Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2017 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot | |
-/ | |
import group_theory.group_action.conj_act | |
import group_theory.group_action.quotient | |
import order.filter.pointwise | |
import topology.algebra.monoid | |
import topology.compact_open | |
import topology.sets.compacts | |
import topology.algebra.constructions | |
/-! | |
# Topological groups | |
This file defines the following typeclasses: | |
* `topological_group`, `topological_add_group`: multiplicative and additive topological groups, | |
i.e., groups with continuous `(*)` and `(⁻¹)` / `(+)` and `(-)`; | |
* `has_continuous_sub G` means that `G` has a continuous subtraction operation. | |
There is an instance deducing `has_continuous_sub` from `topological_group` but we use a separate | |
typeclass because, e.g., `ℕ` and `ℝ≥0` have continuous subtraction but are not additive groups. | |
We also define `homeomorph` versions of several `equiv`s: `homeomorph.mul_left`, | |
`homeomorph.mul_right`, `homeomorph.inv`, and prove a few facts about neighbourhood filters in | |
groups. | |
## Tags | |
topological space, group, topological group | |
-/ | |
open classical set filter topological_space function | |
open_locale classical topological_space filter pointwise | |
universes u v w x | |
variables {α : Type u} {β : Type v} {G : Type w} {H : Type x} | |
section continuous_mul_group | |
/-! | |
### Groups with continuous multiplication | |
In this section we prove a few statements about groups with continuous `(*)`. | |
-/ | |
variables [topological_space G] [group G] [has_continuous_mul G] | |
/-- Multiplication from the left in a topological group as a homeomorphism. -/ | |
@[to_additive "Addition from the left in a topological additive group as a homeomorphism."] | |
protected def homeomorph.mul_left (a : G) : G ≃ₜ G := | |
{ continuous_to_fun := continuous_const.mul continuous_id, | |
continuous_inv_fun := continuous_const.mul continuous_id, | |
.. equiv.mul_left a } | |
@[simp, to_additive] | |
lemma homeomorph.coe_mul_left (a : G) : ⇑(homeomorph.mul_left a) = (*) a := rfl | |
@[to_additive] | |
lemma homeomorph.mul_left_symm (a : G) : (homeomorph.mul_left a).symm = homeomorph.mul_left a⁻¹ := | |
by { ext, refl } | |
@[to_additive] | |
lemma is_open_map_mul_left (a : G) : is_open_map (λ x, a * x) := | |
(homeomorph.mul_left a).is_open_map | |
@[to_additive is_open.left_add_coset] | |
lemma is_open.left_coset {U : set G} (h : is_open U) (x : G) : is_open (left_coset x U) := | |
is_open_map_mul_left x _ h | |
@[to_additive] | |
lemma is_closed_map_mul_left (a : G) : is_closed_map (λ x, a * x) := | |
(homeomorph.mul_left a).is_closed_map | |
@[to_additive is_closed.left_add_coset] | |
lemma is_closed.left_coset {U : set G} (h : is_closed U) (x : G) : is_closed (left_coset x U) := | |
is_closed_map_mul_left x _ h | |
/-- Multiplication from the right in a topological group as a homeomorphism. -/ | |
@[to_additive "Addition from the right in a topological additive group as a homeomorphism."] | |
protected def homeomorph.mul_right (a : G) : | |
G ≃ₜ G := | |
{ continuous_to_fun := continuous_id.mul continuous_const, | |
continuous_inv_fun := continuous_id.mul continuous_const, | |
.. equiv.mul_right a } | |
@[simp, to_additive] | |
lemma homeomorph.coe_mul_right (a : G) : ⇑(homeomorph.mul_right a) = λ g, g * a := rfl | |
@[to_additive] | |
lemma homeomorph.mul_right_symm (a : G) : | |
(homeomorph.mul_right a).symm = homeomorph.mul_right a⁻¹ := | |
by { ext, refl } | |
@[to_additive] | |
lemma is_open_map_mul_right (a : G) : is_open_map (λ x, x * a) := | |
(homeomorph.mul_right a).is_open_map | |
@[to_additive is_open.right_add_coset] | |
lemma is_open.right_coset {U : set G} (h : is_open U) (x : G) : is_open (right_coset U x) := | |
is_open_map_mul_right x _ h | |
@[to_additive] | |
lemma is_closed_map_mul_right (a : G) : is_closed_map (λ x, x * a) := | |
(homeomorph.mul_right a).is_closed_map | |
@[to_additive is_closed.right_add_coset] | |
lemma is_closed.right_coset {U : set G} (h : is_closed U) (x : G) : is_closed (right_coset U x) := | |
is_closed_map_mul_right x _ h | |
@[to_additive] | |
lemma discrete_topology_of_open_singleton_one (h : is_open ({1} : set G)) : discrete_topology G := | |
begin | |
rw ← singletons_open_iff_discrete, | |
intro g, | |
suffices : {g} = (λ (x : G), g⁻¹ * x) ⁻¹' {1}, | |
{ rw this, exact (continuous_mul_left (g⁻¹)).is_open_preimage _ h, }, | |
simp only [mul_one, set.preimage_mul_left_singleton, eq_self_iff_true, | |
inv_inv, set.singleton_eq_singleton_iff], | |
end | |
@[to_additive] | |
lemma discrete_topology_iff_open_singleton_one : discrete_topology G ↔ is_open ({1} : set G) := | |
⟨λ h, forall_open_iff_discrete.mpr h {1}, discrete_topology_of_open_singleton_one⟩ | |
end continuous_mul_group | |
/-! | |
### `has_continuous_inv` and `has_continuous_neg` | |
-/ | |
/-- Basic hypothesis to talk about a topological additive group. A topological additive group | |
over `M`, for example, is obtained by requiring the instances `add_group M` and | |
`has_continuous_add M` and `has_continuous_neg M`. -/ | |
class has_continuous_neg (G : Type u) [topological_space G] [has_neg G] : Prop := | |
(continuous_neg : continuous (λ a : G, -a)) | |
/-- Basic hypothesis to talk about a topological group. A topological group over `M`, for example, | |
is obtained by requiring the instances `group M` and `has_continuous_mul M` and | |
`has_continuous_inv M`. -/ | |
@[to_additive] | |
class has_continuous_inv (G : Type u) [topological_space G] [has_inv G] : Prop := | |
(continuous_inv : continuous (λ a : G, a⁻¹)) | |
export has_continuous_inv (continuous_inv) | |
export has_continuous_neg (continuous_neg) | |
section continuous_inv | |
variables [topological_space G] [has_inv G] [has_continuous_inv G] | |
@[to_additive] | |
lemma continuous_on_inv {s : set G} : continuous_on has_inv.inv s := | |
continuous_inv.continuous_on | |
@[to_additive] | |
lemma continuous_within_at_inv {s : set G} {x : G} : continuous_within_at has_inv.inv s x := | |
continuous_inv.continuous_within_at | |
@[to_additive] | |
lemma continuous_at_inv {x : G} : continuous_at has_inv.inv x := | |
continuous_inv.continuous_at | |
@[to_additive] | |
lemma tendsto_inv (a : G) : tendsto has_inv.inv (𝓝 a) (𝓝 (a⁻¹)) := | |
continuous_at_inv | |
/-- If a function converges to a value in a multiplicative topological group, then its inverse | |
converges to the inverse of this value. For the version in normed fields assuming additionally | |
that the limit is nonzero, use `tendsto.inv'`. -/ | |
@[to_additive] | |
lemma filter.tendsto.inv {f : α → G} {l : filter α} {y : G} (h : tendsto f l (𝓝 y)) : | |
tendsto (λ x, (f x)⁻¹) l (𝓝 y⁻¹) := | |
(continuous_inv.tendsto y).comp h | |
variables [topological_space α] {f : α → G} {s : set α} {x : α} | |
@[continuity, to_additive] | |
lemma continuous.inv (hf : continuous f) : continuous (λx, (f x)⁻¹) := | |
continuous_inv.comp hf | |
@[to_additive] | |
lemma continuous_at.inv (hf : continuous_at f x) : continuous_at (λ x, (f x)⁻¹) x := | |
continuous_at_inv.comp hf | |
@[to_additive] | |
lemma continuous_on.inv (hf : continuous_on f s) : continuous_on (λx, (f x)⁻¹) s := | |
continuous_inv.comp_continuous_on hf | |
@[to_additive] | |
lemma continuous_within_at.inv (hf : continuous_within_at f s x) : | |
continuous_within_at (λ x, (f x)⁻¹) s x := | |
hf.inv | |
@[to_additive] | |
