_set.univ, measure.restrict_univ] at hle',
exact ne_top_of_le_ne_top (measure_ne_top _ _) hle' },
refine ⟨⟨μ₁, ξ⟩, hξm, _, _⟩,
{ by_contra,
-- if they are not mutually singular, then from `exists_positive_of_not_mutually_singular`,
-- there exists some `ε > 0` and a measurable set `E`, such that `μ(E) > 0` and `E` is
-- positive with respect to `ν - εμ`
obtain ⟨ε, hε₁, E, hE₁, hE₂, hE₃⟩ := exists_positive_of_not_mutually_singular μ₁ ν h,
simp_rw hμ₁ at hE₃,
have hξle : ∀ A, measurable_set A → ∫⁻ a in A, ξ a ∂ν ≤ μ A,
{ intros A hA, rw hξ,
simp_rw [supr_apply],
rw lintegral_supr (λ n, (supr_mem_measurable_le _ hf₁ n).1) (supr_monotone _),
exact supr_le (λ n, (supr_mem_measurable_le _ hf₁ n).2 A hA) },
-- since `E` is positive, we have `∫⁻ a in A ∩ E, ε + ξ a ∂ν ≤ μ (A ∩ E)` for all `A`
have hε₂ : ∀ A : set α, measurable_set A → ∫⁻ a in A ∩ E, ε + ξ a ∂ν ≤ μ (A ∩ E),
{ intros A hA,
have := subset_le_of_restrict_le_restrict _ _ hE₁ hE₃ (inter_subset_right A E),
rwa [zero_apply, to_signed_measure_sub_apply (hA.inter hE₁),
measure.sub_apply (hA.inter hE₁) hle,
ennreal.to_real_sub_of_le _ (ne_of_lt (measure_lt_top _ _)), sub_nonneg,
le_sub_iff_add_le, ← ennreal.to_real_add, ennreal.to_real_le_to_real,
measure.coe_smul, pi.smul_apply, with_density_apply _ (hA.inter hE₁),
show ε • ν (A ∩ E) = (ε : ℝ≥0∞) * ν (A ∩ E), by refl,
← set_lintegral_const, ← lintegral_add_left measurable_const] at this,
{ rw [ne.def, ennreal.add_eq_top, not_or_distrib],
exact ⟨ne_of_lt (measure_lt_top _ _), ne_of_lt (measure_lt_top _ _)⟩ },
{ exact ne_of_lt (measure_lt_top _ _) },
{ exact ne_of_lt (measure_lt_top _ _) },
{ exact ne_of_lt (measure_lt_top _ _) },
{ rw with_density_apply _ (hA.inter hE₁),
exact hξle (A ∩ E) (hA.inter hE₁) },
{ apply_instance } },
-- from this, we can show `ξ + ε * E.indicator` is a function in `measurable_le` with
-- integral greater than `ξ`
have hξε : ξ + E.indicator (λ _, ε) ∈ measurable_le ν μ,
{ refine ⟨measurable.add hξm (measurable.indicator measurable_const hE₁), λ A hA, _⟩,
have : ∫⁻ a in A, (ξ + E.indicator (λ _, ε)) a ∂ν =
∫⁻ a in A ∩ E, ε + ξ a ∂ν + ∫⁻ a in A \ E, ξ a ∂ν,
{ simp only [lintegral_add_left measurable_const, lintegral_add_left hξm,
set_lintegral_const, add_assoc, lintegral_inter_add_diff _ _ hE₁, pi.add_apply,
lintegral_indicator _ hE₁, restrict_apply hE₁],
rw [inter_comm, add_comm] },
rw [this, ← measure_inter_add_diff A hE₁],
exact add_le_add (hε₂ A hA) (hξle (A \ E) (hA.diff hE₁)) },
have : ∫⁻ a, ξ a + E.indicator (λ _, ε) a ∂ν ≤ Sup (measurable_le_eval ν μ) :=
le_Sup ⟨ξ + E.indicator (λ _, ε), hξε, rfl⟩,
-- but this contradicts the maximality of `∫⁻ x, ξ x ∂ν`
refine not_lt.2 this _,
rw [hξ₁, lintegral_add_left hξm, lintegral_indicator _ hE₁, set_lintegral_const],
refine ennreal.lt_add_right _ (ennreal.mul_pos_iff.2 ⟨ennreal.coe_pos.2 hε₁, hE₂⟩).ne',
have := measure_ne_top (ν.with_density ξ) univ,
rwa [with_density_apply _ measurable_set.univ, measure.restrict_univ] at this },
-- since `ν.with_density ξ ≤ μ`, it is clear that `μ = μ₁ + ν.with_density ξ`
{ rw hμ₁, ext1 A hA,
rw [measure.coe_add, pi.add_apply, measure.sub_apply hA hle,
add_comm, add_tsub_cancel_of_le (hle A hA)] },
end⟩
local attribute [instance] have_lebesgue_decomposition_of_finite_measure
instance {S : μ.finite_spanning_sets_in {s : set α | measurable_set s}} (n : ℕ) :
is_finite_measure (μ.restrict $ S.set n) :=
⟨by { rw [restrict_apply measurable_set.univ, univ_inter], exact S.finite _ }⟩
/-- **The Lebesgue decomposition theorem**: Any pair of σ-finite measures `μ` and `ν`
`have_lebesgue_decomposition`. That is to say, there exist a measure `ξ` and a measurable function
`f`, such that `ξ` is mutually singular with respect to `ν` and `μ = ξ + ν.with_density f` -/
@[priority 100] -- see Note [lower instance priority]
instance have_lebesgue_decomposition_of_sigma_finite
(μ ν : measure α) [sigma_finite μ] [sigma_finite ν] :
have_lebesgue_decomposition μ ν :=
⟨begin
-- Since `μ` and `ν` are both σ-finite, there exists a sequence of pairwise disjoint spanning
-- sets which are finite with respect to both `μ` and `ν`
obtain ⟨S, T, h₁, h₂⟩ := exists_eq_disjoint_finite_spanning_sets_in μ ν,
have h₃ : pairwise (disjoint on T.set) := h₁ ▸ h₂,
-- We define `μn` and `νn` as sequences of measures such that `μn n = μ ∩ S n` and
-- `νn n = ν ∩ S n` where `S` is the aforementioned finite spanning set sequence.
