code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import unittest
import numpy as np
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
from transformers.pipelines import AudioClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_torchaudio,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
__snake_case = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
__snake_case = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] ) ->List[str]:
"""simple docstring"""
a = AudioClassificationPipeline(model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase )
# test with a raw waveform
a = np.zeros((34_000,) )
a = np.zeros((14_000,) )
return audio_classifier, [audioa, audio]
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict ) ->Any:
"""simple docstring"""
a , a = examples
a = audio_classifier(__UpperCAmelCase )
# by default a model is initialized with num_labels=2
self.assertEqual(
__UpperCAmelCase , [
{'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )},
{'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )},
] , )
a = audio_classifier(__UpperCAmelCase , top_k=1 )
self.assertEqual(
__UpperCAmelCase , [
{'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )},
] , )
self.run_torchaudio(__UpperCAmelCase )
@require_torchaudio
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Dict ) ->Dict:
"""simple docstring"""
import datasets
# test with a local file
a = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
a = dataset[0]['''audio''']['''array''']
a = audio_classifier(__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )},
{'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )},
] , )
@require_torch
def __lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
a = '''anton-l/wav2vec2-random-tiny-classifier'''
a = pipeline('''audio-classification''' , model=__UpperCAmelCase )
a = np.ones((8_000,) )
a = audio_classifier(__UpperCAmelCase , top_k=4 )
a = [
{'''score''': 0.0842, '''label''': '''no'''},
{'''score''': 0.0838, '''label''': '''up'''},
{'''score''': 0.0837, '''label''': '''go'''},
{'''score''': 0.0834, '''label''': '''right'''},
]
a = [
{'''score''': 0.0845, '''label''': '''stop'''},
{'''score''': 0.0844, '''label''': '''on'''},
{'''score''': 0.0841, '''label''': '''right'''},
{'''score''': 0.0834, '''label''': '''left'''},
]
self.assertIn(nested_simplify(__UpperCAmelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] )
a = {'''array''': np.ones((8_000,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate}
a = audio_classifier(__UpperCAmelCase , top_k=4 )
self.assertIn(nested_simplify(__UpperCAmelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] )
@require_torch
@slow
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
import datasets
a = '''superb/wav2vec2-base-superb-ks'''
a = pipeline('''audio-classification''' , model=__UpperCAmelCase )
a = datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' )
a = np.array(dataset[3]['''speech'''] , dtype=np.floataa )
a = audio_classifier(__UpperCAmelCase , top_k=4 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=3 ) , [
{'''score''': 0.981, '''label''': '''go'''},
{'''score''': 0.007, '''label''': '''up'''},
{'''score''': 0.006, '''label''': '''_unknown_'''},
{'''score''': 0.001, '''label''': '''down'''},
] , )
@require_tf
@unittest.skip('''Audio classification is not implemented for TF''' )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
pass
| 0 |
from math import factorial
UpperCAmelCase__ = {str(digit): factorial(digit) for digit in range(10)}
def _a ( a :int ) -> int:
if not isinstance(a , a ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) )
def _a ( a :int = 60 , a :int = 1_000_000 ) -> int:
if not isinstance(a , a ) or not isinstance(a , a ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
a = 0
# the cached sizes of the previous chains
a = {}
for start_chain_element in range(1 , a ):
# The temporary set will contain the elements of the chain
a = set()
a = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
a = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(a )
chain_set_length += 1
a = digit_factorial_sum(a )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
a = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution()}""")
| 0 | 1 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler")
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Any , __UpperCAmelCase : bool = True , __UpperCAmelCase : bool = False ) ->Dict:
"""simple docstring"""
a = scheduler
a = optimizers if isinstance(__UpperCAmelCase , (list, tuple) ) else [optimizers]
a = split_batches
a = step_with_optimizer
a = GradientState()
def __lowerCAmelCase ( self : int , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) ->str:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
a = AcceleratorState().num_processes
for _ in range(__UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , '''total_steps''' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase )
else:
self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
return self.scheduler.get_last_lr()
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
return self.scheduler.state_dict()
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]:
"""simple docstring"""
self.scheduler.load_state_dict(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
return self.scheduler.get_lr()
def __lowerCAmelCase ( self : Union[str, Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Any ) ->Union[str, Any]:
"""simple docstring"""
return self.scheduler.print_lr(*__UpperCAmelCase , **__UpperCAmelCase )
| 0 |
def _a ( a :int = 100 ) -> int:
a = n * (n + 1) * (2 * n + 1) / 6
a = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 | 1 |
def _a ( ) -> Optional[int]:
a = 0
for i in range(1 , 1_001 ):
total += i**i
return str(a )[-10:]
if __name__ == "__main__":
print(solution())
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase__ = {
"configuration_groupvit": [
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroupViTConfig",
"GroupViTOnnxConfig",
"GroupViTTextConfig",
"GroupViTVisionConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroupViTModel",
"GroupViTPreTrainedModel",
"GroupViTTextModel",
"GroupViTVisionModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGroupViTModel",
"TFGroupViTPreTrainedModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowercase_ :
'''simple docstring'''
def __init__( self : str ) ->int:
"""simple docstring"""
a = ''''''
a = ''''''
a = []
a = 0
a = 256
a = 0
a = 0
a = 0
a = 0
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str ) ->Dict:
"""simple docstring"""
a = cva.imread(__UpperCAmelCase , 0 )
a = copy.deepcopy(self.img )
a , a , a = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' )
a = np.sum(__UpperCAmelCase )
for i in range(len(__UpperCAmelCase ) ):
a = x[i] / self.k
self.sk += prk
a = (self.L - 1) * self.sk
if self.rem != 0:
a = int(last % last )
a = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__UpperCAmelCase )
a = int(np.ma.count(self.img ) / self.img[1].size )
a = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
a = self.img[j][i]
if num != self.last_list[num]:
a = self.last_list[num]
cva.imwrite('''output_data/output.jpg''' , self.img )
def __lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
cva.imshow('''Output-Image''' , self.img )
cva.imshow('''Input-Image''' , self.original_image )
cva.waitKey(5_000 )
cva.destroyAllWindows()
if __name__ == "__main__":
UpperCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
UpperCAmelCase__ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ShapEPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
return 8
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
a = PriorTransformer(**__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
a = ShapERenderer(**__UpperCAmelCase )
return model
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_renderer
a = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , )
a = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.images[0]
a = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
a = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = 1
a = 2
a = self.get_dummy_inputs(__UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
a = batch_size * [inputs[key]]
a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
a = ShapEPipeline.from_pretrained('''openai/shap-e''' )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a = pipe(
'''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 0 | 1 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''char'''
__snake_case = '''bpe'''
__snake_case = '''wp'''
UpperCAmelCase__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = ['''image_processor''', '''char_tokenizer''']
__snake_case = '''ViTImageProcessor'''
__snake_case = '''MgpstrTokenizer'''
def __init__( self : Optional[int] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __UpperCAmelCase , )
a = kwargs.pop('''feature_extractor''' )
a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
a = tokenizer
a = AutoTokenizer.from_pretrained('''gpt2''' )
a = AutoTokenizer.from_pretrained('''bert-base-uncased''' )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self : List[str] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : List[str] ) ->List[Any]:
"""simple docstring"""
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
a = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
a = encodings['''input_ids''']
return inputs
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[Any] ) ->List[Any]:
"""simple docstring"""
a , a , a = sequences
a = char_preds.size(0 )
a , a = self._decode_helper(__UpperCAmelCase , '''char''' )
a , a = self._decode_helper(__UpperCAmelCase , '''bpe''' )
a , a = self._decode_helper(__UpperCAmelCase , '''wp''' )
a = []
a = []
for i in range(__UpperCAmelCase ):
a = [char_scores[i], bpe_scores[i], wp_scores[i]]
a = [char_strs[i], bpe_strs[i], wp_strs[i]]
a = scores.index(max(__UpperCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
a = {}
a = final_strs
a = final_scores
a = char_strs
a = bpe_strs
a = wp_strs
return out
def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ) ->int:
"""simple docstring"""
if format == DecodeType.CHARACTER:
a = self.char_decode
a = 1
a = '''[s]'''
elif format == DecodeType.BPE:
a = self.bpe_decode
a = 2
a = '''#'''
elif format == DecodeType.WORDPIECE:
a = self.wp_decode
a = 102
a = '''[SEP]'''
else:
raise ValueError(F"""Format {format} is not supported.""" )
a , a = [], []
a = pred_logits.size(0 )
a = pred_logits.size(1 )
a , a = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase )
a = preds_index.view(-1 , __UpperCAmelCase )[:, 1:]
a = decoder(__UpperCAmelCase )
a , a = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 )
a = preds_max_prob[:, 1:]
for index in range(__UpperCAmelCase ):
a = preds_str[index].find(__UpperCAmelCase )
a = preds_str[index][:pred_eos]
a = preds_index[index].cpu().tolist()
a = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1
a = preds_max_prob[index][: pred_eos_index + 1]
a = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__UpperCAmelCase )
conf_scores.append(__UpperCAmelCase )
return dec_strs, conf_scores
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[Any] ) ->List[Any]:
"""simple docstring"""
return self.bpe_tokenizer.batch_decode(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : List[Any] ) ->List[Any]:
"""simple docstring"""
a = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
| 0 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase__ = [8, 5, 9, 7]
UpperCAmelCase__ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase__ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None:
"""simple docstring"""
a = claim_vector
a = allocated_resources_table
a = maximum_claim_table
def __lowerCAmelCase ( self : Any ) ->list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __lowerCAmelCase ( self : Optional[int] ) ->list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()}
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = self.__need()
a = self.__allocated_resources_table
a = self.__available_resources()
a = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
a = False
for each_need in need_list:
a = True
for index, need in enumerate(__UpperCAmelCase ):
if need > available_resources[index]:
a = False
break
if execution:
a = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
a = original_need_index
print(F"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(__UpperCAmelCase )
# update available/freed resources stack
a = np.array(__UpperCAmelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"huggingface/informer-tourism-monthly": (
"https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json"
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''informer'''
__snake_case = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : str = "student_t" , __UpperCAmelCase : str = "nll" , __UpperCAmelCase : int = 1 , __UpperCAmelCase : List[int] = None , __UpperCAmelCase : Optional[Union[str, bool]] = "mean" , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : int = 64 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : bool = True , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.05 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 100 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : str=True , __UpperCAmelCase : str = "prob" , __UpperCAmelCase : int = 5 , __UpperCAmelCase : bool = True , **__UpperCAmelCase : List[str] , ) ->str:
"""simple docstring"""
a = prediction_length
a = context_length or prediction_length
a = distribution_output
a = loss
a = input_size
a = num_time_features
a = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
a = scaling
a = num_dynamic_real_features
a = num_static_real_features
a = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(__UpperCAmelCase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
a = cardinality
else:
a = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(__UpperCAmelCase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
a = embedding_dimension
else:
a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
a = num_parallel_samples
# Transformer architecture configuration
a = input_size * len(self.lags_sequence ) + self._number_of_features
a = d_model
a = encoder_attention_heads
a = decoder_attention_heads
a = encoder_ffn_dim
a = decoder_ffn_dim
a = encoder_layers
a = decoder_layers
a = dropout
a = attention_dropout
a = activation_dropout
a = encoder_layerdrop
a = decoder_layerdrop
a = activation_function
a = init_std
a = use_cache
# Informer
a = attention_type
a = sampling_factor
a = distil
super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCAmelCase__ = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_INIT_CONFIGURATION
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ElectraTokenizer
def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
a = do_lower_case
a = strip_accents
a = tokenize_chinese_chars
a = normalizer_class(**__UpperCAmelCase )
a = do_lower_case
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str:
"""simple docstring"""
a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 0 | 1 |
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def _a ( a :List[str] ) -> str:
a , a = image.size
a , a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
a = np.array(a ).astype(np.floataa ) / 255.0
a = image[None].transpose(0 , 3 , 1 , 2 )
a = torch.from_numpy(a )
return 2.0 * image - 1.0
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Optional[Any] , __UpperCAmelCase : VQModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ) ->Dict:
"""simple docstring"""
super().__init__()
self.register_modules(vqvae=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
@torch.no_grad()
def __call__( self : str , __UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : Optional[int] = 100 , __UpperCAmelCase : Optional[float] = 0.0 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , ) ->Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
if isinstance(__UpperCAmelCase , PIL.Image.Image ):
a = 1
elif isinstance(__UpperCAmelCase , torch.Tensor ):
a = image.shape[0]
else:
raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__UpperCAmelCase )}""" )
if isinstance(__UpperCAmelCase , PIL.Image.Image ):
a = preprocess(__UpperCAmelCase )
a , a = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
a = (batch_size, self.unet.config.in_channels // 2, height, width)
a = next(self.unet.parameters() ).dtype
a = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase )
a = image.to(device=self.device , dtype=__UpperCAmelCase )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(__UpperCAmelCase , device=self.device )
a = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
a = {}
if accepts_eta:
a = eta
for t in self.progress_bar(__UpperCAmelCase ):
# concat latents and low resolution image in the channel dimension.
a = torch.cat([latents, image] , dim=1 )
a = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase )
# predict the noise residual
a = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
# decode the image latents with the VQVAE
a = self.vqvae.decode(__UpperCAmelCase ).sample
a = torch.clamp(__UpperCAmelCase , -1.0 , 1.0 )
a = image / 2 + 0.5
a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
a = self.numpy_to_pil(__UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__UpperCAmelCase )
| 0 |
def _a ( a :int ) -> bool:
a = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 0 | 1 |
from __future__ import annotations
import math
import random
from typing import Any
class lowercase_ :
'''simple docstring'''
def __init__( self : List[str] ) ->None:
"""simple docstring"""
a = []
a = 0
a = 0
def __lowerCAmelCase ( self : str ) ->bool:
"""simple docstring"""
return self.head == self.tail
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->None:
"""simple docstring"""
self.data.append(__UpperCAmelCase )
a = self.tail + 1
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.data[self.head]
a = self.head + 1
return ret
def __lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
return self.tail - self.head
def __lowerCAmelCase ( self : Optional[int] ) ->None:
"""simple docstring"""
print(self.data )
print('''**************''' )
print(self.data[self.head : self.tail] )
class lowercase_ :
'''simple docstring'''
def __init__( self : int , __UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = data
a = None
a = None
a = 1
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return self.data
def __lowerCAmelCase ( self : List[Any] ) ->MyNode | None:
"""simple docstring"""
return self.left
def __lowerCAmelCase ( self : List[str] ) ->MyNode | None:
"""simple docstring"""
return self.right
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
return self.height
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = data
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : MyNode | None ) ->None:
"""simple docstring"""
a = node
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : MyNode | None ) ->None:
"""simple docstring"""
a = node
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : int ) ->None:
"""simple docstring"""
a = height
def _a ( a :MyNode | None ) -> int:
if node is None:
return 0
return node.get_height()
def _a ( a :int , a :int ) -> int:
if a > b:
return a
return b
def _a ( a :MyNode ) -> MyNode:
print('''left rotation node:''' , node.get_data() )
a = node.get_left()
assert ret is not None
node.set_left(ret.get_right() )
ret.set_right(a )
a = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(a )
a = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(a )
return ret
def _a ( a :MyNode ) -> MyNode:
print('''right rotation node:''' , node.get_data() )
a = node.get_right()
assert ret is not None
node.set_right(ret.get_left() )
ret.set_left(a )
a = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(a )
a = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(a )
return ret
def _a ( a :MyNode ) -> MyNode:
a = node.get_left()
assert left_child is not None
node.set_left(left_rotation(a ) )
return right_rotation(a )
def _a ( a :MyNode ) -> MyNode:
a = node.get_right()
assert right_child is not None
node.set_right(right_rotation(a ) )
return left_rotation(a )
def _a ( a :MyNode | None , a :Any ) -> MyNode | None:
if node is None:
return MyNode(a )
if data < node.get_data():
node.set_left(insert_node(node.get_left() , a ) )
if (
get_height(node.get_left() ) - get_height(node.get_right() ) == 2
): # an unbalance detected
a = node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
a = right_rotation(a )
else:
a = lr_rotation(a )
else:
node.set_right(insert_node(node.get_right() , a ) )
if get_height(node.get_right() ) - get_height(node.get_left() ) == 2:
a = node.get_right()
assert right_child is not None
if data < right_child.get_data():
a = rl_rotation(a )
else:
a = left_rotation(a )
a = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(a )
return node
def _a ( a :MyNode ) -> Any:
while True:
a = root.get_right()
if right_child is None:
break
a = right_child
return root.get_data()
def _a ( a :MyNode ) -> Any:
while True:
a = root.get_left()
if left_child is None:
break
a = left_child
return root.get_data()
def _a ( a :MyNode , a :Any ) -> MyNode | None:
a = root.get_left()
a = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
a = get_left_most(a )
root.set_data(a )
root.set_right(del_node(a , a ) )
elif left_child is not None:
a = left_child
elif right_child is not None:
a = right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print('''No such data''' )
return root
else:
root.set_left(del_node(a , a ) )
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(a , a ) )
if get_height(a ) - get_height(a ) == 2:
assert right_child is not None
if get_height(right_child.get_right() ) > get_height(right_child.get_left() ):
a = left_rotation(a )
else:
a = rl_rotation(a )
elif get_height(a ) - get_height(a ) == -2:
assert left_child is not None
if get_height(left_child.get_left() ) > get_height(left_child.get_right() ):
a = right_rotation(a )
else:
a = lr_rotation(a )
a = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1
root.set_height(a )
return root
class lowercase_ :
'''simple docstring'''
def __init__( self : int ) ->None:
"""simple docstring"""
a = None
def __lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
return get_height(self.root )
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Any ) ->None:
"""simple docstring"""
print('''insert:''' + str(__UpperCAmelCase ) )
a = insert_node(self.root , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Any ) ->None:
"""simple docstring"""
print('''delete:''' + str(__UpperCAmelCase ) )
if self.root is None:
print('''Tree is empty!''' )
return
a = del_node(self.root , __UpperCAmelCase )
def __str__( self : List[Any] , ) ->str: # a level traversale, gives a more intuitive look on the tree
"""simple docstring"""
a = ''''''
a = MyQueue()
q.push(self.root )
a = self.get_height()
if layer == 0:
return output
a = 0
while not q.is_empty():
a = q.pop()
a = ''' ''' * int(math.pow(2 , layer - 1 ) )
output += space
if node is None:
output += "*"
q.push(__UpperCAmelCase )
q.push(__UpperCAmelCase )
else:
output += str(node.get_data() )
q.push(node.get_left() )
q.push(node.get_right() )
output += space
a = cnt + 1
for i in range(100 ):
if cnt == math.pow(2 , __UpperCAmelCase ) - 1:
a = layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output
def _a ( ) -> None:
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
UpperCAmelCase__ = AVLtree()
UpperCAmelCase__ = list(range(10))
random.shuffle(lst)
for i in lst:
t.insert(i)
print(str(t))
random.shuffle(lst)
for i in lst:
t.del_node(i)
print(str(t))
| 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ = pytest.mark.integration
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
a = dset.map(
lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase )
a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
from elasticsearch import Elasticsearch
a = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
a = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase )
a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
a = np.eye(5 , dtype=np.floataa )[::-1]
a , a = index.search_batch(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
import faiss
a = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
a = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__UpperCAmelCase ):
a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = faiss.IndexFlat(5 )
a = FaissIndex(custom_index=__UpperCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
index.save(tmp_file.name )
a = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _a ( a :Dict ) -> Any:
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
a = '''index.faiss'''
a = F"""mock://{index_name}"""
index.save(a , storage_options=mockfs.storage_options )
a = FaissIndex.load(a , storage_options=mockfs.storage_options )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(a )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = Elasticsearch()
a = {'''acknowledged''': True}
a = ElasticSearchIndex(es_client=__UpperCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
# batched queries with timeout
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
| 0 | 1 |
from math import factorial
UpperCAmelCase__ = {str(digit): factorial(digit) for digit in range(10)}
def _a ( a :int ) -> int:
if not isinstance(a , a ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) )
def _a ( a :int = 60 , a :int = 1_000_000 ) -> int:
if not isinstance(a , a ) or not isinstance(a , a ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
a = 0
# the cached sizes of the previous chains
a = {}
for start_chain_element in range(1 , a ):
# The temporary set will contain the elements of the chain
a = set()
a = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
a = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(a )
chain_set_length += 1
a = digit_factorial_sum(a )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
a = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution()}""")
| 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''t5'''
__snake_case = ['''past_key_values''']
__snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=32_128 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=128 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=1e-6 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str , ) ->Optional[Any]:
"""simple docstring"""
a = vocab_size
a = d_model
a = d_kv
a = d_ff
a = num_layers
a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a = num_heads
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = feed_forward_proj
a = use_cache
a = self.feed_forward_proj.split('''-''' )
a = act_info[-1]
a = act_info[0] == '''gated'''
if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a = '''gelu_new'''
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
a = '''past_encoder_sequence + sequence'''
a = {0: '''batch'''}
a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''decoder_sequence'''}
a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
return common_inputs
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return 13
| 0 | 1 |
import math
def _a ( a :int ) -> bool:
assert isinstance(a , a ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
a = range(3 , int(math.sqrt(a ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def _a ( a :int , a :Optional[int]=1 , **a :List[str] ) -> str:
a = factor * value
a = value
while not is_prime(a ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **a )
return value
| 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''llama'''
__snake_case = ['''past_key_values''']
def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str:
"""simple docstring"""
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = intermediate_size
a = num_hidden_layers
a = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a = num_attention_heads
a = num_key_value_heads
a = hidden_act
a = initializer_range
a = rms_norm_eps
a = pretraining_tp
a = use_cache
a = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"""got {self.rope_scaling}""" )
a = self.rope_scaling.get('''type''' , __UpperCAmelCase )
a = self.rope_scaling.get('''factor''' , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 0 | 1 |
from __future__ import annotations
UpperCAmelCase__ = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , __UpperCAmelCase : dict[str, list[str]] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
a = graph
# mapping node to its parent in resulting breadth first tree
a = {}
a = source_vertex
def __lowerCAmelCase ( self : Union[str, Any] ) ->None:
"""simple docstring"""
a = {self.source_vertex}
a = None
a = [self.source_vertex] # first in first out queue
while queue:
a = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(__UpperCAmelCase )
a = vertex
queue.append(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->str:
"""simple docstring"""
if target_vertex == self.source_vertex:
return self.source_vertex
a = self.parent.get(__UpperCAmelCase )
if target_vertex_parent is None:
a = (
F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}"""
)
raise ValueError(__UpperCAmelCase )
return self.shortest_path(__UpperCAmelCase ) + F"""->{target_vertex}"""
if __name__ == "__main__":
UpperCAmelCase__ = Graph(graph, "G")
g.breath_first_search()
print(g.shortest_path("D"))
print(g.shortest_path("G"))
print(g.shortest_path("Foo"))
| 0 |
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0 | 1 |
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def _a ( ) -> Any:
a = ArgumentParser(
description=(
'''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes'''
) )
# Optional arguments for the launch helper
parser.add_argument('''--num_cores''' , type=a , default=1 , help='''Number of TPU cores to use (1 or 8).''' )
# positional
parser.add_argument(
'''training_script''' , type=a , help=(
'''The full path to the single TPU training '''
'''program/script to be launched in parallel, '''
'''followed by all the arguments for the '''
'''training script'''
) , )
# rest from the training program
parser.add_argument('''training_script_args''' , nargs=a )
return parser.parse_args()
def _a ( ) -> Tuple:
a = parse_args()
