proof-pile / formal /lean /mathlib /topology /locally_finite.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.91 kB
/-
Copyright (c) 2022 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import topology.basic
/-!
### Locally finite families of sets
We say that a family of sets in a topological space is *locally finite* if at every point `x : X`,
there is a neighborhood of `x` which meets only finitely many sets in the family.
In this file we give the definition and prove basic properties of locally finite families of sets.
-/
/- locally finite family [General Topology (Bourbaki, 1995)] -/
open set function filter
open_locale topological_space filter
variables {ι ι' α X Y : Type*} [topological_space X] [topological_space Y]
{f g : ι → set X}
/-- A family of sets in `set X` is locally finite if at every point `x : X`,
there is a neighborhood of `x` which meets only finitely many sets in the family. -/
def locally_finite (f : ι → set X) :=
∀ x : X, ∃t ∈ 𝓝 x, {i | (f i ∩ t).nonempty}.finite
lemma locally_finite_of_finite [finite ι] (f : ι → set X) : locally_finite f :=
assume x, ⟨univ, univ_mem, to_finite _⟩
namespace locally_finite
lemma point_finite (hf : locally_finite f) (x : X) : {b | x ∈ f b}.finite :=
let ⟨t, hxt, ht⟩ := hf x in ht.subset $ λ b hb, ⟨x, hb, mem_of_mem_nhds hxt⟩
protected lemma subset (hf : locally_finite f) (hg : ∀ i, g i ⊆ f i) : locally_finite g :=
assume a,
let ⟨t, ht₁, ht₂⟩ := hf a in
⟨t, ht₁, ht₂.subset $ assume i hi, hi.mono $ inter_subset_inter (hg i) subset.rfl⟩
lemma comp_inj_on {g : ι' → ι} (hf : locally_finite f)
(hg : inj_on g {i | (f (g i)).nonempty}) : locally_finite (f ∘ g) :=
λ x, let ⟨t, htx, htf⟩ := hf x in ⟨t, htx, htf.preimage $ hg.mono $ λ i hi,
hi.out.mono $ inter_subset_left _ _⟩
lemma comp_injective {g : ι' → ι} (hf : locally_finite f)
(hg : function.injective g) : locally_finite (f ∘ g) :=
hf.comp_inj_on (hg.inj_on _)
lemma eventually_finite (hf : locally_finite f) (x : X) :
∀ᶠ s in (𝓝 x).small_sets, {i | (f i ∩ s).nonempty}.finite :=
eventually_small_sets.2 $ let ⟨s, hsx, hs⟩ := hf x in
⟨s, hsx, λ t hts, hs.subset $ λ i hi, hi.out.mono $ inter_subset_inter_right _ hts⟩
lemma exists_mem_basis {ι' : Sort*} (hf : locally_finite f) {p : ι' → Prop}
{s : ι' → set X} {x : X} (hb : (𝓝 x).has_basis p s) :
i (hi : p i), {j | (f j ∩ s i).nonempty}.finite :=
let ⟨i, hpi, hi⟩ := hb.small_sets.eventually_iff.mp (hf.eventually_finite x)
in ⟨i, hpi, hi subset.rfl⟩
lemma sum_elim {g : ι' → set X} (hf : locally_finite f) (hg : locally_finite g) :
locally_finite (sum.elim f g) :=
begin
intro x,
obtain ⟨s, hsx, hsf, hsg⟩ :
s, s ∈ 𝓝 x ∧ {i | (f i ∩ s).nonempty}.finite ∧ {j | (g j ∩ s).nonempty}.finite,
from ((𝓝 x).frequently_small_sets_mem.and_eventually
((hf.eventually_finite x).and (hg.eventually_finite x))).exists,
refine ⟨s, hsx, _⟩,
convert (hsf.image sum.inl).union (hsg.image sum.inr) using 1,
ext (i|j); simp
end
protected lemma closure (hf : locally_finite f) : locally_finite (λ i, closure (f i)) :=
begin
intro x,
rcases hf x with ⟨s, hsx, hsf⟩,
refine ⟨interior s, interior_mem_nhds.2 hsx, hsf.subset $ λ i hi, _⟩,
exact (hi.mono (closure_inter_open' is_open_interior)).of_closure.mono
(inter_subset_inter_right _ interior_subset)
end
lemma is_closed_Union (hf : locally_finite f) (hc : ∀i, is_closed (f i)) :
is_closed (⋃i, f i) :=
begin
simp only [← is_open_compl_iff, compl_Union, is_open_iff_mem_nhds, mem_Inter],
intros a ha,
replace ha : ∀ i, (f i)ᶜ ∈ 𝓝 a := λ i, (hc i).is_open_compl.mem_nhds (ha i),
rcases hf a with ⟨t, h_nhds, h_fin⟩,
have : t ∩ (⋂ i ∈ {i | (f i ∩ t).nonempty}, (f i)ᶜ) ∈ 𝓝 a,