-- Since `S` is spanning, it is clear that `sum μn = μ` and `sum νn = ν`
set μn : ℕ → measure α := λ n, μ.restrict (S.set n) with hμn,
have hμ : μ = sum μn,
{ rw [hμn, ← restrict_Union h₂ S.set_mem, S.spanning, restrict_univ] },
set νn : ℕ → measure α := λ n, ν.restrict (T.set n) with hνn,
have hν : ν = sum νn,
{ rw [hνn, ← restrict_Union h₃ T.set_mem, T.spanning, restrict_univ] },
-- As `S` is finite with respect to both `μ` and `ν`, it is clear that `μn n` and `νn n` are
-- finite measures for all `n : ℕ`. Thus, we may apply the finite Lebesgue decomposition theorem
-- to `μn n` and `νn n`. We define `ξ` as the sum of the singular part of the Lebesgue
-- decompositions of `μn n` and `νn n`, and `f` as the sum of the Radon-Nikodym derviatives of
-- `μn n` and `νn n` restricted on `S n`
set ξ := sum (λ n, singular_part (μn n) (νn n)) with hξ,
set f := ∑' n, (S.set n).indicator (rn_deriv (μn n) (νn n)) with hf,
-- I claim `ξ` and `f` form a Lebesgue decomposition of `μ` and `ν`
refine ⟨⟨ξ, f⟩, _, _, _⟩,
{ exact measurable.ennreal_tsum' (λ n, measurable.indicator
(measurable_rn_deriv (μn n) (νn n)) (S.set_mem n)) },
-- We show that `ξ` is mutually singular with respect to `ν`
{ choose A hA₁ hA₂ hA₃ using λ n, mutually_singular_singular_part (μn n) (νn n),
simp only [hξ],
-- We use the set `B := ⋃ j, (S.set j) ∩ A j` where `A n` is the set provided as
-- `singular_part (μn n) (νn n) ⊥ₘ νn n`
refine ⟨⋃ j, (S.set j) ∩ A j,
measurable_set.Union (λ n, (S.set_mem n).inter (hA₁ n)), _, _⟩,
-- `ξ B = 0` since `ξ B = ∑ i j, singular_part (μn j) (νn j) (S.set i ∩ A i)`
-- `= ∑ i, singular_part (μn i) (νn i) (S.set i ∩ A i)`
-- `≤ ∑ i, singular_part (μn i) (νn i) (A i) = 0`
-- where the second equality follows as `singular_part (μn j) (νn j) (S.set i ∩ A i)` vanishes
-- for all `i ≠ j`
{ rw [measure_Union],
{ have : ∀ i, (sum (λ n, (μn n).singular_part (νn n))) (S.set i ∩ A i) =
(μn i).singular_part (νn i) (S.set i ∩ A i),
{ intro i, rw [sum_apply _ ((S.set_mem i).inter (hA₁ i)), tsum_eq_single i],
{ intros j hij,
rw [hμn, ← nonpos_iff_eq_zero],
refine le_trans ((singular_part_le _ _) _ ((S.set_mem i).inter (hA₁ i))) (le_of_eq _),
rw [restrict_apply ((S.set_mem i).inter (hA₁ i)), inter_comm, ← inter_assoc],
have : disjoint (S.set j) (S.set i) := h₂ j i hij,
rw disjoint_iff_inter_eq_empty at this,
rw [this, empty_inter, measure_empty] },
{ apply_instance } },
simp_rw [this, tsum_eq_zero_iff ennreal.summable],
intro n, exact measure_mono_null (inter_subset_right _ _) (hA₂ n) },
{ exact h₂.mono (λ i j, disjoint.mono inf_le_left inf_le_left) },
{ exact λ n, (S.set_mem n).inter (hA₁ n) } },
-- We will now show `ν Bᶜ = 0`. This follows since `Bᶜ = ⋃ n, S.set n ∩ (A n)ᶜ` and thus,
-- `ν Bᶜ = ∑ i, ν (S.set i ∩ (A i)ᶜ) = ∑ i, (νn i) (A i)ᶜ = 0`
{ have hcompl : is_compl (⋃ n, (S.set n ∩ A n)) (⋃ n, S.set n ∩ (A n)ᶜ),
{ split,
{ rintro x ⟨hx₁, hx₂⟩, rw mem_Union at hx₁ hx₂,
obtain ⟨⟨i, hi₁, hi₂⟩, ⟨j, hj₁, hj₂⟩⟩ := ⟨hx₁, hx₂⟩,
have : i = j,
{ by_contra hij, exact h₂ i j hij ⟨hi₁, hj₁⟩ },
exact hj₂ (this ▸ hi₂) },
{ intros x hx,
simp only [mem_Union, sup_eq_union, mem_inter_eq,
mem_union_eq, mem_compl_eq, or_iff_not_imp_left],
intro h, push_neg at h,
rw [top_eq_univ, ← S.spanning, mem_Union] at hx,