instance [topological_space H] [has_inv H] [has_continuous_inv H] : has_continuous_inv (G × H) := | |
⟨continuous_inv.fst'.prod_mk continuous_inv.snd'⟩ | |
variable {ι : Type*} | |
@[to_additive] | |
instance pi.has_continuous_inv {C : ι → Type*} [∀ i, topological_space (C i)] | |
[∀ i, has_inv (C i)] [∀ i, has_continuous_inv (C i)] : has_continuous_inv (Π i, C i) := | |
{ continuous_inv := continuous_pi (λ i, (continuous_apply i).inv) } | |
/-- A version of `pi.has_continuous_inv` for non-dependent functions. It is needed because sometimes | |
Lean fails to use `pi.has_continuous_inv` for non-dependent functions. -/ | |
@[to_additive "A version of `pi.has_continuous_neg` for non-dependent functions. It is needed | |
because sometimes Lean fails to use `pi.has_continuous_neg` for non-dependent functions."] | |
instance pi.has_continuous_inv' : has_continuous_inv (ι → G) := | |
pi.has_continuous_inv | |
@[priority 100, to_additive] | |
instance has_continuous_inv_of_discrete_topology [topological_space H] | |
[has_inv H] [discrete_topology H] : has_continuous_inv H := | |
⟨continuous_of_discrete_topology⟩ | |
section pointwise_limits | |
variables (G₁ G₂ : Type*) [topological_space G₂] [t2_space G₂] | |
@[to_additive] lemma is_closed_set_of_map_inv [has_inv G₁] [has_inv G₂] [has_continuous_inv G₂] : | |
is_closed {f : G₁ → G₂ | ∀ x, f x⁻¹ = (f x)⁻¹ } := | |
begin | |
simp only [set_of_forall], | |
refine is_closed_Inter (λ i, is_closed_eq (continuous_apply _) (continuous_apply _).inv), | |
end | |
end pointwise_limits | |
instance additive.has_continuous_neg [h : topological_space H] [has_inv H] | |
[has_continuous_inv H] : | (additive H) h _ :=|
{ continuous_neg := | H _ _ _ }|
instance multiplicative.has_continuous_inv [h : topological_space H] [has_neg H] | |
[has_continuous_neg H] : | (multiplicative H) h _ :=|
{ continuous_inv := | H _ _ _ }|
end continuous_inv | |
section continuous_involutive_inv | |
variables [topological_space G] [has_involutive_inv G] [has_continuous_inv G] {s : set G} | |
@[to_additive] lemma is_compact.inv (hs : is_compact s) : is_compact s⁻¹ := | |
by { rw [← image_inv], exact hs.image continuous_inv } | |
variables (G) | |
/-- Inversion in a topological group as a homeomorphism. -/ | |
@[to_additive "Negation in a topological group as a homeomorphism."] | |
protected def homeomorph.inv (G : Type*) [topological_space G] [has_involutive_inv G] | |
[has_continuous_inv G] : G ≃ₜ G := | |
{ continuous_to_fun := continuous_inv, | |
continuous_inv_fun := continuous_inv, | |
.. equiv.inv G } | |
@[to_additive] lemma is_open_map_inv : is_open_map (has_inv.inv : G → G) := | |
(homeomorph.inv _).is_open_map | |
@[to_additive] lemma is_closed_map_inv : is_closed_map (has_inv.inv : G → G) := | |
(homeomorph.inv _).is_closed_map | |
variables {G} | |
@[to_additive] lemma is_open.inv (hs : is_open s) : is_open s⁻¹ := hs.preimage continuous_inv | |
@[to_additive] lemma is_closed.inv (hs : is_closed s) : is_closed s⁻¹ := hs.preimage continuous_inv | |
@[to_additive] lemma inv_closure : ∀ s : set G, (closure s)⁻¹ = closure s⁻¹ := | |
(homeomorph.inv G).preimage_closure | |
end continuous_involutive_inv | |
section lattice_ops | |
variables {ι' : Sort*} [has_inv G] | |
@[to_additive] lemma has_continuous_inv_Inf {ts : set (topological_space G)} | |
(h : Π t ∈ ts, | G t _) :|
Inf ts) _ := | G (|
{ continuous_inv := continuous_Inf_rng.2 (λ t ht, continuous_Inf_dom ht | |
( | .continuous_inv G t _ (h t ht))) }|
@[to_additive] lemma has_continuous_inv_infi {ts' : ι' → topological_space G} | |
(h' : Π i, | G (ts' i) _) :|
G (⨅ i, ts' i) _ := | |
by {rw ← Inf_range, exact has_continuous_inv_Inf (set.forall_range_iff.mpr h')} | |
@[to_additive] lemma has_continuous_inv_inf {t₁ t₂ : topological_space G} | |
(h₁ : | G t₁ _) (h₂ : G t₂ _) :|
G (t₁ ⊓ t₂) _ := | |
by { rw inf_eq_infi, refine has_continuous_inv_infi (λ b, _), cases b; assumption } | |
end lattice_ops | |
@[to_additive] lemma inducing.has_continuous_inv {G H : Type*} [has_inv G] [has_inv H] | |
[topological_space G] [topological_space H] [has_continuous_inv H] {f : G → H} (hf : inducing f) | |
(hf_inv : ∀ x, f x⁻¹ = (f x)⁻¹) : has_continuous_inv G := | |
⟨hf.continuous_iff.2 $ by simpa only [(∘), hf_inv] using hf.continuous.inv⟩ | |
section topological_group | |
/-! | |
### Topological groups | |
A topological group is a group in which the multiplication and inversion operations are | |
continuous. Topological additive groups are defined in the same way. Equivalently, we can require | |
that the division operation `λ x y, x * y⁻¹` (resp., subtraction) is continuous. | |
-/ | |
/-- A topological (additive) group is a group in which the addition and negation operations are | |
continuous. -/ | |
class topological_add_group (G : Type u) [topological_space G] [add_group G] | |
extends has_continuous_add G, has_continuous_neg G : Prop | |
/-- A topological group is a group in which the multiplication and inversion operations are | |
continuous. | |
When you declare an instance that does not already have a `uniform_space` instance, | |
you should also provide an instance of `uniform_space` and `uniform_group` using | |
`topological_group.to_uniform_space` and `topological_group_is_uniform`. -/ | |
@[to_additive] | |
class topological_group (G : Type*) [topological_space G] [group G] | |
extends has_continuous_mul G, has_continuous_inv G : Prop | |
section conj | |
instance conj_act.units_has_continuous_const_smul {M} [monoid M] [topological_space M] | |
[has_continuous_mul M] : | |
has_continuous_const_smul (conj_act Mˣ) M := | |
⟨λ m, (continuous_const.mul continuous_id).mul continuous_const⟩ | |
/-- we slightly weaken the type class assumptions here so that it will also apply to `ennreal`, but | |
we nevertheless leave it in the `topological_group` namespace. -/ | |
variables [topological_space G] [has_inv G] [has_mul G] [has_continuous_mul G] | |
/-- Conjugation is jointly continuous on `G × G` when both `mul` and `inv` are continuous. -/ | |
@[to_additive "Conjugation is jointly continuous on `G × G` when both `mul` and `inv` are | |
continuous."] | |
lemma topological_group.continuous_conj_prod [has_continuous_inv G] : | |
continuous (λ g : G × G, g.fst * g.snd * g.fst⁻¹) := | |
continuous_mul.mul (continuous_inv.comp continuous_fst) | |
/-- Conjugation by a fixed element is continuous when `mul` is continuous. -/ | |
@[to_additive "Conjugation by a fixed element is continuous when `add` is continuous."] | |
lemma topological_group.continuous_conj (g : G) : continuous (λ (h : G), g * h * g⁻¹) := | |
(continuous_mul_right g⁻¹).comp (continuous_mul_left g) | |
/-- Conjugation acting on fixed element of the group is continuous when both `mul` and | |
`inv` are continuous. -/ | |
@[to_additive "Conjugation acting on fixed element of the additive group is continuous when both | |
`add` and `neg` are continuous."] | |
lemma topological_group.continuous_conj' [has_continuous_inv G] | |
(h : G) : continuous (λ (g : G), g * h * g⁻¹) := | |
(continuous_mul_right h).mul continuous_inv | |
end conj | |
variables [topological_space G] [group G] [topological_group G] | |
[topological_space α] {f : α → G} {s : set α} {x : α} | |
section zpow | |
@[continuity, to_additive] | |
lemma continuous_zpow : ∀ z : ℤ, continuous (λ a : G, a ^ z) | |
| (int.of_nat n) := by simpa using continuous_pow n | |
| -[1+n] := by simpa using (continuous_pow (n + 1)).inv | |
instance add_group.has_continuous_const_smul_int {A} [add_group A] [topological_space A] | |