from inter_mem h_nhds ((bInter_mem h_fin).2 (λ i _, ha i)),
filter_upwards [this],
simp only [mem_inter_eq, mem_Inter],
rintros b ⟨hbt, hn⟩ i hfb,
exact hn i ⟨b, hfb, hbt⟩ hfb,
end
lemma closure_Union (h : locally_finite f) : closure (⋃ i, f i) = ⋃ i, closure (f i) :=
subset.antisymm
(closure_minimal (Union_mono $ λ _, subset_closure) $
h.closure.is_closed_Union $ λ _, is_closed_closure)
(Union_subset $ λ i, closure_mono $ subset_Union _ _)
/-- If `f : β → set α` is a locally finite family of closed sets, then for any `x : α`, the
intersection of the complements to `f i`, `x ∉ f i`, is a neighbourhood of `x`. -/
lemma Inter_compl_mem_nhds (hf : locally_finite f) (hc : ∀ i, is_closed (f i)) (x : X) :
(⋂ i (hi : x ∉ f i), (f i)ᶜ) ∈ 𝓝 x :=
begin
refine is_open.mem_nhds _ (mem_Inter₂.2 $ λ i, id),
suffices : is_closed (⋃ i : {i // x ∉ f i}, f i),
by rwa [← is_open_compl_iff, compl_Union, Inter_subtype] at this,
exact (hf.comp_injective subtype.coe_injective).is_closed_Union (λ i, hc _)
end
/-- Let `f : ℕ → Π a, β a` be a sequence of (dependent) functions on a topological space. Suppose
that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a
function `F : Π a, β a` such that for any `x`, we have `f n x = F x` on the product of an infinite
interval `[N, +∞)` and a neighbourhood of `x`.
We formulate the conclusion in terms of the product of filter `filter.at_top` and `𝓝 x`. -/
lemma exists_forall_eventually_eq_prod {π : X → Sort*} {f : ℕ → Π x : X, π x}
(hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) :
F : Π x : X, π x, ∀ x, ∀ᶠ p : ℕ × X in at_top ×ᶠ 𝓝 x, f p.1 p.2 = F p.2 :=
begin
choose U hUx hU using hf,
choose N hN using λ x, (hU x).bdd_above,
replace hN : ∀ x (n > N x) (y ∈ U x), f (n + 1) y = f n y,
from λ x n hn y hy, by_contra (λ hne, hn.lt.not_le $ hN x ⟨y, hne, hy⟩),
replace hN : ∀ x (n ≥ N x + 1) (y ∈ U x), f n y = f (N x + 1) y,
from λ x n hn y hy, nat.le_induction rfl (λ k hle, (hN x _ hle _ hy).trans) n hn,
refine ⟨λ x, f (N x + 1) x, λ x, _⟩,
filter_upwards [filter.prod_mem_prod (eventually_gt_at_top (N x)) (hUx x)],
rintro ⟨n, y⟩ ⟨hn : N x < n, hy : y ∈ U x⟩,
calc f n y = f (N x + 1) y : hN _ _ hn _ hy
... = f (max (N x + 1) (N y + 1)) y : (hN _ _ (le_max_left _ _) _ hy).symm
... = f (N y + 1) y : hN _ _ (le_max_right _ _) _ (mem_of_mem_nhds $ hUx y)
end
/-- Let `f : ℕ → Π a, β a` be a sequence of (dependent) functions on a topological space. Suppose
that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a
function `F : Π a, β a` such that for any `x`, for sufficiently large values of `n`, we have
`f n y = F y` in a neighbourhood of `x`. -/
lemma exists_forall_eventually_at_top_eventually_eq' {π : X → Sort*}
{f : ℕ → Π x : X, π x} (hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) :
F : Π x : X, π x, ∀ x, ∀ᶠ n : ℕ in at_top, ∀ᶠ y : X in 𝓝 x, f n y = F y :=
hf.exists_forall_eventually_eq_prod.imp $ λ F hF x, (hF x).curry
/-- Let `f : ℕ → α → β` be a sequence of functions on a topological space. Suppose
that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a
function `F : α → β` such that for any `x`, for sufficiently large values of `n`, we have
`f n =ᶠ[𝓝 x] F`. -/
lemma exists_forall_eventually_at_top_eventually_eq {f : ℕ → X → α}
(hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) :
F : X → α, ∀ x, ∀ᶠ n : ℕ in at_top, f n =ᶠ[𝓝 x] F :=
hf.exists_forall_eventually_at_top_eventually_eq'
lemma preimage_continuous {g : Y → X} (hf : locally_finite f) (hg : continuous g) :
locally_finite (λ i, g ⁻¹' (f i)) :=
λ x, let ⟨s, hsx, hs⟩ := hf (g x)
in ⟨g ⁻¹' s, hg.continuous_at hsx, hs.subset $ λ i ⟨y, hy⟩, ⟨g y, hy⟩⟩
end locally_finite