Zhangir Azerbayev
squashed?
4365a98
raw
history blame
33.4 kB
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Nicolò Cavalleri
-/
import topology.algebra.module.basic
import topology.continuous_function.ordered
import topology.algebra.uniform_group
import topology.uniform_space.compact_convergence
import topology.algebra.star
import algebra.algebra.subalgebra.basic
import tactic.field_simp
/-!
# Algebraic structures over continuous functions
In this file we define instances of algebraic structures over the type `continuous_map α β`
(denoted `C(α, β)`) of **bundled** continuous maps from `α` to `β`. For example, `C(α, β)`
is a group when `β` is a group, a ring when `β` is a ring, etc.
For each type of algebraic structure, we also define an appropriate subobject of `α → β`
with carrier `{ f : α → β | continuous f }`. For example, when `β` is a group, a subgroup
`continuous_subgroup α β` of `α → β` is constructed with carrier `{ f : α → β | continuous f }`.
Note that, rather than using the derived algebraic structures on these subobjects
(for example, when `β` is a group, the derived group structure on `continuous_subgroup α β`),
one should use `C(α, β)` with the appropriate instance of the structure.
-/
local attribute [elab_simple] continuous.comp
namespace continuous_functions
variables {α : Type*} {β : Type*} [topological_space α] [topological_space β]
variables {f g : {f : α → β | continuous f }}
instance : has_coe_to_fun {f : α → β | continuous f} (λ _, α → β) := ⟨subtype.val⟩
end continuous_functions
namespace continuous_map
variables {α : Type*} {β : Type*} {γ : Type*}
variables [topological_space α] [topological_space β] [topological_space γ]
@[to_additive]
instance has_mul [has_mul β] [has_continuous_mul β] : has_mul C(α, β) :=
⟨λ f g, ⟨f * g, continuous_mul.comp (f.continuous.prod_mk g.continuous : _)⟩⟩
@[simp, norm_cast, to_additive]
lemma coe_mul [has_mul β] [has_continuous_mul β] (f g : C(α, β)) : ⇑(f * g) = f * g := rfl
@[simp, to_additive] lemma mul_comp [has_mul γ] [has_continuous_mul γ]
(f₁ f₂ : C(β, γ)) (g : C(α, β)) :
(f₁ * f₂).comp g = f₁.comp g * f₂.comp g :=
rfl
@[to_additive]
instance [has_one β] : has_one C(α, β) := ⟨const α 1
@[simp, norm_cast, to_additive]
lemma coe_one [has_one β] : ⇑(1 : C(α, β)) = 1 := rfl
@[simp, to_additive] lemma one_comp [has_one γ] (g : C(α, β)) : (1 : C(β, γ)).comp g = 1 := rfl
instance [has_nat_cast β] : has_nat_cast C(α, β) :=
⟨λ n, continuous_map.const _ n⟩
@[simp, norm_cast]
lemma coe_nat_cast [has_nat_cast β] (n : ℕ) : ((n : C(α, β)) : α → β) = n := rfl
instance [has_int_cast β] : has_int_cast C(α, β) :=
⟨λ n, continuous_map.const _ n⟩
@[simp, norm_cast]
lemma coe_int_cast [has_int_cast β] (n : ℤ) : ((n : C(α, β)) : α → β) = n := rfl
instance has_nsmul [add_monoid β] [has_continuous_add β] : has_smul ℕ C(α, β) :=
⟨λ n f, ⟨n • f, f.continuous.nsmul n⟩⟩
@[to_additive]
instance has_pow [monoid β] [has_continuous_mul β] : has_pow C(α, β) ℕ :=
⟨λ f n, ⟨f ^ n, f.continuous.pow n⟩⟩
@[norm_cast, to_additive]
lemma coe_pow [monoid β] [has_continuous_mul β] (f : C(α, β)) (n : ℕ) :
⇑(f ^ n) = f ^ n := rfl
-- don't make `coe_nsmul` simp as the linter complains it's redundant WRT `coe_smul`
attribute [simp] coe_pow
@[to_additive] lemma pow_comp [monoid γ] [has_continuous_mul γ]
(f : C(β, γ)) (n : ℕ) (g : C(α, β)) :
(f^n).comp g = (f.comp g)^n :=
rfl
-- don't make `nsmul_comp` simp as the linter complains it's redundant WRT `smul_comp`
attribute [simp] pow_comp
@[to_additive]
instance [group β] [topological_group β] : has_inv C(α, β) :=
{ inv := λ f, ⟨f⁻¹, f.continuous.inv⟩ }
@[simp, norm_cast, to_additive]
lemma coe_inv [group β] [topological_group β] (f : C(α, β)) :
⇑(f⁻¹) = f⁻¹ :=
rfl
@[simp, to_additive] lemma inv_comp [group γ] [topological_group γ] (f : C(β, γ)) (g : C(α, β)) :
(f⁻¹).comp g = (f.comp g)⁻¹ :=
rfl
@[to_additive]
instance [has_div β] [has_continuous_div β] : has_div C(α, β) :=
{ div := λ f g, ⟨f / g, f.continuous.div' g.continuous⟩ }