# Import training_script as a module.
a = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
a = script_fpath.stem
a = importlib.import_module(a )
# Patch sys.argv
a = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 0 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ = logging.getLogger()
def _a ( ) -> Optional[int]:
a = argparse.ArgumentParser()
parser.add_argument('''-f''' )
a = parser.parse_args()
return args.f
def _a ( a :Any ) -> Tuple:
a = {}
a = os.path.join(a , '''all_results.json''' )
if os.path.exists(a ):
with open(a , '''r''' ) as f:
a = json.load(a )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _a ( ) -> int:
a = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
UpperCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ ( lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
a = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
a = 7 if get_gpu_count() > 1 else 2
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
a = logging.StreamHandler(sys.stdout )
logger.addHandler(__UpperCAmelCase )
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
| 0 | 1 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
a = '''hf-internal-testing/tiny-random-t5'''
a = AutoTokenizer.from_pretrained(__UpperCAmelCase )
a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
a = tokenizer('''This is me''' , return_tensors='''pt''' )
a = model.to_bettertransformer()
self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
a = model.generate(**__UpperCAmelCase )
a = model.reverse_bettertransformer()
self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__UpperCAmelCase )
a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
self.assertFalse(
any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
a = model_reloaded.generate(**__UpperCAmelCase )
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[Any]:
"""simple docstring"""
a = '''hf-internal-testing/tiny-random-t5'''
a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
a = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(__UpperCAmelCase ):
model.save_pretrained(__UpperCAmelCase )
a = model.reverse_bettertransformer()
model.save_pretrained(__UpperCAmelCase )
| 0 |
import math
def _a ( a :int ) -> list:
a = [True] * n
a = False
a = False
a = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
a = i * 2
while index < n:
a = False
a = index + i
a = [2]
for i in range(3 , a , 2 ):
if is_prime[i]:
primes.append(a )
return primes
def _a ( a :int = 999_966_663_333 ) -> int:
a = math.floor(math.sqrt(a ) ) + 100
a = prime_sieve(a )
a = 0
a = 0
a = primes[prime_index]
while (last_prime**2) <= limit:
a = primes[prime_index + 1]
a = last_prime**2
a = next_prime**2
# Get numbers divisible by lps(current)
a = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
a = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
a = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
a = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 0 | 1 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
UpperCAmelCase__ = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
def _a ( a :int=None ) -> Optional[Any]:
if subparsers is not None:
a = subparsers.add_parser('''tpu-config''' , description=_description )
else:
a = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description )
# Core arguments
a = parser.add_argument_group(
'''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' )
config_args.add_argument(
'''--config_file''' , type=a , default=a , help='''Path to the config file to use for accelerate.''' , )
config_args.add_argument(
'''--tpu_name''' , default=a , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , )
config_args.add_argument(
'''--tpu_zone''' , default=a , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , )
a = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' )
pod_args.add_argument(
'''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , )
pod_args.add_argument(
'''--command_file''' , default=a , help='''The path to the file containing the commands to run on the pod on startup.''' , )
pod_args.add_argument(
'''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , )
pod_args.add_argument(
'''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , )
pod_args.add_argument(
'''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , )
pod_args.add_argument(
'''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' )
if subparsers is not None:
parser.set_defaults(func=a )
return parser
def _a ( a :int ) -> str:
a = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(a ):
a = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
a = defaults.command_file
if not args.command and defaults.commands is not None:
a = defaults.commands
if not args.tpu_name:
a = defaults.tpu_name
if not args.tpu_zone:
a = defaults.tpu_zone
if args.accelerate_version == "dev":
a = '''git+https://github.com/huggingface/accelerate.git'''
elif args.accelerate_version == "latest":
a = '''accelerate -U'''
elif isinstance(parse(args.accelerate_version ) , a ):
a = F"""accelerate=={args.accelerate_version}"""
if not args.command_file and not args.command:
raise ValueError('''You must specify either a command file or a command to run on the pod.''' )
if args.command_file:
with open(args.command_file , '''r''' ) as f:
a = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , a ):
a = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
a = ['''cd /usr/share''']
if args.install_accelerate:
new_cmd += [F"""pip install {args.accelerate_version}"""]
new_cmd += args.command
a = '''; '''.join(a )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
a = ['''gcloud''']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F"""Running {' '.join(a )}""" )
return
subprocess.run(a )
print('''Successfully setup pod.''' )
def _a ( ) -> Any:
a = tpu_command_parser()
a = parser.parse_args()
tpu_command_launcher(a )
| 0 |
def _a ( a :float , a :float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 0 | 1 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
a = SMALL_MODEL_IDENTIFIER
a = '''pt'''
a = '''tf'''
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase )
model_tf.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = '''mock_framework'''
# Framework provided - return whatever the user provides
a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
| 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
a = SMALL_MODEL_IDENTIFIER
a = '''pt'''
a = '''tf'''
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase )
model_tf.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = '''mock_framework'''
# Framework provided - return whatever the user provides
a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
| 0 | 1 |
import torch
from diffusers import DiffusionPipeline
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
super().__init__()
self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
def __call__( self : Tuple ) ->List[Any]:
"""simple docstring"""
a = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
a = 1
a = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample
a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
a = scheduler_output - scheduler_output + torch.ones_like(__UpperCAmelCase )
return result
| 0 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ProphetNetTokenizer
__snake_case = False
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
super().setUp()
a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Dict:
"""simple docstring"""
a = '''UNwant\u00E9d,running'''
a = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file )
a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
a = {}
for i, token in enumerate(__UpperCAmelCase ):
a = i
a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
a = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102]
a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 0 | 1 |
import argparse
import json
import os
import torch
from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def _a ( a :int , a :List[Any] , a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]:
# Load configuration defined in the metadata file
with open(a ) as metadata_file:
a = json.load(a )
a = LukeConfig(use_entity_aware_attention=a , **metadata['''model_config'''] )
# Load in the weights from the checkpoint_path
a = torch.load(a , map_location='''cpu''' )
# Load the entity vocab file
a = load_entity_vocab(a )
a = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] )
# Add special tokens to the token vocabulary for downstream tasks
a = AddedToken('''<ent>''' , lstrip=a , rstrip=a )
a = AddedToken('''<ent2>''' , lstrip=a , rstrip=a )
tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(a )
with open(os.path.join(a , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f:
json.dump(a , a )
a = LukeTokenizer.from_pretrained(a )
# Initialize the embeddings of the special tokens
a = state_dict['''embeddings.word_embeddings.weight''']
a = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 )
a = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 )
a = torch.cat([word_emb, ent_emb, enta_emb] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
a = F"""encoder.layer.{layer_index}.attention.self."""
a = state_dict[prefix + matrix_name]
a = state_dict[prefix + matrix_name]
a = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
a = state_dict['''entity_embeddings.entity_embeddings.weight''']
a = entity_emb[entity_vocab['''[MASK]''']]
a = LukeModel(config=a ).eval()
a , a = model.load_state_dict(a , strict=a )
if not (len(a ) == 1 and missing_keys[0] == "embeddings.position_ids"):
raise ValueError(F"""Missing keys {', '.join(a )}. Expected only missing embeddings.position_ids""" )
if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )):
raise ValueError(
'''Unexpected keys'''
F""" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}""" )
# Check outputs
a = LukeTokenizer.from_pretrained(a , task='''entity_classification''' )
a = (
'''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the'''
''' new world number one avoid a humiliating second- round exit at Wimbledon .'''
)
a = (39, 42)
a = tokenizer(a , entity_spans=[span] , add_prefix_space=a , return_tensors='''pt''' )
a = model(**a )
# Verify word hidden states
if model_size == "large":
a = torch.Size((1, 42, 1_024) )
a = torch.tensor(
[[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] )
else: # base
a = torch.Size((1, 42, 768) )
a = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1e-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
a = torch.Size((1, 1, 1_024) )
a = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] )
else: # base
a = torch.Size((1, 1, 768) )
a = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] )
if not (outputs.entity_last_hidden_state.shape != expected_shape):
raise ValueError(
F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
F""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a , atol=1e-4 ):
raise ValueError
# Finally, save our PyTorch model and tokenizer
print('''Saving PyTorch model to {}'''.format(a ) )
model.save_pretrained(a )
def _a ( a :str ) -> List[Any]:
a = {}
with open(a , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(a ):
a , a = line.rstrip().split('''\t''' )
a = index
return entity_vocab
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
parser.add_argument(
"--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
)
parser.add_argument(
"--entity_vocab_path",
default=None,
type=str,
help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
)
parser.add_argument(
"--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
)
UpperCAmelCase__ = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
from math import pi
def _a ( a :int , a :int ) -> float:
return 2 * pi * radius * (angle / 360)
if __name__ == "__main__":
print(arc_length(90, 10))
| 0 |
def _a ( a :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
a = gray_code_sequence_string(a )
#
# convert them to integers
for i in range(len(a ) ):
a = int(sequence[i] , 2 )
return sequence
def _a ( a :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
a = gray_code_sequence_string(bit_count - 1 )
a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
a = '''0''' + smaller_sequence[i]
sequence.append(a )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
a = '''1''' + smaller_sequence[i]
sequence.append(a )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase__ = logging.get_logger(__name__)
set_seed(770)
UpperCAmelCase__ = {
"c_attn": "att_proj",
"c_proj": "out_proj",
"c_fc": "in_proj",
"transformer.": "",
"h.": "layers.",
"ln_1": "layernorm_1",
"ln_2": "layernorm_2",
"ln_f": "layernorm_final",
"wpe": "position_embeds_layer",
"wte": "input_embeds_layer",
}
UpperCAmelCase__ = {
"text_small": {
"repo_id": "suno/bark",
"file_name": "text.pt",
},
"coarse_small": {
"repo_id": "suno/bark",
"file_name": "coarse.pt",
},
"fine_small": {
"repo_id": "suno/bark",
"file_name": "fine.pt",
},
"text": {
"repo_id": "suno/bark",
"file_name": "text_2.pt",
},
"coarse": {
"repo_id": "suno/bark",
"file_name": "coarse_2.pt",
},
"fine": {
"repo_id": "suno/bark",
"file_name": "fine_2.pt",
},
}
UpperCAmelCase__ = os.path.dirname(os.path.abspath(__file__))
UpperCAmelCase__ = os.path.join(os.path.expanduser("~"), ".cache")
UpperCAmelCase__ = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0")
def _a ( a :List[str] , a :Union[str, Any]=False ) -> List[Any]:
a = model_type
if use_small:
key += "_small"
return os.path.join(a , REMOTE_MODEL_PATHS[key]['''file_name'''] )
def _a ( a :Any , a :Optional[Any] ) -> Tuple:
os.makedirs(a , exist_ok=a )
hf_hub_download(repo_id=a , filename=a , local_dir=a )
def _a ( a :Union[str, Any] , a :Optional[Any] , a :Optional[Any]=False , a :Optional[Any]="text" ) -> List[str]:
if model_type == "text":
a = BarkSemanticModel
a = BarkSemanticConfig
a = BarkSemanticGenerationConfig
elif model_type == "coarse":
a = BarkCoarseModel
a = BarkCoarseConfig
a = BarkCoarseGenerationConfig
elif model_type == "fine":
a = BarkFineModel
a = BarkFineConfig
a = BarkFineGenerationConfig
else:
raise NotImplementedError()
a = F"""{model_type}_small""" if use_small else model_type
a = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(a ):
logger.info(F"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" )
_download(model_info['''repo_id'''] , model_info['''file_name'''] )
a = torch.load(a , map_location=a )
# this is a hack
a = checkpoint['''model_args''']
if "input_vocab_size" not in model_args:
a = model_args['''vocab_size''']
a = model_args['''vocab_size''']
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
a = model_args.pop('''n_head''' )
a = model_args.pop('''n_embd''' )
a = model_args.pop('''n_layer''' )
a = ConfigClass(**checkpoint['''model_args'''] )
a = ModelClass(config=a )
a = GenerationConfigClass()
a = model_generation_config
a = checkpoint['''model''']
# fixup checkpoint
a = '''_orig_mod.'''
for k, v in list(state_dict.items() ):
if k.startswith(a ):
# replace part of the key with corresponding layer name in HF implementation
a = k[len(a ) :]
for old_layer_name in new_layer_name_dict:
a = new_k.replace(a , new_layer_name_dict[old_layer_name] )
a = state_dict.pop(a )
a = set(state_dict.keys() ) - set(model.state_dict().keys() )
a = {k for k in extra_keys if not k.endswith('''.attn.bias''' )}
a = set(model.state_dict().keys() ) - set(state_dict.keys() )
a = {k for k in missing_keys if not k.endswith('''.attn.bias''' )}
if len(a ) != 0:
raise ValueError(F"""extra keys found: {extra_keys}""" )
if len(a ) != 0:
raise ValueError(F"""missing keys: {missing_keys}""" )
model.load_state_dict(a , strict=a )
a = model.num_parameters(exclude_embeddings=a )
a = checkpoint['''best_val_loss'''].item()
logger.info(F"""model loaded: {round(n_params/1e6 , 1 )}M params, {round(a , 3 )} loss""" )
model.eval()
model.to(a )
del checkpoint, state_dict
return model
def _a ( a :Any , a :List[str]=False , a :Dict="text" ) -> Any:
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
a = '''cpu''' # do conversion on cpu
a = _get_ckpt_path(a , use_small=a )
a = _load_model(a , a , model_type=a , use_small=a )
# load bark initial model
a = _bark_load_model(a , '''cpu''' , model_type=a , use_small=a )
if model_type == "text":
a = bark_model['''model''']
if model.num_parameters(exclude_embeddings=a ) != bark_model.get_num_params():
raise ValueError('''initial and new models don\'t have the same number of parameters''' )
# check if same output as the bark model
a = 5
a = 10
if model_type in ["text", "coarse"]:
a = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int )
a = bark_model(a )[0]
a = model(a )
# take last logits
a = output_new_model_total.logits[:, [-1], :]
else:
a = 3
a = 8
a = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int )
a = model(a , a )
a = bark_model(a , a )
a = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError('''initial and new outputs don\'t have the same shape''' )
if (output_new_model - output_old_model).abs().max().item() > 1e-3:
raise ValueError('''initial and new outputs are not equal''' )
Path(a ).mkdir(exist_ok=a )
model.save_pretrained(a )
def _a ( a :int , a :Optional[Any] , a :Dict , a :List[str] , a :Tuple , a :Optional[int] , ) -> Union[str, Any]:
a = os.path.join(a , a )
a = BarkSemanticConfig.from_pretrained(os.path.join(a , '''config.json''' ) )
a = BarkCoarseConfig.from_pretrained(os.path.join(a , '''config.json''' ) )
a = BarkFineConfig.from_pretrained(os.path.join(a , '''config.json''' ) )
a = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' )
a = BarkSemanticModel.from_pretrained(a )
a = BarkCoarseModel.from_pretrained(a )
a = BarkFineModel.from_pretrained(a )
a = EncodecModel.from_pretrained('''facebook/encodec_24khz''' )
a = BarkConfig.from_sub_model_configs(
a , a , a , a )
a = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config )
a = BarkModel(a )
a = semantic
a = coarseAcoustic
a = fineAcoustic
a = codec
a = bark_generation_config
Path(a ).mkdir(exist_ok=a )
bark.save_pretrained(a , repo_id=a , push_to_hub=a )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("model_type", type=str, help="text, coarse or fine.")
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.")