obtain ⟨i, hi⟩ := hx,
exact ⟨i, hi, h i hi⟩ } },
rw [hcompl.compl_eq, measure_Union, tsum_eq_zero_iff ennreal.summable],
{ intro n, rw [inter_comm, ← restrict_apply (hA₁ n).compl, ← hA₃ n, hνn, h₁] },
{ exact h₂.mono (λ i j, disjoint.mono inf_le_left inf_le_left) },
{ exact λ n, (S.set_mem n).inter (hA₁ n).compl } } },
-- Finally, it remains to show `μ = ξ + ν.with_density f`. Since `μ = sum μn`, and
-- `ξ + ν.with_density f = ∑ n, singular_part (μn n) (νn n)`
-- `+ ν.with_density (rn_deriv (μn n) (νn n)) ∩ (S.set n)`,
-- it suffices to show that the individual summands are equal. This follows by the
-- Lebesgue decomposition properties on the individual `μn n` and `νn n`
{ simp only [hξ, hf, hμ],
rw [with_density_tsum _, sum_add_sum],
{ refine sum_congr (λ n, _),
conv_lhs { rw have_lebesgue_decomposition_add (μn n) (νn n) },
suffices heq : (νn n).with_density ((μn n).rn_deriv (νn n)) =
ν.with_density ((S.set n).indicator ((μn n).rn_deriv (νn n))),
{ rw heq },
rw [hν, with_density_indicator (S.set_mem n), restrict_sum _ (S.set_mem n)],
suffices hsumeq : sum (λ (i : ℕ), (νn i).restrict (S.set n)) = νn n,
{ rw hsumeq },
ext1 s hs,
rw [sum_apply _ hs, tsum_eq_single n, hνn, h₁,
restrict_restrict (T.set_mem n), inter_self],
{ intros m hm,
rw [hνn, h₁, restrict_restrict (T.set_mem n),
disjoint_iff_inter_eq_empty.1 (h₃ n m hm.symm), restrict_empty,
coe_zero, pi.zero_apply] },
{ apply_instance } },
{ exact λ n, measurable.indicator (measurable_rn_deriv _ _) (S.set_mem n) } },
end⟩
end measure
namespace signed_measure
open measure
/-- A signed measure `s` is said to `have_lebesgue_decomposition` with respect to a measure `μ`
if the positive part and the negative part of `s` both `have_lebesgue_decomposition` with
respect to `μ`. -/
class have_lebesgue_decomposition (s : signed_measure α) (μ : measure α) : Prop :=
(pos_part : s.to_jordan_decomposition.pos_part.have_lebesgue_decomposition μ)
(neg_part : s.to_jordan_decomposition.neg_part.have_lebesgue_decomposition μ)
attribute [instance] have_lebesgue_decomposition.pos_part
attribute [instance] have_lebesgue_decomposition.neg_part
lemma not_have_lebesgue_decomposition_iff (s : signed_measure α)
(μ : measure α) :
¬ s.have_lebesgue_decomposition μ ↔
¬ s.to_jordan_decomposition.pos_part.have_lebesgue_decomposition μ ∨
¬ s.to_jordan_decomposition.neg_part.have_lebesgue_decomposition μ :=
⟨λ h, not_or_of_imp (λ hp hn, h ⟨hp, hn⟩), λ h hl, (not_and_distrib.2 h) ⟨hl.1, hl.2⟩⟩
-- `infer_instance` directly does not work
@[priority 100] -- see Note [lower instance priority]
instance have_lebesgue_decomposition_of_sigma_finite
(s : signed_measure α) (μ : measure α) [sigma_finite μ] :
s.have_lebesgue_decomposition μ :=
{ pos_part := infer_instance,
neg_part := infer_instance }
instance have_lebesgue_decomposition_neg
(s : signed_measure α) (μ : measure α) [s.have_lebesgue_decomposition μ] :
(-s).have_lebesgue_decomposition μ :=
{ pos_part :=
by { rw [to_jordan_decomposition_neg, jordan_decomposition.neg_pos_part],
apply_instance },
neg_part :=
by { rw [to_jordan_decomposition_neg, jordan_decomposition.neg_neg_part],
apply_instance } }
instance have_lebesgue_decomposition_smul