@[simp, norm_cast, to_additive]
lemma coe_div [has_div β] [has_continuous_div β] (f g : C(α, β)) : ⇑(f / g) = f / g :=
rfl
@[simp, to_additive] lemma div_comp [has_div γ] [has_continuous_div γ]
(f g : C(β, γ)) (h : C(α, β)) :
(f / g).comp h = (f.comp h) / (g.comp h) :=
rfl
instance has_zsmul [add_group β] [topological_add_group β] : has_smul ℤ C(α, β) :=
{ smul := λ z f, ⟨z • f, f.continuous.zsmul z⟩ }
@[to_additive]
instance has_zpow [group β] [topological_group β] :
has_pow C(α, β) ℤ :=
{ pow := λ f z, ⟨f ^ z, f.continuous.zpow z⟩ }
@[norm_cast, to_additive]
lemma coe_zpow [group β] [topological_group β] (f : C(α, β)) (z : ℤ) :
⇑(f ^ z) = f ^ z :=
rfl
-- don't make `coe_zsmul` simp as the linter complains it's redundant WRT `coe_smul`
attribute [simp] coe_zpow
@[to_additive]
lemma zpow_comp [group γ] [topological_group γ] (f : C(β, γ)) (z : ℤ) (g : C(α, β)) :
(f^z).comp g = (f.comp g)^z :=
rfl
-- don't make `zsmul_comp` simp as the linter complains it's redundant WRT `smul_comp`
attribute [simp] zpow_comp
end continuous_map
section group_structure
/-!
### Group stucture
In this section we show that continuous functions valued in a topological group inherit
the structure of a group.
-/
section subtype
/-- The `submonoid` of continuous maps `α → β`. -/
@[to_additive "The `add_submonoid` of continuous maps `α → β`. "]
def continuous_submonoid (α : Type*) (β : Type*) [topological_space α] [topological_space β]
[monoid β] [has_continuous_mul β] : submonoid (α → β) :=
{ carrier := { f : α → β | continuous f },
one_mem' := @continuous_const _ _ _ _ 1,
mul_mem' := λ f g fc gc, fc.mul gc }
/-- The subgroup of continuous maps `α → β`. -/
@[to_additive "The `add_subgroup` of continuous maps `α → β`. "]
def continuous_subgroup (α : Type*) (β : Type*) [topological_space α] [topological_space β]
[group β] [topological_group β] : subgroup (α → β) :=
{ inv_mem' := λ f fc, continuous.inv fc,
..continuous_submonoid α β, }.
end subtype
namespace continuous_map
@[to_additive]
instance {α : Type*} {β : Type*} [topological_space α]
[topological_space β] [semigroup β] [has_continuous_mul β] : semigroup C(α, β) :=
coe_injective.semigroup _ coe_mul
@[to_additive]
instance {α : Type*} {β : Type*} [topological_space α]
[topological_space β] [comm_semigroup β] [has_continuous_mul β] : comm_semigroup C(α, β) :=
coe_injective.comm_semigroup _ coe_mul
@[to_additive]
instance {α : Type*} {β : Type*} [topological_space α]
[topological_space β] [mul_one_class β] [has_continuous_mul β] : mul_one_class C(α, β) :=
coe_injective.mul_one_class _ coe_one coe_mul
instance {α : Type*} {β : Type*} [topological_space α]
[topological_space β] [mul_zero_class β] [has_continuous_mul β] : mul_zero_class C(α, β) :=
coe_injective.mul_zero_class _ coe_zero coe_mul
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[semigroup_with_zero β] [has_continuous_mul β] : semigroup_with_zero C(α, β) :=
coe_injective.semigroup_with_zero _ coe_zero coe_mul
@[to_additive]
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[monoid β] [has_continuous_mul β] : monoid C(α, β) :=
coe_injective.monoid _ coe_one coe_mul coe_pow
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[monoid_with_zero β] [has_continuous_mul β] : monoid_with_zero C(α, β) :=
coe_injective.monoid_with_zero _ coe_zero coe_one coe_mul coe_pow
@[to_additive]
instance {α : Type*} {β : Type*} [topological_space α]
[topological_space β] [comm_monoid β] [has_continuous_mul β] : comm_monoid C(α, β) :=
coe_injective.comm_monoid _ coe_one coe_mul coe_pow
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[comm_monoid_with_zero β] [has_continuous_mul β] : comm_monoid_with_zero C(α, β) :=
coe_injective.comm_monoid_with_zero _ coe_zero coe_one coe_mul coe_pow
@[to_additive]
instance {α : Type*} {β : Type*} [topological_space α]
[locally_compact_space α] [topological_space β]
[has_mul β] [has_continuous_mul β] : has_continuous_mul C(α, β) :=
begin
refine continuous_of_continuous_uncurry _ _,