UpperCAmelCase__ = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
# fmt: off
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
a = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
a = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
a = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = self.prepare_image_inputs()
a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = processor(text=__UpperCAmelCase )
a = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__UpperCAmelCase )
a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 0 | 1 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@parameterized.expand([(None,), ('''foo.json''',)] )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Any ) ->str:
"""simple docstring"""
a = GenerationConfig(
do_sample=__UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__UpperCAmelCase , config_name=__UpperCAmelCase )
a = GenerationConfig.from_pretrained(__UpperCAmelCase , config_name=__UpperCAmelCase )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , __UpperCAmelCase )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , __UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
a = AutoConfig.from_pretrained('''gpt2''' )
a = GenerationConfig.from_model_config(__UpperCAmelCase )
a = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
a = GenerationConfig()
a = {
'''max_new_tokens''': 1_024,
'''foo''': '''bar''',
}
a = copy.deepcopy(__UpperCAmelCase )
a = generation_config.update(**__UpperCAmelCase )
# update_kwargs was not modified (no side effects)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(__UpperCAmelCase , {'''foo''': '''bar'''} )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = GenerationConfig()
a = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(__UpperCAmelCase )
a = GenerationConfig.from_pretrained(__UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
a = GenerationConfig.from_model_config(__UpperCAmelCase )
assert not hasattr(__UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , __UpperCAmelCase )
self.assertEqual(default_config.num_beams , 1 )
a = GenerationConfig(
do_sample=__UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , __UpperCAmelCase )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__UpperCAmelCase )
a = GenerationConfig.from_pretrained(__UpperCAmelCase , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , __UpperCAmelCase )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : List[Any] ) ->Dict:
"""simple docstring"""
a = TOKEN
HfFolder.save_token(__UpperCAmelCase )
@classmethod
def __lowerCAmelCase ( cls : List[str] ) ->int:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def __lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
a = GenerationConfig(
do_sample=__UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
a = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
__UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token )
a = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) )
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = GenerationConfig(
do_sample=__UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
a = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
__UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token )
a = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) )
| 0 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _a ( a :List[Any] ) -> Optional[int]:
a = []
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
F"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
F"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
F"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
F"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def _a ( a :List[Any] , a :Optional[int] ) -> Dict:
a = []
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def _a ( a :Any ) -> List[Any]:
a = []
token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') )
return token
def _a ( ) -> Optional[int]:
a = []
head.append(('''layernorm.weight''', '''norm.weight''') )
head.append(('''layernorm.bias''', '''norm.bias''') )
head.append(('''classifier.weight''', '''head.weight''') )
head.append(('''classifier.bias''', '''head.bias''') )
return head
def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]:
a = '''imagenet-1k-id2label.json'''
a = 1_000
a = '''huggingface/label-files'''
a = num_labels
a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13":
a = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21":
a = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
a = [2, 2, 20]
a = [3, 12, 16]
a = [192, 768, 1_024]
a = CvtForImageClassification(a )
a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
a = image_size
a = torch.load(a , map_location=torch.device('''cpu''' ) )
a = OrderedDict()
a = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
a = list_of_state_dict + cls_token(a )
a = list_of_state_dict + embeddings(a )
for cnt in range(config.depth[idx] ):
a = list_of_state_dict + attention(a , a )
a = list_of_state_dict + final()
for gg in list_of_state_dict:
print(a )
for i in range(len(a ) ):
a = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(a )
model.save_pretrained(a )
image_processor.save_pretrained(a )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase__ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''markuplm'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : int=30_522 , __UpperCAmelCase : Optional[Any]=768 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : Tuple=3_072 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : str=512 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Dict=1e-1_2 , __UpperCAmelCase : int=0 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : List[Any]=256 , __UpperCAmelCase : Dict=1_024 , __UpperCAmelCase : Optional[int]=216 , __UpperCAmelCase : str=1_001 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Union[str, Any]=50 , __UpperCAmelCase : Any="absolute" , __UpperCAmelCase : Any=True , __UpperCAmelCase : List[str]=None , **__UpperCAmelCase : Union[str, Any] , ) ->str:
"""simple docstring"""
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = hidden_act
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = initializer_range
a = layer_norm_eps
a = position_embedding_type
a = use_cache
a = classifier_dropout
# additional properties
a = max_depth
a = max_xpath_tag_unit_embeddings
a = max_xpath_subs_unit_embeddings
a = tag_pad_id
a = subs_pad_id
a = xpath_unit_hidden_size
| 0 |
from __future__ import annotations
UpperCAmelCase__ = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase__ = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase__ = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _a ( a :Matrix , a :int , a :int , a :int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _a ( a :Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _a ( a :Matrix ) -> Matrix | None:
if location := find_empty_location(a ):
a , a = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(a , a , a , a ):
a = digit
if sudoku(a ) is not None:
return grid
a = 0
return None
def _a ( a :Matrix ) -> None:
for row in grid:
for cell in row:
print(a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
UpperCAmelCase__ = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 0 | 1 |
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''autoformer'''
__snake_case = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : str = "student_t" , __UpperCAmelCase : str = "nll" , __UpperCAmelCase : int = 1 , __UpperCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __UpperCAmelCase : bool = True , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : int = 64 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 100 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : int = 10 , __UpperCAmelCase : int = 25 , __UpperCAmelCase : int = 3 , **__UpperCAmelCase : int , ) ->str:
"""simple docstring"""
a = prediction_length
a = context_length if context_length is not None else prediction_length
a = distribution_output
a = loss
a = input_size
a = num_time_features
a = lags_sequence
a = scaling
a = num_dynamic_real_features
a = num_static_real_features
a = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(__UpperCAmelCase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
a = cardinality
else:
a = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(__UpperCAmelCase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
a = embedding_dimension
else:
a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
a = num_parallel_samples
# Transformer architecture configuration
a = input_size * len(self.lags_sequence ) + self._number_of_features
a = d_model
a = encoder_attention_heads
a = decoder_attention_heads
a = encoder_ffn_dim
a = decoder_ffn_dim
a = encoder_layers
a = decoder_layers
a = dropout
a = attention_dropout
a = activation_dropout
a = encoder_layerdrop
a = decoder_layerdrop
a = activation_function
a = init_std
a = use_cache
# Autoformer
a = label_length
a = moving_average
a = autocorrelation_factor
super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 0 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = KandinskyVaaPriorPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''', '''negative_prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
return 100
@property
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
a = PriorTransformer(**__UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , )
a = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
@skip_mps
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
| 0 | 1 |
from __future__ import annotations
UpperCAmelCase__ = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase__ = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase__ = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _a ( a :Matrix , a :int , a :int , a :int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _a ( a :Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _a ( a :Matrix ) -> Matrix | None:
if location := find_empty_location(a ):
a , a = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(a , a , a , a ):
a = digit
if sudoku(a ) is not None:
return grid
a = 0
return None
def _a ( a :Matrix ) -> None:
for row in grid:
for cell in row:
print(a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
UpperCAmelCase__ = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 0 |
from math import factorial
UpperCAmelCase__ = {str(digit): factorial(digit) for digit in range(10)}
def _a ( a :int ) -> int:
if not isinstance(a , a ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) )
def _a ( a :int = 60 , a :int = 1_000_000 ) -> int:
if not isinstance(a , a ) or not isinstance(a , a ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
a = 0
# the cached sizes of the previous chains
a = {}
for start_chain_element in range(1 , a ):
# The temporary set will contain the elements of the chain
a = set()
a = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
a = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(a )
chain_set_length += 1
a = digit_factorial_sum(a )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
a = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution()}""")
| 0 | 1 |
def _a ( a :int ) -> bool:
if not isinstance(a , a ):
a = F"""Input value of [number={number}] must be an integer"""
raise TypeError(a )
if number < 0:
return False
a = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
def _a ( a :int = 100 ) -> int:
a = n * (n + 1) * (2 * n + 1) / 6
a = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 | 1 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
UpperCAmelCase__ = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
UpperCAmelCase__ = [file for file in filepaths if file != file.lower()]
if upper_files:
print(f"""{len(upper_files)} files contain uppercase characters:""")
print("\n".join(upper_files) + "\n")
UpperCAmelCase__ = [file for file in filepaths if " " in file]
if space_files:
print(f"""{len(space_files)} files contain space characters:""")
print("\n".join(space_files) + "\n")
UpperCAmelCase__ = [file for file in filepaths if "-" in file]
if hyphen_files:
print(f"""{len(hyphen_files)} files contain hyphen characters:""")
print("\n".join(hyphen_files) + "\n")
UpperCAmelCase__ = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(f"""{len(nodir_files)} files are not in a directory:""")
print("\n".join(nodir_files) + "\n")
UpperCAmelCase__ = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase__ = {
"configuration_groupvit": [
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroupViTConfig",
"GroupViTOnnxConfig",
"GroupViTTextConfig",
"GroupViTVisionConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroupViTModel",
"GroupViTPreTrainedModel",
"GroupViTTextModel",
"GroupViTVisionModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGroupViTModel",
"TFGroupViTPreTrainedModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope='''session''' )
def _a ( ) -> int:
a = 10
a = datasets.Features(
{
'''tokens''': datasets.Sequence(datasets.Value('''string''' ) ),
'''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ),
'''answers''': datasets.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
'''id''': datasets.Value('''int64''' ),
} )
a = datasets.Dataset.from_dict(
{
'''tokens''': [['''foo'''] * 5] * n,
'''labels''': [[1] * 5] * n,
'''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10,
'''id''': list(range(a ) ),
} , features=a , )
return dataset
@pytest.fixture(scope='''session''' )
def _a ( a :Optional[Any] , a :Tuple ) -> str:
a = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' )
dataset.map(cache_file_name=a )
return filename
# FILE_CONTENT + files
UpperCAmelCase__ = "\\n Text data.\n Second line of data."
@pytest.fixture(scope='''session''' )
def _a ( a :int ) -> Tuple:
a = tmp_path_factory.mktemp('''data''' ) / '''file.txt'''
a = FILE_CONTENT
with open(a , '''w''' ) as f:
f.write(a )
return filename
@pytest.fixture(scope='''session''' )
def _a ( a :Dict ) -> List[str]:
import bza
a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2'''
a = bytes(a , '''utf-8''' )
with bza.open(a , '''wb''' ) as f:
f.write(a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Tuple ) -> str:
import gzip
a = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' )
a = bytes(a , '''utf-8''' )
with gzip.open(a , '''wb''' ) as f:
f.write(a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :str ) -> Tuple:
if datasets.config.LZ4_AVAILABLE:
import lza.frame
a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4'''
a = bytes(a , '''utf-8''' )
with lza.frame.open(a , '''wb''' ) as f:
f.write(a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :List[str] , a :Any ) -> Dict:
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z'''
with pyazr.SevenZipFile(a , '''w''' ) as archive:
archive.write(a , arcname=os.path.basename(a ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :List[Any] , a :Dict ) -> Tuple:
import tarfile
a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar'''
with tarfile.TarFile(a , '''w''' ) as f:
f.add(a , arcname=os.path.basename(a ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Union[str, Any] ) -> str:
import lzma
a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz'''
a = bytes(a , '''utf-8''' )
with lzma.open(a , '''wb''' ) as f:
f.write(a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :List[Any] , a :Union[str, Any] ) -> Tuple:
import zipfile
a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip'''
with zipfile.ZipFile(a , '''w''' ) as f:
f.write(a , arcname=os.path.basename(a ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :List[Any] ) -> Any:
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst'''
a = bytes(a , '''utf-8''' )
with zstd.open(a , '''wb''' ) as f:
f.write(a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :str ) -> Union[str, Any]:
a = tmp_path_factory.mktemp('''data''' ) / '''file.xml'''
a = textwrap.dedent(
'''\
<?xml version="1.0" encoding="UTF-8" ?>
<tmx version="1.4">
<header segtype="sentence" srclang="ca" />
<body>
<tu>
<tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>
<tuv xml:lang="en"><seg>Content 1</seg></tuv>
</tu>
<tu>
<tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>
<tuv xml:lang="en"><seg>Content 2</seg></tuv>
</tu>
<tu>
<tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>
<tuv xml:lang="en"><seg>Content 3</seg></tuv>
</tu>
<tu>
<tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>
<tuv xml:lang="en"><seg>Content 4</seg></tuv>
</tu>
<tu>
<tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>
<tuv xml:lang="en"><seg>Content 5</seg></tuv>
</tu>
</body>
</tmx>''' )
with open(a , '''w''' ) as f:
f.write(a )
return filename
UpperCAmelCase__ = [
{"col_1": "0", "col_2": 0, "col_3": 0.0},
{"col_1": "1", "col_2": 1, "col_3": 1.0},
{"col_1": "2", "col_2": 2, "col_3": 2.0},
{"col_1": "3", "col_2": 3, "col_3": 3.0},
]
UpperCAmelCase__ = [
{"col_1": "4", "col_2": 4, "col_3": 4.0},
{"col_1": "5", "col_2": 5, "col_3": 5.0},
]
UpperCAmelCase__ = {
"col_1": ["0", "1", "2", "3"],
"col_2": [0, 1, 2, 3],
"col_3": [0.0, 1.0, 2.0, 3.0],
}
UpperCAmelCase__ = [
{"col_3": 0.0, "col_1": "0", "col_2": 0},
{"col_3": 1.0, "col_1": "1", "col_2": 1},
]
UpperCAmelCase__ = [
{"col_1": "s0", "col_2": 0, "col_3": 0.0},
{"col_1": "s1", "col_2": 1, "col_3": 1.0},
{"col_1": "s2", "col_2": 2, "col_3": 2.0},
{"col_1": "s3", "col_2": 3, "col_3": 3.0},
]
@pytest.fixture(scope='''session''' )
def _a ( ) -> Tuple:
return DATA_DICT_OF_LISTS
@pytest.fixture(scope='''session''' )
def _a ( a :Union[str, Any] ) -> Optional[Any]:
a = datasets.Dataset.from_dict(a )
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' )
dataset.map(cache_file_name=a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Tuple ) -> Optional[Any]:
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' )
with contextlib.closing(sqlitea.connect(a ) ) as con:
a = con.cursor()
cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' )
for item in DATA:
cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Union[str, Any] ) -> Union[str, Any]:
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' )
with open(a , '''w''' , newline='''''' ) as f:
a = csv.DictWriter(a , fieldnames=['''col_1''', '''col_2''', '''col_3'''] )
writer.writeheader()
for item in DATA:
writer.writerow(a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Union[str, Any] ) -> str:
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' )
with open(a , '''w''' , newline='''''' ) as f:
a = csv.DictWriter(a , fieldnames=['''col_1''', '''col_2''', '''col_3'''] )
writer.writeheader()
for item in DATA:
writer.writerow(a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Optional[int] , a :Union[str, Any] ) -> List[Any]:
import bza
a = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2'''
with open(a , '''rb''' ) as f:
a = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a , '''wb''' ) as f:
f.write(a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Dict , a :Optional[Any] , a :Optional[int] ) -> int:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip'''
with zipfile.ZipFile(a , '''w''' ) as f:
f.write(a , arcname=os.path.basename(a ) )
f.write(a , arcname=os.path.basename(a ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Union[str, Any] , a :List[str] , a :List[str] ) -> Tuple:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip'''
with zipfile.ZipFile(a , '''w''' ) as f:
f.write(a , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) )
f.write(a , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Any , a :Union[str, Any] , a :str ) -> List[Any]:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip'''
with zipfile.ZipFile(a , '''w''' ) as f:
f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) )
f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Any ) -> Any:
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' )
a = pa.schema(
{
'''col_1''': pa.string(),
'''col_2''': pa.intaa(),
'''col_3''': pa.floataa(),
} )
with open(a , '''wb''' ) as f:
a = pq.ParquetWriter(a , schema=a )
a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a ) )] for k in DATA[0]} , schema=a )
writer.write_table(a )
writer.close()
return path
@pytest.fixture(scope='''session''' )
def _a ( a :List[Any] ) -> Any:
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' )
a = {'''data''': DATA}
with open(a , '''w''' ) as f:
json.dump(a , a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Optional[Any] ) -> List[Any]:
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' )
a = {'''data''': DATA_DICT_OF_LISTS}
with open(a , '''w''' ) as f:
json.dump(a , a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :List[Any] ) -> int:
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' )
with open(a , '''w''' ) as f:
for item in DATA:
f.write(json.dumps(a ) + '''\n''' )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Optional[int] ) -> Optional[Any]:
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' )
with open(a , '''w''' ) as f:
for item in DATA:
f.write(json.dumps(a ) + '''\n''' )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Any ) -> Dict:
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' )
with open(a , '''w''' ) as f:
for item in DATA_312:
f.write(json.dumps(a ) + '''\n''' )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Any ) -> List[str]:
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' )
with open(a , '''w''' ) as f:
for item in DATA_STR:
f.write(json.dumps(a ) + '''\n''' )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Union[str, Any] , a :int ) -> str:
import gzip
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' )
with open(a , '''rb''' ) as orig_file:
with gzip.open(a , '''wb''' ) as zipped_file:
zipped_file.writelines(a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Any , a :Union[str, Any] ) -> List[Any]:
import gzip
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' )
with open(a , '''rb''' ) as orig_file:
with gzip.open(a , '''wb''' ) as zipped_file:
zipped_file.writelines(a )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :int , a :Optional[Any] , a :List[Any] ) -> Union[str, Any]:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip'''
with zipfile.ZipFile(a , '''w''' ) as f:
f.write(a , arcname=os.path.basename(a ) )
f.write(a , arcname=os.path.basename(a ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Any , a :Dict , a :str , a :Optional[Any] ) -> str:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip'''
with zipfile.ZipFile(a , '''w''' ) as f:
f.write(a , arcname=os.path.join('''nested''' , os.path.basename(a ) ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :List[str] , a :Optional[int] , a :Tuple ) -> int:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip'''
with zipfile.ZipFile(a , '''w''' ) as f:
f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) )
f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Optional[int] , a :int , a :Optional[Any] ) -> int:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar'''
with tarfile.TarFile(a , '''w''' ) as f:
f.add(a , arcname=os.path.basename(a ) )
f.add(a , arcname=os.path.basename(a ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :List[str] , a :List[str] , a :str , a :Tuple ) -> Union[str, Any]:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar'''
with tarfile.TarFile(a , '''w''' ) as f:
f.add(a , arcname=os.path.join('''nested''' , os.path.basename(a ) ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :List[Any] ) -> Tuple:
a = ['''0''', '''1''', '''2''', '''3''']
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' )
with open(a , '''w''' ) as f:
for item in data:
f.write(item + '''\n''' )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Any ) -> List[Any]:
a = ['''0''', '''1''', '''2''', '''3''']
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' )
with open(a , '''w''' ) as f:
for item in data:
f.write(item + '''\n''' )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Union[str, Any] ) -> List[str]:
a = ['''0''', '''1''', '''2''', '''3''']
a = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc'''
with open(a , '''w''' ) as f:
for item in data:
f.write(item + '''\n''' )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Optional[Any] , a :List[str] , a :int ) -> List[Any]:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip'''
with zipfile.ZipFile(a , '''w''' ) as f:
f.write(a , arcname=os.path.basename(a ) )
f.write(a , arcname=os.path.basename(a ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :List[str] , a :int , a :Dict ) -> int:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip'''
with zipfile.ZipFile(a , '''w''' ) as f:
f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) )
f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Any , a :Tuple , a :List[str] ) -> Optional[Any]:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip'''
with zipfile.ZipFile(a , '''w''' ) as f:
f.write(a , arcname=os.path.basename('''unsupported.ext''' ) )
f.write(a , arcname=os.path.basename('''unsupported_2.ext''' ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Union[str, Any] ) -> Dict:
a = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] )
a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' )
with open(a , '''w''' , encoding='''utf-8''' ) as f:
f.write(a )
return path
@pytest.fixture(scope='''session''' )
def _a ( ) -> str:
return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' )
@pytest.fixture(scope='''session''' )
def _a ( ) -> Dict:
return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' )
@pytest.fixture(scope='''session''' )
def _a ( a :int , a :int ) -> Optional[int]:
a = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip'''
with zipfile.ZipFile(a , '''w''' ) as f:
f.write(a , arcname=os.path.basename(a ) )
f.write(a , arcname=os.path.basename(a ).replace('''.jpg''' , '''2.jpg''' ) )
return path
@pytest.fixture(scope='''session''' )
def _a ( a :Dict ) -> Dict:
a = tmp_path_factory.mktemp('''data_dir''' )
(data_dir / "subdir").mkdir()
with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f:
f.write('''foo\n''' * 10 )
with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f:
f.write('''bar\n''' * 10 )
# hidden file
with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f:
f.write('''bar\n''' * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f:
f.write('''foo\n''' * 10 )
with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f:
f.write('''bar\n''' * 10 )
return data_dir
| 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ShapEPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
return 8
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
a = PriorTransformer(**__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
a = ShapERenderer(**__UpperCAmelCase )
return model
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_renderer
a = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , )
a = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.images[0]
a = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
a = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = 1
a = 2
a = self.get_dummy_inputs(__UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
a = batch_size * [inputs[key]]
a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
a = ShapEPipeline.from_pretrained('''openai/shap-e''' )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a = pipe(
'''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 0 | 1 |
def _a ( a :str ) -> str:
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase__ = [8, 5, 9, 7]
UpperCAmelCase__ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase__ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None:
"""simple docstring"""
a = claim_vector
a = allocated_resources_table
a = maximum_claim_table
def __lowerCAmelCase ( self : Any ) ->list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __lowerCAmelCase ( self : Optional[int] ) ->list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()}
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = self.__need()
a = self.__allocated_resources_table
a = self.__available_resources()
a = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
a = False
for each_need in need_list:
a = True
for index, need in enumerate(__UpperCAmelCase ):
if need > available_resources[index]:
a = False
break
if execution:
a = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
a = original_need_index
print(F"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(__UpperCAmelCase )
# update available/freed resources stack
a = np.array(__UpperCAmelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
from math import sqrt
def _a ( a :int ) -> bool:
assert isinstance(a , a ) and (
number >= 0
), "'number' must been an int and positive"
a = True
# 0 and 1 are none primes.
if number <= 1:
a = False
for divisor in range(2 , int(round(sqrt(a ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
a = False
break
# precondition
assert isinstance(a , a ), "'status' must been from type bool"
return status
def _a ( a :Tuple ) -> str:
assert isinstance(a , a ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
a = list(range(2 , n + 1 ) )
a = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a ) ):
for j in range(i + 1 , len(a ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
a = 0
# filters actual prime numbers.
a = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a , a ), "'ans' must been from type list"
return ans
def _a ( a :Optional[Any] ) -> Optional[Any]:
assert isinstance(a , a ) and (n > 2), "'N' must been an int and > 2"
a = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(a ):
ans.append(a )
# precondition
assert isinstance(a , a ), "'ans' must been from type list"
return ans
def _a ( a :Dict ) -> str:
assert isinstance(a , a ) and number >= 0, "'number' must been an int and >= 0"
a = [] # this list will be returns of the function.