(s : signed_measure α) (μ : measure α) [s.have_lebesgue_decomposition μ] (r : ℝ≥0) :
(r • s).have_lebesgue_decomposition μ :=
{ pos_part :=
by { rw [to_jordan_decomposition_smul, jordan_decomposition.smul_pos_part],
apply_instance },
neg_part :=
by { rw [to_jordan_decomposition_smul, jordan_decomposition.smul_neg_part],
apply_instance } }
instance have_lebesgue_decomposition_smul_real
(s : signed_measure α) (μ : measure α) [s.have_lebesgue_decomposition μ] (r : ℝ) :
(r • s).have_lebesgue_decomposition μ :=
begin
by_cases hr : 0 ≤ r,
{ lift r to ℝ≥0 using hr,
exact s.have_lebesgue_decomposition_smul μ _ },
{ rw not_le at hr,
refine
{ pos_part :=
by { rw [to_jordan_decomposition_smul_real,
jordan_decomposition.real_smul_pos_part_neg _ _ hr],
apply_instance },
neg_part :=
by { rw [to_jordan_decomposition_smul_real,
jordan_decomposition.real_smul_neg_part_neg _ _ hr],
apply_instance } } }
end
/-- Given a signed measure `s` and a measure `μ`, `s.singular_part μ` is the signed measure
such that `s.singular_part μ + μ.with_densityᵥ (s.rn_deriv μ) = s` and
`s.singular_part μ` is mutually singular with respect to `μ`. -/
def singular_part (s : signed_measure α) (μ : measure α) : signed_measure α :=
(s.to_jordan_decomposition.pos_part.singular_part μ).to_signed_measure -
(s.to_jordan_decomposition.neg_part.singular_part μ).to_signed_measure
section
lemma singular_part_mutually_singular (s : signed_measure α) (μ : measure α) :
s.to_jordan_decomposition.pos_part.singular_part μ ⊥ₘ
s.to_jordan_decomposition.neg_part.singular_part μ :=
begin
by_cases hl : s.have_lebesgue_decomposition μ,
{ haveI := hl,
obtain ⟨i, hi, hpos, hneg⟩ := s.to_jordan_decomposition.mutually_singular,
rw s.to_jordan_decomposition.pos_part.have_lebesgue_decomposition_add μ at hpos,
rw s.to_jordan_decomposition.neg_part.have_lebesgue_decomposition_add μ at hneg,
rw [add_apply, add_eq_zero_iff] at hpos hneg,
exact ⟨i, hi, hpos.1, hneg.1⟩ },
{ rw not_have_lebesgue_decomposition_iff at hl,
cases hl with hp hn,
{ rw [measure.singular_part, dif_neg hp],
exact mutually_singular.zero_left },
{ rw [measure.singular_part, measure.singular_part, dif_neg hn],
exact mutually_singular.zero_right } }
end
lemma singular_part_total_variation (s : signed_measure α) (μ : measure α) :
(s.singular_part μ).total_variation =
s.to_jordan_decomposition.pos_part.singular_part μ +
s.to_jordan_decomposition.neg_part.singular_part μ :=
begin
have : (s.singular_part μ).to_jordan_decomposition =
⟨s.to_jordan_decomposition.pos_part.singular_part μ,
s.to_jordan_decomposition.neg_part.singular_part μ, singular_part_mutually_singular s μ⟩,
{ refine jordan_decomposition.to_signed_measure_injective _,
rw to_signed_measure_to_jordan_decomposition,
refl },
{ rw [total_variation, this] },
end
lemma mutually_singular_singular_part (s : signed_measure α) (μ : measure α) :
singular_part s μ ⊥ᵥ μ.to_ennreal_vector_measure :=
begin
rw [mutually_singular_ennreal_iff, singular_part_total_variation],
change _ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ),
rw vector_measure.equiv_measure.right_inv μ,
exact (mutually_singular_singular_part _ _).add_left (mutually_singular_singular_part _ _)
end
end
/-- The Radon-Nikodym derivative between a signed measure and a positive measure.