have h1 : continuous (λ x : (C(α, β) × C(α, β)) × α, x.fst.fst x.snd) :=
continuous_eval'.comp (continuous_fst.prod_map continuous_id),
have h2 : continuous (λ x : (C(α, β) × C(α, β)) × α, x.fst.snd x.snd) :=
continuous_eval'.comp (continuous_snd.prod_map continuous_id),
exact h1.mul h2,
end
/-- Coercion to a function as an `monoid_hom`. Similar to `monoid_hom.coe_fn`. -/
@[to_additive "Coercion to a function as an `add_monoid_hom`. Similar to `add_monoid_hom.coe_fn`.",
simps]
def coe_fn_monoid_hom {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[monoid β] [has_continuous_mul β] : C(α, β) →* (α → β) :=
{ to_fun := coe_fn, map_one' := coe_one, map_mul' := coe_mul }
/-- Composition on the left by a (continuous) homomorphism of topological monoids, as a
`monoid_hom`. Similar to `monoid_hom.comp_left`. -/
@[to_additive "Composition on the left by a (continuous) homomorphism of topological `add_monoid`s,
as an `add_monoid_hom`. Similar to `add_monoid_hom.comp_left`.", simps]
protected def _root_.monoid_hom.comp_left_continuous (α : Type*) {β : Type*} {γ : Type*}
[topological_space α] [topological_space β] [monoid β] [has_continuous_mul β]
[topological_space γ] [monoid γ] [has_continuous_mul γ] (g : β →* γ) (hg : continuous g) :
C(α, β) →* C(α, γ) :=
{ to_fun := λ f, (⟨g, hg⟩ : C(β, γ)).comp f,
map_one' := ext $ λ x, g.map_one,
map_mul' := λ f₁ f₂, ext $ λ x, g.map_mul _ _ }
/-- Composition on the right as a `monoid_hom`. Similar to `monoid_hom.comp_hom'`. -/
@[to_additive "Composition on the right as an `add_monoid_hom`. Similar to
`add_monoid_hom.comp_hom'`.", simps]
def comp_monoid_hom' {α : Type*} {β : Type*} {γ : Type*}
[topological_space α] [topological_space β] [topological_space γ]
[mul_one_class γ] [has_continuous_mul γ] (g : C(α, β)) : C(β, γ) →* C(α, γ) :=
{ to_fun := λ f, f.comp g, map_one' := one_comp g, map_mul' := λ f₁ f₂, mul_comp f₁ f₂ g }
open_locale big_operators
@[simp, to_additive] lemma coe_prod {α : Type*} {β : Type*} [comm_monoid β]
[topological_space α] [topological_space β] [has_continuous_mul β]
{ι : Type*} (s : finset ι) (f : ι → C(α, β)) :
⇑(∏ i in s, f i) = (∏ i in s, (f i : α → β)) :=
(coe_fn_monoid_hom : C(α, β) →* _).map_prod f s
@[to_additive]
lemma prod_apply {α : Type*} {β : Type*} [comm_monoid β]
[topological_space α] [topological_space β] [has_continuous_mul β]
{ι : Type*} (s : finset ι) (f : ι → C(α, β)) (a : α) :
(∏ i in s, f i) a = (∏ i in s, f i a) :=
by simp
@[to_additive]
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[group β] [topological_group β] : group C(α, β) :=
coe_injective.group _ coe_one coe_mul coe_inv coe_div coe_pow coe_zpow
@[to_additive]
instance {α : Type*} {β : Type*} [topological_space α]
[topological_space β] [comm_group β] [topological_group β] : comm_group C(α, β) :=
coe_injective.comm_group _ coe_one coe_mul coe_inv coe_div coe_pow coe_zpow
@[to_additive] instance {α : Type*} {β : Type*} [topological_space α]
[topological_space β] [comm_group β] [topological_group β] : topological_group C(α, β) :=
{ continuous_mul := by
{ letI : uniform_space β := topological_group.to_uniform_space β,
have : uniform_group β := topological_group_is_uniform,
rw continuous_iff_continuous_at,
rintros ⟨f, g⟩,
rw [continuous_at, tendsto_iff_forall_compact_tendsto_uniformly_on, nhds_prod_eq],
exactI λ K hK, uniform_continuous_mul.comp_tendsto_uniformly_on
((tendsto_iff_forall_compact_tendsto_uniformly_on.mp filter.tendsto_id K hK).prod
(tendsto_iff_forall_compact_tendsto_uniformly_on.mp filter.tendsto_id K hK)), },
continuous_inv := by
{ letI : uniform_space β := topological_group.to_uniform_space β,
have : uniform_group β := topological_group_is_uniform,
rw continuous_iff_continuous_at,
intro f,
rw [continuous_at, tendsto_iff_forall_compact_tendsto_uniformly_on],
exactI λ K hK, uniform_continuous_inv.comp_tendsto_uniformly_on
(tendsto_iff_forall_compact_tendsto_uniformly_on.mp filter.tendsto_id K hK), } }
end continuous_map
end group_structure
section ring_structure
/-!
