Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.77 kB
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import topology.algebra.constructions
import group_theory.group_action.prod
import group_theory.group_action.basic
import topology.algebra.const_mul_action
/-!
# Continuous monoid action
In this file we define class `has_continuous_smul`. We say `has_continuous_smul M X` if `M` acts on
`X` and the map `(c, x) ↦ c • x` is continuous on `M × X`. We reuse this class for topological
(semi)modules, vector spaces and algebras.
## Main definitions
* `has_continuous_smul M X` : typeclass saying that the map `(c, x) ↦ c • x` is continuous
on `M × X`;
* `homeomorph.smul_of_ne_zero`: if a group with zero `G₀` (e.g., a field) acts on `X` and `c : G₀`
is a nonzero element of `G₀`, then scalar multiplication by `c` is a homeomorphism of `X`;
* `homeomorph.smul`: scalar multiplication by an element of a group `G` acting on `X`
is a homeomorphism of `X`.
* `units.has_continuous_smul`: scalar multiplication by `Mˣ` is continuous when scalar
multiplication by `M` is continuous. This allows `homeomorph.smul` to be used with on monoids
with `G = Mˣ`.
## Main results
Besides homeomorphisms mentioned above, in this file we provide lemmas like `continuous.smul`
or `filter.tendsto.smul` that provide dot-syntax access to `continuous_smul`.
-/
open_locale topological_space pointwise
open filter
/-- Class `has_continuous_smul M X` says that the scalar multiplication `(•) : M → X → X`
is continuous in both arguments. We use the same class for all kinds of multiplicative actions,
including (semi)modules and algebras. -/
class has_continuous_smul (M X : Type*) [has_smul M X]
[topological_space M] [topological_space X] : Prop :=
(continuous_smul : continuous (λp : M × X, p.1 • p.2))
export has_continuous_smul (continuous_smul)
/-- Class `has_continuous_vadd M X` says that the additive action `(+ᵥ) : M → X → X`
is continuous in both arguments. We use the same class for all kinds of additive actions,
including (semi)modules and algebras. -/
class has_continuous_vadd (M X : Type*) [has_vadd M X]
[topological_space M] [topological_space X] : Prop :=
(continuous_vadd : continuous (λp : M × X, p.1 +ᵥ p.2))
export has_continuous_vadd (continuous_vadd)
attribute [to_additive] has_continuous_smul
section main
variables {M X Y α : Type*} [topological_space M] [topological_space X] [topological_space Y]
section has_smul
variables [has_smul M X] [has_continuous_smul M X]
@[priority 100, to_additive] instance has_continuous_smul.has_continuous_const_smul :
has_continuous_const_smul M X :=
{ continuous_const_smul := λ _, continuous_smul.comp (continuous_const.prod_mk continuous_id) }
@[to_additive]
lemma filter.tendsto.smul {f : α → M} {g : α → X} {l : filter α} {c : M} {a : X}
(hf : tendsto f l (𝓝 c)) (hg : tendsto g l (𝓝 a)) :
tendsto (λ x, f x • g x) l (𝓝 $ c • a) :=
(continuous_smul.tendsto _).comp (hf.prod_mk_nhds hg)
@[to_additive]
lemma filter.tendsto.smul_const {f : α → M} {l : filter α} {c : M}
(hf : tendsto f l (𝓝 c)) (a : X) :
tendsto (λ x, (f x) • a) l (𝓝 (c • a)) :=
hf.smul tendsto_const_nhds
variables {f : Y → M} {g : Y → X} {b : Y} {s : set Y}
@[to_additive]