`rn_deriv s μ` satisfies `μ.with_densityᵥ (s.rn_deriv μ) = s`
if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as
`measure_theory.signed_measure.absolutely_continuous_iff_with_density_rn_deriv_eq`
and can be found in `measure_theory.decomposition.radon_nikodym`. -/
def rn_deriv (s : signed_measure α) (μ : measure α) : α → ℝ := λ x,
(s.to_jordan_decomposition.pos_part.rn_deriv μ x).to_real -
(s.to_jordan_decomposition.neg_part.rn_deriv μ x).to_real
variables {s t : signed_measure α}
@[measurability]
lemma measurable_rn_deriv (s : signed_measure α) (μ : measure α) :
measurable (rn_deriv s μ) :=
begin
rw [rn_deriv],
measurability,
end
lemma integrable_rn_deriv (s : signed_measure α) (μ : measure α) :
integrable (rn_deriv s μ) μ :=
begin
refine integrable.sub _ _;
{ split,
{ apply measurable.ae_strongly_measurable, measurability },
exact has_finite_integral_to_real_of_lintegral_ne_top
(lintegral_rn_deriv_lt_top _ μ).ne }
end
variables (s μ)
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**:
Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a
measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ`
and `s = t + μ.with_densityᵥ f`. In this case `t = s.singular_part μ` and
`f = s.rn_deriv μ`. -/
theorem singular_part_add_with_density_rn_deriv_eq
[s.have_lebesgue_decomposition μ] :
s.singular_part μ + μ.with_densityᵥ (s.rn_deriv μ) = s :=
begin
conv_rhs { rw [← to_signed_measure_to_jordan_decomposition s,
jordan_decomposition.to_signed_measure] },
rw [singular_part, rn_deriv, with_densityᵥ_sub'
(integrable_to_real_of_lintegral_ne_top _ _) (integrable_to_real_of_lintegral_ne_top _ _),
with_densityᵥ_to_real, with_densityᵥ_to_real, sub_eq_add_neg, sub_eq_add_neg,
add_comm (s.to_jordan_decomposition.pos_part.singular_part μ).to_signed_measure, ← add_assoc,
add_assoc (-(s.to_jordan_decomposition.neg_part.singular_part μ).to_signed_measure),
← to_signed_measure_add, add_comm, ← add_assoc, ← neg_add, ← to_signed_measure_add,
add_comm, ← sub_eq_add_neg],
convert rfl, -- `convert rfl` much faster than `congr`
{ exact (s.to_jordan_decomposition.pos_part.have_lebesgue_decomposition_add μ) },
{ rw add_comm,
exact (s.to_jordan_decomposition.neg_part.have_lebesgue_decomposition_add μ) },
all_goals { exact (lintegral_rn_deriv_lt_top _ _).ne <|> measurability }
end
variables {s μ}
lemma jordan_decomposition_add_with_density_mutually_singular
{f : α → ℝ} (hf : measurable f) (htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) :
t.to_jordan_decomposition.pos_part + μ.with_density (λ (x : α), ennreal.of_real (f x)) ⊥ₘ
t.to_jordan_decomposition.neg_part + μ.with_density (λ (x : α), ennreal.of_real (-f x)) :=
begin
rw [mutually_singular_ennreal_iff, total_variation_mutually_singular_iff] at htμ,
change _ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ) ∧
_ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ) at htμ,
rw [vector_measure.equiv_measure.right_inv] at htμ,
exact ((jordan_decomposition.mutually_singular _).add_right
(htμ.1.mono_ac (refl _) (with_density_absolutely_continuous _ _))).add_left
((htμ.2.symm.mono_ac (with_density_absolutely_continuous _ _) (refl _)).add_right
(with_density_of_real_mutually_singular hf))
end
lemma to_jordan_decomposition_eq_of_eq_add_with_density
{f : α → ℝ} (hf : measurable f) (hfi : integrable f μ)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
s.to_jordan_decomposition = @jordan_decomposition.mk α _
(t.to_jordan_decomposition.pos_part + μ.with_density (λ x, ennreal.of_real (f x)))
(t.to_jordan_decomposition.neg_part + μ.with_density (λ x, ennreal.of_real (- f x)))
(by { haveI := is_finite_measure_with_density_of_real hfi.2, apply_instance })
(by { haveI := is_finite_measure_with_density_of_real hfi.neg.2, apply_instance })
(jordan_decomposition_add_with_density_mutually_singular hf htμ) :=
begin
haveI := is_finite_measure_with_density_of_real hfi.2,
haveI := is_finite_measure_with_density_of_real hfi.neg.2,
refine to_jordan_decomposition_eq _,
simp_rw [jordan_decomposition.to_signed_measure, hadd],
ext i hi,
rw [vector_measure.sub_apply, to_signed_measure_apply_measurable hi,