### Ring stucture
In this section we show that continuous functions valued in a topological semiring `R` inherit
the structure of a ring.
-/
section subtype
/-- The subsemiring of continuous maps `α → β`. -/
def continuous_subsemiring (α : Type*) (R : Type*) [topological_space α] [topological_space R]
[semiring R] [topological_semiring R] : subsemiring (α → R) :=
{ ..continuous_add_submonoid α R,
..continuous_submonoid α R }
/-- The subring of continuous maps `α → β`. -/
def continuous_subring (α : Type*) (R : Type*) [topological_space α] [topological_space R]
[ring R] [topological_ring R] : subring (α → R) :=
{ ..continuous_subsemiring α R,
..continuous_add_subgroup α R }
end subtype
namespace continuous_map
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[non_unital_non_assoc_semiring β] [topological_semiring β] :
non_unital_non_assoc_semiring C(α, β) :=
coe_injective.non_unital_non_assoc_semiring _ coe_zero coe_add coe_mul coe_nsmul
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[non_unital_semiring β] [topological_semiring β] :
non_unital_semiring C(α, β) :=
coe_injective.non_unital_semiring _ coe_zero coe_add coe_mul coe_nsmul
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[add_monoid_with_one β] [has_continuous_add β] :
add_monoid_with_one C(α, β) :=
coe_injective.add_monoid_with_one _ coe_zero coe_one coe_add coe_nsmul coe_nat_cast
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[non_assoc_semiring β] [topological_semiring β] :
non_assoc_semiring C(α, β) :=
coe_injective.non_assoc_semiring _ coe_zero coe_one coe_add coe_mul coe_nsmul coe_nat_cast
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[semiring β] [topological_semiring β] : semiring C(α, β) :=
coe_injective.semiring _ coe_zero coe_one coe_add coe_mul coe_nsmul coe_pow coe_nat_cast
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[non_unital_non_assoc_ring β] [topological_ring β] : non_unital_non_assoc_ring C(α, β) :=
coe_injective.non_unital_non_assoc_ring _ coe_zero coe_add coe_mul coe_neg coe_sub
coe_nsmul coe_zsmul
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[non_unital_ring β] [topological_ring β] : non_unital_ring C(α, β) :=
coe_injective.non_unital_ring _ coe_zero coe_add coe_mul coe_neg coe_sub coe_nsmul coe_zsmul
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[non_assoc_ring β] [topological_ring β] : non_assoc_ring C(α, β) :=
coe_injective.non_assoc_ring _ coe_zero coe_one coe_add coe_mul coe_neg coe_sub coe_nsmul coe_zsmul
coe_nat_cast coe_int_cast
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[ring β] [topological_ring β] : ring C(α, β) :=
coe_injective.ring _ coe_zero coe_one coe_add coe_mul coe_neg coe_sub coe_nsmul coe_zsmul coe_pow
coe_nat_cast coe_int_cast
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[non_unital_comm_semiring β] [topological_semiring β] : non_unital_comm_semiring C(α, β) :=
coe_injective.non_unital_comm_semiring _ coe_zero coe_add coe_mul coe_nsmul
instance {α : Type*} {β : Type*} [topological_space α]
[topological_space β] [comm_semiring β] [topological_semiring β] : comm_semiring C(α, β) :=
coe_injective.comm_semiring _ coe_zero coe_one coe_add coe_mul coe_nsmul coe_pow coe_nat_cast
instance {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[non_unital_comm_ring β] [topological_ring β] : non_unital_comm_ring C(α, β) :=
coe_injective.non_unital_comm_ring _ coe_zero coe_add coe_mul coe_neg coe_sub coe_nsmul coe_zsmul
instance {α : Type*} {β : Type*} [topological_space α]
[topological_space β] [comm_ring β] [topological_ring β] : comm_ring C(α, β) :=
coe_injective.comm_ring _ coe_zero coe_one coe_add coe_mul coe_neg coe_sub coe_nsmul coe_zsmul
coe_pow coe_nat_cast coe_int_cast
/-- Composition on the left by a (continuous) homomorphism of topological semirings, as a
`ring_hom`. Similar to `ring_hom.comp_left`. -/
@[simps] protected def _root_.ring_hom.comp_left_continuous (α : Type*) {β : Type*} {γ : Type*}
[topological_space α] [topological_space β] [semiring β] [topological_semiring β]
[topological_space γ] [semiring γ] [topological_semiring γ] (g : β →+* γ) (hg : continuous g) :
C(α, β) →+* C(α, γ) :=
{ .. g.to_monoid_hom.comp_left_continuous α hg,
.. g.to_add_monoid_hom.comp_left_continuous α hg }
/-- Coercion to a function as a `ring_hom`. -/
@[simps]
def coe_fn_ring_hom {α : Type*} {β : Type*} [topological_space α] [topological_space β]
[ring β] [topological_ring β] : C(α, β) →+* (α → β) :=
{ to_fun := coe_fn,
..(coe_fn_monoid_hom : C(α, β) →* _),
..(coe_fn_add_monoid_hom : C(α, β) →+ _) }
end continuous_map
end ring_structure
local attribute [ext] subtype.eq
section module_structure
/-!