[topological_add_group A] : has_continuous_const_smul ℤ A := ⟨continuous_zsmul⟩ | |
instance add_group.has_continuous_smul_int {A} [add_group A] [topological_space A] | |
[topological_add_group A] : has_continuous_smul ℤ A := | |
⟨continuous_uncurry_of_discrete_topology continuous_zsmul⟩ | |
@[continuity, to_additive] | |
lemma continuous.zpow {f : α → G} (h : continuous f) (z : ℤ) : | |
continuous (λ b, (f b) ^ z) := | |
(continuous_zpow z).comp h | |
@[to_additive] | |
lemma continuous_on_zpow {s : set G} (z : ℤ) : continuous_on (λ x, x ^ z) s := | |
(continuous_zpow z).continuous_on | |
@[to_additive] | |
lemma continuous_at_zpow (x : G) (z : ℤ) : continuous_at (λ x, x ^ z) x := | |
(continuous_zpow z).continuous_at | |
@[to_additive] | |
lemma filter.tendsto.zpow {α} {l : filter α} {f : α → G} {x : G} (hf : tendsto f l (𝓝 x)) (z : ℤ) : | |
tendsto (λ x, f x ^ z) l (𝓝 (x ^ z)) := | |
(continuous_at_zpow _ _).tendsto.comp hf | |
@[to_additive] | |
lemma continuous_within_at.zpow {f : α → G} {x : α} {s : set α} (hf : continuous_within_at f s x) | |
(z : ℤ) : continuous_within_at (λ x, f x ^ z) s x := | |
hf.zpow z | |
@[to_additive] | |
lemma continuous_at.zpow {f : α → G} {x : α} (hf : continuous_at f x) (z : ℤ) : | |
continuous_at (λ x, f x ^ z) x := | |
hf.zpow z | |
@[to_additive continuous_on.zsmul] | |
lemma continuous_on.zpow {f : α → G} {s : set α} (hf : continuous_on f s) (z : ℤ) : | |
continuous_on (λ x, f x ^ z) s := | |
λ x hx, (hf x hx).zpow z | |
end zpow | |
section ordered_comm_group | |
variables [topological_space H] [ordered_comm_group H] [topological_group H] | |
@[to_additive] lemma tendsto_inv_nhds_within_Ioi {a : H} : | |
tendsto has_inv.inv (𝓝[>] a) (𝓝[<] (a⁻¹)) := | |
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] | |
@[to_additive] lemma tendsto_inv_nhds_within_Iio {a : H} : | |
tendsto has_inv.inv (𝓝[<] a) (𝓝[>] (a⁻¹)) := | |
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] | |
@[to_additive] lemma tendsto_inv_nhds_within_Ioi_inv {a : H} : | |
tendsto has_inv.inv (𝓝[>] (a⁻¹)) (𝓝[<] a) := | |
by simpa only [inv_inv] using _ _ _ _ (a⁻¹) | |
@[to_additive] lemma tendsto_inv_nhds_within_Iio_inv {a : H} : | |
tendsto has_inv.inv (𝓝[<] (a⁻¹)) (𝓝[>] a) := | |
by simpa only [inv_inv] using _ _ _ _ (a⁻¹) | |
@[to_additive] lemma tendsto_inv_nhds_within_Ici {a : H} : | |
tendsto has_inv.inv (𝓝[≥] a) (𝓝[≤] (a⁻¹)) := | |
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] | |
@[to_additive] lemma tendsto_inv_nhds_within_Iic {a : H} : | |
tendsto has_inv.inv (𝓝[≤] a) (𝓝[≥] (a⁻¹)) := | |
(continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] | |
@[to_additive] lemma tendsto_inv_nhds_within_Ici_inv {a : H} : | |
tendsto has_inv.inv (𝓝[≥] (a⁻¹)) (𝓝[≤] a) := | |
by simpa only [inv_inv] using _ _ _ _ (a⁻¹) | |
@[to_additive] lemma tendsto_inv_nhds_within_Iic_inv {a : H} : | |
tendsto has_inv.inv (𝓝[≤] (a⁻¹)) (𝓝[≥] a) := | |
by simpa only [inv_inv] using _ _ _ _ (a⁻¹) | |
end ordered_comm_group | |
@[instance, to_additive] | |
instance [topological_space H] [group H] [topological_group H] : | |
topological_group (G × H) := | |
{ continuous_inv := continuous_inv.prod_map continuous_inv } | |
@[to_additive] | |
instance pi.topological_group {C : β → Type*} [∀ b, topological_space (C b)] | |
[∀ b, group (C b)] [∀ b, topological_group (C b)] : topological_group (Π b, C b) := | |
{ continuous_inv := continuous_pi (λ i, (continuous_apply i).inv) } | |
open mul_opposite | |
@[to_additive] | |
instance [group α] [has_continuous_inv α] : has_continuous_inv αᵐᵒᵖ := | |
op_homeomorph.symm.inducing.has_continuous_inv unop_inv | |
/-- If multiplication is continuous in `α`, then it also is in `αᵐᵒᵖ`. -/ | |
@[to_additive "If addition is continuous in `α`, then it also is in `αᵃᵒᵖ`."] | |
instance [group α] [topological_group α] : | |
topological_group αᵐᵒᵖ := { } | |
variable (G) | |
@[to_additive] | |
lemma nhds_one_symm : comap has_inv.inv (𝓝 (1 : G)) = 𝓝 (1 : G) := | |
((homeomorph.inv G).comap_nhds_eq _).trans (congr_arg nhds inv_one) | |
/-- The map `(x, y) ↦ (x, xy)` as a homeomorphism. This is a shear mapping. -/ | |
@[to_additive "The map `(x, y) ↦ (x, x + y)` as a homeomorphism. | |
This is a shear mapping."] | |
protected def homeomorph.shear_mul_right : G × G ≃ₜ G × G := | |
{ continuous_to_fun := continuous_fst.prod_mk continuous_mul, | |
continuous_inv_fun := continuous_fst.prod_mk $ continuous_fst.inv.mul continuous_snd, | |
.. equiv.prod_shear (equiv.refl _) equiv.mul_left } | |
@[simp, to_additive] | |
lemma homeomorph.shear_mul_right_coe : | |
⇑(homeomorph.shear_mul_right G) = λ z : G × G, (z.1, z.1 * z.2) := | |
rfl | |
@[simp, to_additive] | |
lemma homeomorph.shear_mul_right_symm_coe : | |
⇑(homeomorph.shear_mul_right G).symm = λ z : G × G, (z.1, z.1⁻¹ * z.2) := | |
rfl | |
variables {G} | |
@[to_additive] protected lemma inducing.topological_group {F : Type*} [group H] | |
[topological_space H] [monoid_hom_class F H G] (f : F) (hf : inducing f) : | |
topological_group H := | |
{ to_has_continuous_mul := hf.has_continuous_mul _, | |
to_has_continuous_inv := hf.has_continuous_inv (map_inv f) } | |
@[to_additive] protected lemma topological_group_induced {F : Type*} [group H] | |
[monoid_hom_class F H G] (f : F) : | |
H (induced f ‹_›) _ := | |
by { letI := induced f ‹_›, exact inducing.topological_group f ⟨rfl⟩ } | |
namespace subgroup | |
@[to_additive] instance (S : subgroup G) : topological_group S := | |
inducing.topological_group S.subtype inducing_coe | |
end subgroup | |
/-- The (topological-space) closure of a subgroup of a space `M` with `has_continuous_mul` is | |
itself a subgroup. -/ | |
@[to_additive "The (topological-space) closure of an additive subgroup of a space `M` with | |
`has_continuous_add` is itself an additive subgroup."] | |
def subgroup.topological_closure (s : subgroup G) : subgroup G := | |
{ carrier := closure (s : set G), | |
inv_mem' := λ g m, by simpa [←set.mem_inv, inv_closure] using m, | |
..s.to_submonoid.topological_closure } | |
@[simp, to_additive] lemma subgroup.topological_closure_coe {s : subgroup G} : | |
(s.topological_closure : set G) = closure s := | |
rfl | |
@[to_additive] lemma subgroup.subgroup_topological_closure (s : subgroup G) : | |
s ≤ s.topological_closure := | |
subset_closure | |
@[to_additive] lemma subgroup.is_closed_topological_closure (s : subgroup G) : | |
is_closed (s.topological_closure : set G) := | |
by convert is_closed_closure | |
@[to_additive] lemma subgroup.topological_closure_minimal | |
(s : subgroup G) {t : subgroup G} (h : s ≤ t) (ht : is_closed (t : set G)) : | |
s.topological_closure ≤ t := | |
closure_minimal h ht | |
@[to_additive] lemma dense_range.topological_closure_map_subgroup [group H] [topological_space H] | |
[topological_group H] {f : G →* H} (hf : continuous f) (hf' : dense_range f) {s : subgroup G} | |
(hs : s.topological_closure = ⊤) : | |
(s.map f).topological_closure = ⊤ := | |
begin | |
rw set_like.ext'_iff at hs ⊢, | |
simp only [subgroup.topological_closure_coe, subgroup.coe_top, ← dense_iff_closure_eq] at hs ⊢, | |
exact hf'.dense_image hf hs | |
end | |
/-- The topological closure of a normal subgroup is normal.-/ | |
@[to_additive "The topological closure of a normal additive subgroup is normal."] | |
lemma subgroup.is_normal_topological_closure {G : Type*} [topological_space G] [group G] | |
[topological_group G] (N : subgroup G) [N.normal] : | |
(subgroup.topological_closure N).normal := | |
