Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Johan Commelin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johan Commelin | |
-/ | |
import topology.subset_properties | |
import topology.connected | |
import topology.algebra.monoid | |
import topology.continuous_function.basic | |
import tactic.tfae | |
import tactic.fin_cases | |
/-! | |
# Locally constant functions | |
This file sets up the theory of locally constant function from a topological space to a type. | |
## Main definitions and constructions | |
* `is_locally_constant f` : a map `f : X → Y` where `X` is a topological space is locally | |
constant if every set in `Y` has an open preimage. | |
* `locally_constant X Y` : the type of locally constant maps from `X` to `Y` | |
* `locally_constant.map` : push-forward of locally constant maps | |
* `locally_constant.comap` : pull-back of locally constant maps | |
-/ | |
variables {X Y Z α : Type*} [topological_space X] | |
open set filter | |
open_locale topological_space | |
/-- A function between topological spaces is locally constant if the preimage of any set is open. -/ | |
def is_locally_constant (f : X → Y) : Prop := ∀ s : set Y, is_open (f ⁻¹' s) | |
namespace is_locally_constant | |
protected lemma tfae (f : X → Y) : | |
tfae [is_locally_constant f, | |
∀ x, ∀ᶠ x' in 𝓝 x, f x' = f x, | |
∀ x, is_open {x' | f x' = f x}, | |
∀ y, is_open (f ⁻¹' {y}), | |
∀ x, ∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x] := | |
begin | |
tfae_have : 1 → 4, from λ h y, h {y}, | |
tfae_have : 4 → 3, from λ h x, h (f x), | |
tfae_have : 3 → 2, from λ h x, is_open.mem_nhds (h x) rfl, | |
tfae_have : 2 → 5, | |
{ intros h x, | |
rcases mem_nhds_iff.1 (h x) with ⟨U, eq, hU, hx⟩, | |
exact ⟨U, hU, hx, eq⟩ }, | |
tfae_have : 5 → 1, | |
{ intros h s, | |
refine is_open_iff_forall_mem_open.2 (λ x hx, _), | |
rcases h x with ⟨U, hU, hxU, eq⟩, | |
exact ⟨U, λ x' hx', mem_preimage.2 $ (eq x' hx').symm ▸ hx, hU, hxU⟩ }, | |
tfae_finish | |
end | |
@[nontriviality] lemma of_discrete [discrete_topology X] (f : X → Y) : | |
is_locally_constant f := | |
λ s, is_open_discrete _ | |
lemma is_open_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) : | |
is_open {x | f x = y} := | |
hf {y} | |
lemma is_closed_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) : | |
is_closed {x | f x = y} := | |
⟨hf {y}ᶜ⟩ | |
lemma is_clopen_fiber {f : X → Y} (hf : is_locally_constant f) (y : Y) : | |
is_clopen {x | f x = y} := | |
⟨is_open_fiber hf _, is_closed_fiber hf _⟩ | |
lemma iff_exists_open (f : X → Y) : | |
is_locally_constant f ↔ ∀ x, ∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x := | |
(is_locally_constant.tfae f).out 0 4 | |
lemma iff_eventually_eq (f : X → Y) : | |
is_locally_constant f ↔ ∀ x, ∀ᶠ y in 𝓝 x, f y = f x := | |
(is_locally_constant.tfae f).out 0 1 | |
lemma exists_open {f : X → Y} (hf : is_locally_constant f) (x : X) : | |
∃ (U : set X) (hU : is_open U) (hx : x ∈ U), ∀ x' ∈ U, f x' = f x := | |
(iff_exists_open f).1 hf x | |