### Semiodule stucture
In this section we show that continuous functions valued in a topological module `M` over a
topological semiring `R` inherit the structure of a module.
-/
section subtype
variables (α : Type*) [topological_space α]
variables (R : Type*) [semiring R]
variables (M : Type*) [topological_space M] [add_comm_group M]
variables [module R M] [has_continuous_const_smul R M] [topological_add_group M]
/-- The `R`-submodule of continuous maps `α → M`. -/
def continuous_submodule : submodule R (α → M) :=
{ carrier := { f : α → M | continuous f },
smul_mem' := λ c f hf, hf.const_smul c,
..continuous_add_subgroup α M }
end subtype
namespace continuous_map
variables {α β : Type*} [topological_space α] [topological_space β]
{R R₁ : Type*}
{M : Type*} [topological_space M]
{M₂ : Type*} [topological_space M₂]
@[to_additive continuous_map.has_vadd]
instance [has_smul R M] [has_continuous_const_smul R M] : has_smul R C(α, M) :=
⟨λ r f, ⟨r • f, f.continuous.const_smul r⟩⟩
@[to_additive]
instance [locally_compact_space α] [has_smul R M] [has_continuous_const_smul R M] :
has_continuous_const_smul R C(α, M) :=
⟨λ γ, continuous_of_continuous_uncurry _ (continuous_eval'.const_smul γ)⟩
@[to_additive]
instance [locally_compact_space α] [topological_space R] [has_smul R M]
[has_continuous_smul R M] : has_continuous_smul R C(α, M) :=
⟨begin
refine continuous_of_continuous_uncurry _ _,
have h : continuous (λ x : (R × C(α, M)) × α, x.fst.snd x.snd) :=
continuous_eval'.comp (continuous_snd.prod_map continuous_id),
exact (continuous_fst.comp continuous_fst).smul h,
end
@[simp, to_additive, norm_cast]
lemma coe_smul [has_smul R M] [has_continuous_const_smul R M]
(c : R) (f : C(α, M)) : ⇑(c • f) = c • f := rfl
@[to_additive]
lemma smul_apply [has_smul R M] [has_continuous_const_smul R M]
(c : R) (f : C(α, M)) (a : α) : (c • f) a = c • (f a) :=
rfl
@[simp, to_additive] lemma smul_comp [has_smul R M] [has_continuous_const_smul R M]
(r : R) (f : C(β, M)) (g : C(α, β)) :
(r • f).comp g = r • (f.comp g) :=
rfl
@[to_additive]
instance [has_smul R M] [has_continuous_const_smul R M]
[has_smul R₁ M] [has_continuous_const_smul R₁ M]
[smul_comm_class R R₁ M] : smul_comm_class R R₁ C(α, M) :=
{ smul_comm := λ _ _ _, ext $ λ _, smul_comm _ _ _ }
instance [has_smul R M] [has_continuous_const_smul R M]
[has_smul R₁ M] [has_continuous_const_smul R₁ M]
[has_smul R R₁] [is_scalar_tower R R₁ M] : is_scalar_tower R R₁ C(α, M) :=
{ smul_assoc := λ _ _ _, ext $ λ _, smul_assoc _ _ _ }
instance [has_smul R M] [has_smul Rᵐᵒᵖ M] [has_continuous_const_smul R M]
[is_central_scalar R M] : is_central_scalar R C(α, M) :=
{ op_smul_eq_smul := λ _ _, ext $ λ _, op_smul_eq_smul _ _ }
instance [monoid R] [mul_action R M] [has_continuous_const_smul R M] : mul_action R C(α, M) :=
function.injective.mul_action _ coe_injective coe_smul
instance [monoid R] [add_monoid M] [distrib_mul_action R M]
[has_continuous_add M] [has_continuous_const_smul R M] :
distrib_mul_action R C(α, M) :=
function.injective.distrib_mul_action coe_fn_add_monoid_hom coe_injective coe_smul
variables [semiring R] [add_comm_monoid M] [add_comm_monoid M₂]
variables [has_continuous_add M] [module R M] [has_continuous_const_smul R M]
variables [has_continuous_add M₂] [module R M₂] [has_continuous_const_smul R M₂]
instance module : module R C(α, M) :=
function.injective.module R coe_fn_add_monoid_hom coe_injective coe_smul
variables (R)
/-- Composition on the left by a continuous linear map, as a `linear_map`.