to_signed_measure_apply_measurable hi, add_apply, add_apply,
ennreal.to_real_add, ennreal.to_real_add, add_sub_add_comm,
← to_signed_measure_apply_measurable hi, ← to_signed_measure_apply_measurable hi,
← vector_measure.sub_apply, ← jordan_decomposition.to_signed_measure,
to_signed_measure_to_jordan_decomposition, vector_measure.add_apply,
← to_signed_measure_apply_measurable hi, ← to_signed_measure_apply_measurable hi,
with_densityᵥ_eq_with_density_pos_part_sub_with_density_neg_part hfi,
vector_measure.sub_apply];
exact (measure_lt_top _ _).ne
end
private lemma have_lebesgue_decomposition_mk' (μ : measure α)
{f : α → ℝ} (hf : measurable f) (hfi : integrable f μ)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
s.have_lebesgue_decomposition μ :=
begin
have htμ' := htμ,
rw mutually_singular_ennreal_iff at htμ,
change _ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ) at htμ,
rw [vector_measure.equiv_measure.right_inv, total_variation_mutually_singular_iff] at htμ,
refine
{ pos_part :=
by { use ⟨t.to_jordan_decomposition.pos_part, λ x, ennreal.of_real (f x)⟩,
refine ⟨hf.ennreal_of_real, htμ.1, _⟩,
rw to_jordan_decomposition_eq_of_eq_add_with_density hf hfi htμ' hadd },
neg_part :=
by { use ⟨t.to_jordan_decomposition.neg_part, λ x, ennreal.of_real (-f x)⟩,
refine ⟨hf.neg.ennreal_of_real, htμ.2, _⟩,
rw to_jordan_decomposition_eq_of_eq_add_with_density hf hfi htμ' hadd } }
end
lemma have_lebesgue_decomposition_mk (μ : measure α) {f : α → ℝ} (hf : measurable f)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
s.have_lebesgue_decomposition μ :=
begin
by_cases hfi : integrable f μ,
{ exact have_lebesgue_decomposition_mk' μ hf hfi htμ hadd },
{ rw [with_densityᵥ, dif_neg hfi, add_zero] at hadd,
refine have_lebesgue_decomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _,
rwa [with_densityᵥ_zero, add_zero] }
end
private theorem eq_singular_part'
(t : signed_measure α) {f : α → ℝ} (hf : measurable f) (hfi : integrable f μ)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
t = s.singular_part μ :=
begin
have htμ' := htμ,
rw [mutually_singular_ennreal_iff, total_variation_mutually_singular_iff] at htμ,
change _ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ) ∧
_ ⊥ₘ vector_measure.equiv_measure.to_fun (vector_measure.equiv_measure.inv_fun μ) at htμ,
rw [vector_measure.equiv_measure.right_inv] at htμ,
{ rw [singular_part, ← t.to_signed_measure_to_jordan_decomposition,
jordan_decomposition.to_signed_measure],
congr,
{ have hfpos : measurable (λ x, ennreal.of_real (f x)), { measurability },
refine eq_singular_part hfpos htμ.1 _,
rw to_jordan_decomposition_eq_of_eq_add_with_density hf hfi htμ' hadd },
{ have hfneg : measurable (λ x, ennreal.of_real (-f x)), { measurability },
refine eq_singular_part hfneg htμ.2 _,
rw to_jordan_decomposition_eq_of_eq_add_with_density hf hfi htμ' hadd } },
end
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is
mutually singular with respect to `μ` and `s = t + μ.with_densityᵥ f`, we have
`t = singular_part s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between
`s` and `μ`. -/
theorem eq_singular_part (t : signed_measure α) (f : α → ℝ)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
t = s.singular_part μ :=
begin
by_cases hfi : integrable f μ,
{ refine eq_singular_part' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _,
convert hadd using 2,
exact with_densityᵥ_eq.congr_ae hfi.1.ae_eq_mk.symm },
{ rw [with_densityᵥ, dif_neg hfi, add_zero] at hadd,
refine eq_singular_part' t measurable_zero (integrable_zero _ _ μ) htμ _,
rwa [with_densityᵥ_zero, add_zero] }
end
lemma singular_part_zero (μ : measure α) : (0 : signed_measure α).singular_part μ = 0 :=
begin
refine (eq_singular_part 0 0
vector_measure.mutually_singular.zero_left _).symm,
rw [zero_add, with_densityᵥ_zero],
end
lemma singular_part_neg (s : signed_measure α) (μ : measure α) :
(-s).singular_part μ = - s.singular_part μ :=
begin
have h₁ : ((-s).to_jordan_decomposition.pos_part.singular_part μ).to_signed_measure =