{ conj_mem := λ n hn g, | |
begin | |
apply mem_closure_of_continuous (topological_group.continuous_conj g) hn, | |
intros m hm, | |
exact subset_closure (subgroup.normal.conj_mem infer_instance m hm g), | |
end } | |
@[to_additive] lemma mul_mem_connected_component_one {G : Type*} [topological_space G] | |
[mul_one_class G] [has_continuous_mul G] {g h : G} (hg : g ∈ connected_component (1 : G)) | |
(hh : h ∈ connected_component (1 : G)) : g * h ∈ connected_component (1 : G) := | |
begin | |
rw connected_component_eq hg, | |
have hmul: g ∈ connected_component (g*h), | |
{ apply continuous.image_connected_component_subset (continuous_mul_left g), | |
rw ← connected_component_eq hh, | |
exact ⟨(1 : G), mem_connected_component, by simp only [mul_one]⟩ }, | |
simpa [← connected_component_eq hmul] using (mem_connected_component) | |
end | |
@[to_additive] lemma inv_mem_connected_component_one {G : Type*} [topological_space G] [group G] | |
[topological_group G] {g : G} (hg : g ∈ connected_component (1 : G)) : | |
g⁻¹ ∈ connected_component (1 : G) := | |
begin | |
rw ← inv_one, | |
exact continuous.image_connected_component_subset continuous_inv _ | |
((set.mem_image _ _ _).mp ⟨g, hg, rfl⟩) | |
end | |
/-- The connected component of 1 is a subgroup of `G`. -/ | |
@[to_additive "The connected component of 0 is a subgroup of `G`."] | |
def subgroup.connected_component_of_one (G : Type*) [topological_space G] [group G] | |
[topological_group G] : subgroup G := | |
{ carrier := connected_component (1 : G), | |
one_mem' := mem_connected_component, | |
mul_mem' := λ g h hg hh, mul_mem_connected_component_one hg hh, | |
inv_mem' := λ g hg, inv_mem_connected_component_one hg } | |
/-- If a subgroup of a topological group is commutative, then so is its topological closure. -/ | |
@[to_additive "If a subgroup of an additive topological group is commutative, then so is its | |
topological closure."] | |
def subgroup.comm_group_topological_closure [t2_space G] (s : subgroup G) | |
(hs : ∀ (x y : s), x * y = y * x) : comm_group s.topological_closure := | |
{ ..s.topological_closure.to_group, | |
..s.to_submonoid.comm_monoid_topological_closure hs } | |
@[to_additive exists_nhds_half_neg] | |
lemma exists_nhds_split_inv {s : set G} (hs : s ∈ 𝓝 (1 : G)) : | |
∃ V ∈ 𝓝 (1 : G), ∀ (v ∈ V) (w ∈ V), v / w ∈ s := | |
have ((λp : G × G, p.1 * p.2⁻¹) ⁻¹' s) ∈ 𝓝 ((1, 1) : G × G), | |
from continuous_at_fst.mul continuous_at_snd.inv (by simpa), | |
by simpa only [div_eq_mul_inv, nhds_prod_eq, mem_prod_self_iff, prod_subset_iff, mem_preimage] | |
using this | |
@[to_additive] | |
lemma nhds_translation_mul_inv (x : G) : comap (λ y : G, y * x⁻¹) (𝓝 1) = 𝓝 x := | |
((homeomorph.mul_right x⁻¹).comap_nhds_eq 1).trans $ show 𝓝 (1 * x⁻¹⁻¹) = 𝓝 x, by simp | |
@[simp, to_additive] lemma map_mul_left_nhds (x y : G) : map ((*) x) (𝓝 y) = 𝓝 (x * y) := | |
(homeomorph.mul_left x).map_nhds_eq y | |
@[to_additive] lemma map_mul_left_nhds_one (x : G) : map ((*) x) (𝓝 1) = 𝓝 x := by simp | |
/-- A monoid homomorphism (a bundled morphism of a type that implements `monoid_hom_class`) from a | |
topological group to a topological monoid is continuous provided that it is continuous at one. See | |
also `uniform_continuous_of_continuous_at_one`. -/ | |
@[to_additive "An additive monoid homomorphism (a bundled morphism of a type that implements | |
`add_monoid_hom_class`) from an additive topological group to an additive topological monoid is | |
continuous provided that it is continuous at zero. See also | |
`uniform_continuous_of_continuous_at_zero`."] | |
lemma continuous_of_continuous_at_one {M hom : Type*} [mul_one_class M] [topological_space M] | |
[has_continuous_mul M] [monoid_hom_class hom G M] (f : hom) (hf : continuous_at f 1) : | |
continuous f := | |
continuous_iff_continuous_at.2 $ λ x, | |
by simpa only [continuous_at, ← map_mul_left_nhds_one x, tendsto_map'_iff, (∘), | |
map_mul, map_one, mul_one] using hf.tendsto.const_mul (f x) | |
@[to_additive] | |
lemma topological_group.ext {G : Type*} [group G] {t t' : topological_space G} | |
(tg : | G t _) (tg' : G t' _)|
(h : 1 = G t' 1) : t = t' := | G t|
eq_of_nhds_eq_nhds $ λ x, by | |
rw [← | G t _ _ x , ← G t' _ _ x , ← h]|
@[to_additive] | |
lemma topological_group.of_nhds_aux {G : Type*} [group G] [topological_space G] | |
(hinv : tendsto (λ (x : G), x⁻¹) (𝓝 1) (𝓝 1)) | |
(hleft : ∀ (x₀ : G), 𝓝 x₀ = map (λ (x : G), x₀ * x) (𝓝 1)) | |
(hconj : ∀ (x₀ : G), map (λ (x : G), x₀ * x * x₀⁻¹) (𝓝 1) ≤ 𝓝 1) : continuous (λ x : G, x⁻¹) := | |
begin | |
rw continuous_iff_continuous_at, | |
rintros x₀, | |
have key : (λ x, (x₀*x)⁻¹) = (λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹) ∘ (λ x, x⁻¹), | |
by {ext ; simp[mul_assoc] }, | |
calc map (λ x, x⁻¹) (𝓝 x₀) | |
= map (λ x, x⁻¹) (map (λ x, x₀*x) $ 𝓝 1) : by rw hleft | |
... = map (λ x, (x₀*x)⁻¹) (𝓝 1) : by rw filter.map_map | |
... = map (((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) ∘ (λ x, x⁻¹)) (𝓝 1) : by rw key | |
... = map ((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) _ : by rw ← filter.map_map | |
... ≤ map ((λ x, x₀⁻¹ * x) ∘ λ x, x₀ * x * x₀⁻¹) (𝓝 1) : map_mono hinv | |
... = map (λ x, x₀⁻¹ * x) (map (λ x, x₀ * x * x₀⁻¹) (𝓝 1)) : filter.map_map | |
... ≤ map (λ x, x₀⁻¹ * x) (𝓝 1) : map_mono (hconj x₀) | |
... = 𝓝 x₀⁻¹ : (hleft _).symm | |
end | |
@[to_additive] | |
lemma topological_group.of_nhds_one' {G : Type u} [group G] [topological_space G] | |
(hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1)) | |
(hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1)) | |
(hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) | |
(hright : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x*x₀) (𝓝 1)) : topological_group G := | |
begin | |
refine { continuous_mul := (has_continuous_mul.of_nhds_one hmul hleft hright).continuous_mul, | |
continuous_inv := topological_group.of_nhds_aux hinv hleft _ }, | |
intros x₀, | |
suffices : map (λ (x : G), x₀ * x * x₀⁻¹) (𝓝 1) = 𝓝 1, by simp [this, le_refl], | |
rw [show (λ x, x₀ * x * x₀⁻¹) = (λ x, x₀ * x) ∘ λ x, x*x₀⁻¹, by {ext, simp [mul_assoc] }, | |
← filter.map_map, ← hright, hleft x₀⁻¹, filter.map_map], | |
convert map_id, | |
ext, | |
simp | |
end | |
@[to_additive] | |
lemma topological_group.of_nhds_one {G : Type u} [group G] [topological_space G] | |
(hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1)) | |
(hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1)) | |
(hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) | |
(hconj : ∀ x₀ : G, tendsto (λ x, x₀*x*x₀⁻¹) (𝓝 1) (𝓝 1)) : topological_group G := | |
{ continuous_mul := begin | |
rw continuous_iff_continuous_at, | |
rintros ⟨x₀, y₀⟩, | |
have key : (λ (p : G × G), x₀ * p.1 * (y₀ * p.2)) = | |
((λ x, x₀*y₀*x) ∘ (uncurry (*)) ∘ (prod.map (λ x, y₀⁻¹*x*y₀) id)), | |
by { ext, simp [uncurry, prod.map, mul_assoc] }, | |
specialize hconj y₀⁻¹, rw inv_inv at hconj, | |
calc map (λ (p : G × G), p.1 * p.2) (𝓝 (x₀, y₀)) | |
= map (λ (p : G × G), p.1 * p.2) ((𝓝 x₀) ×ᶠ 𝓝 y₀) | |
: by rw nhds_prod_eq | |
... = map (λ (p : G × G), x₀ * p.1 * (y₀ * p.2)) ((𝓝 1) ×ᶠ (𝓝 1)) | |
: by rw [hleft x₀, hleft y₀, prod_map_map_eq, filter.map_map] | |
... = map (((λ x, x₀*y₀*x) ∘ (uncurry (*))) ∘ (prod.map (λ x, y₀⁻¹*x*y₀) id))((𝓝 1) ×ᶠ (𝓝 1)) | |
: by rw key | |
... = map ((λ x, x₀*y₀*x) ∘ (uncurry (*))) ((map (λ x, y₀⁻¹*x*y₀) $ 𝓝 1) ×ᶠ (𝓝 1)) | |
: by rw [← filter.map_map, ← prod_map_map_eq', map_id] | |
... ≤ map ((λ x, x₀*y₀*x) ∘ (uncurry (*))) ((𝓝 1) ×ᶠ (𝓝 1)) | |