Similar to `linear_map.comp_left`. -/
@[simps] protected def _root_.continuous_linear_map.comp_left_continuous (α : Type*)
[topological_space α] (g : M →L[R] M₂) :
C(α, M) →ₗ[R] C(α, M₂) :=
{ map_smul' := λ c f, ext $ λ x, g.map_smul' c _,
.. g.to_linear_map.to_add_monoid_hom.comp_left_continuous α g.continuous }
/-- Coercion to a function as a `linear_map`. -/
@[simps]
def coe_fn_linear_map : C(α, M) →ₗ[R] (α → M) :=
{ to_fun := coe_fn,
map_smul' := coe_smul,
..(coe_fn_add_monoid_hom : C(α, M) →+ _) }
end continuous_map
end module_structure
section algebra_structure
/-!
### Algebra structure
In this section we show that continuous functions valued in a topological algebra `A` over a ring
`R` inherit the structure of an algebra. Note that the hypothesis that `A` is a topological algebra
is obtained by requiring that `A` be both a `has_continuous_smul` and a `topological_semiring`.-/
section subtype
variables {α : Type*} [topological_space α]
{R : Type*} [comm_semiring R]
{A : Type*} [topological_space A] [semiring A]
[algebra R A] [topological_semiring A]
/-- The `R`-subalgebra of continuous maps `α → A`. -/
def continuous_subalgebra : subalgebra R (α → A) :=
{ carrier := { f : α → A | continuous f },
algebra_map_mem' := λ r, (continuous_const : continuous $ λ (x : α), algebra_map R A r),
..continuous_subsemiring α A }
end subtype
section continuous_map
variables {α : Type*} [topological_space α]
{R : Type*} [comm_semiring R]
{A : Type*} [topological_space A] [semiring A]
[algebra R A] [topological_semiring A]
{A₂ : Type*} [topological_space A₂] [semiring A₂]
[algebra R A₂] [topological_semiring A₂]
/-- Continuous constant functions as a `ring_hom`. -/
def continuous_map.C : R →+* C(α, A) :=
{ to_fun := λ c : R, ⟨λ x: α, ((algebra_map R A) c), continuous_const⟩,
map_one' := by ext x; exact (algebra_map R A).map_one,
map_mul' := λ c₁ c₂, by ext x; exact (algebra_map R A).map_mul _ _,
map_zero' := by ext x; exact (algebra_map R A).map_zero,
map_add' := λ c₁ c₂, by ext x; exact (algebra_map R A).map_add _ _ }
@[simp] lemma continuous_map.C_apply (r : R) (a : α) : continuous_map.C r a = algebra_map R A r :=
rfl
variables [has_continuous_const_smul R A] [has_continuous_const_smul R A₂]
instance continuous_map.algebra : algebra R C(α, A) :=
{ to_ring_hom := continuous_map.C,
commutes' := λ c f, by ext x; exact algebra.commutes' _ _,
smul_def' := λ c f, by ext x; exact algebra.smul_def' _ _, }
variables (R)
/-- Composition on the left by a (continuous) homomorphism of topological `R`-algebras, as an
`alg_hom`. Similar to `alg_hom.comp_left`. -/
@[simps] protected def alg_hom.comp_left_continuous {α : Type*} [topological_space α]
(g : A →ₐ[R] A₂) (hg : continuous g) :
C(α, A) →ₐ[R] C(α, A₂) :=
{ commutes' := λ c, continuous_map.ext $ λ _, g.commutes' _,
.. g.to_ring_hom.comp_left_continuous α hg }
/-- Coercion to a function as an `alg_hom`. -/
@[simps]
def continuous_map.coe_fn_alg_hom : C(α, A) →ₐ[R] (α → A) :=
{ to_fun := coe_fn,
commutes' := λ r, rfl,
-- `..(continuous_map.coe_fn_ring_hom : C(α, A) →+* _)` times out for some reason
map_zero' := continuous_map.coe_zero,
map_one' := continuous_map.coe_one,
map_add' := continuous_map.coe_add,
map_mul' := continuous_map.coe_mul }
variables {R}
/--
A version of `separates_points` for subalgebras of the continuous functions,
used for stating the Stone-Weierstrass theorem.