protected lemma eventually_eq {f : X → Y} (hf : is_locally_constant f) (x : X) : | |
∀ᶠ y in 𝓝 x, f y = f x := | |
(iff_eventually_eq f).1 hf x | |
protected lemma continuous [topological_space Y] {f : X → Y} (hf : is_locally_constant f) : | |
continuous f := | |
⟨λ U hU, hf _⟩ | |
lemma iff_continuous {_ : topological_space Y} [discrete_topology Y] (f : X → Y) : | |
is_locally_constant f ↔ continuous f := | |
⟨is_locally_constant.continuous, λ h s, h.is_open_preimage s (is_open_discrete _)⟩ | |
lemma iff_continuous_bot (f : X → Y) : | |
is_locally_constant f ↔ @continuous X Y _ ⊥ f := | |
iff_continuous f | |
lemma of_constant (f : X → Y) (h : ∀ x y, f x = f y) : | |
is_locally_constant f := | |
(iff_eventually_eq f).2 $ λ x, eventually_of_forall $ λ x', h _ _ | |
lemma const (y : Y) : is_locally_constant (function.const X y) := | |
of_constant _ $ λ _ _, rfl | |
lemma comp {f : X → Y} (hf : is_locally_constant f) (g : Y → Z) : | |
is_locally_constant (g ∘ f) := | |
λ s, by { rw set.preimage_comp, exact hf _ } | |
lemma prod_mk {Y'} {f : X → Y} {f' : X → Y'} (hf : is_locally_constant f) | |
(hf' : is_locally_constant f') : | |
is_locally_constant (λ x, (f x, f' x)) := | |
(iff_eventually_eq _).2 $ λ x, (hf.eventually_eq x).mp $ (hf'.eventually_eq x).mono $ | |
λ x' hf' hf, prod.ext hf hf' | |
lemma comp₂ {Y₁ Y₂ Z : Type*} {f : X → Y₁} {g : X → Y₂} | |
(hf : is_locally_constant f) (hg : is_locally_constant g) (h : Y₁ → Y₂ → Z) : | |
is_locally_constant (λ x, h (f x) (g x)) := | |
(hf.prod_mk hg).comp (λ x : Y₁ × Y₂, h x.1 x.2) | |
lemma comp_continuous [topological_space Y] {g : Y → Z} {f : X → Y} | |
(hg : is_locally_constant g) (hf : continuous f) : | |
is_locally_constant (g ∘ f) := | |
λ s, by { rw set.preimage_comp, exact hf.is_open_preimage _ (hg _) } | |
/-- A locally constant function is constant on any preconnected set. -/ | |
lemma apply_eq_of_is_preconnected {f : X → Y} (hf : is_locally_constant f) | |
{s : set X} (hs : is_preconnected s) {x y : X} (hx : x ∈ s) (hy : y ∈ s) : | |
f x = f y := | |
begin | |
let U := f ⁻¹' {f y}, | |
suffices : x ∉ Uᶜ, from not_not.1 this, | |
intro hxV, | |
specialize hs U Uᶜ (hf {f y}) (hf {f y}ᶜ) _ ⟨y, ⟨hy, rfl⟩⟩ ⟨x, ⟨hx, hxV⟩⟩, | |
{ simp only [union_compl_self, subset_univ] }, | |
{ simpa only [inter_empty, not_nonempty_empty, inter_compl_self] using hs } | |
end | |
lemma iff_is_const [preconnected_space X] {f : X → Y} : | |
is_locally_constant f ↔ ∀ x y, f x = f y := | |
⟨λ h x y, h.apply_eq_of_is_preconnected is_preconnected_univ trivial trivial, of_constant _⟩ | |
lemma range_finite [compact_space X] {f : X → Y} (hf : is_locally_constant f) : | |
(set.range f).finite := | |
begin | |
letI : topological_space Y := ⊥, | |
haveI : discrete_topology Y := ⟨rfl⟩, | |
rw @iff_continuous X Y ‹_› ‹_› at hf, | |
exact (is_compact_range hf).finite_of_discrete | |
end | |
@[to_additive] lemma one [has_one Y] : is_locally_constant (1 : X → Y) := const 1 | |
@[to_additive] lemma inv [has_inv Y] ⦃f : X → Y⦄ (hf : is_locally_constant f) : | |
is_locally_constant f⁻¹ := | |
hf.comp (λ x, x⁻¹) | |