: map_mono (filter.prod_mono hconj $ le_rfl) | |
... = map (λ x, x₀*y₀*x) (map (uncurry (*)) ((𝓝 1) ×ᶠ (𝓝 1))) : by rw filter.map_map | |
... ≤ map (λ x, x₀*y₀*x) (𝓝 1) : map_mono hmul | |
... = 𝓝 (x₀*y₀) : (hleft _).symm | |
end, | |
continuous_inv := topological_group.of_nhds_aux hinv hleft hconj} | |
@[to_additive] | |
lemma topological_group.of_comm_of_nhds_one {G : Type u} [comm_group G] [topological_space G] | |
(hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1)) | |
(hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1)) | |
(hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) : topological_group G := | |
topological_group.of_nhds_one hmul hinv hleft (by simpa using tendsto_id) | |
end topological_group | |
section quotient_topological_group | |
variables [topological_space G] [group G] [topological_group G] (N : subgroup G) (n : N.normal) | |
@[to_additive] | |
instance quotient_group.quotient.topological_space {G : Type*} [group G] [topological_space G] | |
(N : subgroup G) : topological_space (G ⧸ N) := | |
quotient.topological_space | |
open quotient_group | |
@[to_additive] | |
lemma quotient_group.is_open_map_coe : is_open_map (coe : G → G ⧸ N) := | |
begin | |
intros s s_op, | |
change is_open ((coe : G → G ⧸ N) ⁻¹' (coe '' s)), | |
rw quotient_group.preimage_image_coe N s, | |
exact is_open_Union (λ n, (continuous_mul_right _).is_open_preimage s s_op) | |
end | |
@[to_additive] | |
instance topological_group_quotient [N.normal] : topological_group (G ⧸ N) := | |
{ continuous_mul := begin | |
have cont : continuous ((coe : G → G ⧸ N) ∘ (λ (p : G × G), p.fst * p.snd)) := | |
continuous_quot_mk.comp continuous_mul, | |
have quot : quotient_map (λ p : G × G, ((p.1 : G ⧸ N), (p.2 : G ⧸ N))), | |
{ apply is_open_map.to_quotient_map, | |
{ exact (quotient_group.is_open_map_coe N).prod (quotient_group.is_open_map_coe N) }, | |
{ exact continuous_quot_mk.prod_map continuous_quot_mk }, | |
{ exact (surjective_quot_mk _).prod_map (surjective_quot_mk _) } }, | |
exact (quotient_map.continuous_iff quot).2 cont, | |
end, | |
continuous_inv := begin | |
have : continuous ((coe : G → G ⧸ N) ∘ (λ (a : G), a⁻¹)) := | |
continuous_quot_mk.comp continuous_inv, | |
convert continuous_quotient_lift _ this, | |
end } | |
end quotient_topological_group | |
/-- A typeclass saying that `λ p : G × G, p.1 - p.2` is a continuous function. This property | |
automatically holds for topological additive groups but it also holds, e.g., for `ℝ≥0`. -/ | |
class has_continuous_sub (G : Type*) [topological_space G] [has_sub G] : Prop := | |
(continuous_sub : continuous (λ p : G × G, p.1 - p.2)) | |
/-- A typeclass saying that `λ p : G × G, p.1 / p.2` is a continuous function. This property | |
automatically holds for topological groups. Lemmas using this class have primes. | |
The unprimed version is for `group_with_zero`. -/ | |
@[to_additive] | |
class has_continuous_div (G : Type*) [topological_space G] [has_div G] : Prop := | |
(continuous_div' : continuous (λ p : G × G, p.1 / p.2)) | |
@[priority 100, to_additive] -- see Note [lower instance priority] | |
instance topological_group.to_has_continuous_div [topological_space G] [group G] | |
[topological_group G] : has_continuous_div G := | |
⟨by { simp only [div_eq_mul_inv], exact continuous_fst.mul continuous_snd.inv }⟩ | |
export has_continuous_sub (continuous_sub) | |
export has_continuous_div (continuous_div') | |
section has_continuous_div | |
variables [topological_space G] [has_div G] [has_continuous_div G] | |
@[to_additive sub] | |
lemma filter.tendsto.div' {f g : α → G} {l : filter α} {a b : G} (hf : tendsto f l (𝓝 a)) | |
(hg : tendsto g l (𝓝 b)) : tendsto (λ x, f x / g x) l (𝓝 (a / b)) := | |
(continuous_div'.tendsto (a, b)).comp (hf.prod_mk_nhds hg) | |
@[to_additive const_sub] | |
lemma filter.tendsto.const_div' (b : G) {c : G} {f : α → G} {l : filter α} | |
(h : tendsto f l (𝓝 c)) : tendsto (λ k : α, b / f k) l (𝓝 (b / c)) := | |
tendsto_const_nhds.div' h | |
@[to_additive sub_const] | |
lemma filter.tendsto.div_const' (b : G) {c : G} {f : α → G} {l : filter α} | |
(h : tendsto f l (𝓝 c)) : tendsto (λ k : α, f k / b) l (𝓝 (c / b)) := | |
h.div' tendsto_const_nhds | |
variables [topological_space α] {f g : α → G} {s : set α} {x : α} | |
@[continuity, to_additive sub] lemma continuous.div' (hf : continuous f) (hg : continuous g) : | |
continuous (λ x, f x / g x) := | |
continuous_div'.comp (hf.prod_mk hg : _) | |
@[to_additive continuous_sub_left] | |
lemma continuous_div_left' (a : G) : continuous (λ b : G, a / b) := | |
continuous_const.div' continuous_id | |
@[to_additive continuous_sub_right] | |
lemma continuous_div_right' (a : G) : continuous (λ b : G, b / a) := | |
continuous_id.div' continuous_const | |
@[to_additive sub] | |
lemma continuous_at.div' {f g : α → G} {x : α} (hf : continuous_at f x) (hg : continuous_at g x) : | |
continuous_at (λx, f x / g x) x := | |
hf.div' hg | |
@[to_additive sub] | |
lemma continuous_within_at.div' (hf : continuous_within_at f s x) | |
(hg : continuous_within_at g s x) : | |
continuous_within_at (λ x, f x / g x) s x := | |
hf.div' hg | |
@[to_additive sub] | |
lemma continuous_on.div' (hf : continuous_on f s) (hg : continuous_on g s) : | |
continuous_on (λx, f x / g x) s := | |
λ x hx, (hf x hx).div' (hg x hx) | |
end has_continuous_div | |
section div_in_topological_group | |
variables [group G] [topological_space G] [topological_group G] | |
/-- A version of `homeomorph.mul_left a b⁻¹` that is defeq to `a / b`. -/ | |
@[to_additive /-" A version of `homeomorph.add_left a (-b)` that is defeq to `a - b`. "-/, | |
simps {simp_rhs := tt}] | |
def homeomorph.div_left (x : G) : G ≃ₜ G := | |
{ continuous_to_fun := continuous_const.div' continuous_id, | |
continuous_inv_fun := continuous_inv.mul continuous_const, | |
.. equiv.div_left x } | |
@[to_additive] lemma is_open_map_div_left (a : G) : is_open_map ((/) a) := | |
(homeomorph.div_left _).is_open_map | |
@[to_additive] lemma is_closed_map_div_left (a : G) : is_closed_map ((/) a) := | |
(homeomorph.div_left _).is_closed_map | |
/-- A version of `homeomorph.mul_right a⁻¹ b` that is defeq to `b / a`. -/ | |
@[to_additive /-" A version of `homeomorph.add_right (-a) b` that is defeq to `b - a`. "-/, | |
simps {simp_rhs := tt}] | |
def homeomorph.div_right (x : G) : G ≃ₜ G := | |
{ continuous_to_fun := continuous_id.div' continuous_const, | |
continuous_inv_fun := continuous_id.mul continuous_const, | |
.. equiv.div_right x } | |
@[to_additive] | |
lemma is_open_map_div_right (a : G) : is_open_map (λ x, x / a) := | |
(homeomorph.div_right a).is_open_map | |
@[to_additive] | |
lemma is_closed_map_div_right (a : G) : is_closed_map (λ x, x / a) := | |
(homeomorph.div_right a).is_closed_map | |
@[to_additive] | |
lemma tendsto_div_nhds_one_iff | |
{α : Type*} {l : filter α} {x : G} {u : α → G} : | |
tendsto (λ n, u n / x) l (𝓝 1) ↔ tendsto u l (𝓝 x) := | |
begin | |
have A : tendsto (λ (n : α), x) l (𝓝 x) := tendsto_const_nhds, | |
exact ⟨λ h, by simpa using h.mul A, λ h, by simpa using h.div' A⟩ | |
end | |
@[to_additive] lemma nhds_translation_div (x : G) : comap (/ x) (𝓝 1) = 𝓝 x := | |
by simpa only [div_eq_mul_inv] using nhds_translation_mul_inv x | |
end div_in_topological_group | |
/-! | |
### Topological operations on pointwise sums and products | |
A few results about interior and closure of the pointwise addition/multiplication of sets in groups | |