-/
abbreviation subalgebra.separates_points (s : subalgebra R C(α, A)) : Prop :=
set.separates_points ((λ f : C(α, A), (f : α → A)) '' (s : set C(α, A)))
lemma subalgebra.separates_points_monotone :
monotone (λ s : subalgebra R C(α, A), s.separates_points) :=
λ s s' r h x y n,
begin
obtain ⟨f, m, w⟩ := h n,
rcases m with ⟨f, ⟨m, rfl⟩⟩,
exact ⟨_, ⟨f, ⟨r m, rfl⟩⟩, w⟩,
end
@[simp] lemma algebra_map_apply (k : R) (a : α) :
algebra_map R C(α, A) k a = k • 1 :=
by { rw algebra.algebra_map_eq_smul_one, refl, }
variables {𝕜 : Type*} [topological_space 𝕜]
/--
A set of continuous maps "separates points strongly"
if for each pair of distinct points there is a function with specified values on them.
We give a slightly unusual formulation, where the specified values are given by some
function `v`, and we ask `f x = v x ∧ f y = v y`. This avoids needing a hypothesis `x ≠ y`.
In fact, this definition would work perfectly well for a set of non-continuous functions,
but as the only current use case is in the Stone-Weierstrass theorem,
writing it this way avoids having to deal with casts inside the set.
(This may need to change if we do Stone-Weierstrass on non-compact spaces,
where the functions would be continuous functions vanishing at infinity.)
-/
def set.separates_points_strongly (s : set C(α, 𝕜)) : Prop :=
∀ (v : α → 𝕜) (x y : α), ∃ f : s, (f x : 𝕜) = v x ∧ f y = v y
variables [field 𝕜] [topological_ring 𝕜]
/--
Working in continuous functions into a topological field,
a subalgebra of functions that separates points also separates points strongly.
By the hypothesis, we can find a function `f` so `f x ≠ f y`.
By an affine transformation in the field we can arrange so that `f x = a` and `f x = b`.
-/
lemma subalgebra.separates_points.strongly {s : subalgebra 𝕜 C(α, 𝕜)} (h : s.separates_points) :
(s : set C(α, 𝕜)).separates_points_strongly :=
λ v x y,
begin
by_cases n : x = y,
{ subst n,
use ((v x) • 1 : C(α, 𝕜)),
{ apply s.smul_mem,
apply s.one_mem, },
{ simp [coe_fn_coe_base'] }, },
obtain ⟨f, ⟨f, ⟨m, rfl⟩⟩, w⟩ := h n,
replace w : f x - f y ≠ 0 := sub_ne_zero_of_ne w,
let a := v x,
let b := v y,
let f' := ((b - a) * (f x - f y)⁻¹) • (continuous_map.C (f x) - f) + continuous_map.C a,
refine ⟨⟨f', _⟩, _, _⟩,
{ simp only [f', set_like.mem_coe, subalgebra.mem_to_submodule],
-- TODO should there be a tactic for this?
-- We could add an attribute `@[subobject_mem]`, and a tactic
-- ``def subobject_mem := `[solve_by_elim with subobject_mem { max_depth := 10 }]``
solve_by_elim
[subalgebra.add_mem, subalgebra.smul_mem, subalgebra.sub_mem, subalgebra.algebra_map_mem]
{ max_depth := 6 }, },
{ simp [f', coe_fn_coe_base'], },
{ simp [f', coe_fn_coe_base', inv_mul_cancel_right₀ w], },
end
end continuous_map
-- TODO[gh-6025]: make this an instance once safe to do so
lemma continuous_map.subsingleton_subalgebra (α : Type*) [topological_space α]
(R : Type*) [comm_semiring R] [topological_space R] [topological_semiring R]
[subsingleton α] : subsingleton (subalgebra R C(α, R)) :=
begin
fsplit,
intros s₁ s₂,
by_cases n : nonempty α,
{ obtain ⟨x⟩ := n,
ext f,
have h : f = algebra_map R C(α, R) (f x),
{ ext x', simp only [mul_one, algebra.id.smul_eq_mul, algebra_map_apply], congr, },
rw h,
simp only [subalgebra.algebra_map_mem], },
{ ext f,
have h : f = 0,
{ ext x', exact false.elim (n ⟨x'⟩), },
subst h,
simp only [subalgebra.zero_mem], },
end
end algebra_structure
section module_over_continuous_functions
/-!