# potential prime number factors.
a = 2
a = number
if number == 0 or number == 1:
ans.append(a )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a ):
while quotient != 1:
if is_prime(a ) and (quotient % factor == 0):
ans.append(a )
quotient /= factor
else:
factor += 1
else:
ans.append(a )
# precondition
assert isinstance(a , a ), "'ans' must been from type list"
return ans
def _a ( a :List[str] ) -> Union[str, Any]:
assert isinstance(a , a ) and (
number >= 0
), "'number' bust been an int and >= 0"
a = 0
# prime factorization of 'number'
a = prime_factorization(a )
a = max(a )
# precondition
assert isinstance(a , a ), "'ans' must been from type int"
return ans
def _a ( a :Optional[int] ) -> List[str]:
assert isinstance(a , a ) and (
number >= 0
), "'number' bust been an int and >= 0"
a = 0
# prime factorization of 'number'
a = prime_factorization(a )
a = min(a )
# precondition
assert isinstance(a , a ), "'ans' must been from type int"
return ans
def _a ( a :Any ) -> Any:
assert isinstance(a , a ), "'number' must been an int"
assert isinstance(number % 2 == 0 , a ), "compare bust been from type bool"
return number % 2 == 0
def _a ( a :Any ) -> int:
assert isinstance(a , a ), "'number' must been an int"
assert isinstance(number % 2 != 0 , a ), "compare bust been from type bool"
return number % 2 != 0
def _a ( a :Union[str, Any] ) -> Tuple:
assert (
isinstance(a , a ) and (number > 2) and is_even(a )
), "'number' must been an int, even and > 2"
a = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
a = get_prime_numbers(a )
a = len(a )
# run variable for while-loops.
a = 0
a = None
# exit variable. for break up the loops
a = True
while i < len_pn and loop:
a = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
a = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a , a )
and (len(a ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def _a ( a :Dict , a :int ) -> Dict:
assert (
isinstance(a , a )
and isinstance(a , a )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
a = 0
while numbera != 0:
a = numbera % numbera
a = numbera
a = rest
# precondition
assert isinstance(a , a ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def _a ( a :str , a :str ) -> str:
assert (
isinstance(a , a )
and isinstance(a , a )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
a = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
a = prime_factorization(a )
a = prime_factorization(a )
elif numbera == 1 or numbera == 1:
a = []
a = []
a = max(a , a )
a = 0
a = 0
a = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
a = prime_fac_a.count(a )
a = prime_fac_a.count(a )
for _ in range(max(a , a ) ):
ans *= n
else:
a = prime_fac_a.count(a )
for _ in range(a ):
ans *= n
done.append(a )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
a = prime_fac_a.count(a )
for _ in range(a ):
ans *= n
done.append(a )
# precondition
assert isinstance(a , a ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def _a ( a :int ) -> Any:
assert isinstance(a , a ) and (n >= 0), "'number' must been a positive int"
a = 0
a = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a ):
ans += 1
# precondition
assert isinstance(a , a ) and is_prime(
a ), "'ans' must been a prime number and from type int"
return ans
def _a ( a :Optional[Any] , a :Optional[int] ) -> List[Any]:
assert (
is_prime(a ) and is_prime(a ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
a = p_number_a + 1 # jump to the next number
a = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a ):
number += 1
while number < p_number_a:
ans.append(a )
number += 1
# fetch the next prime number.
while not is_prime(a ):
number += 1
# precondition
assert (
isinstance(a , a )
and ans[0] != p_number_a
and ans[len(a ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def _a ( a :Optional[Any] ) -> Optional[Any]:
assert isinstance(a , a ) and (n >= 1), "'n' must been int and >= 1"
a = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(a )
# precondition
assert ans[0] == 1 and ans[len(a ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def _a ( a :List[Any] ) -> Optional[Any]:
assert isinstance(a , a ) and (
number > 1
), "'number' must been an int and >= 1"
a = get_divisors(a )
# precondition
assert (
isinstance(a , a )
and (divisors[0] == 1)
and (divisors[len(a ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def _a ( a :Optional[int] , a :Optional[int] ) -> Dict:
assert (
isinstance(a , a )
and isinstance(a , a )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
a = gcd(abs(a ) , abs(a ) )
# precondition
assert (
isinstance(a , a )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def _a ( a :str ) -> str:
assert isinstance(a , a ) and (n >= 0), "'n' must been a int and >= 0"
a = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def _a ( a :List[str] ) -> Optional[Any]:
assert isinstance(a , a ) and (n >= 0), "'n' must been an int and >= 0"
a = 0
a = 1
a = 1 # this will be return
for _ in range(n - 1 ):
a = ans
ans += fiba
a = tmp
return ans
| 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCAmelCase__ = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_INIT_CONFIGURATION
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ElectraTokenizer
def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
a = do_lower_case
a = strip_accents
a = tokenize_chinese_chars
a = normalizer_class(**__UpperCAmelCase )
a = do_lower_case
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str:
"""simple docstring"""
a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 0 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase__ = {
"configuration_groupvit": [
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroupViTConfig",
"GroupViTOnnxConfig",
"GroupViTTextConfig",
"GroupViTVisionConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroupViTModel",
"GroupViTPreTrainedModel",
"GroupViTTextModel",
"GroupViTVisionModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGroupViTModel",
"TFGroupViTPreTrainedModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
def _a ( a :int ) -> bool:
a = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 0 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ = pytest.mark.integration
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
a = dset.map(
lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase )
a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
from elasticsearch import Elasticsearch
a = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
a = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase )
a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
a = np.eye(5 , dtype=np.floataa )[::-1]
a , a = index.search_batch(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
import faiss
a = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
a = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__UpperCAmelCase ):
a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = faiss.IndexFlat(5 )
a = FaissIndex(custom_index=__UpperCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
index.save(tmp_file.name )
a = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _a ( a :Dict ) -> Any:
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
a = '''index.faiss'''
a = F"""mock://{index_name}"""
index.save(a , storage_options=mockfs.storage_options )
a = FaissIndex.load(a , storage_options=mockfs.storage_options )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(a )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = Elasticsearch()
a = {'''acknowledged''': True}
a = ElasticSearchIndex(es_client=__UpperCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
# batched queries with timeout
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
| 0 | 1 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase__ = [8, 5, 9, 7]
UpperCAmelCase__ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase__ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None:
"""simple docstring"""
a = claim_vector
a = allocated_resources_table
a = maximum_claim_table
def __lowerCAmelCase ( self : Any ) ->list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __lowerCAmelCase ( self : Optional[int] ) ->list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()}
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = self.__need()
a = self.__allocated_resources_table
a = self.__available_resources()
a = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
a = False
for each_need in need_list:
a = True
for index, need in enumerate(__UpperCAmelCase ):
if need > available_resources[index]:
a = False
break
if execution:
a = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
a = original_need_index
print(F"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(__UpperCAmelCase )
# update available/freed resources stack
a = np.array(__UpperCAmelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''t5'''
__snake_case = ['''past_key_values''']
__snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=32_128 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=128 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=1e-6 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str , ) ->Optional[Any]:
"""simple docstring"""
a = vocab_size
a = d_model
a = d_kv
a = d_ff
a = num_layers
a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a = num_heads
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = feed_forward_proj
a = use_cache
a = self.feed_forward_proj.split('''-''' )
a = act_info[-1]
a = act_info[0] == '''gated'''
if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a = '''gelu_new'''
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
a = '''past_encoder_sequence + sequence'''
a = {0: '''batch'''}
a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''decoder_sequence'''}
a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
return common_inputs
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return 13
| 0 | 1 |
from __future__ import annotations
def _a ( a :list , a :int | None = None , a :int | None = None ) -> None:
if start is None:
a = 0
if end is None:
a = len(a ) - 1
if start >= end:
return
a = (start + end) // 2
slowsort(a , a , a )
slowsort(a , mid + 1 , a )
if sequence[end] < sequence[mid]:
a , a = sequence[mid], sequence[end]
slowsort(a , a , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''llama'''
__snake_case = ['''past_key_values''']
def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str:
"""simple docstring"""
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = intermediate_size
a = num_hidden_layers
a = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a = num_attention_heads
a = num_key_value_heads
a = hidden_act
a = initializer_range
a = rms_norm_eps
a = pretraining_tp
a = use_cache
a = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"""got {self.rope_scaling}""" )
a = self.rope_scaling.get('''type''' , __UpperCAmelCase )
a = self.rope_scaling.get('''factor''' , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 0 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
UpperCAmelCase__ = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
]
UpperCAmelCase__ = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
]
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''whisper'''
__snake_case = ['''past_key_values''']
__snake_case = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : Any , __UpperCAmelCase : Union[str, Any]=51_865 , __UpperCAmelCase : str=80 , __UpperCAmelCase : Any=6 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Any=6 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : Any=1_536 , __UpperCAmelCase : Any=1_536 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : Optional[int]=50_257 , __UpperCAmelCase : Any=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : List[Any]=256 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Dict=0.0 , __UpperCAmelCase : List[Any]=0.0 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : str=1_500 , __UpperCAmelCase : str=448 , __UpperCAmelCase : Tuple=50_256 , __UpperCAmelCase : Dict=50_256 , __UpperCAmelCase : Tuple=50_256 , __UpperCAmelCase : int=None , __UpperCAmelCase : int=[220, 50_256] , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Tuple=256 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Union[str, Any]=0.05 , __UpperCAmelCase : Dict=10 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : List[Any]=10 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Union[str, Any]=7 , **__UpperCAmelCase : Optional[Any] , ) ->Optional[int]:
"""simple docstring"""
a = vocab_size
a = num_mel_bins
a = d_model
a = encoder_layers
a = encoder_attention_heads
a = decoder_layers
a = decoder_attention_heads
a = decoder_ffn_dim
a = encoder_ffn_dim
a = dropout
a = attention_dropout
a = activation_dropout
a = activation_function
a = init_std
a = encoder_layerdrop
a = decoder_layerdrop
a = use_cache
a = encoder_layers
a = scale_embedding # scale factor will be sqrt(d_model) if True
a = max_source_positions
a = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
a = classifier_proj_size
a = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
a = apply_spec_augment
a = mask_time_prob
a = mask_time_length
a = mask_time_min_masks
a = mask_feature_prob
a = mask_feature_length
a = mask_feature_min_masks
a = median_filter_width
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , suppress_tokens=__UpperCAmelCase , begin_suppress_tokens=__UpperCAmelCase , **__UpperCAmelCase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
a = {0: '''batch'''}
else:
a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
return common_inputs
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , __UpperCAmelCase : int = 22_050 , __UpperCAmelCase : float = 5.0 , __UpperCAmelCase : int = 220 , ) ->Mapping[str, Any]:
"""simple docstring"""
a = OrderedDict()
a = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=__UpperCAmelCase , framework=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , time_duration=__UpperCAmelCase , frequency=__UpperCAmelCase , )
a = encoder_inputs['''input_features'''].shape[2]
a = encoder_sequence_length // 2 if self.use_past else seq_length
a = super().generate_dummy_inputs(
preprocessor.tokenizer , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
a = encoder_inputs.pop('''input_features''' )
a = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
a = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def __lowerCAmelCase ( self : Optional[int] ) ->float:
"""simple docstring"""
return 1e-3
| 0 |
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0 | 1 |
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
UpperCAmelCase__ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
UpperCAmelCase__ = dataset.iloc[:, 1:2].values
UpperCAmelCase__ = dataset.iloc[:, 2].values
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = train_test_split(X, y, test_size=0.2, random_state=0)
UpperCAmelCase__ = PolynomialFeatures(degree=4)
UpperCAmelCase__ = poly_reg.fit_transform(X)
UpperCAmelCase__ = LinearRegression()
pol_reg.fit(X_poly, y)
def _a ( ) -> Optional[Any]:
plt.scatter(a , a , color='''red''' )
plt.plot(a , pol_reg.predict(poly_reg.fit_transform(a ) ) , color='''blue''' )
plt.title('''Truth or Bluff (Linear Regression)''' )
plt.xlabel('''Position level''' )
plt.ylabel('''Salary''' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 0 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ = logging.getLogger()
def _a ( ) -> Optional[int]:
a = argparse.ArgumentParser()
parser.add_argument('''-f''' )
a = parser.parse_args()
return args.f
def _a ( a :Any ) -> Tuple:
a = {}
a = os.path.join(a , '''all_results.json''' )
if os.path.exists(a ):
with open(a , '''r''' ) as f:
a = json.load(a )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _a ( ) -> int:
a = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
UpperCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ ( lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
a = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
a = 7 if get_gpu_count() > 1 else 2
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
a = logging.StreamHandler(sys.stdout )
logger.addHandler(__UpperCAmelCase )
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
| 0 | 1 |
from ..utils import DummyObject, requires_backends
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Dict , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Tuple ) ->Dict:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any] ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : Any , **__UpperCAmelCase : int ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : List[str] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : List[Any] ) ->Optional[int]:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Optional[int] ) ->Any:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Optional[Any] ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : str , *__UpperCAmelCase : str , **__UpperCAmelCase : Any ) ->Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : int ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str] ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : List[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Dict ) ->Tuple:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : int , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : int ) ->Dict:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : Any , **__UpperCAmelCase : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Union[str, Any] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Tuple ) ->Dict:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Any ) ->str:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Dict ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class lowercase_ ( metaclass=lowercase ):
'''simple docstring'''
__snake_case = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : int , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Any:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Dict ) ->Any:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
| 0 |
import math
def _a ( a :int ) -> list:
a = [True] * n
a = False
a = False
a = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
a = i * 2
while index < n:
a = False
a = index + i
a = [2]
for i in range(3 , a , 2 ):
if is_prime[i]:
primes.append(a )
return primes
def _a ( a :int = 999_966_663_333 ) -> int:
a = math.floor(math.sqrt(a ) ) + 100
a = prime_sieve(a )
a = 0
a = 0
a = primes[prime_index]
while (last_prime**2) <= limit:
a = primes[prime_index + 1]
a = last_prime**2
a = next_prime**2
# Get numbers divisible by lps(current)
a = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
a = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
a = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
a = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 0 | 1 |
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = 42
__snake_case = 42
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
| 0 |
def _a ( a :float , a :float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 0 | 1 |
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
def _a ( a :Union[tf.Tensor, np.ndarray] ) -> List[int]:
if isinstance(a , np.ndarray ):
return list(tensor.shape )
a = tf.shape(a )
if tensor.shape == tf.TensorShape(a ):
return dynamic
a = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(a )]
def _a ( a :tf.Tensor , a :Optional[int] = None , a :Optional[str] = None ) -> tf.Tensor:
return tf.nn.softmax(logits=logits + 1e-9 , axis=a , name=a )
def _a ( a :Tuple , a :str , a :List[str] , a :str=1e-5 , a :List[str]=-1 ) -> Any:
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(a , a ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
a , a = tf.nn.moments(a , axes=[axis] , keepdims=a )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
a = [1] * inputs.shape.rank
a = shape_list(a )[axis]
a = tf.reshape(a , a )
a = tf.reshape(a , a )
# Compute layer normalization using the batch_normalization
# function.
a = tf.nn.batch_normalization(
a , a , a , offset=a , scale=a , variance_epsilon=a , )
return outputs
def _a ( a :Optional[Any] , a :Dict=0 , a :Any=-1 ) -> List[Any]:
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
a = tf.shape(a )
a = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
a = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(a , a )
def _a ( a :tf.Tensor ) -> tf.Tensor:
if not isinstance(a , tf.Tensor ):
a = tf.convert_to_tensor(a ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
a = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
a = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
a = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def _a ( a :tf.Tensor , a :int , a :str = "input_ids" ) -> None:
tf.debugging.assert_less(
a , tf.cast(a , dtype=tensor.dtype ) , message=(
F"""The maximum value of {tensor_name} ({tf.math.reduce_max(a )}) must be smaller than the embedding """
F"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time."""