@[to_additive] | |
lemma mul [has_mul Y] ⦃f g : X → Y⦄ (hf : is_locally_constant f) (hg : is_locally_constant g) : | |
is_locally_constant (f * g) := | |
hf.comp₂ hg (*) | |
@[to_additive] | |
lemma div [has_div Y] ⦃f g : X → Y⦄ (hf : is_locally_constant f) (hg : is_locally_constant g) : | |
is_locally_constant (f / g) := | |
hf.comp₂ hg (/) | |
/-- If a composition of a function `f` followed by an injection `g` is locally | |
constant, then the locally constant property descends to `f`. -/ | |
lemma desc {α β : Type*} (f : X → α) (g : α → β) | |
(h : is_locally_constant (g ∘ f)) (inj : function.injective g) : is_locally_constant f := | |
begin | |
rw (is_locally_constant.tfae f).out 0 3, | |
intros a, | |
have : f ⁻¹' {a} = (g ∘ f) ⁻¹' { g a }, | |
{ ext x, | |
simp only [mem_singleton_iff, function.comp_app, mem_preimage], | |
exact ⟨λ h, by rw h, λ h, inj h⟩ }, | |
rw this, | |
apply h, | |
end | |
end is_locally_constant | |
/-- A (bundled) locally constant function from a topological space `X` to a type `Y`. -/ | |
structure locally_constant (X Y : Type*) [topological_space X] := | |
(to_fun : X → Y) | |
(is_locally_constant : is_locally_constant to_fun) | |
namespace locally_constant | |
instance [inhabited Y] : inhabited (locally_constant X Y) := | |
⟨⟨_, is_locally_constant.const default⟩⟩ | |
instance : has_coe_to_fun (locally_constant X Y) (λ _, X → Y) := ⟨locally_constant.to_fun⟩ | |
initialize_simps_projections locally_constant (to_fun → apply) | |
@[simp] lemma to_fun_eq_coe (f : locally_constant X Y) : f.to_fun = f := rfl | |
@[simp] lemma coe_mk (f : X → Y) (h) : ⇑(⟨f, h⟩ : locally_constant X Y) = f := rfl | |
theorem congr_fun {f g : locally_constant X Y} (h : f = g) (x : X) : f x = g x := | |
congr_arg (λ h : locally_constant X Y, h x) h | |
theorem congr_arg (f : locally_constant X Y) {x y : X} (h : x = y) : f x = f y := | |
congr_arg (λ x : X, f x) h | |
theorem coe_injective : @function.injective (locally_constant X Y) (X → Y) coe_fn | |
| ⟨f, hf⟩ ⟨g, hg⟩ h := have f = g, from h, by subst f | |
@[simp, norm_cast] theorem coe_inj {f g : locally_constant X Y} : (f : X → Y) = g ↔ f = g := | |
coe_injective.eq_iff | |
@[ext] theorem ext ⦃f g : locally_constant X Y⦄ (h : ∀ x, f x = g x) : f = g := | |
coe_injective (funext h) | |
theorem ext_iff {f g : locally_constant X Y} : f = g ↔ ∀ x, f x = g x := | |
⟨λ h x, h ▸ rfl, λ h, ext h⟩ | |
section codomain_topological_space | |
variables [topological_space Y] (f : locally_constant X Y) | |
protected lemma continuous : continuous f := f.is_locally_constant.continuous | |
/-- We can turn a locally-constant function into a bundled `continuous_map`. -/ | |
def to_continuous_map : C(X, Y) := ⟨f, f.continuous⟩ | |
/-- As a shorthand, `locally_constant.to_continuous_map` is available as a coercion -/ | |
instance : has_coe (locally_constant X Y) C(X, Y) := ⟨to_continuous_map⟩ | |
@[simp] lemma to_continuous_map_eq_coe : f.to_continuous_map = f := rfl | |
@[simp] lemma coe_continuous_map : ((f : C(X, Y)) : X → Y) = (f : X → Y) := rfl | |