with continuous addition/multiplication. See also `submonoid.top_closure_mul_self_eq` in | |
`topology.algebra.monoid`. | |
-/ | |
section has_continuous_mul | |
variables [topological_space α] [group α] [has_continuous_mul α] {s t : set α} | |
@[to_additive] lemma is_open.mul_left (ht : is_open t) : is_open (s * t) := | |
by { rw ←Union_mul_left_image, exact is_open_bUnion (λ a ha, is_open_map_mul_left a t ht) } | |
@[to_additive] lemma is_open.mul_right (hs : is_open s) : is_open (s * t) := | |
by { rw ←Union_mul_right_image, exact is_open_bUnion (λ a ha, is_open_map_mul_right a s hs) } | |
@[to_additive] lemma subset_interior_mul_left : interior s * t ⊆ interior (s * t) := | |
interior_maximal (set.mul_subset_mul_right interior_subset) is_open_interior.mul_right | |
@[to_additive] lemma subset_interior_mul_right : s * interior t ⊆ interior (s * t) := | |
interior_maximal (set.mul_subset_mul_left interior_subset) is_open_interior.mul_left | |
@[to_additive] lemma subset_interior_mul : interior s * interior t ⊆ interior (s * t) := | |
(set.mul_subset_mul_left interior_subset).trans subset_interior_mul_left | |
end has_continuous_mul | |
section topological_group | |
variables [topological_space α] [group α] [topological_group α] {s t : set α} | |
@[to_additive] lemma is_open.div_left (ht : is_open t) : is_open (s / t) := | |
by { rw ←Union_div_left_image, exact is_open_bUnion (λ a ha, is_open_map_div_left a t ht) } | |
@[to_additive] lemma is_open.div_right (hs : is_open s) : is_open (s / t) := | |
by { rw ←Union_div_right_image, exact is_open_bUnion (λ a ha, is_open_map_div_right a s hs) } | |
@[to_additive] lemma subset_interior_div_left : interior s / t ⊆ interior (s / t) := | |
interior_maximal (div_subset_div_right interior_subset) is_open_interior.div_right | |
@[to_additive] lemma subset_interior_div_right : s / interior t ⊆ interior (s / t) := | |
interior_maximal (div_subset_div_left interior_subset) is_open_interior.div_left | |
@[to_additive] lemma subset_interior_div : interior s / interior t ⊆ interior (s / t) := | |
(div_subset_div_left interior_subset).trans subset_interior_div_left | |
@[to_additive] lemma is_open.mul_closure (hs : is_open s) (t : set α) : s * closure t = s * t := | |
begin | |
refine (mul_subset_iff.2 $ λ a ha b hb, _).antisymm (mul_subset_mul_left subset_closure), | |
rw mem_closure_iff at hb, | |
have hbU : b ∈ s⁻¹ * {a * b} := ⟨a⁻¹, a * b, set.inv_mem_inv.2 ha, rfl, inv_mul_cancel_left _ _⟩, | |
obtain ⟨_, ⟨c, d, hc, (rfl : d = _), rfl⟩, hcs⟩ := hb _ hs.inv.mul_right hbU, | |
exact ⟨c⁻¹, _, hc, hcs, inv_mul_cancel_left _ _⟩, | |
end | |
@[to_additive] lemma is_open.closure_mul (ht : is_open t) (s : set α) : closure s * t = s * t := | |
by rw [←inv_inv (closure s * t), mul_inv_rev, inv_closure, ht.inv.mul_closure, mul_inv_rev, inv_inv, | |
inv_inv] | |
@[to_additive] lemma is_open.div_closure (hs : is_open s) (t : set α) : s / closure t = s / t := | |
by simp_rw [div_eq_mul_inv, inv_closure, hs.mul_closure] | |
@[to_additive] lemma is_open.closure_div (ht : is_open t) (s : set α) : closure s / t = s / t := | |
by simp_rw [div_eq_mul_inv, ht.inv.closure_mul] | |
end topological_group | |
/-- additive group with a neighbourhood around 0. | |
Only used to construct a topology and uniform space. | |
This is currently only available for commutative groups, but it can be extended to | |
non-commutative groups too. | |
-/ | |
class add_group_with_zero_nhd (G : Type u) extends add_comm_group G := | |
(Z [] : filter G) | |
(zero_Z : pure 0 ≤ Z) | |
(sub_Z : tendsto (λp:G×G, p.1 - p.2) (Z ×ᶠ Z) Z) | |
section filter_mul | |
section | |
variables (G) [topological_space G] [group G] [topological_group G] | |
@[to_additive] | |
lemma topological_group.t1_space (h : 1}) : t1_space G := | G _ {|
⟨assume x, by { convert is_closed_map_mul_right x _ h, simp }⟩ | |
@[to_additive] | |
lemma topological_group.t3_space [t1_space G] : t3_space G := | |
⟨assume s a hs ha, | |
let f := λ p : G × G, p.1 * (p.2)⁻¹ in | |
have hf : continuous f := continuous_fst.mul continuous_snd.inv, | |
-- a ∈ -s implies f (a, 1) ∈ -s, and so (a, 1) ∈ f⁻¹' (-s); | |
-- and so can find t₁ t₂ open such that a ∈ t₁ × t₂ ⊆ f⁻¹' (-s) | |
let ⟨t₁, t₂, ht₁, ht₂, a_mem_t₁, one_mem_t₂, t_subset⟩ := | |
is_open_prod_iff.1 ((is_open_compl_iff.2 hs).preimage hf) a (1:G) (by simpa [f]) in | |
begin | |
use [s * t₂, ht₂.mul_left, λ x hx, ⟨x, 1, hx, one_mem_t₂, mul_one _⟩], | |
rw [nhds_within, inf_principal_eq_bot, mem_nhds_iff], | |
refine ⟨t₁, _, ht₁, a_mem_t₁⟩, | |
rintros x hx ⟨y, z, hy, hz, yz⟩, | |
have : x * z⁻¹ ∈ sᶜ := (prod_subset_iff.1 t_subset) x hx z hz, | |
have : x * z⁻¹ ∈ s, rw ← yz, simpa, | |
contradiction | |
end⟩ | |
@[to_additive] | |
lemma topological_group.t2_space [t1_space G] : t2_space G := | |
.t2_space G _ (topological_group.t3_space G) | |
variables {G} (S : subgroup G) [subgroup.normal S] [is_closed (S : set G)] | |
@[to_additive] | |
instance subgroup.t3_quotient_of_is_closed | |
(S : subgroup G) [subgroup.normal S] [is_closed (S : set G)] : t3_space (G ⧸ S) := | |
begin | |
suffices : t1_space (G ⧸ S), { exact | .t3_space _ _ _ _ this, },|
have hS : is_closed (S : set G) := infer_instance, | |
rw ← quotient_group.ker_mk S at hS, | |
exact topological_group.t1_space (G ⧸ S) ((quotient_map_quotient_mk.is_closed_preimage).mp hS), | |
end | |
end | |
section | |
/-! Some results about an open set containing the product of two sets in a topological group. -/ | |
variables [topological_space G] [group G] [topological_group G] | |
/-- Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `1` | |
such that `K * V ⊆ U`. -/ | |
@[to_additive "Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of | |
`0` such that `K + V ⊆ U`."] | |
lemma compact_open_separated_mul_right {K U : set G} (hK : is_compact K) (hU : is_open U) | |
(hKU : K ⊆ U) : ∃ V ∈ 𝓝 (1 : G), K * V ⊆ U := | |
begin | |
apply hK.induction_on, | |
{ exact ⟨univ, by simp⟩ }, | |
{ rintros s t hst ⟨V, hV, hV'⟩, | |
exact ⟨V, hV, (mul_subset_mul_right hst).trans hV'⟩ }, | |
{ rintros s t ⟨V, V_in, hV'⟩ ⟨W, W_in, hW'⟩, | |
use [V ∩ W, inter_mem V_in W_in], | |
rw union_mul, | |
exact union_subset ((mul_subset_mul_left (V.inter_subset_left W)).trans hV') | |
((mul_subset_mul_left (V.inter_subset_right W)).trans hW') }, | |
{ intros x hx, | |
have := tendsto_mul (show U ∈ 𝓝 (x * 1), by simpa using hU.mem_nhds (hKU hx)), | |
rw [nhds_prod_eq, mem_map, mem_prod_iff] at this, | |
rcases this with ⟨t, ht, s, hs, h⟩, | |
rw [← image_subset_iff, image_mul_prod] at h, | |
exact ⟨t, mem_nhds_within_of_mem_nhds ht, s, hs, h⟩ } | |
end | |
open mul_opposite | |
/-- Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `1` | |
such that `V * K ⊆ U`. -/ | |
@[to_additive "Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of | |
`0` such that `V + K ⊆ U`."] | |
lemma compact_open_separated_mul_left {K U : set G} (hK : is_compact K) (hU : is_open U) | |
(hKU : K ⊆ U) : ∃ V ∈ 𝓝 (1 : G), V * K ⊆ U := | |
begin | |
rcases compact_open_separated_mul_right (hK.image continuous_op) (op_homeomorph.is_open_map U hU) | |
(image_subset op hKU) with ⟨V, (hV : V ∈ 𝓝 (op (1 : G))), hV' : op '' K * V ⊆ op '' U⟩, | |
refine ⟨op ⁻¹' V, continuous_op.continuous_at hV, _⟩, | |
rwa [← image_preimage_eq V op_surjective, ← image_op_mul, image_subset_iff, | |
preimage_image_eq _ op_injective] at hV' | |
end | |
/-- A compact set is covered by finitely many left multiplicative translates of a set | |
with non-empty interior. -/ | |