(s.to_jordan_decomposition.neg_part.singular_part μ).to_signed_measure,
{ refine to_signed_measure_congr _,
rw [to_jordan_decomposition_neg, jordan_decomposition.neg_pos_part] },
have h₂ : ((-s).to_jordan_decomposition.neg_part.singular_part μ).to_signed_measure =
(s.to_jordan_decomposition.pos_part.singular_part μ).to_signed_measure,
{ refine to_signed_measure_congr _,
rw [to_jordan_decomposition_neg, jordan_decomposition.neg_neg_part] },
rw [singular_part, singular_part, neg_sub, h₁, h₂],
end
lemma singular_part_smul_nnreal (s : signed_measure α) (μ : measure α) (r : ℝ≥0) :
(r • s).singular_part μ = r • s.singular_part μ :=
begin
rw [singular_part, singular_part, smul_sub, ← to_signed_measure_smul, ← to_signed_measure_smul],
conv_lhs { congr, congr,
rw [to_jordan_decomposition_smul, jordan_decomposition.smul_pos_part,
singular_part_smul], skip, congr,
rw [to_jordan_decomposition_smul, jordan_decomposition.smul_neg_part,
singular_part_smul] }
end
lemma singular_part_smul (s : signed_measure α) (μ : measure α) (r : ℝ) :
(r • s).singular_part μ = r • s.singular_part μ :=
begin
by_cases hr : 0 ≤ r,
{ lift r to ℝ≥0 using hr,
exact singular_part_smul_nnreal s μ r },
{ rw [singular_part, singular_part],
conv_lhs { congr, congr,
rw [to_jordan_decomposition_smul_real,
jordan_decomposition.real_smul_pos_part_neg _ _ (not_le.1 hr), singular_part_smul],
skip, congr,
rw [to_jordan_decomposition_smul_real,
jordan_decomposition.real_smul_neg_part_neg _ _ (not_le.1 hr), singular_part_smul] },
rw [to_signed_measure_smul, to_signed_measure_smul, ← neg_sub, ← smul_sub],
change -(((-r).to_nnreal : ℝ) • _) = _,
rw [← neg_smul, real.coe_to_nnreal _ (le_of_lt (neg_pos.mpr (not_le.1 hr))), neg_neg] }
end
lemma singular_part_add (s t : signed_measure α) (μ : measure α)
[s.have_lebesgue_decomposition μ] [t.have_lebesgue_decomposition μ] :
(s + t).singular_part μ = s.singular_part μ + t.singular_part μ :=
begin
refine (eq_singular_part _ (s.rn_deriv μ + t.rn_deriv μ)
((mutually_singular_singular_part s μ).add_left (mutually_singular_singular_part t μ)) _).symm,
erw [with_densityᵥ_add (integrable_rn_deriv s μ) (integrable_rn_deriv t μ)],
rw [add_assoc, add_comm (t.singular_part μ), add_assoc, add_comm _ (t.singular_part μ),
singular_part_add_with_density_rn_deriv_eq, ← add_assoc,
singular_part_add_with_density_rn_deriv_eq],
end
lemma singular_part_sub (s t : signed_measure α) (μ : measure α)
[s.have_lebesgue_decomposition μ] [t.have_lebesgue_decomposition μ] :
(s - t).singular_part μ = s.singular_part μ - t.singular_part μ :=
by { rw [sub_eq_add_neg, sub_eq_add_neg, singular_part_add, singular_part_neg] }
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is
mutually singular with respect to `μ` and `s = t + μ.with_densityᵥ f`, we have
`f = rn_deriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/
theorem eq_rn_deriv (t : signed_measure α) (f : α → ℝ) (hfi : integrable f μ)
(htμ : t ⊥ᵥ μ.to_ennreal_vector_measure) (hadd : s = t + μ.with_densityᵥ f) :
f =ᵐ[μ] s.rn_deriv μ :=
begin
set f' := hfi.1.mk f,
have hadd' : s = t + μ.with_densityᵥ f',
{ convert hadd using 2,
exact with_densityᵥ_eq.congr_ae hfi.1.ae_eq_mk.symm },
haveI := have_lebesgue_decomposition_mk μ hfi.1.measurable_mk htμ hadd',
refine (integrable.ae_eq_of_with_densityᵥ_eq (integrable_rn_deriv _ _) hfi _).symm,
rw [← add_right_inj t, ← hadd, eq_singular_part _ f htμ hadd,
singular_part_add_with_density_rn_deriv_eq],
end
lemma rn_deriv_neg (s : signed_measure α) (μ : measure α) [s.have_lebesgue_decomposition μ] :
(-s).rn_deriv μ =ᵐ[μ] - s.rn_deriv μ :=
begin
refine integrable.ae_eq_of_with_densityᵥ_eq
(integrable_rn_deriv _ _) (integrable_rn_deriv _ _).neg _,
rw [with_densityᵥ_neg, ← add_right_inj ((-s).singular_part μ),
singular_part_add_with_density_rn_deriv_eq, singular_part_neg, ← neg_add,
singular_part_add_with_density_rn_deriv_eq]
end
lemma rn_deriv_smul (s : signed_measure α) (μ : measure α) [s.have_lebesgue_decomposition μ]
(r : ℝ) :
(r • s).rn_deriv μ =ᵐ[μ] r • s.rn_deriv μ :=
begin
refine integrable.ae_eq_of_with_densityᵥ_eq
(integrable_rn_deriv _ _) ((integrable_rn_deriv _ _).smul r) _,