lemma to_continuous_map_injective : | |
function.injective (to_continuous_map : locally_constant X Y → C(X, Y)) := | |
λ _ _ h, ext (continuous_map.congr_fun h) | |
end codomain_topological_space | |
/-- The constant locally constant function on `X` with value `y : Y`. -/ | |
def const (X : Type*) {Y : Type*} [topological_space X] (y : Y) : | |
locally_constant X Y := | |
⟨function.const X y, is_locally_constant.const _⟩ | |
@[simp] lemma coe_const (y : Y) : (const X y : X → Y) = function.const X y := rfl | |
/-- The locally constant function to `fin 2` associated to a clopen set. -/ | |
def of_clopen {X : Type*} [topological_space X] {U : set X} [∀ x, decidable (x ∈ U)] | |
(hU : is_clopen U) : locally_constant X (fin 2) := | |
{ to_fun := λ x, if x ∈ U then 0 else 1, | |
is_locally_constant := begin | |
rw (is_locally_constant.tfae (λ x, if x ∈ U then (0 : fin 2) else 1)).out 0 3, | |
intros e, | |
fin_cases e, | |
{ convert hU.1 using 1, | |
ext, | |
simp only [nat.one_ne_zero, mem_singleton_iff, fin.one_eq_zero_iff, | |
mem_preimage, ite_eq_left_iff], | |
tauto }, | |
{ rw ← is_closed_compl_iff, | |
convert hU.2, | |
ext, | |
simp } | |
end } | |
@[simp] lemma of_clopen_fiber_zero {X : Type*} [topological_space X] {U : set X} | |
[∀ x, decidable (x ∈ U)] (hU : is_clopen U) : of_clopen hU ⁻¹' ({0} : set (fin 2)) = U := | |
begin | |
ext, | |
simp only [of_clopen, nat.one_ne_zero, mem_singleton_iff, | |
fin.one_eq_zero_iff, coe_mk, mem_preimage, ite_eq_left_iff], | |
tauto, | |
end | |
@[simp] lemma of_clopen_fiber_one {X : Type*} [topological_space X] {U : set X} | |
[∀ x, decidable (x ∈ U)] (hU : is_clopen U) : of_clopen hU ⁻¹' ({1} : set (fin 2)) = Uᶜ := | |
begin | |
ext, | |
simp only [of_clopen, nat.one_ne_zero, mem_singleton_iff, coe_mk, | |
fin.zero_eq_one_iff, mem_preimage, ite_eq_right_iff, | |
mem_compl_eq], | |
tauto, | |
end | |
lemma locally_constant_eq_of_fiber_zero_eq {X : Type*} [topological_space X] | |
(f g : locally_constant X (fin 2)) (h : f ⁻¹' ({0} : set (fin 2)) = g ⁻¹' {0}) : f = g := | |
begin | |
simp only [set.ext_iff, mem_singleton_iff, mem_preimage] at h, | |
ext1 x, | |
exact fin.fin_two_eq_of_eq_zero_iff (h x) | |
end | |
lemma range_finite [compact_space X] (f : locally_constant X Y) : | |
(set.range f).finite := | |
f.is_locally_constant.range_finite | |
lemma apply_eq_of_is_preconnected (f : locally_constant X Y) {s : set X} (hs : is_preconnected s) | |
{x y : X} (hx : x ∈ s) (hy : y ∈ s) : | |
f x = f y := | |
f.is_locally_constant.apply_eq_of_is_preconnected hs hx hy | |
lemma apply_eq_of_preconnected_space [preconnected_space X] (f : locally_constant X Y) (x y : X) : | |
f x = f y := | |
f.is_locally_constant.apply_eq_of_is_preconnected is_preconnected_univ trivial trivial | |
lemma eq_const [preconnected_space X] (f : locally_constant X Y) (x : X) : | |
f = const X (f x) := | |
ext $ λ y, apply_eq_of_preconnected_space f _ _ | |
lemma exists_eq_const [preconnected_space X] [nonempty Y] (f : locally_constant X Y) : | |
∃ y, f = const X y := | |