@[to_additive "A compact set is covered by finitely many left additive translates of a set | |
with non-empty interior."] | |
lemma compact_covered_by_mul_left_translates {K V : set G} (hK : is_compact K) | |
(hV : (interior V).nonempty) : ∃ t : finset G, K ⊆ ⋃ g ∈ t, (λ h, g * h) ⁻¹' V := | |
begin | |
obtain ⟨t, ht⟩ : ∃ t : finset G, K ⊆ ⋃ x ∈ t, interior (((*) x) ⁻¹' V), | |
{ refine hK.elim_finite_subcover (λ x, interior $ ((*) x) ⁻¹' V) (λ x, is_open_interior) _, | |
cases hV with g₀ hg₀, | |
refine λ g hg, mem_Union.2 ⟨g₀ * g⁻¹, _⟩, | |
refine preimage_interior_subset_interior_preimage (continuous_const.mul continuous_id) _, | |
rwa [mem_preimage, inv_mul_cancel_right] }, | |
exact ⟨t, subset.trans ht $ Union₂_mono $ λ g hg, interior_subset⟩ | |
end | |
/-- Every locally compact separable topological group is σ-compact. | |
Note: this is not true if we drop the topological group hypothesis. -/ | |
@[priority 100, to_additive separable_locally_compact_add_group.sigma_compact_space] | |
instance separable_locally_compact_group.sigma_compact_space | |
[separable_space G] [locally_compact_space G] : sigma_compact_space G := | |
begin | |
obtain ⟨L, hLc, hL1⟩ := exists_compact_mem_nhds (1 : G), | |
refine ⟨⟨λ n, (λ x, x * dense_seq G n) ⁻¹' L, _, _⟩⟩, | |
{ intro n, exact (homeomorph.mul_right _).compact_preimage.mpr hLc }, | |
{ refine Union_eq_univ_iff.2 (λ x, _), | |
obtain ⟨_, ⟨n, rfl⟩, hn⟩ : (range (dense_seq G) ∩ (λ y, x * y) ⁻¹' L).nonempty, | |
{ rw [← (homeomorph.mul_left x).apply_symm_apply 1] at hL1, | |
exact (dense_range_dense_seq G).inter_nhds_nonempty | |
((homeomorph.mul_left x).continuous.continuous_at $ hL1) }, | |
exact ⟨n, hn⟩ } | |
end | |
/-- Every separated topological group in which there exists a compact set with nonempty interior | |
is locally compact. -/ | |
@[to_additive] lemma topological_space.positive_compacts.locally_compact_space_of_group | |
[t2_space G] (K : positive_compacts G) : | |
locally_compact_space G := | |
begin | |
refine locally_compact_of_compact_nhds (λ x, _), | |
obtain ⟨y, hy⟩ := K.interior_nonempty, | |
let F := homeomorph.mul_left (x * y⁻¹), | |
refine ⟨F '' K, _, K.compact.image F.continuous⟩, | |
suffices : F.symm ⁻¹' K ∈ 𝓝 x, by { convert this, apply equiv.image_eq_preimage }, | |
apply continuous_at.preimage_mem_nhds F.symm.continuous.continuous_at, | |
have : F.symm x = y, by simp [F, homeomorph.mul_left_symm], | |
rw this, | |
exact mem_interior_iff_mem_nhds.1 hy | |
end | |
end | |
section | |
variables [topological_space G] [comm_group G] [topological_group G] | |
@[to_additive] | |
lemma nhds_mul (x y : G) : 𝓝 (x * y) = 𝓝 x * 𝓝 y := | |
filter_eq $ set.ext $ assume s, | |
begin | |
rw [← nhds_translation_mul_inv x, ← nhds_translation_mul_inv y, ← nhds_translation_mul_inv (x*y)], | |
split, | |
{ rintros ⟨t, ht, ts⟩, | |
rcases exists_nhds_one_split ht with ⟨V, V1, h⟩, | |
refine ⟨(λa, a * x⁻¹) ⁻¹' V, (λa, a * y⁻¹) ⁻¹' V, | |
⟨V, V1, subset.refl _⟩, ⟨V, V1, subset.refl _⟩, _⟩, | |
rintros a ⟨v, w, v_mem, w_mem, rfl⟩, | |
apply ts, | |
simpa [mul_comm, mul_assoc, mul_left_comm] using h (v * x⁻¹) v_mem (w * y⁻¹) w_mem }, | |
{ rintros ⟨a, c, ⟨b, hb, ba⟩, ⟨d, hd, dc⟩, ac⟩, | |
refine ⟨b ∩ d, inter_mem hb hd, assume v, _⟩, | |
simp only [preimage_subset_iff, mul_inv_rev, mem_preimage] at *, | |
rintros ⟨vb, vd⟩, | |
refine ac ⟨v * y⁻¹, y, _, _, _⟩, | |
{ rw ← mul_assoc _ _ _ at vb, exact ba _ vb }, | |
{ apply dc y, rw mul_right_inv, exact mem_of_mem_nhds hd }, | |
{ simp only [inv_mul_cancel_right] } } | |
end | |
/-- On a topological group, `𝓝 : G → filter G` can be promoted to a `mul_hom`. -/ | |
@[to_additive "On an additive topological group, `𝓝 : G → filter G` can be promoted to an | |
`add_hom`.", simps] | |
def nhds_mul_hom : G →ₙ* (filter G) := | |
{ to_fun := 𝓝, | |
map_mul' := λ_ _, nhds_mul _ _ } | |
end | |
end filter_mul | |
instance additive.topological_add_group {G} [h : topological_space G] | |
[group G] [topological_group G] : | (additive G) h _ :=|
{ continuous_neg := | G _ _ _ }|
instance multiplicative.topological_group {G} [h : topological_space G] | |
[add_group G] [topological_add_group G] : | (multiplicative G) h _ :=|
{ continuous_inv := | G _ _ _ }|
section quotient | |
variables [group G] [topological_space G] [topological_group G] {Γ : subgroup G} | |
@[to_additive] | |
instance quotient_group.has_continuous_const_smul : has_continuous_const_smul G (G ⧸ Γ) := | |
{ continuous_const_smul := λ g₀, begin | |
apply continuous_coinduced_dom.2, | |
change continuous (λ g : G, quotient_group.mk (g₀ * g)), | |
exact continuous_coinduced_rng.comp (continuous_mul_left g₀), | |
end } | |
@[to_additive] | |
lemma quotient_group.continuous_smul₁ (x : G ⧸ Γ) : continuous (λ g : G, g • x) := | |
begin | |
obtain ⟨g₀, rfl⟩ : ∃ g₀, quotient_group.mk g₀ = x, | |
{ exact | .exists_rep _ (quotient_group.left_rel Γ) x },|
change continuous (λ g, quotient_group.mk (g * g₀)), | |
exact continuous_coinduced_rng.comp (continuous_mul_right g₀) | |
end | |
@[to_additive] | |
instance quotient_group.has_continuous_smul [locally_compact_space G] : | |
has_continuous_smul G (G ⧸ Γ) := | |
{ continuous_smul := begin | |
let F : G × G ⧸ Γ → G ⧸ Γ := λ p, p.1 • p.2, | |
change continuous F, | |
have H : continuous (F ∘ (λ p : G × G, (p.1, quotient_group.mk p.2))), | |
{ change continuous (λ p : G × G, quotient_group.mk (p.1 * p.2)), | |
refine continuous_coinduced_rng.comp continuous_mul }, | |
exact quotient_map.continuous_lift_prod_right quotient_map_quotient_mk H, | |
end } | |
end quotient | |
namespace units | |
open mul_opposite (continuous_op continuous_unop) | |
variables [monoid α] [topological_space α] [has_continuous_mul α] [monoid β] [topological_space β] | |
[has_continuous_mul β] | |
@[to_additive] instance : topological_group αˣ := | |
{ continuous_inv := continuous_induced_rng.2 ((continuous_unop.comp | |
( | α _ _).snd).prod_mk (continuous_op.comp continuous_coe)) }|
/-- The topological group isomorphism between the units of a product of two monoids, and the product | |
of the units of each monoid. -/ | |
def homeomorph.prod_units : homeomorph (α × β)ˣ (αˣ × βˣ) := | |
{ continuous_to_fun := | |
begin | |
show continuous (λ i : (α × β)ˣ, (map (monoid_hom.fst α β) i, map (monoid_hom.snd α β) i)), | |
refine continuous.prod_mk _ _, | |
{ refine continuous_induced_rng.2 ((continuous_fst.comp units.continuous_coe).prod_mk _), | |
refine mul_opposite.continuous_op.comp (continuous_fst.comp _), | |
simp_rw units.inv_eq_coe_inv, | |
exact units.continuous_coe.comp continuous_inv, }, | |
{ refine continuous_induced_rng.2 ((continuous_snd.comp units.continuous_coe).prod_mk _), | |
simp_rw units.coe_map_inv, | |
exact continuous_op.comp (continuous_snd.comp (units.continuous_coe.comp continuous_inv)), } | |
end, | |
continuous_inv_fun := | |
begin | |
refine continuous_induced_rng.2 (continuous.prod_mk _ _), | |
{ exact (units.continuous_coe.comp continuous_fst).prod_mk | |
(units.continuous_coe.comp continuous_snd), }, | |
{ refine continuous_op.comp | |
(units.continuous_coe.comp $ continuous_induced_rng.2 $ continuous.prod_mk _ _), | |
{ exact (units.continuous_coe.comp (continuous_inv.comp continuous_fst)).prod_mk | |
(units.continuous_coe.comp (continuous_inv.comp continuous_snd)) }, | |
{ exact continuous_op.comp ((units.continuous_coe.comp continuous_fst).prod_mk | |
(units.continuous_coe.comp continuous_snd)) }} | |
end, | |
..mul_equiv.prod_units } | |
end units | |
section lattice_ops | |