) , )
def _a ( a :Any , a :Optional[Any] , a :List[str] ) -> str:
a = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
a = [x for x in data if len(a ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """
F"""bytes: {bad_attributes}""" )
a = np.asarray(a )
a = 1
a = np.array_split(a , a )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
a = np.array_split(a , a )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(a ):
a = chunk_data
else:
a = data
def _a ( a :Optional[Any] , a :Dict ) -> Optional[int]:
if name in group.attrs:
a = [n.decode('''utf8''' ) if hasattr(a , '''decode''' ) else n for n in group.attrs[name]]
else:
a = []
a = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(a , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def _a ( a :Any ) -> str:
def _expand_single_ad_tensor(a :Optional[int] ):
if isinstance(a , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(a , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , a )
| 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
a = SMALL_MODEL_IDENTIFIER
a = '''pt'''
a = '''tf'''
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase )
model_tf.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = '''mock_framework'''
# Framework provided - return whatever the user provides
a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
| 0 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
# fmt: off
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
a = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
a = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
a = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = self.prepare_image_inputs()
a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = processor(text=__UpperCAmelCase )
a = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__UpperCAmelCase )
a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 0 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ProphetNetTokenizer
__snake_case = False
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
super().setUp()
a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Dict:
"""simple docstring"""
a = '''UNwant\u00E9d,running'''
a = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file )
a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
a = {}
for i, token in enumerate(__UpperCAmelCase ):
a = i
a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
a = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102]
a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 0 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"tokenizer_file": {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json",
},
}
UpperCAmelCase__ = {
"gpt-neox-20b": 2048,
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ['''input_ids''', '''attention_mask''']
def __init__( self : Optional[int] , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict="<|endoftext|>" , __UpperCAmelCase : Optional[int]="<|endoftext|>" , __UpperCAmelCase : Optional[Any]="<|endoftext|>" , __UpperCAmelCase : Union[str, Any]=False , **__UpperCAmelCase : Dict , ) ->Any:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , )
a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , __UpperCAmelCase ) != add_prefix_space:
a = getattr(__UpperCAmelCase , pre_tok_state.pop('''type''' ) )
a = add_prefix_space
a = pre_tok_class(**__UpperCAmelCase )
a = add_prefix_space
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : "Conversation" ) ->List[int]:
"""simple docstring"""
a = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] )
if len(__UpperCAmelCase ) > self.model_max_length:
a = input_ids[-self.model_max_length :]
return input_ids
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = mock.Mock()
a = 500
a = {}
a = HTTPError
a = {}
# Download this model to make sure it's in the cache.
a = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('''requests.Session.request''' , return_value=__UpperCAmelCase ) as mock_head:
a = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def __lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
a = mock.Mock()
a = 500
a = {}
a = HTTPError
a = {}
# Download this model to make sure it's in the cache.
a = GPTaTokenizerFast.from_pretrained('''gpt2''' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('''requests.Session.request''' , return_value=__UpperCAmelCase ) as mock_head:
a = GPTaTokenizerFast.from_pretrained('''gpt2''' )
# This check we did call the fake head request
mock_head.assert_called()
def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
try:
a = tempfile.mktemp()
with open(__UpperCAmelCase , '''wb''' ) as f:
http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , __UpperCAmelCase )
a = AlbertTokenizer.from_pretrained(__UpperCAmelCase )
finally:
os.remove(__UpperCAmelCase )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('''tokenizer.json''' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('''tokenizer.json''' , '''wb''' ) as f:
http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , __UpperCAmelCase )
a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1_000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('''tokenizer.json''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' )
@is_staging_test
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
__snake_case = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] ) ->Dict:
"""simple docstring"""
a = TOKEN
HfFolder.save_token(__UpperCAmelCase )
@classmethod
def __lowerCAmelCase ( cls : str ) ->Optional[Any]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-tokenizer''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' )
except HTTPError:
pass
def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
a = os.path.join(__UpperCAmelCase , '''vocab.txt''' )
with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
a = BertTokenizer(__UpperCAmelCase )
tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token )
a = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='''test-tokenizer''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__UpperCAmelCase , repo_id='''test-tokenizer''' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token )
a = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def __lowerCAmelCase ( self : Optional[int] ) ->Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
a = os.path.join(__UpperCAmelCase , '''vocab.txt''' )
with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
a = BertTokenizer(__UpperCAmelCase )
tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token )
a = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
__UpperCAmelCase , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token )
a = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
a = os.path.join(__UpperCAmelCase , '''vocab.txt''' )
with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
a = CustomTokenizer(__UpperCAmelCase )
# No fast custom tokenizer
tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token )
a = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
a = os.path.join(__UpperCAmelCase , '''vocab.txt''' )
with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
a = BertTokenizerFast.from_pretrained(__UpperCAmelCase )
bert_tokenizer.save_pretrained(__UpperCAmelCase )
a = CustomTokenizerFast.from_pretrained(__UpperCAmelCase )
tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token )
a = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' )
a = AutoTokenizer.from_pretrained(
F"""{USER}/test-dynamic-tokenizer""" , use_fast=__UpperCAmelCase , trust_remote_code=__UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' )
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = Trie()
trie.add('''Hello 友達''' )
self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} )
trie.add('''Hello''' )
trie.data
self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
a = Trie()
self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] )
trie.add('''[CLS]''' )
trie.add('''extra_id_1''' )
trie.add('''extra_id_100''' )
self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] )
def __lowerCAmelCase ( self : Tuple ) ->Optional[int]:
"""simple docstring"""
a = Trie()
trie.add('''A''' )
self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] )
self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
a = Trie()
trie.add('''TOKEN]''' )
trie.add('''[SPECIAL_TOKEN]''' )
self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = Trie()
trie.add('''A''' )
trie.add('''P''' )
trie.add('''[SPECIAL_TOKEN]''' )
self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] )
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = Trie()
trie.add('''AB''' )
trie.add('''B''' )
trie.add('''C''' )
self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] )
def __lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
a = Trie()
trie.add('''ABC''' )
trie.add('''B''' )
trie.add('''CD''' )
self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = Trie()
a = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] )
self.assertEqual(__UpperCAmelCase , ['''AB''', '''C'''] )
| 0 |
def _a ( a :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
a = gray_code_sequence_string(a )
#
# convert them to integers
for i in range(len(a ) ):
a = int(sequence[i] , 2 )
return sequence
def _a ( a :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
a = gray_code_sequence_string(bit_count - 1 )
a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
a = '''0''' + smaller_sequence[i]
sequence.append(a )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
a = '''1''' + smaller_sequence[i]
sequence.append(a )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''Salesforce/blip-image-captioning-base'''
__snake_case = (
'''This is a tool that generates a description of an image. It takes an input named `image` which should be the '''
'''image to caption, and returns a text that contains the description in English.'''
)
__snake_case = '''image_captioner'''
__snake_case = AutoModelForVisionaSeq
__snake_case = ['''image''']
__snake_case = ['''text''']
def __init__( self : Optional[int] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str] ) ->Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : "Image" ) ->Union[str, Any]:
"""simple docstring"""
return self.pre_processor(images=__UpperCAmelCase , return_tensors='''pt''' )
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str ) ->List[str]:
"""simple docstring"""
return self.model.generate(**__UpperCAmelCase )
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
return self.pre_processor.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )[0].strip()
| 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
# fmt: off
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
a = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
a = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
a = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = self.prepare_image_inputs()
a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = processor(text=__UpperCAmelCase )
a = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__UpperCAmelCase )
a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 0 | 1 |
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def _a ( a :int ) -> List[str]:
if "cls_token" in name:
a = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' )
if "mask_token" in name:
a = name.replace('''mask_token''' , '''decoder.mask_token''' )
if "decoder_pos_embed" in name:
a = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' )
if "pos_embed" in name and "decoder" not in name:
a = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
a = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
a = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' )
if "decoder_blocks" in name:
a = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' )
if "blocks" in name:
a = name.replace('''blocks''' , '''vit.encoder.layer''' )
if "attn.proj" in name:
a = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
a = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
a = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
a = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
a = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
a = name.replace('''mlp.fc2''' , '''output.dense''' )
if "decoder_embed" in name:
a = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' )
if "decoder_norm" in name:
a = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' )
if "decoder_pred" in name:
a = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' )
if "norm.weight" in name and "decoder" not in name:
a = name.replace('''norm.weight''' , '''vit.layernorm.weight''' )
if "norm.bias" in name and "decoder" not in name:
a = name.replace('''norm.bias''' , '''vit.layernorm.bias''' )
return name
def _a ( a :Union[str, Any] , a :Dict ) -> str:
for key in orig_state_dict.copy().keys():
a = orig_state_dict.pop(a )
if "qkv" in key:
a = key.split('''.''' )
a = int(key_split[1] )
if "decoder_blocks" in key:
a = config.decoder_hidden_size
a = '''decoder.decoder_layers.'''
if "weight" in key:
a = val[:dim, :]
a = val[dim : dim * 2, :]
a = val[-dim:, :]
elif "bias" in key:
a = val[:dim]
a = val[dim : dim * 2]
a = val[-dim:]
else:
a = config.hidden_size
a = '''vit.encoder.layer.'''
if "weight" in key:
a = val[:dim, :]
a = val[dim : dim * 2, :]
a = val[-dim:, :]
elif "bias" in key:
a = val[:dim]
a = val[dim : dim * 2]
a = val[-dim:]
else:
a = val
return orig_state_dict
def _a ( a :Any , a :int ) -> List[str]:
a = ViTMAEConfig()
if "large" in checkpoint_url:
a = 1_024
a = 4_096
a = 24
a = 16
elif "huge" in checkpoint_url:
a = 14
a = 1_280
a = 5_120
a = 32
a = 16
a = ViTMAEForPreTraining(a )
a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' )['''model''']
a = ViTMAEImageProcessor(size=config.image_size )
a = convert_state_dict(a , a )
model.load_state_dict(a )
model.eval()
a = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg'''
a = Image.open(requests.get(a , stream=a ).raw )
a = ViTMAEImageProcessor(size=config.image_size )
a = image_processor(images=a , return_tensors='''pt''' )
# forward pass
torch.manual_seed(2 )
a = model(**a )
a = outputs.logits
if "large" in checkpoint_url:
a = torch.tensor(
[[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] )
elif "huge" in checkpoint_url:
a = torch.tensor(
[[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] )
else:
a = torch.tensor(
[[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] )
# verify logits
assert torch.allclose(logits[0, :3, :3] , a , atol=1e-4 )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(a )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(a )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase__ = parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 0 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _a ( a :List[Any] ) -> Optional[int]:
a = []
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
F"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
F"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
F"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
F"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def _a ( a :List[Any] , a :Optional[int] ) -> Dict:
a = []
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def _a ( a :Any ) -> List[Any]:
a = []
token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') )
return token
def _a ( ) -> Optional[int]:
a = []
head.append(('''layernorm.weight''', '''norm.weight''') )
head.append(('''layernorm.bias''', '''norm.bias''') )
head.append(('''classifier.weight''', '''head.weight''') )
head.append(('''classifier.bias''', '''head.bias''') )
return head
def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]:
a = '''imagenet-1k-id2label.json'''
a = 1_000
a = '''huggingface/label-files'''
a = num_labels
a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13":
a = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21":
a = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
a = [2, 2, 20]
a = [3, 12, 16]
a = [192, 768, 1_024]
a = CvtForImageClassification(a )
a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
a = image_size
a = torch.load(a , map_location=torch.device('''cpu''' ) )
a = OrderedDict()
a = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
a = list_of_state_dict + cls_token(a )
a = list_of_state_dict + embeddings(a )
for cnt in range(config.depth[idx] ):
a = list_of_state_dict + attention(a , a )
a = list_of_state_dict + final()
for gg in list_of_state_dict:
print(a )
for i in range(len(a ) ):
a = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(a )
model.save_pretrained(a )
image_processor.save_pretrained(a )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase__ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 0 | 1 |
from math import ceil, sqrt
def _a ( a :int = 1_000_000 ) -> int:
a = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
a = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 |
from __future__ import annotations
UpperCAmelCase__ = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase__ = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase__ = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _a ( a :Matrix , a :int , a :int , a :int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _a ( a :Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _a ( a :Matrix ) -> Matrix | None:
if location := find_empty_location(a ):
a , a = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(a , a , a , a ):
a = digit
if sudoku(a ) is not None:
return grid
a = 0
return None
def _a ( a :Matrix ) -> None:
for row in grid:
for cell in row:
print(a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
UpperCAmelCase__ = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 0 | 1 |
def _a ( a :int = 1_000 ) -> int:
a , a = 1, 1
a = []
for i in range(1 , n + 1 ):
a = prev_numerator + 2 * prev_denominator
a = prev_numerator + prev_denominator
if len(str(a ) ) > len(str(a ) ):
result.append(a )
a = numerator
a = denominator
return len(a )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = KandinskyVaaPriorPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''', '''negative_prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
return 100
@property
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
a = PriorTransformer(**__UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , )
a = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
@skip_mps
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
| 0 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ = {
"configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["MobileViTFeatureExtractor"]
UpperCAmelCase__ = ["MobileViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileViTForImageClassification",
"MobileViTForSemanticSegmentation",
"MobileViTModel",
"MobileViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFMobileViTForImageClassification",
"TFMobileViTForSemanticSegmentation",
"TFMobileViTModel",
"TFMobileViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
from math import factorial
UpperCAmelCase__ = {str(digit): factorial(digit) for digit in range(10)}
def _a ( a :int ) -> int:
if not isinstance(a , a ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) )
def _a ( a :int = 60 , a :int = 1_000_000 ) -> int:
if not isinstance(a , a ) or not isinstance(a , a ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
a = 0
# the cached sizes of the previous chains
a = {}
for start_chain_element in range(1 , a ):
# The temporary set will contain the elements of the chain
a = set()
a = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
a = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(a )
chain_set_length += 1
a = digit_factorial_sum(a )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
a = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution()}""")
| 0 | 1 |
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase__ = "platform"
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class lowercase_ :
'''simple docstring'''
__snake_case = PegasusConfig
__snake_case = {}
__snake_case = '''gelu'''
def __init__( self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=13 , __UpperCAmelCase : Any=7 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Optional[int]=99 , __UpperCAmelCase : str=32 , __UpperCAmelCase : str=5 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : List[Any]=37 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : str=20 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : List[Any]=0 , ) ->Union[str, Any]:
"""simple docstring"""
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = eos_token_id
a = pad_token_id
a = bos_token_id
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
a = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
a = np.concatenate([input_ids, eos_tensor] , axis=1 )
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
a = prepare_pegasus_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, inputs_dict
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
a = 20
a = model_class_name(__UpperCAmelCase )
a = model.encode(inputs_dict['''input_ids'''] )
a , a = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
a = model.init_cache(decoder_input_ids.shape[0] , __UpperCAmelCase , __UpperCAmelCase )
a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
a = model.decode(
decoder_input_ids[:, :-1] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , )
a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
a = model.decode(
decoder_input_ids[:, -1:] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCAmelCase , )
a = model.decode(__UpperCAmelCase , __UpperCAmelCase )
a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" )
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ) ->str:
"""simple docstring"""
a = 20
a = model_class_name(__UpperCAmelCase )
a = model.encode(inputs_dict['''input_ids'''] )
a , a = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
a = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
a = model.init_cache(decoder_input_ids.shape[0] , __UpperCAmelCase , __UpperCAmelCase )
a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
a = model.decode(
decoder_input_ids[:, :-1] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , )
a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
a = model.decode(
decoder_input_ids[:, -1:] , __UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , )
a = model.decode(__UpperCAmelCase , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase )
a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" )
def _a ( a :List[Any] , a :Optional[int] , a :int , a :str=None , a :int=None , ) -> int:
if attention_mask is None:
a = np.not_equal(a , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
a = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__snake_case = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__snake_case = True
__snake_case = False
__snake_case = False
__snake_case = False
def __lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
a = FlaxPegasusModelTester(self )
a = ConfigTester(self , config_class=__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->Optional[int]:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->Optional[int]:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
a = model_class(__UpperCAmelCase )
@jax.jit
def encode_jitted(__UpperCAmelCase : List[str] , __UpperCAmelCase : str=None , **__UpperCAmelCase : List[Any] ):
return model.encode(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
with self.subTest('''JIT Enabled''' ):
a = encode_jitted(**__UpperCAmelCase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
a = encode_jitted(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
a = model_class(__UpperCAmelCase )
a = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] )
a = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(__UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ):
return model.decode(
decoder_input_ids=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , encoder_outputs=__UpperCAmelCase , )
with self.subTest('''JIT Enabled''' ):
a = decode_jitted(**__UpperCAmelCase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
a = decode_jitted(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __lowerCAmelCase ( self : str ) ->List[str]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__UpperCAmelCase )
a = np.ones((1, 1) )
a = model(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@slow
def __lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
a = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' )
a = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' )
a = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
a = [
'''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''',
'''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''',
]
a = tokenizer(__UpperCAmelCase , return_tensors='''np''' , truncation=__UpperCAmelCase , max_length=512 , padding=__UpperCAmelCase )
a = model.generate(**__UpperCAmelCase , num_beams=2 ).sequences
a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
assert tgt_text == decoded
| 0 |
def _a ( a :int = 100 ) -> int:
a = n * (n + 1) * (2 * n + 1) / 6
a = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 | 1 |
from __future__ import annotations
from scipy.special import comb # type: ignore
class lowercase_ :
'''simple docstring'''
def __init__( self : Tuple , __UpperCAmelCase : list[tuple[float, float]] ) ->Optional[Any]:
"""simple docstring"""
a = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
a = len(__UpperCAmelCase ) - 1
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : float ) ->list[float]:
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
a = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , __UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(__UpperCAmelCase ) , 5 ) == 1
return output_values
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : float ) ->tuple[float, float]:
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
a = self.basis_function(__UpperCAmelCase )
a = 0.0
a = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def __lowerCAmelCase ( self : int , __UpperCAmelCase : float = 0.01 ) ->Optional[int]:
"""simple docstring"""
from matplotlib import pyplot as plt # type: ignore
a = [] # x coordinates of points to plot
a = [] # y coordinates of points to plot
a = 0.0
while t <= 1:
a = self.bezier_curve_function(__UpperCAmelCase )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
a = [i[0] for i in self.list_of_points]
a = [i[1] for i in self.list_of_points]
plt.plot(
__UpperCAmelCase , __UpperCAmelCase , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , )
plt.scatter(__UpperCAmelCase , __UpperCAmelCase , color='''red''' , label='''Control Points''' )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase__ = {
"configuration_groupvit": [
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroupViTConfig",
"GroupViTOnnxConfig",
"GroupViTTextConfig",
"GroupViTVisionConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroupViTModel",
"GroupViTPreTrainedModel",
"GroupViTTextModel",
"GroupViTVisionModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGroupViTModel",
"TFGroupViTPreTrainedModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ShapEPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
return 8
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
a = PriorTransformer(**__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
a = ShapERenderer(**__UpperCAmelCase )
return model
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_renderer
a = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , )
a = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.images[0]
a = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
a = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = 1
a = 2
a = self.get_dummy_inputs(__UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
a = batch_size * [inputs[key]]
a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
a = ShapEPipeline.from_pretrained('''openai/shap-e''' )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a = pipe(
'''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json",
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''glpn'''
def __init__( self : List[str] , __UpperCAmelCase : str=3 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Dict=[2, 2, 2, 2] , __UpperCAmelCase : Optional[Any]=[8, 4, 2, 1] , __UpperCAmelCase : Dict=[32, 64, 160, 256] , __UpperCAmelCase : Any=[7, 3, 3, 3] , __UpperCAmelCase : Union[str, Any]=[4, 2, 2, 2] , __UpperCAmelCase : Optional[Any]=[1, 2, 5, 8] , __UpperCAmelCase : int=[4, 4, 4, 4] , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[Any]=1e-6 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Union[str, Any]=10 , __UpperCAmelCase : List[Any]=-1 , **__UpperCAmelCase : Optional[int] , ) ->Dict:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = num_channels
a = num_encoder_blocks
a = depths
a = sr_ratios
a = hidden_sizes
a = patch_sizes
a = strides
a = mlp_ratios
a = num_attention_heads
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = drop_path_rate
a = layer_norm_eps
a = decoder_hidden_size
a = max_depth
a = head_in_index
| 0 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase__ = [8, 5, 9, 7]
UpperCAmelCase__ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase__ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None:
"""simple docstring"""
a = claim_vector
a = allocated_resources_table
a = maximum_claim_table
def __lowerCAmelCase ( self : Any ) ->list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __lowerCAmelCase ( self : Optional[int] ) ->list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()}
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = self.__need()
a = self.__allocated_resources_table
a = self.__available_resources()
a = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
a = False
for each_need in need_list:
a = True
for index, need in enumerate(__UpperCAmelCase ):
if need > available_resources[index]:
a = False
break
if execution:
a = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
a = original_need_index
print(F"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(__UpperCAmelCase )
# update available/freed resources stack
a = np.array(__UpperCAmelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
import math
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler
def _a ( a :Optional[Any] , a :Optional[Any] , a :Any=[] ) -> Optional[int]:
a = size[0] - overlap_pixels * 2
a = size[1] - overlap_pixels * 2
for letter in ["l", "r"]:
if letter in remove_borders:
size_x += overlap_pixels
for letter in ["t", "b"]:
if letter in remove_borders:
size_y += overlap_pixels
a = np.ones((size_y, size_x) , dtype=np.uinta ) * 255
a = np.pad(a , mode='''linear_ramp''' , pad_width=a , end_values=0 )
if "l" in remove_borders:
a = mask[:, overlap_pixels : mask.shape[1]]
if "r" in remove_borders:
a = mask[:, 0 : mask.shape[1] - overlap_pixels]
if "t" in remove_borders:
a = mask[overlap_pixels : mask.shape[0], :]
if "b" in remove_borders:
a = mask[0 : mask.shape[0] - overlap_pixels, :]
return mask
def _a ( a :Optional[Any] , a :Optional[int] , a :Union[str, Any] ) -> Any:
return max(a , min(a , a ) )
def _a ( a :[int] , a :[int] , a :[int] ) -> int:
return (
clamp(rect[0] , min[0] , max[0] ),
clamp(rect[1] , min[1] , max[1] ),
clamp(rect[2] , min[0] , max[0] ),
clamp(rect[3] , min[1] , max[1] ),
)
def _a ( a :[int] , a :int , a :[int] ) -> Optional[int]:
a = list(a )
rect[0] -= overlap
rect[1] -= overlap
rect[2] += overlap
rect[3] += overlap
a = clamp_rect(a , [0, 0] , [image_size[0], image_size[1]] )
return rect
def _a ( a :List[str] , a :str , a :Optional[int] , a :List[Any] ) -> Dict:
a = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) )
result.paste(
original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop(
(slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , )
result.paste(a , (original_slice, 0) )
return result
def _a ( a :Union[str, Any] , a :List[Any] ) -> Dict:
a = (original_image_slice * 4, 0, tile.size[0], tile.size[1])
a = tile.crop(a )
return tile
def _a ( a :List[str] , a :Optional[Any] ) -> int:
a = n % d
return n - divisor
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Any , __UpperCAmelCase : AutoencoderKL , __UpperCAmelCase : CLIPTextModel , __UpperCAmelCase : CLIPTokenizer , __UpperCAmelCase : UNetaDConditionModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __UpperCAmelCase : int = 350 , ) ->int:
"""simple docstring"""
super().__init__(
vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , max_noise_level=__UpperCAmelCase , )
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Dict ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = (
min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ),
min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ),
min(image.size[0] , (x + 1) * tile_size ),
min(image.size[1] , (y + 1) * tile_size ),
)
a = add_overlap_rect(__UpperCAmelCase , __UpperCAmelCase , image.size )
a = image.crop(__UpperCAmelCase )
a = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0]
a = translated_slice_x - (original_image_slice / 2)
a = max(0 , __UpperCAmelCase )
a = squeeze_tile(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
a = to_input.size
a = to_input.resize((tile_size, tile_size) , Image.BICUBIC )
a = super(__UpperCAmelCase , self ).__call__(image=__UpperCAmelCase , **__UpperCAmelCase ).images[0]
a = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC )
a = unsqueeze_tile(__UpperCAmelCase , __UpperCAmelCase )
a = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC )
a = []
if x == 0:
remove_borders.append('''l''' )
elif crop_rect[2] == image.size[0]:
remove_borders.append('''r''' )
if y == 0:
remove_borders.append('''t''' )
elif crop_rect[3] == image.size[1]:
remove_borders.append('''b''' )
a = Image.fromarray(
make_transparency_mask(
(upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__UpperCAmelCase ) , mode='''L''' , )
final_image.paste(
__UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __UpperCAmelCase )
@torch.no_grad()
def __call__( self : Any , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , __UpperCAmelCase : int = 75 , __UpperCAmelCase : float = 9.0 , __UpperCAmelCase : int = 50 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 128 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 32 , ) ->Optional[int]:
"""simple docstring"""
a = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) )
a = math.ceil(image.size[0] / tile_size )
a = math.ceil(image.size[1] / tile_size )
a = tcx * tcy
a = 0
for y in range(__UpperCAmelCase ):
for x in range(__UpperCAmelCase ):
self._process_tile(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , prompt=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , noise_level=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , )
current_count += 1
if callback is not None:
callback({'''progress''': current_count / total_tile_count, '''image''': final_image} )
return final_image
def _a ( ) -> Dict:
# Run a demo
a = '''stabilityai/stable-diffusion-x4-upscaler'''
a = StableDiffusionTiledUpscalePipeline.from_pretrained(a , revision='''fp16''' , torch_dtype=torch.floataa )
a = pipe.to('''cuda''' )
a = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' )
def callback(a :str ):
print(F"""progress: {obj['progress']:.4f}""" )
obj["image"].save('''diffusers_library_progress.jpg''' )
a = pipe(image=a , prompt='''Black font, white background, vector''' , noise_level=40 , callback=a )
final_image.save('''diffusers_library.jpg''' )
if __name__ == "__main__":
main()
| 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCAmelCase__ = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_INIT_CONFIGURATION
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ElectraTokenizer
def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
a = do_lower_case
a = strip_accents
a = tokenize_chinese_chars
a = normalizer_class(**__UpperCAmelCase )
a = do_lower_case
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str:
"""simple docstring"""
a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 0 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
__snake_case = ViTImageProcessor if is_vision_available() else None
@property
def __lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
a = (3, 32, 128)
a = tempfile.mkdtemp()
# fmt: off
a = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' )
a = {
'''do_normalize''': False,
'''do_resize''': True,
'''image_processor_type''': '''ViTImageProcessor''',
'''resample''': 3,
'''size''': {'''height''': 32, '''width''': 128},
}
a = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : List[Any] ) ->List[Any]:
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : Tuple ) ->List[str]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
a = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def __lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
a = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = self.prepare_image_inputs()
a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self : List[str] ) ->Any:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''test'''
a = processor(text=__UpperCAmelCase )
a = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''test'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def __lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
a = processor.char_decode(__UpperCAmelCase )
a = tokenizer.batch_decode(__UpperCAmelCase )
a = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = None
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = torch.randn(1 , 27 , 38 )
a = torch.randn(1 , 27 , 50_257 )
a = torch.randn(1 , 27 , 30_522 )
a = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
| 0 |
def _a ( a :int ) -> bool:
a = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 0 | 1 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ = pytest.mark.integration
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
a = dset.map(
lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase )
a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
from elasticsearch import Elasticsearch
a = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
a = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase )
a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
a = np.eye(5 , dtype=np.floataa )[::-1]
a , a = index.search_batch(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
import faiss
a = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
a = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__UpperCAmelCase ):
a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = faiss.IndexFlat(5 )
a = FaissIndex(custom_index=__UpperCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
index.save(tmp_file.name )
a = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _a ( a :Dict ) -> Any:
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
a = '''index.faiss'''
a = F"""mock://{index_name}"""
index.save(a , storage_options=mockfs.storage_options )
a = FaissIndex.load(a , storage_options=mockfs.storage_options )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(a )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = Elasticsearch()
a = {'''acknowledged''': True}
a = ElasticSearchIndex(es_client=__UpperCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
# batched queries with timeout
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
| 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ = pytest.mark.integration
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
a = dset.map(
lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase )
a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
from elasticsearch import Elasticsearch
a = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
a = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase )
a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
a = np.eye(5 , dtype=np.floataa )[::-1]
a , a = index.search_batch(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
import faiss
a = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
a = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__UpperCAmelCase ):
a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = faiss.IndexFlat(5 )
a = FaissIndex(custom_index=__UpperCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
index.save(tmp_file.name )
a = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _a ( a :Dict ) -> Any:
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
a = '''index.faiss'''
a = F"""mock://{index_name}"""
index.save(a , storage_options=mockfs.storage_options )
a = FaissIndex.load(a , storage_options=mockfs.storage_options )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(a )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = Elasticsearch()
a = {'''acknowledged''': True}
a = ElasticSearchIndex(es_client=__UpperCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
# batched queries with timeout
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
| 0 | 1 |
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class lowercase_ ( lowercase ):
'''simple docstring'''
def __get__( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : List[Any]=None ) ->str:
"""simple docstring"""
if obj is None:
return self
if self.fget is None:
raise AttributeError('''unreadable attribute''' )
a = '''__cached_''' + self.fget.__name__
a = getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if cached is None:
a = self.fget(__UpperCAmelCase )
setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return cached
def _a ( a :int ) -> Any:
a = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(F"""invalid truth value {val!r}""" )
def _a ( a :str ) -> Any:
if is_torch_fx_proxy(a ):
return True
if is_torch_available():
import torch
if isinstance(a , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(a , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(a , (jnp.ndarray, Tracer) ):
return True
return isinstance(a , np.ndarray )
def _a ( a :Optional[Any] ) -> List[Any]:
return isinstance(a , np.ndarray )
def _a ( a :Tuple ) -> Tuple:
return _is_numpy(a )
def _a ( a :Dict ) -> Any:
import torch
return isinstance(a , torch.Tensor )
def _a ( a :Tuple ) -> Tuple:
return False if not is_torch_available() else _is_torch(a )
def _a ( a :List[str] ) -> Optional[Any]:
import torch
return isinstance(a , torch.device )
def _a ( a :str ) -> List[Any]:
return False if not is_torch_available() else _is_torch_device(a )
def _a ( a :Any ) -> List[str]:
import torch
if isinstance(a , a ):
if hasattr(a , a ):
a = getattr(a , a )
else:
return False
return isinstance(a , torch.dtype )
def _a ( a :Union[str, Any] ) -> str:
return False if not is_torch_available() else _is_torch_dtype(a )
def _a ( a :str ) -> List[Any]:
import tensorflow as tf
return isinstance(a , tf.Tensor )
def _a ( a :Optional[Any] ) -> Optional[Any]:
return False if not is_tf_available() else _is_tensorflow(a )
def _a ( a :Optional[int] ) -> str:
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(a , '''is_symbolic_tensor''' ):
return tf.is_symbolic_tensor(a )
return type(a ) == tf.Tensor
def _a ( a :str ) -> Dict:
return False if not is_tf_available() else _is_tf_symbolic_tensor(a )
def _a ( a :Union[str, Any] ) -> Optional[Any]:
import jax.numpy as jnp # noqa: F811
return isinstance(a , jnp.ndarray )
def _a ( a :List[str] ) -> Dict:
return False if not is_flax_available() else _is_jax(a )
def _a ( a :Tuple ) -> Dict:
if isinstance(a , (dict, UserDict) ):
return {k: to_py_obj(a ) for k, v in obj.items()}
elif isinstance(a , (list, tuple) ):
return [to_py_obj(a ) for o in obj]
elif is_tf_tensor(a ):
return obj.numpy().tolist()
elif is_torch_tensor(a ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(a ):
return np.asarray(a ).tolist()
elif isinstance(a , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def _a ( a :Dict ) -> Union[str, Any]:
if isinstance(a , (dict, UserDict) ):
return {k: to_numpy(a ) for k, v in obj.items()}
elif isinstance(a , (list, tuple) ):
return np.array(a )
elif is_tf_tensor(a ):
return obj.numpy()
elif is_torch_tensor(a ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(a ):
return np.asarray(a )
else:
return obj
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Dict ) ->List[Any]:
"""simple docstring"""
a = fields(self )
# Safety and consistency checks
if not len(__UpperCAmelCase ):
raise ValueError(F"""{self.__class__.__name__} has no fields.""" )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""" )
a = getattr(self , class_fields[0].name )
a = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(__UpperCAmelCase ):
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
a = first_field.items()
a = True
else:
try:
a = iter(__UpperCAmelCase )
a = True
except TypeError:
a = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(__UpperCAmelCase ):
if (
not isinstance(__UpperCAmelCase , (list, tuple) )
or not len(__UpperCAmelCase ) == 2
or not isinstance(element[0] , __UpperCAmelCase )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
a = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
a = element[1]
elif first_field is not None:
a = first_field
else:
for field in class_fields:
a = getattr(self , field.name )
if v is not None:
a = v
def __delitem__( self : List[str] , *__UpperCAmelCase : str , **__UpperCAmelCase : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" )
def __lowerCAmelCase ( self : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ) ->Optional[Any]:
"""simple docstring"""
raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" )
def __lowerCAmelCase ( self : List[str] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Optional[int] ) ->str:
"""simple docstring"""
raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" )
def __lowerCAmelCase ( self : Optional[int] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ) ->List[Any]:
"""simple docstring"""
raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" )
def __getitem__( self : Optional[Any] , __UpperCAmelCase : int ) ->Union[str, Any]:
"""simple docstring"""
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
a = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ) ->Any:
"""simple docstring"""
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(__UpperCAmelCase , __UpperCAmelCase )
super().__setattr__(__UpperCAmelCase , __UpperCAmelCase )
def __setitem__( self : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
super().__setitem__(__UpperCAmelCase , __UpperCAmelCase )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple[Any]:
"""simple docstring"""
return tuple(self[k] for k in self.keys() )
class lowercase_ ( lowercase , lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , __UpperCAmelCase : Dict ) ->List[str]:
"""simple docstring"""
raise ValueError(
F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" )
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''longest'''
__snake_case = '''max_length'''
__snake_case = '''do_not_pad'''
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''pt'''
__snake_case = '''tf'''
__snake_case = '''np'''
__snake_case = '''jax'''
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : List[ContextManager] ) ->Optional[Any]:
"""simple docstring"""
a = context_managers
a = ExitStack()
def __enter__( self : str ) ->Dict:
"""simple docstring"""
for context_manager in self.context_managers:
self.stack.enter_context(__UpperCAmelCase )
def __exit__( self : int , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Optional[int] ) ->Optional[int]:
"""simple docstring"""
self.stack.__exit__(*__UpperCAmelCase , **__UpperCAmelCase )
def _a ( a :List[Any] ) -> Optional[Any]:
a = infer_framework(a )
if framework == "tf":
a = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
a = inspect.signature(model_class.forward ) # PyTorch models
else:
a = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def _a ( a :Union[str, Any] ) -> Any:
a = model_class.__name__
a = infer_framework(a )
if framework == "tf":
a = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
a = inspect.signature(model_class.forward ) # PyTorch models
else:
a = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def _a ( a :MutableMapping , a :str = "" , a :str = "." ) -> Tuple:
def _flatten_dict(a :Optional[Any] , a :int="" , a :List[str]="." ):
for k, v in d.items():
a = str(a ) + delimiter + str(a ) if parent_key else k
if v and isinstance(a , a ):
yield from flatten_dict(a , a , delimiter=a ).items()
else:
yield key, v
return dict(_flatten_dict(a , a , a ) )
@contextmanager
def _a ( a :Any , a :bool = False ) -> List[str]:
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def _a ( a :List[Any] , a :List[str]=None ) -> List[str]:
if is_numpy_array(a ):
return np.transpose(a , axes=a )
elif is_torch_tensor(a ):
return array.T if axes is None else array.permute(*a )
elif is_tf_tensor(a ):
import tensorflow as tf
return tf.transpose(a , perm=a )
elif is_jax_tensor(a ):
return jnp.transpose(a , axes=a )
else:
raise ValueError(F"""Type not supported for transpose: {type(a )}.""" )
def _a ( a :int , a :Optional[int] ) -> Dict:
if is_numpy_array(a ):
return np.reshape(a , a )
elif is_torch_tensor(a ):
return array.reshape(*a )
elif is_tf_tensor(a ):
import tensorflow as tf
return tf.reshape(a , a )
elif is_jax_tensor(a ):
return jnp.reshape(a , a )
else:
raise ValueError(F"""Type not supported for reshape: {type(a )}.""" )
def _a ( a :Dict , a :int=None ) -> List[Any]:
if is_numpy_array(a ):
return np.squeeze(a , axis=a )
elif is_torch_tensor(a ):
return array.squeeze() if axis is None else array.squeeze(dim=a )
elif is_tf_tensor(a ):
import tensorflow as tf
return tf.squeeze(a , axis=a )
elif is_jax_tensor(a ):
return jnp.squeeze(a , axis=a )
else:
raise ValueError(F"""Type not supported for squeeze: {type(a )}.""" )
def _a ( a :Dict , a :Optional[int] ) -> Dict:
if is_numpy_array(a ):
return np.expand_dims(a , a )
elif is_torch_tensor(a ):
return array.unsqueeze(dim=a )
elif is_tf_tensor(a ):
import tensorflow as tf
return tf.expand_dims(a , axis=a )
elif is_jax_tensor(a ):
return jnp.expand_dims(a , axis=a )
else:
raise ValueError(F"""Type not supported for expand_dims: {type(a )}.""" )
def _a ( a :List[Any] ) -> Tuple:
if is_numpy_array(a ):
return np.size(a )
elif is_torch_tensor(a ):
return array.numel()
elif is_tf_tensor(a ):
import tensorflow as tf
return tf.size(a )
elif is_jax_tensor(a ):
return array.size
else:
raise ValueError(F"""Type not supported for expand_dims: {type(a )}.""" )
def _a ( a :List[Any] , a :int ) -> List[Any]:
for key, value in auto_map.items():
if isinstance(a , (tuple, list) ):
a = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value]
elif value is not None and "--" not in value:
a = F"""{repo_id}--{value}"""
return auto_map
def _a ( a :str ) -> Union[str, Any]:
for base_class in inspect.getmro(a ):
a = base_class.__module__
a = base_class.__name__
if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith('''torch''' ) or name == "PreTrainedModel":
return "pt"
elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(F"""Could not infer framework from class {model_class}.""" )
| 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''t5'''
__snake_case = ['''past_key_values''']
__snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=32_128 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=128 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=1e-6 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str , ) ->Optional[Any]:
"""simple docstring"""
a = vocab_size
a = d_model
a = d_kv
a = d_ff
a = num_layers
a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a = num_heads
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = feed_forward_proj
a = use_cache
a = self.feed_forward_proj.split('''-''' )
a = act_info[-1]
a = act_info[0] == '''gated'''
if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a = '''gelu_new'''
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
a = '''past_encoder_sequence + sequence'''
a = {0: '''batch'''}
a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''decoder_sequence'''}
a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
return common_inputs
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return 13
| 0 | 1 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
UpperCAmelCase__ = logging.get_logger(__name__)
@add_end_docstrings(lowercase )
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : str , **__UpperCAmelCase : Optional[int] ) ->Dict:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
if self.framework == "tf":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" )
requires_backends(self , '''vision''' )
self.check_model_type(__UpperCAmelCase )