change _ = μ.with_densityᵥ ((r : ℝ) • s.rn_deriv μ),
rw [with_densityᵥ_smul (rn_deriv s μ) (r : ℝ),
← add_right_inj ((r • s).singular_part μ),
singular_part_add_with_density_rn_deriv_eq, singular_part_smul],
change _ = _ + r • _,
rw [← smul_add, singular_part_add_with_density_rn_deriv_eq],
end
lemma rn_deriv_add (s t : signed_measure α) (μ : measure α)
[s.have_lebesgue_decomposition μ] [t.have_lebesgue_decomposition μ]
[(s + t).have_lebesgue_decomposition μ] :
(s + t).rn_deriv μ =ᵐ[μ] s.rn_deriv μ + t.rn_deriv μ :=
begin
refine integrable.ae_eq_of_with_densityᵥ_eq
(integrable_rn_deriv _ _)
((integrable_rn_deriv _ _).add (integrable_rn_deriv _ _)) _,
rw [← add_right_inj ((s + t).singular_part μ),
singular_part_add_with_density_rn_deriv_eq,
with_densityᵥ_add (integrable_rn_deriv _ _) (integrable_rn_deriv _ _),
singular_part_add, add_assoc, add_comm (t.singular_part μ), add_assoc,
add_comm _ (t.singular_part μ), singular_part_add_with_density_rn_deriv_eq,
← add_assoc, singular_part_add_with_density_rn_deriv_eq],
end
lemma rn_deriv_sub (s t : signed_measure α) (μ : measure α)
[s.have_lebesgue_decomposition μ] [t.have_lebesgue_decomposition μ]
[hst : (s - t).have_lebesgue_decomposition μ] :
(s - t).rn_deriv μ =ᵐ[μ] s.rn_deriv μ - t.rn_deriv μ :=
begin
rw sub_eq_add_neg at hst,
rw [sub_eq_add_neg, sub_eq_add_neg],
exactI ae_eq_trans (rn_deriv_add _ _ _)
(filter.eventually_eq.add (ae_eq_refl _) (rn_deriv_neg _ _)),
end
end signed_measure
namespace complex_measure
/-- A complex measure is said to `have_lebesgue_decomposition` with respect to a positive measure
if both its real and imaginary part `have_lebesgue_decomposition` with respect to that measure. -/
class have_lebesgue_decomposition (c : complex_measure α) (μ : measure α) : Prop :=
(re_part : c.re.have_lebesgue_decomposition μ)
(im_part : c.im.have_lebesgue_decomposition μ)
attribute [instance] have_lebesgue_decomposition.re_part
attribute [instance] have_lebesgue_decomposition.im_part
/-- The singular part between a complex measure `c` and a positive measure `μ` is the complex
measure satisfying `c.singular_part μ + μ.with_densityᵥ (c.rn_deriv μ) = c`. This property is given
by `measure_theory.complex_measure.singular_part_add_with_density_rn_deriv_eq`. -/
def singular_part (c : complex_measure α) (μ : measure α) : complex_measure α :=
(c.re.singular_part μ).to_complex_measure (c.im.singular_part μ)
/-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/
def rn_deriv (c : complex_measure α) (μ : measure α) : α → ℂ :=
λ x, ⟨c.re.rn_deriv μ x, c.im.rn_deriv μ x⟩
variable {c : complex_measure α}
lemma integrable_rn_deriv (c : complex_measure α) (μ : measure α) :
integrable (c.rn_deriv μ) μ :=
begin
rw [← mem_ℒp_one_iff_integrable, ← mem_ℒp_re_im_iff],
exact ⟨mem_ℒp_one_iff_integrable.2 (signed_measure.integrable_rn_deriv _ _),
mem_ℒp_one_iff_integrable.2 (signed_measure.integrable_rn_deriv _ _)⟩
end
theorem singular_part_add_with_density_rn_deriv_eq [c.have_lebesgue_decomposition μ] :
c.singular_part μ + μ.with_densityᵥ (c.rn_deriv μ) = c :=
begin
conv_rhs { rw [← c.to_complex_measure_to_signed_measure] },
ext i hi : 1,
rw [vector_measure.add_apply, signed_measure.to_complex_measure_apply],
ext,
{ rw [complex.add_re, with_densityᵥ_apply (c.integrable_rn_deriv μ) hi,
←is_R_or_C.re_eq_complex_re, ←integral_re (c.integrable_rn_deriv μ).integrable_on,
is_R_or_C.re_eq_complex_re, ← with_densityᵥ_apply _ hi],
{ change (c.re.singular_part μ + μ.with_densityᵥ (c.re.rn_deriv μ)) i = _,
rw c.re.singular_part_add_with_density_rn_deriv_eq μ },
{ exact (signed_measure.integrable_rn_deriv _ _) } },
{ rw [complex.add_im, with_densityᵥ_apply (c.integrable_rn_deriv μ) hi,
←is_R_or_C.im_eq_complex_im, ←integral_im (c.integrable_rn_deriv μ).integrable_on,
is_R_or_C.im_eq_complex_im, ← with_densityᵥ_apply _ hi],
{ change (c.im.singular_part μ + μ.with_densityᵥ (c.im.rn_deriv μ)) i = _,
rw c.im.singular_part_add_with_density_rn_deriv_eq μ },
{ exact (signed_measure.integrable_rn_deriv _ _) } },
end
end complex_measure
end measure_theory