begin | |
rcases classical.em (nonempty X) with ⟨⟨x⟩⟩|hX, | |
{ exact ⟨f x, f.eq_const x⟩ }, | |
{ exact ⟨classical.arbitrary Y, ext $ λ x, (hX ⟨x⟩).elim⟩ } | |
end | |
/-- Push forward of locally constant maps under any map, by post-composition. -/ | |
def map (f : Y → Z) : locally_constant X Y → locally_constant X Z := | |
λ g, ⟨f ∘ g, λ s, by { rw set.preimage_comp, apply g.is_locally_constant }⟩ | |
@[simp] lemma map_apply (f : Y → Z) (g : locally_constant X Y) : ⇑(map f g) = f ∘ g := rfl | |
@[simp] lemma map_id : @map X Y Y _ id = id := by { ext, refl } | |
@[simp] lemma map_comp {Y₁ Y₂ Y₃ : Type*} (g : Y₂ → Y₃) (f : Y₁ → Y₂) : | |
@map X _ _ _ g ∘ map f = map (g ∘ f) := by { ext, refl } | |
/-- Given a locally constant function to `α → β`, construct a family of locally constant | |
functions with values in β indexed by α. -/ | |
def flip {X α β : Type*} [topological_space X] (f : locally_constant X (α → β)) (a : α) : | |
locally_constant X β := f.map (λ f, f a) | |
/-- If α is finite, this constructs a locally constant function to `α → β` given a | |
family of locally constant functions with values in β indexed by α. -/ | |
def unflip {X α β : Type*} [fintype α] [topological_space X] (f : α → locally_constant X β) : | |
locally_constant X (α → β) := | |
{ to_fun := λ x a, f a x, | |
is_locally_constant := begin | |
rw (is_locally_constant.tfae (λ x a, f a x)).out 0 3, | |
intros g, | |
have : (λ (x : X) (a : α), f a x) ⁻¹' {g} = ⋂ (a : α), (f a) ⁻¹' {g a}, by tidy, | |
rw this, | |
apply is_open_Inter, | |
intros a, | |
apply (f a).is_locally_constant, | |
end } | |
@[simp] | |
lemma unflip_flip {X α β : Type*} [fintype α] [topological_space X] | |
(f : locally_constant X (α → β)) : unflip f.flip = f := by { ext, refl } | |
@[simp] | |
lemma flip_unflip {X α β : Type*} [fintype α] [topological_space X] | |
(f : α → locally_constant X β) : (unflip f).flip = f := by { ext, refl } | |
section comap | |
open_locale classical | |
variables [topological_space Y] | |
/-- Pull back of locally constant maps under any map, by pre-composition. | |
This definition only makes sense if `f` is continuous, | |
in which case it sends locally constant functions to their precomposition with `f`. | |
See also `locally_constant.coe_comap`. -/ | |
noncomputable | |
def comap (f : X → Y) : | |
locally_constant Y Z → locally_constant X Z := | |
if hf : continuous f | |
then λ g, ⟨g ∘ f, g.is_locally_constant.comp_continuous hf⟩ | |
else | |
begin | |
by_cases H : nonempty X, | |
{ introsI g, exact const X (g $ f $ classical.arbitrary X) }, | |
{ intro g, refine ⟨λ x, (H ⟨x⟩).elim, _⟩, | |
intro s, rw is_open_iff_nhds, intro x, exact (H ⟨x⟩).elim } | |
end | |
@[simp] lemma coe_comap (f : X → Y) (g : locally_constant Y Z) (hf : continuous f) : | |
⇑(comap f g) = g ∘ f := | |
by { rw [comap, dif_pos hf], refl } | |
@[simp] lemma comap_id : @comap X X Z _ _ id = id := | |
by { ext, simp only [continuous_id, id.def, function.comp.right_id, coe_comap] } | |
lemma comap_comp [topological_space Z] | |