variables {ι : Sort*} [group G] [group H] | |
{t : topological_space H} [topological_group H] {F : Type*} | |
[monoid_hom_class F G H] (f : F) | |
@[to_additive] lemma topological_group_Inf {ts : set (topological_space G)} | |
(h : ∀ t ∈ ts, | G t _) :|
Inf ts) _ := | G (|
{ continuous_inv := Inf ts) _ | .continuous_inv G (|
( | _ _ _|
(λ t ht, | .to_has_continuous_inv G t _ (h t ht))),|
continuous_mul := Inf ts) _ | .continuous_mul G (|
( | _ _ _|
(λ t ht, | .to_has_continuous_mul G t _ (h t ht))) }|
@[to_additive] lemma topological_group_infi {ts' : ι → topological_space G} | |
(h' : ∀ i, | G (ts' i) _) :|
G (⨅ i, ts' i) _ := | |
by {rw ← Inf_range, exact topological_group_Inf (set.forall_range_iff.mpr h')} | |
@[to_additive] lemma topological_group_inf {t₁ t₂ : topological_space G} | |
(h₁ : | G t₁ _) (h₂ : G t₂ _) :|
G (t₁ ⊓ t₂) _ := | |
by {rw inf_eq_infi, refine topological_group_infi (λ b, _), cases b; assumption} | |
end lattice_ops | |
/-! | |
### Lattice of group topologies | |
We define a type class `group_topology α` which endows a group `α` with a topology such that all | |
group operations are continuous. | |
Group topologies on a fixed group `α` are ordered, by reverse inclusion. They form a complete | |
lattice, with `⊥` the discrete topology and `⊤` the indiscrete topology. | |
Any function `f : α → β` induces `coinduced f : topological_space α → group_topology β`. | |
The additive version `add_group_topology α` and corresponding results are provided as well. | |
-/ | |
/-- A group topology on a group `α` is a topology for which multiplication and inversion | |
are continuous. -/ | |
structure group_topology (α : Type u) [group α] | |
extends topological_space α, topological_group α : Type u | |
/-- An additive group topology on an additive group `α` is a topology for which addition and | |
negation are continuous. -/ | |
structure add_group_topology (α : Type u) [add_group α] | |
extends topological_space α, topological_add_group α : Type u | |
attribute [to_additive] group_topology | |
namespace group_topology | |
variables [group α] | |
/-- A version of the global `continuous_mul` suitable for dot notation. -/ | |
@[to_additive] | |
lemma continuous_mul' (g : group_topology α) : | |
by haveI := g.to_topological_space; exact continuous (λ p : α × α, p.1 * p.2) := | |
begin | |
letI := g.to_topological_space, | |
haveI := g.to_topological_group, | |
exact continuous_mul, | |
end | |
/-- A version of the global `continuous_inv` suitable for dot notation. -/ | |
@[to_additive] | |
lemma continuous_inv' (g : group_topology α) : | |
by haveI := g.to_topological_space; exact continuous (has_inv.inv : α → α) := | |
begin | |
letI := g.to_topological_space, | |
haveI := g.to_topological_group, | |
exact continuous_inv, | |
end | |
@[to_additive] | |
lemma to_topological_space_injective : | |
function.injective (to_topological_space : group_topology α → topological_space α):= | |
λ f g h, by { cases f, cases g, congr' } | |
@[ext, to_additive] | |
lemma ext' {f g : group_topology α} (h : f.is_open = g.is_open) : f = g := | |
to_topological_space_injective $ topological_space_eq h | |
/-- The ordering on group topologies on the group `γ`. | |
`t ≤ s` if every set open in `s` is also open in `t` (`t` is finer than `s`). -/ | |
@[to_additive] | |
instance : partial_order (group_topology α) := | |
partial_order.lift to_topological_space to_topological_space_injective | |
@[simp, to_additive] lemma to_topological_space_le {x y : group_topology α} : | |
x.to_topological_space ≤ y.to_topological_space ↔ x ≤ y := iff.rfl | |
@[to_additive] | |
instance : has_top (group_topology α) := | |
⟨{to_topological_space := ⊤, | |
continuous_mul := continuous_top, | |
continuous_inv := continuous_top}⟩ | |
@[simp, to_additive] lemma to_topological_space_top : | |
(⊤ : group_topology α).to_topological_space = ⊤ := rfl | |
@[to_additive] | |
instance : has_bot (group_topology α) := | |
⟨{to_topological_space := ⊥, | |
continuous_mul := by continuity, | |
continuous_inv := continuous_bot}⟩ | |
@[simp, to_additive] lemma to_topological_space_bot : | |
(⊥ : group_topology α).to_topological_space = ⊥ := rfl | |
@[to_additive] | |
instance : bounded_order (group_topology α) := | |
{ top := ⊤, | |
le_top := λ x, show x.to_topological_space ≤ ⊤, from le_top, | |
bot := ⊥, | |
bot_le := λ x, show ⊥ ≤ x.to_topological_space, from bot_le } | |
@[to_additive] | |
instance : has_inf (group_topology α) := | |
{ inf := λ x y, ⟨x.1 ⊓ y.1, topological_group_inf x.2 y.2⟩ } | |
@[simp, to_additive] | |
lemma to_topological_space_inf (x y : group_topology α) : | |
(x ⊓ y).to_topological_space = x.to_topological_space ⊓ y.to_topological_space := rfl | |
@[to_additive] | |
instance : semilattice_inf (group_topology α) := | |
to_topological_space_injective.semilattice_inf _ to_topological_space_inf | |
@[to_additive] | |
instance : inhabited (group_topology α) := ⟨⊤⟩ | |
local notation `cont` := _ _ | |
@[to_additive "Infimum of a collection of additive group topologies"] | |
instance : has_Inf (group_topology α) := | |
{ Inf := λ S, | |
⟨Inf (to_topological_space '' S), topological_group_Inf $ ball_image_iff.2 $ λ t ht, t.2⟩ } | |
@[simp, to_additive] | |
lemma to_topological_space_Inf (s : set (group_topology α)) : | |
(Inf s).to_topological_space = Inf (to_topological_space '' s) := rfl | |
@[simp, to_additive] | |
lemma to_topological_space_infi {ι} (s : ι → group_topology α) : | |
(⨅ i, s i).to_topological_space = ⨅ i, (s i).to_topological_space := | |
congr_arg Inf (range_comp _ _).symm | |
/-- Group topologies on `γ` form a complete lattice, with `⊥` the discrete topology and `⊤` the | |
indiscrete topology. | |
The infimum of a collection of group topologies is the topology generated by all their open sets | |
(which is a group topology). | |
The supremum of two group topologies `s` and `t` is the infimum of the family of all group | |
topologies contained in the intersection of `s` and `t`. -/ | |
@[to_additive] | |
instance : complete_semilattice_Inf (group_topology α) := | |
{ Inf_le := λ S a haS, to_topological_space_le.1 $ Inf_le ⟨a, haS, rfl⟩, | |
le_Inf := | |
begin | |
intros S a hab, | |
apply topological_space.complete_lattice.le_Inf, | |
rintros _ ⟨b, hbS, rfl⟩, | |
exact hab b hbS, | |
end, | |
..group_topology.has_Inf, | |
..group_topology.partial_order } | |
@[to_additive] | |
instance : complete_lattice (group_topology α) := | |
{ inf := (⊓), | |
top := ⊤, | |
bot := ⊥, | |
..group_topology.bounded_order, | |
..group_topology.semilattice_inf, | |
..complete_lattice_of_complete_semilattice_Inf _ } | |
/-- Given `f : α → β` and a topology on `α`, the coinduced group topology on `β` is the finest | |
topology such that `f` is continuous and `β` is a topological group. -/ | |
@[to_additive "Given `f : α → β` and a topology on `α`, the coinduced additive group topology on `β` | |
is the finest topology such that `f` is continuous and `β` is a topological additive group."] | |
def coinduced {α β : Type*} [t : topological_space α] [group β] (f : α → β) : | |
group_topology β := | |
Inf {b : group_topology β | (topological_space.coinduced f t) ≤ b.to_topological_space} | |
@[to_additive] | |
lemma coinduced_continuous {α β : Type*} [t : topological_space α] [group β] | |
(f : α → β) : cont t (coinduced f).to_topological_space f := | |
begin | |
rw continuous_iff_coinduced_le, | |
refine le_Inf _, | |
rintros _ ⟨t', ht', rfl⟩, | |
exact ht', | |
end | |
end group_topology | |