lemma continuous_within_at.smul (hf : continuous_within_at f s b)
(hg : continuous_within_at g s b) :
continuous_within_at (λ x, f x • g x) s b :=
hf.smul hg
@[to_additive]
lemma continuous_at.smul (hf : continuous_at f b) (hg : continuous_at g b) :
continuous_at (λ x, f x • g x) b :=
hf.smul hg
@[to_additive]
lemma continuous_on.smul (hf : continuous_on f s) (hg : continuous_on g s) :
continuous_on (λ x, f x • g x) s :=
λ x hx, (hf x hx).smul (hg x hx)
@[continuity, to_additive]
lemma continuous.smul (hf : continuous f) (hg : continuous g) :
continuous (λ x, f x • g x) :=
continuous_smul.comp (hf.prod_mk hg)
/-- If a scalar is central, then its right action is continuous when its left action is. -/
instance has_continuous_smul.op [has_smul Mᵐᵒᵖ X] [is_central_scalar M X] :
has_continuous_smul Mᵐᵒᵖ X :=
⟨ suffices continuous (λ p : M × X, mul_opposite.op p.fst • p.snd),
from this.comp (mul_opposite.continuous_unop.prod_map continuous_id),
by simpa only [op_smul_eq_smul] using (continuous_smul : continuous (λ p : M × X, _)) ⟩
@[to_additive] instance mul_opposite.has_continuous_smul : has_continuous_smul M Xᵐᵒᵖ :=
⟨mul_opposite.continuous_op.comp $ continuous_smul.comp $
continuous_id.prod_map mul_opposite.continuous_unop⟩
end has_smul
section monoid
variables [monoid M] [mul_action M X] [has_continuous_smul M X]
@[to_additive] instance units.has_continuous_smul : has_continuous_smul Mˣ X :=
{ continuous_smul :=
show continuous ((λ p : M × X, p.fst • p.snd) ∘ (λ p : Mˣ × X, (p.1, p.2))),
from continuous_smul.comp ((units.continuous_coe.comp continuous_fst).prod_mk continuous_snd) }
end monoid
@[to_additive]
instance [has_smul M X] [has_smul M Y] [has_continuous_smul M X]
[has_continuous_smul M Y] :
has_continuous_smul M (X × Y) :=
⟨(continuous_fst.smul (continuous_fst.comp continuous_snd)).prod_mk
(continuous_fst.smul (continuous_snd.comp continuous_snd))⟩
@[to_additive]
instance {ι : Type*} {γ : ι → Type*}
[∀ i, topological_space (γ i)] [Π i, has_smul M (γ i)] [∀ i, has_continuous_smul M (γ i)] :
has_continuous_smul M (Π i, γ i) :=
⟨continuous_pi $ λ i,
(continuous_fst.smul continuous_snd).comp $
continuous_fst.prod_mk ((continuous_apply i).comp continuous_snd)⟩
end main
section lattice_ops
variables {ι : Sort*} {M X : Type*} [topological_space M] [has_smul M X]
@[to_additive] lemma has_continuous_smul_Inf {ts : set (topological_space X)}
(h : Π t ∈ ts, @has_continuous_smul M X _ _ t) :
@has_continuous_smul M X _ _ (Inf ts) :=
{ continuous_smul :=
begin
rw ← @Inf_singleton _ _ ‹topological_space M›,
exact continuous_Inf_rng.2 (λ t ht, continuous_Inf_dom₂ (eq.refl _) ht
(@has_continuous_smul.continuous_smul _ _ _ _ t (h t ht)))
end }
@[to_additive] lemma has_continuous_smul_infi {ts' : ι → topological_space X}
(h : Π i, @has_continuous_smul M X _ _ (ts' i)) :
@has_continuous_smul M X _ _ (⨅ i, ts' i) :=
has_continuous_smul_Inf $ set.forall_range_iff.mpr h
@[to_additive] lemma has_continuous_smul_inf {t₁ t₂ : topological_space X}
[@has_continuous_smul M X _ _ t₁] [@has_continuous_smul M X _ _ t₂] :
@has_continuous_smul M X _ _ (t₁ ⊓ t₂) :=
by { rw inf_eq_infi, refine has_continuous_smul_infi (λ b, _), cases b; assumption }
end lattice_ops