### Structure as module over scalar functions
If `M` is a module over `R`, then we show that the space of continuous functions from `α` to `M`
is naturally a module over the ring of continuous functions from `α` to `R`. -/
namespace continuous_map
instance has_smul' {α : Type*} [topological_space α]
{R : Type*} [semiring R] [topological_space R]
{M : Type*} [topological_space M] [add_comm_monoid M]
[module R M] [has_continuous_smul R M] :
has_smul C(α, R) C(α, M) :=
⟨λ f g, ⟨λ x, (f x) • (g x), (continuous.smul f.2 g.2)⟩⟩
instance module' {α : Type*} [topological_space α]
(R : Type*) [ring R] [topological_space R] [topological_ring R]
(M : Type*) [topological_space M] [add_comm_monoid M] [has_continuous_add M]
[module R M] [has_continuous_smul R M] :
module C(α, R) C(α, M) :=
{ smul := (•),
smul_add := λ c f g, by ext x; exact smul_add (c x) (f x) (g x),
add_smul := λ c₁ c₂ f, by ext x; exact add_smul (c₁ x) (c₂ x) (f x),
mul_smul := λ c₁ c₂ f, by ext x; exact mul_smul (c₁ x) (c₂ x) (f x),
one_smul := λ f, by ext x; exact one_smul R (f x),
zero_smul := λ f, by ext x; exact zero_smul _ _,
smul_zero := λ r, by ext x; exact smul_zero _, }
end continuous_map
end module_over_continuous_functions
/-!
We now provide formulas for `f ⊓ g` and `f ⊔ g`, where `f g : C(α, β)`,
in terms of `continuous_map.abs`.
-/
section
variables {R : Type*} [linear_ordered_field R]
-- TODO:
-- This lemma (and the next) could go all the way back in `algebra.order.field`,
-- except that it is tedious to prove without tactics.
-- Rather than stranding it at some intermediate location,
-- it's here, immediately prior to the point of use.
lemma min_eq_half_add_sub_abs_sub {x y : R} : min x y = 2⁻¹ * (x + y - |x - y|) :=
by cases le_total x y with h h; field_simp [h, abs_of_nonneg, abs_of_nonpos, mul_two]; abel
lemma max_eq_half_add_add_abs_sub {x y : R} : max x y = 2⁻¹ * (x + y + |x - y|) :=
by cases le_total x y with h h; field_simp [h, abs_of_nonneg, abs_of_nonpos, mul_two]; abel
end
namespace continuous_map
section lattice
variables {α : Type*} [topological_space α]
variables {β : Type*} [linear_ordered_field β] [topological_space β]
[order_topology β] [topological_ring β]
lemma inf_eq (f g : C(α, β)) : f ⊓ g = (2⁻¹ : β) • (f + g - |f - g|) :=
ext (λ x, by simpa using min_eq_half_add_sub_abs_sub)
-- Not sure why this is grosser than `inf_eq`:
lemma sup_eq (f g : C(α, β)) : f ⊔ g = (2⁻¹ : β) • (f + g + |f - g|) :=
ext (λ x, by simpa [mul_add] using @max_eq_half_add_add_abs_sub _ _ (f x) (g x))
end lattice
/-!
### Star structure
If `β` has a continuous star operation, we put a star structure on `C(α, β)` by using the
star operation pointwise.
If `β` is a ⋆-ring, then `C(α, β)` inherits a ⋆-ring structure.
If `β` is a ⋆-ring and a ⋆-module over `R`, then the space of continuous functions from `α` to `β`
is a ⋆-module over `R`.
-/
section star_structure
variables {R α β : Type*}
variables [topological_space α] [topological_space β]
section has_star
variables [has_star β] [has_continuous_star β]
instance : has_star C(α, β) :=
{ star := λ f, star_continuous_map.comp f }
@[simp] lemma coe_star (f : C(α, β)) : ⇑(star f) = star f := rfl
@[simp] lemma star_apply (f : C(α, β)) (x : α) : star f x = star (f x) := rfl
end has_star
instance [has_involutive_star β] [has_continuous_star β] : has_involutive_star C(α, β) :=
{ star_involutive := λ f, ext $ λ x, star_star _ }
instance [add_monoid β] [has_continuous_add β] [star_add_monoid β] [has_continuous_star β] :
star_add_monoid C(α, β) :=
{ star_add := λ f g, ext $ λ x, star_add _ _ }
instance [semigroup β] [has_continuous_mul β] [star_semigroup β] [has_continuous_star β] :
star_semigroup C(α, β) :=
{ star_mul := λ f g, ext $ λ x, star_mul _ _ }
instance [non_unital_semiring β] [topological_semiring β] [star_ring β] [has_continuous_star β] :
star_ring C(α, β) :=
{ ..continuous_map.star_add_monoid }
instance [has_star R] [has_star β] [has_smul R β] [star_module R β]
[has_continuous_star β] [has_continuous_const_smul R β] :
star_module R C(α, β) :=
{ star_smul := λ k f, ext $ λ x, star_smul _ _ }
end star_structure
end continuous_map