(f : X → Y) (g : Y → Z) (hf : continuous f) (hg : continuous g) : | |
@comap _ _ α _ _ f ∘ comap g = comap (g ∘ f) := | |
by { ext, simp only [hf, hg, hg.comp hf, coe_comap] } | |
lemma comap_const (f : X → Y) (y : Y) (h : ∀ x, f x = y) : | |
(comap f : locally_constant Y Z → locally_constant X Z) = | |
λ g, ⟨λ x, g y, is_locally_constant.const _⟩ := | |
begin | |
ext, rw coe_comap, | |
{ simp only [h, coe_mk, function.comp_app] }, | |
{ rw show f = λ x, y, by ext; apply h, | |
exact continuous_const } | |
end | |
end comap | |
section desc | |
/-- If a locally constant function factors through an injection, then it factors through a locally | |
constant function. -/ | |
def desc {X α β : Type*} [topological_space X] {g : α → β} (f : X → α) (h : locally_constant X β) | |
(cond : g ∘ f = h) (inj : function.injective g) : locally_constant X α := | |
{ to_fun := f, | |
is_locally_constant := is_locally_constant.desc _ g (by { rw cond, exact h.2 }) inj } | |
@[simp] | |
lemma coe_desc {X α β : Type*} [topological_space X] (f : X → α) (g : α → β) | |
(h : locally_constant X β) (cond : g ∘ f = h) (inj : function.injective g) : | |
⇑(desc f h cond inj) = f := rfl | |
end desc | |
section indicator | |
variables {R : Type*} [has_one R] {U : set X} (f : locally_constant X R) | |
open_locale classical | |
/-- Given a clopen set `U` and a locally constant function `f`, `locally_constant.mul_indicator` | |
returns the locally constant function that is `f` on `U` and `1` otherwise. -/ | |
@[to_additive /-" Given a clopen set `U` and a locally constant function `f`, | |
`locally_constant.indicator` returns the locally constant function that is `f` on `U` and `0` | |
otherwise. "-/, simps] | |
noncomputable def mul_indicator (hU : is_clopen U) : | |
locally_constant X R := | |
{ to_fun := set.mul_indicator U f, | |
is_locally_constant := | |
begin | |
rw is_locally_constant.iff_exists_open, rintros x, | |
obtain ⟨V, hV, hx, h'⟩ := (is_locally_constant.iff_exists_open _).1 f.is_locally_constant x, | |
by_cases x ∈ U, | |
{ refine ⟨U ∩ V, is_open.inter hU.1 hV, set.mem_inter h hx, _⟩, rintros y hy, | |
rw set.mem_inter_iff at hy, rw [set.mul_indicator_of_mem hy.1, set.mul_indicator_of_mem h], | |
apply h' y hy.2, }, | |
{ rw ←set.mem_compl_iff at h, refine ⟨Uᶜ, (is_clopen.compl hU).1, h, _⟩, | |
rintros y hy, rw set.mem_compl_iff at h, rw set.mem_compl_iff at hy, | |
simp [h, hy], }, | |
end, } | |
variables (a : X) | |
@[to_additive] | |
theorem mul_indicator_apply_eq_if (hU : is_clopen U) : | |
mul_indicator f hU a = if a ∈ U then f a else 1 := | |
set.mul_indicator_apply U f a | |
variables {a} | |
@[to_additive] | |
theorem mul_indicator_of_mem (hU : is_clopen U) (h : a ∈ U) : f.mul_indicator hU a = f a := | |
by{ rw mul_indicator_apply, apply set.mul_indicator_of_mem h, } | |
@[to_additive] | |
theorem mul_indicator_of_not_mem (hU : is_clopen U) (h : a ∉ U) : f.mul_indicator hU a = 1 := | |
by{ rw mul_indicator_apply, apply set.mul_indicator_of_not_mem h, } | |
end indicator | |
end locally_constant | |