def __call__( self : Optional[Any] , __UpperCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , __UpperCAmelCase : Union[str, List[str]] = None , **__UpperCAmelCase : Dict , ) ->Optional[int]:
"""simple docstring"""
if "text_queries" in kwargs:
a = kwargs.pop('''text_queries''' )
if isinstance(__UpperCAmelCase , (str, Image.Image) ):
a = {'''image''': image, '''candidate_labels''': candidate_labels}
else:
a = image
a = super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
return results
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Dict:
"""simple docstring"""
a = {}
if "threshold" in kwargs:
a = kwargs['''threshold''']
if "top_k" in kwargs:
a = kwargs['''top_k''']
return {}, {}, postprocess_params
def __lowerCAmelCase ( self : str , __UpperCAmelCase : int ) ->Optional[Any]:
"""simple docstring"""
a = load_image(inputs['''image'''] )
a = inputs['''candidate_labels''']
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
a = candidate_labels.split(''',''' )
a = torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(__UpperCAmelCase ):
a = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework )
a = self.image_processor(__UpperCAmelCase , return_tensors=self.framework )
yield {
"is_last": i == len(__UpperCAmelCase ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int ) ->str:
"""simple docstring"""
a = model_inputs.pop('''target_size''' )
a = model_inputs.pop('''candidate_label''' )
a = model_inputs.pop('''is_last''' )
a = self.model(**__UpperCAmelCase )
a = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs}
return model_outputs
def __lowerCAmelCase ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[str]=None ) ->List[Any]:
"""simple docstring"""
a = []
for model_output in model_outputs:
a = model_output['''candidate_label''']
a = BaseModelOutput(__UpperCAmelCase )
a = self.image_processor.post_process_object_detection(
outputs=__UpperCAmelCase , threshold=__UpperCAmelCase , target_sizes=model_output['''target_size'''] )[0]
for index in outputs["scores"].nonzero():
a = outputs['''scores'''][index].item()
a = self._get_bounding_box(outputs['''boxes'''][index][0] )
a = {'''score''': score, '''label''': label, '''box''': box}
results.append(__UpperCAmelCase )
a = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )
if top_k:
a = results[:top_k]
return results
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : "torch.Tensor" ) ->Dict[str, int]:
"""simple docstring"""
if self.framework != "pt":
raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' )
a , a , a , a = box.int().tolist()
a = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''llama'''
__snake_case = ['''past_key_values''']
def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str:
"""simple docstring"""
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = intermediate_size
a = num_hidden_layers
a = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a = num_attention_heads
a = num_key_value_heads
a = hidden_act
a = initializer_range
a = rms_norm_eps
a = pretraining_tp
a = use_cache
a = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"""got {self.rope_scaling}""" )
a = self.rope_scaling.get('''type''' , __UpperCAmelCase )
a = self.rope_scaling.get('''factor''' , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 0 | 1 |
UpperCAmelCase__ = tuple[float, float, float]
UpperCAmelCase__ = tuple[float, float, float]
def _a ( a :Pointad , a :Pointad ) -> Vectorad:
a = end_pointa[0] - end_pointa[0]
a = end_pointa[1] - end_pointa[1]
a = end_pointa[2] - end_pointa[2]
return (x, y, z)
def _a ( a :Vectorad , a :Vectorad ) -> Vectorad:
a = ab[1] * ac[2] - ab[2] * ac[1] # *i
a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
a = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def _a ( a :Vectorad , a :int ) -> bool:
return tuple(round(a , a ) for x in vector ) == (0, 0, 0)
def _a ( a :Pointad , a :Pointad , a :Pointad , a :int = 10 ) -> bool:
a = create_vector(a , a )
a = create_vector(a , a )
return is_zero_vector(get_ad_vectors_cross(a , a ) , a )
| 0 |
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0 | 1 |
import math
import tensorflow as tf
from packaging import version
def _a ( a :Any ) -> Union[str, Any]:
a = tf.convert_to_tensor(a )
a = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def _a ( a :Union[str, Any] ) -> Union[str, Any]:
a = tf.convert_to_tensor(a )
a = tf.cast(math.pi , x.dtype )
a = tf.cast(0.044_715 , x.dtype )
a = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(a , 3 )) ))
return x * cdf
def _a ( a :List[Any] ) -> Optional[int]:
a = tf.convert_to_tensor(a )
return x * tf.tanh(tf.math.softplus(a ) )
def _a ( a :Union[str, Any] ) -> Tuple:
a = tf.convert_to_tensor(a )
a = tf.cast(0.044_715 , x.dtype )
a = tf.cast(0.7_978_845_608 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def _a ( a :Union[str, Any] ) -> Optional[Any]:
a = tf.convert_to_tensor(a )
a = tf.cast(1.702 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def _a ( a :List[str] ) -> List[str]:
return tf.clip_by_value(_gelu(a ) , -10 , 10 )
def _a ( a :Dict , a :Optional[Any]=-1 ) -> Union[str, Any]:
a , a = tf.split(a , 2 , axis=a )
return a * tf.math.sigmoid(a )
if version.parse(tf.version.VERSION) >= version.parse("2.4"):
def _a ( a :int ) -> List[str]:
return tf.keras.activations.gelu(a , approximate=a )
UpperCAmelCase__ = tf.keras.activations.gelu
UpperCAmelCase__ = approximate_gelu_wrap
else:
UpperCAmelCase__ = _gelu
UpperCAmelCase__ = _gelu_new
UpperCAmelCase__ = {
"gelu": gelu,
"gelu_10": gelu_aa,
"gelu_fast": gelu_fast,
"gelu_new": gelu_new,
"glu": glu,
"mish": mish,
"quick_gelu": quick_gelu,
"relu": tf.keras.activations.relu,
"sigmoid": tf.keras.activations.sigmoid,
"silu": tf.keras.activations.swish,
"swish": tf.keras.activations.swish,
"tanh": tf.keras.activations.tanh,
}
def _a ( a :Dict ) -> List[Any]:
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
| 0 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ = logging.getLogger()
def _a ( ) -> Optional[int]:
a = argparse.ArgumentParser()
parser.add_argument('''-f''' )
a = parser.parse_args()
return args.f
def _a ( a :Any ) -> Tuple:
a = {}
a = os.path.join(a , '''all_results.json''' )
if os.path.exists(a ):
with open(a , '''r''' ) as f:
a = json.load(a )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _a ( ) -> int:
a = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
UpperCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ ( lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
a = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
a = 7 if get_gpu_count() > 1 else 2
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
a = logging.StreamHandler(sys.stdout )
logger.addHandler(__UpperCAmelCase )
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
| 0 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase__ = {
"configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"],
"processing_speech_to_text": ["Speech2TextProcessor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["Speech2TextTokenizer"]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["Speech2TextFeatureExtractor"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSpeech2TextForConditionalGeneration",
"TFSpeech2TextModel",
"TFSpeech2TextPreTrainedModel",
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"Speech2TextForConditionalGeneration",
"Speech2TextModel",
"Speech2TextPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
import math
def _a ( a :int ) -> list:
a = [True] * n
a = False
a = False
a = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
a = i * 2
while index < n:
a = False
a = index + i
a = [2]
for i in range(3 , a , 2 ):
if is_prime[i]:
primes.append(a )
return primes
def _a ( a :int = 999_966_663_333 ) -> int:
a = math.floor(math.sqrt(a ) ) + 100
a = prime_sieve(a )
a = 0
a = 0
a = primes[prime_index]
while (last_prime**2) <= limit:
a = primes[prime_index + 1]
a = last_prime**2
a = next_prime**2
# Get numbers divisible by lps(current)
a = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
a = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
a = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
a = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 0 | 1 |
import os
from datetime import datetime as dt
from github import Github
UpperCAmelCase__ = [
"good first issue",
"feature request",
"wip",
]
def _a ( ) -> List[str]:
a = Github(os.environ['''GITHUB_TOKEN'''] )
a = g.get_repo('''huggingface/accelerate''' )
a = repo.get_issues(state='''open''' )
for issue in open_issues:
a = sorted([comment for comment in issue.get_comments()] , key=lambda a : i.created_at , reverse=a )
a = comments[0] if len(a ) > 0 else None
a = dt.utcnow()
a = (current_time - issue.updated_at).days
a = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state='''closed''' )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 0 |
def _a ( a :float , a :float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 0 | 1 |
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase__ = logging.get_logger(__name__)
def _a ( a :str ) -> Dict:
a = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
a = 128
elif "12-12" in model_name:
a = 12
a = 12
elif "14-14" in model_name:
a = 14
a = 14
elif "16-16" in model_name:
a = 16
a = 16
else:
raise ValueError('''Model not supported''' )
a = '''huggingface/label-files'''
if "speech-commands" in model_name:
a = 35
a = '''speech-commands-v2-id2label.json'''
else:
a = 527
a = '''audioset-id2label.json'''
a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
return config
def _a ( a :Optional[Any] ) -> Union[str, Any]:
if "module.v" in name:
a = name.replace('''module.v''' , '''audio_spectrogram_transformer''' )
if "cls_token" in name:
a = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "dist_token" in name:
a = name.replace('''dist_token''' , '''embeddings.distillation_token''' )
if "pos_embed" in name:
a = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
a = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
# transformer blocks
if "blocks" in name:
a = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
a = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
a = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
a = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
a = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
a = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
a = name.replace('''mlp.fc2''' , '''output.dense''' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
a = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' )
# classifier head
if "module.mlp_head.0" in name:
a = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' )
if "module.mlp_head.1" in name:
a = name.replace('''module.mlp_head.1''' , '''classifier.dense''' )
return name
def _a ( a :Optional[int] , a :List[str] ) -> Any:
for key in orig_state_dict.copy().keys():
a = orig_state_dict.pop(a )
if "qkv" in key:
a = key.split('''.''' )
a = int(key_split[3] )
a = config.hidden_size
if "weight" in key:
a = val[:dim, :]
a = val[dim : dim * 2, :]
a = val[-dim:, :]
else:
a = val[:dim]
a = val[dim : dim * 2]
a = val[-dim:]
else:
a = val
return orig_state_dict
def _a ( a :Union[str, Any] ) -> Optional[Any]:
a = [
'''module.v.head.weight''',
'''module.v.head.bias''',
'''module.v.head_dist.weight''',
'''module.v.head_dist.bias''',
]
for k in ignore_keys:
state_dict.pop(a , a )
@torch.no_grad()
def _a ( a :Union[str, Any] , a :Optional[int] , a :str=False ) -> Union[str, Any]:
a = get_audio_spectrogram_transformer_config(a )
a = {
'''ast-finetuned-audioset-10-10-0.4593''': (
'''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.450''': (
'''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448''': (
'''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448-v2''': (
'''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'''
),
'''ast-finetuned-audioset-12-12-0.447''': (
'''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'''
),
'''ast-finetuned-audioset-14-14-0.443''': (
'''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'''
),
'''ast-finetuned-audioset-16-16-0.442''': (
'''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'''
),
'''ast-finetuned-speech-commands-v2''': (
'''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'''
),
}
# load original state_dict
a = model_name_to_url[model_name]
a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' )
# remove some keys
remove_keys(a )
# rename some keys
a = convert_state_dict(a , a )
# load 🤗 model
a = ASTForAudioClassification(a )
model.eval()
model.load_state_dict(a )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
a = -4.2_677_393 if '''speech-commands''' not in model_name else -6.845_978
a = 4.5_689_974 if '''speech-commands''' not in model_name else 5.5_654_526
a = 1_024 if '''speech-commands''' not in model_name else 128
a = ASTFeatureExtractor(mean=a , std=a , max_length=a )
if "speech-commands" in model_name:
a = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' )
a = dataset[0]['''audio''']['''array''']
else:
a = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , )
a , a = torchaudio.load(a )
a = waveform.squeeze().numpy()
a = feature_extractor(a , sampling_rate=16_000 , return_tensors='''pt''' )
# forward pass
a = model(**a )
a = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
a = torch.tensor([-0.8_760, -7.0_042, -8.6_602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
a = torch.tensor([-1.1_986, -7.0_903, -8.2_718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
a = torch.tensor([-2.6_128, -8.0_080, -9.4_344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
a = torch.tensor([-1.5_080, -7.4_534, -8.8_917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
a = torch.tensor([-0.5_050, -6.5_833, -8.0_843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
a = torch.tensor([-0.3_826, -7.0_336, -8.2_413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
a = torch.tensor([-1.2_113, -6.9_101, -8.3_470] )
elif model_name == "ast-finetuned-speech-commands-v2":
a = torch.tensor([6.1_589, -8.0_566, -8.7_984] )
else:
raise ValueError('''Unknown model name''' )
if not torch.allclose(logits[0, :3] , a , atol=1e-4 ):
raise ValueError('''Logits don\'t match''' )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(a ).mkdir(exist_ok=a )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(a )
print(F"""Saving feature extractor to {pytorch_dump_folder_path}""" )
feature_extractor.save_pretrained(a )
if push_to_hub:
print('''Pushing model and feature extractor to the hub...''' )
model.push_to_hub(F"""MIT/{model_name}""" )
feature_extractor.push_to_hub(F"""MIT/{model_name}""" )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="ast-finetuned-audioset-10-10-0.4593",
type=str,
help="Name of the Audio Spectrogram Transformer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
UpperCAmelCase__ = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
a = SMALL_MODEL_IDENTIFIER
a = '''pt'''
a = '''tf'''
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase )
model_tf.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = '''mock_framework'''
# Framework provided - return whatever the user provides
a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
| 0 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=13 , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : Tuple=224 , __UpperCAmelCase : Dict=30 , __UpperCAmelCase : Any=400 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Any=None , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , __UpperCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , ) ->Optional[int]:
"""simple docstring"""
a = size if size is not None else {'''height''': 18, '''width''': 18}
a = parent
a = batch_size
a = num_channels
a = image_size
a = min_resolution
a = max_resolution
a = do_resize
a = size
a = do_normalize
a = image_mean
a = image_std
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ViTImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self : List[str] ) ->Tuple:
"""simple docstring"""
a = EfficientFormerImageProcessorTester(self )
@property
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return self.image_proc_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) )
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : List[str] ) ->Optional[int]:
"""simple docstring"""
a = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , Image.Image )
# Test not batched input
a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
a = image_processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
def __lowerCAmelCase ( self : str ) ->str:
"""simple docstring"""
a = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , np.ndarray )
# Test not batched input
a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
a = image_processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
# Test not batched input
a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
a = image_processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
| 0 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ProphetNetTokenizer
__snake_case = False
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
super().setUp()
a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Dict:
"""simple docstring"""
a = '''UNwant\u00E9d,running'''
a = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file )
a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
a = {}
for i, token in enumerate(__UpperCAmelCase ):
a = i
a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
a = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102]
a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 0 | 1 |
import math
def _a ( a :int ) -> list:
a = [True] * n
a = False
a = False
a = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
a = i * 2
while index < n:
a = False
a = index + i
a = [2]
for i in range(3 , a , 2 ):
if is_prime[i]:
primes.append(a )
return primes
def _a ( a :int = 999_966_663_333 ) -> int:
a = math.floor(math.sqrt(a ) ) + 100
a = prime_sieve(a )
a = 0
a = 0
a = primes[prime_index]
while (last_prime**2) <= limit:
a = primes[prime_index + 1]
a = last_prime**2
a = next_prime**2
# Get numbers divisible by lps(current)
a = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
a = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
a = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
a = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _a ( a :List[Any] ) -> Optional[int]:
a = []
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
F"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
F"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
F"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
F"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def _a ( a :List[Any] , a :Optional[int] ) -> Dict:
a = []
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def _a ( a :Any ) -> List[Any]:
a = []
token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') )
return token
def _a ( ) -> Optional[int]:
a = []
head.append(('''layernorm.weight''', '''norm.weight''') )
head.append(('''layernorm.bias''', '''norm.bias''') )
head.append(('''classifier.weight''', '''head.weight''') )
head.append(('''classifier.bias''', '''head.bias''') )
return head
def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]:
a = '''imagenet-1k-id2label.json'''
a = 1_000
a = '''huggingface/label-files'''
a = num_labels
a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13":
a = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21":
a = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
a = [2, 2, 20]
a = [3, 12, 16]
a = [192, 768, 1_024]
a = CvtForImageClassification(a )
a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
a = image_size
a = torch.load(a , map_location=torch.device('''cpu''' ) )
a = OrderedDict()
a = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
a = list_of_state_dict + cls_token(a )
a = list_of_state_dict + embeddings(a )
for cnt in range(config.depth[idx] ):
a = list_of_state_dict + attention(a , a )
a = list_of_state_dict + final()
for gg in list_of_state_dict:
print(a )
for i in range(len(a ) ):
a = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(a )
model.save_pretrained(a )
image_processor.save_pretrained(a )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase__ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 0 |
def _a ( a :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
a = gray_code_sequence_string(a )
#
# convert them to integers
for i in range(len(a ) ):
a = int(sequence[i] , 2 )
return sequence
def _a ( a :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
a = gray_code_sequence_string(bit_count - 1 )
a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
a = '''0''' + smaller_sequence[i]
sequence.append(a )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
a = '''1''' + smaller_sequence[i]
sequence.append(a )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
def _a ( a :int = 1_000 ) -> int:
a = 2**power
a = str(a )
a = list(a )
a = 0
for i in list_num:
sum_of_num += int(a )
return sum_of_num
if __name__ == "__main__":
UpperCAmelCase__ = int(input("Enter the power of 2: ").strip())
print("2 ^ ", power, " = ", 2**power)
UpperCAmelCase__ = solution(power)
print("Sum of the digits is: ", result)
| 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
# fmt: off
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
a = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
a = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
a = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = self.prepare_image_inputs()
a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = processor(text=__UpperCAmelCase )
a = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__UpperCAmelCase )
a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 0 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"Visual-Attention-Network/van-base": (
"https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json"
),
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''van'''
def __init__( self : List[str] , __UpperCAmelCase : int=224 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Optional[Any]=[7, 3, 3, 3] , __UpperCAmelCase : Tuple=[4, 2, 2, 2] , __UpperCAmelCase : Optional[Any]=[64, 128, 320, 512] , __UpperCAmelCase : List[str]=[3, 3, 12, 3] , __UpperCAmelCase : Optional[int]=[8, 8, 4, 4] , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Optional[Any]=1e-6 , __UpperCAmelCase : str=1e-2 , __UpperCAmelCase : Dict=0.0 , __UpperCAmelCase : Optional[Any]=0.0 , **__UpperCAmelCase : List[Any] , ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = image_size
a = num_channels
a = patch_sizes
a = strides
a = hidden_sizes
a = depths
a = mlp_ratios
a = hidden_act
a = initializer_range
a = layer_norm_eps
a = layer_scale_init_value
a = drop_path_rate
a = dropout_rate
| 0 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _a ( a :List[Any] ) -> Optional[int]:
a = []
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
F"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
F"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
F"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
F"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def _a ( a :List[Any] , a :Optional[int] ) -> Dict:
a = []
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def _a ( a :Any ) -> List[Any]:
a = []
token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') )
return token
def _a ( ) -> Optional[int]:
a = []
head.append(('''layernorm.weight''', '''norm.weight''') )
head.append(('''layernorm.bias''', '''norm.bias''') )
head.append(('''classifier.weight''', '''head.weight''') )
head.append(('''classifier.bias''', '''head.bias''') )
return head
def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]:
a = '''imagenet-1k-id2label.json'''
a = 1_000
a = '''huggingface/label-files'''
a = num_labels
a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13":
a = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21":
a = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
a = [2, 2, 20]
a = [3, 12, 16]
a = [192, 768, 1_024]
a = CvtForImageClassification(a )
a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
a = image_size
a = torch.load(a , map_location=torch.device('''cpu''' ) )
a = OrderedDict()
a = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
a = list_of_state_dict + cls_token(a )
a = list_of_state_dict + embeddings(a )
for cnt in range(config.depth[idx] ):
a = list_of_state_dict + attention(a , a )
a = list_of_state_dict + final()
for gg in list_of_state_dict:
print(a )
for i in range(len(a ) ):
a = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(a )
model.save_pretrained(a )
image_processor.save_pretrained(a )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase__ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 0 | 1 |
from __future__ import annotations
from math import pow, sqrt
def _a ( a :float , a :float , a :float ) -> dict[str, float]:
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if resistance == 0:
return {"resistance": sqrt(pow(a , 2 ) - pow(a , 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(a , 2 ) - pow(a , 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(a , 2 ) + pow(a , 2 ) )}
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
from __future__ import annotations
UpperCAmelCase__ = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase__ = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase__ = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _a ( a :Matrix , a :int , a :int , a :int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _a ( a :Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _a ( a :Matrix ) -> Matrix | None:
if location := find_empty_location(a ):
a , a = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(a , a , a , a ):
a = digit
if sudoku(a ) is not None:
return grid
a = 0
return None
def _a ( a :Matrix ) -> None:
for row in grid:
for cell in row:
print(a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
UpperCAmelCase__ = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 0 | 1 |
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
UpperCAmelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def _a ( a :Optional[int] , a :tuple , a :Path , a :int , a :Optional[Any] , a :Any , a :Union[str, Any] , a :int=False , ) -> Union[str, Any]:
output_path.parent.mkdir(parents=a , exist_ok=a )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
a , a , f=output_path.as_posix() , input_names=a , output_names=a , dynamic_axes=a , do_constant_folding=a , use_external_data_format=a , enable_onnx_checker=a , opset_version=a , )
else:
export(
a , a , f=output_path.as_posix() , input_names=a , output_names=a , dynamic_axes=a , do_constant_folding=a , opset_version=a , )
@torch.no_grad()
def _a ( a :str , a :str , a :int , a :bool = False ) -> List[Any]:
a = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
a = '''cuda'''
elif fpaa and not torch.cuda.is_available():
raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' )
else:
a = '''cpu'''
a = Path(a )
# VAE DECODER
a = AutoencoderKL.from_pretrained(model_path + '''/vae''' )
a = vae_decoder.config.latent_channels
# forward only through the decoder part
a = vae_decoder.decode
onnx_export(
a , model_args=(
torch.randn(1 , a , 25 , 25 ).to(device=a , dtype=a ),
False,
) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={
'''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''},
} , opset=a , )
del vae_decoder
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
UpperCAmelCase__ = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 0 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = KandinskyVaaPriorPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''', '''negative_prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
return 100
@property
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
a = PriorTransformer(**__UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , )
a = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
@skip_mps
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
| 0 | 1 |
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : List[str]=7 , __UpperCAmelCase : str=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : int=False , __UpperCAmelCase : str=False , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : int=99 , __UpperCAmelCase : str=0 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : str=5 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : Union[str, Any]=512 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Any="last" , __UpperCAmelCase : str=True , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Tuple=0 , ) ->List[str]:
"""simple docstring"""
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_input_lengths
a = use_token_type_ids
a = use_labels
a = gelu_activation
a = sinusoidal_embeddings
a = causal
a = asm
a = n_langs
a = vocab_size
a = n_special
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_sequence_label_size
a = initializer_range
a = num_labels
a = num_choices
a = summary_type
a = use_proj
a = scope
a = bos_token_id
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_input_lengths:
a = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
a = None
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
a = ids_tensor([self.batch_size] , 2 ).float()
a = ids_tensor([self.batch_size] , self.num_choices )
a = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , ) ->List[str]:
"""simple docstring"""
a = XLMModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , lengths=__UpperCAmelCase , langs=__UpperCAmelCase )
a = model(__UpperCAmelCase , langs=__UpperCAmelCase )
a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , ) ->Any:
"""simple docstring"""
a = XLMWithLMHeadModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , ) ->Optional[Any]:
"""simple docstring"""
a = XLMForQuestionAnsweringSimple(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase )
a = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase )
a = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , ) ->List[Any]:
"""simple docstring"""
a = XLMForQuestionAnswering(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase )
a = model(
__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , p_mask=__UpperCAmelCase , )
a = model(
__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , )
((a) , ) = result_with_labels.to_tuple()
a = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase )
((a) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , ) ->Dict:
"""simple docstring"""
a = XLMForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase )
a = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : str , ) ->Optional[Any]:
"""simple docstring"""
a = self.num_labels
a = XLMForTokenClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , ) ->str:
"""simple docstring"""
a = self.num_choices
a = XLMForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths}
return config, inputs_dict
@require_torch
class lowercase_ ( lowercase , lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
__snake_case = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__snake_case = (
{
'''feature-extraction''': XLMModel,
'''fill-mask''': XLMWithLMHeadModel,
'''question-answering''': XLMForQuestionAnsweringSimple,
'''text-classification''': XLMForSequenceClassification,
'''text-generation''': XLMWithLMHeadModel,
'''token-classification''': XLMForTokenClassification,
'''zero-shot''': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=False ) ->int:
"""simple docstring"""
a = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase )
return inputs_dict
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
a = XLMModelTester(self )
a = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 )
def __lowerCAmelCase ( self : Dict ) ->Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*__UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : int=False , __UpperCAmelCase : int=1 ) ->Dict:
"""simple docstring"""
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(
[isinstance(__UpperCAmelCase , __UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(__UpperCAmelCase ) )
self.assertEqual(len(__UpperCAmelCase ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(__UpperCAmelCase ):
# adds PAD dummy token
a = min_length + idx + 1
a = min_length + idx + 1
a = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__UpperCAmelCase ) )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=1 ) ->Dict:
"""simple docstring"""
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(
[isinstance(__UpperCAmelCase , __UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(__UpperCAmelCase ) , )
self.assertEqual(len(__UpperCAmelCase ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(__UpperCAmelCase ):
# adds PAD dummy token
a = min_length + idx + 1
a = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__UpperCAmelCase ) , )
pass
@slow
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = XLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' )
model.to(__UpperCAmelCase )
a = torch.tensor([[14, 447]] , dtype=torch.long , device=__UpperCAmelCase ) # the president
a = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
a = model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __UpperCAmelCase )
| 0 |
from math import factorial
UpperCAmelCase__ = {str(digit): factorial(digit) for digit in range(10)}
def _a ( a :int ) -> int:
if not isinstance(a , a ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) )
def _a ( a :int = 60 , a :int = 1_000_000 ) -> int:
if not isinstance(a , a ) or not isinstance(a , a ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
a = 0
# the cached sizes of the previous chains
a = {}
for start_chain_element in range(1 , a ):
# The temporary set will contain the elements of the chain
a = set()
a = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
a = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(a )
chain_set_length += 1
a = digit_factorial_sum(a )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
a = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution()}""")
| 0 | 1 |
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase_ :
'''simple docstring'''
def __init__( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Optional[Any]=10 , __UpperCAmelCase : str=[10, 20, 30, 40] , __UpperCAmelCase : Optional[int]=[1, 1, 2, 1] , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : int="relu" , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : str=None , ) ->List[Any]:
"""simple docstring"""
a = parent
a = batch_size
a = image_size
a = num_channels
a = embeddings_size
a = hidden_sizes
a = depths
a = is_training
a = use_labels
a = hidden_act
a = num_labels
a = scope
a = len(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.num_labels )
a = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any ) ->List[Any]:
"""simple docstring"""
a = TFRegNetModel(config=__UpperCAmelCase )
a = model(__UpperCAmelCase , training=__UpperCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : int ) ->Union[str, Any]:
"""simple docstring"""
a = self.num_labels
a = TFRegNetForImageClassification(__UpperCAmelCase )
a = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
a = self.prepare_config_and_inputs()
a , a , a = config_and_inputs
a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class lowercase_ ( lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
__snake_case = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
__snake_case = False
__snake_case = False
__snake_case = False
__snake_case = False
__snake_case = False
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = TFRegNetModelTester(self )
a = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , )
@slow
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
super().test_keras_fit()
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def __lowerCAmelCase ( self : str ) ->Any:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__UpperCAmelCase )
a = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->str:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
def check_hidden_states_output(__UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] ):
a = model_class(__UpperCAmelCase )
a = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) , training=__UpperCAmelCase )
a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
a = self.model_tester.num_stages
self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
a = layer_type
a = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str]={} ):
a = model(__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase )
a = model(__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ).to_tuple()
def recursive_check(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ):
if isinstance(__UpperCAmelCase , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__UpperCAmelCase , __UpperCAmelCase ):
recursive_check(__UpperCAmelCase , __UpperCAmelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(__UpperCAmelCase , __UpperCAmelCase ) ) , msg=(
'''Tuple and dict output are not equal. Difference:'''
F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"""
) , )
recursive_check(__UpperCAmelCase , __UpperCAmelCase )
for model_class in self.all_model_classes:
a = model_class(__UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'''output_hidden_states''': True} )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'''output_hidden_states''': True} )
def __lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = TFRegNetModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _a ( ) -> Tuple:
a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
a = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__UpperCAmelCase , return_tensors='''tf''' )
# forward pass
a = model(**__UpperCAmelCase , training=__UpperCAmelCase )
# verify the logits
a = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
a = tf.constant([-0.4180, -1.5051, -3.4836] )
tf.debugging.assert_near(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 )
| 0 |
def _a ( a :int = 100 ) -> int:
a = n * (n + 1) * (2 * n + 1) / 6
a = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 | 1 |
import numpy as np
def _a ( a :np.ndarray , a :np.ndarray , a :float = 1e-12 , a :int = 100 , ) -> tuple[float, np.ndarray]:
assert np.shape(a )[0] == np.shape(a )[1]
# Ensure proper dimensionality.
assert np.shape(a )[0] == np.shape(a )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(a ) == np.iscomplexobj(a )
a = np.iscomplexobj(a )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(a , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
a = False
a = 0
a = 0
a = 1e12
while not convergence:
# Multiple matrix by the vector.
a = np.dot(a , a )
# Normalize the resulting output vector.
a = w / np.linalg.norm(a )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
a = vector.conj().T if is_complex else vector.T
a = np.dot(a , np.dot(a , a ) )
# Check convergence.
a = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
a = True
a = lambda_
if is_complex:
a = np.real(lambda_ )
return lambda_, vector
def _a ( ) -> None:
a = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
a = np.array([41, 4, 20] )
a = real_input_matrix.astype(np.complexaaa )
a = np.triu(1j * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
a = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
a = real_input_matrix
a = real_vector
elif problem_type == "complex":
a = complex_input_matrix
a = complex_vector
# Our implementation.
a , a = power_iteration(a , a )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
a , a = np.linalg.eigh(a )
# Last eigenvalue is the maximum one.
a = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
a = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1e-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(a ) - np.abs(a ) ) <= 1e-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase__ = {
"configuration_groupvit": [
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroupViTConfig",
"GroupViTOnnxConfig",
"GroupViTTextConfig",
"GroupViTVisionConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroupViTModel",
"GroupViTPreTrainedModel",
"GroupViTTextModel",
"GroupViTVisionModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGroupViTModel",
"TFGroupViTPreTrainedModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
import fire
from utils import calculate_rouge, save_json
def _a ( a :Optional[int] , a :Tuple , a :Tuple=None , **a :Union[str, Any] ) -> Any:
a = [x.strip() for x in open(a ).readlines()]
a = [x.strip() for x in open(a ).readlines()][: len(a )]
a = calculate_rouge(a , a , **a )
if save_path is not None:
save_json(a , a , indent=a )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ShapEPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
return 8
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
a = PriorTransformer(**__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
a = ShapERenderer(**__UpperCAmelCase )
return model
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_renderer
a = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , )
a = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.images[0]
a = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
a = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = 1
a = 2
a = self.get_dummy_inputs(__UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
a = batch_size * [inputs[key]]
a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
a = ShapEPipeline.from_pretrained('''openai/shap-e''' )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a = pipe(
'''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 0 | 1 |
def _a ( a :int , a :int ) -> int:
return int((input_a, input_a).count(0 ) != 0 )
def _a ( ) -> None:
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 0 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase__ = [8, 5, 9, 7]
UpperCAmelCase__ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase__ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None:
"""simple docstring"""
a = claim_vector
a = allocated_resources_table
a = maximum_claim_table
def __lowerCAmelCase ( self : Any ) ->list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __lowerCAmelCase ( self : Optional[int] ) ->list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()}
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = self.__need()
a = self.__allocated_resources_table
a = self.__available_resources()
a = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
a = False
for each_need in need_list:
a = True
for index, need in enumerate(__UpperCAmelCase ):
if need > available_resources[index]:
a = False
break
if execution:
a = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
a = original_need_index
print(F"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(__UpperCAmelCase )
# update available/freed resources stack
a = np.array(__UpperCAmelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = 42
__snake_case = 42
class lowercase_ ( nn.Module ):
'''simple docstring'''
__snake_case = 42
__snake_case = (16, 32, 96, 2_56)
__snake_case = jnp.floataa
def __lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
a = nn.Conv(
self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
a = []
for i in range(len(self.block_out_channels ) - 1 ):
a = self.block_out_channels[i]
a = self.block_out_channels[i + 1]
a = nn.Conv(
__UpperCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(__UpperCAmelCase )
a = nn.Conv(
__UpperCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(__UpperCAmelCase )
a = blocks
a = nn.Conv(
self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self : List[Any] , __UpperCAmelCase : Any ) ->Dict:
"""simple docstring"""
a = self.conv_in(__UpperCAmelCase )
a = nn.silu(__UpperCAmelCase )
for block in self.blocks:
a = block(__UpperCAmelCase )
a = nn.silu(__UpperCAmelCase )
a = self.conv_out(__UpperCAmelCase )
return embedding
@flax_register_to_config
class lowercase_ ( nn.Module , lowercase , lowercase ):
'''simple docstring'''
__snake_case = 32
__snake_case = 4
__snake_case = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
__snake_case = False
__snake_case = (3_20, 6_40, 12_80, 12_80)
__snake_case = 2
__snake_case = 8
__snake_case = None
__snake_case = 12_80
__snake_case = 0.0
__snake_case = False
__snake_case = jnp.floataa
__snake_case = True
__snake_case = 0
__snake_case = "rgb"
__snake_case = (16, 32, 96, 2_56)
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : jax.random.KeyArray ) ->FrozenDict:
"""simple docstring"""
a = (1, self.in_channels, self.sample_size, self.sample_size)
a = jnp.zeros(__UpperCAmelCase , dtype=jnp.floataa )
a = jnp.ones((1,) , dtype=jnp.intaa )
a = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
a = (1, 3, self.sample_size * 8, self.sample_size * 8)
a = jnp.zeros(__UpperCAmelCase , dtype=jnp.floataa )
a , a = jax.random.split(__UpperCAmelCase )
a = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )["params"]
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
a = self.block_out_channels
a = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
a = self.num_attention_heads or self.attention_head_dim
# input
a = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
a = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
a = FlaxTimestepEmbedding(__UpperCAmelCase , dtype=self.dtype )
a = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , )
a = self.only_cross_attention
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
a = (only_cross_attention,) * len(self.down_block_types )
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
a = (num_attention_heads,) * len(self.down_block_types )
# down
a = []
a = []
a = block_out_channels[0]
a = nn.Conv(
__UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(__UpperCAmelCase )
for i, down_block_type in enumerate(self.down_block_types ):
a = output_channel
a = block_out_channels[i]
a = i == len(__UpperCAmelCase ) - 1
if down_block_type == "CrossAttnDownBlock2D":
a = FlaxCrossAttnDownBlockaD(
in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , )
else:
a = FlaxDownBlockaD(
in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(__UpperCAmelCase )
for _ in range(self.layers_per_block ):
a = nn.Conv(
__UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(__UpperCAmelCase )
if not is_final_block:
a = nn.Conv(
__UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(__UpperCAmelCase )
a = down_blocks
a = controlnet_down_blocks
# mid
a = block_out_channels[-1]
a = FlaxUNetMidBlockaDCrossAttn(
in_channels=__UpperCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , )
a = nn.Conv(
__UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : float = 1.0 , __UpperCAmelCase : bool = True , __UpperCAmelCase : bool = False , ) ->Union[FlaxControlNetOutput, Tuple]:
"""simple docstring"""
a = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
a = jnp.flip(__UpperCAmelCase , axis=1 )
# 1. time
if not isinstance(__UpperCAmelCase , jnp.ndarray ):
a = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(__UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0:
a = timesteps.astype(dtype=jnp.floataa )
a = jnp.expand_dims(__UpperCAmelCase , 0 )
a = self.time_proj(__UpperCAmelCase )
a = self.time_embedding(__UpperCAmelCase )
# 2. pre-process
a = jnp.transpose(__UpperCAmelCase , (0, 2, 3, 1) )
a = self.conv_in(__UpperCAmelCase )
a = jnp.transpose(__UpperCAmelCase , (0, 2, 3, 1) )
a = self.controlnet_cond_embedding(__UpperCAmelCase )
sample += controlnet_cond
# 3. down
a = (sample,)
for down_block in self.down_blocks:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
a , a = down_block(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , deterministic=not train )
else:
a , a = down_block(__UpperCAmelCase , __UpperCAmelCase , deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
a = self.mid_block(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , deterministic=not train )
# 5. contronet blocks
a = ()
for down_block_res_sample, controlnet_block in zip(__UpperCAmelCase , self.controlnet_down_blocks ):
a = controlnet_block(__UpperCAmelCase )
controlnet_down_block_res_samples += (down_block_res_sample,)
a = controlnet_down_block_res_samples
a = self.controlnet_mid_block(__UpperCAmelCase )
# 6. scaling
a = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=__UpperCAmelCase , mid_block_res_sample=__UpperCAmelCase )
| 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCAmelCase__ = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_INIT_CONFIGURATION
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ElectraTokenizer
def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
a = do_lower_case
a = strip_accents
a = tokenize_chinese_chars
a = normalizer_class(**__UpperCAmelCase )
a = do_lower_case
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str:
"""simple docstring"""
a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 0 | 1 |
def _a ( a :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
a = gray_code_sequence_string(a )
#
# convert them to integers
for i in range(len(a ) ):
a = int(sequence[i] , 2 )
return sequence
def _a ( a :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
a = gray_code_sequence_string(bit_count - 1 )
a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
a = '''0''' + smaller_sequence[i]
sequence.append(a )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
a = '''1''' + smaller_sequence[i]
sequence.append(a )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
def _a ( a :int ) -> bool:
a = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
UpperCAmelCase__ = {
"google/tapas-base-finetuned-sqa": (
"https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json"
),
"google/tapas-base-finetuned-wtq": (
"https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json"
),
"google/tapas-base-finetuned-wikisql-supervised": (
"https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json"
),
"google/tapas-base-finetuned-tabfact": (
"https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json"
),
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''tapas'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : Optional[Any]=30_522 , __UpperCAmelCase : Optional[Any]=768 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : Dict=3_072 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[int]=1_024 , __UpperCAmelCase : List[str]=[3, 256, 256, 2, 256, 256, 10] , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : List[str]=1e-1_2 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : Optional[int]=10.0 , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : Optional[int]=1.0 , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=1.0 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : List[str]=1.0 , __UpperCAmelCase : Dict=1.0 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Union[str, Any]="ratio" , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Any=64 , __UpperCAmelCase : List[Any]=32 , __UpperCAmelCase : int=False , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Any=False , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : str=False , __UpperCAmelCase : int=None , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Union[str, Any] , ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = hidden_act
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_sizes
a = initializer_range
a = layer_norm_eps
# Fine-tuning task hyperparameters
a = positive_label_weight
a = num_aggregation_labels
a = aggregation_loss_weight
a = use_answer_as_supervision
a = answer_loss_importance
a = use_normalized_answer_loss
a = huber_loss_delta
a = temperature
a = aggregation_temperature
a = use_gumbel_for_cells
a = use_gumbel_for_aggregation
a = average_approximation_function
a = cell_selection_preference
a = answer_loss_cutoff
a = max_num_rows
a = max_num_columns
a = average_logits_per_cell
a = select_one_column
a = allow_empty_column_selection
a = init_cell_selection_weights_to_zero
a = reset_position_index_per_cell
a = disable_per_token_loss
# Aggregation hyperparameters
a = aggregation_labels
a = no_aggregation_label_index
if isinstance(self.aggregation_labels , __UpperCAmelCase ):
a = {int(__UpperCAmelCase ): v for k, v in aggregation_labels.items()}
| 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ = pytest.mark.integration
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
a = dset.map(
lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase )
a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
from elasticsearch import Elasticsearch
a = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
a = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase )
a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
a = np.eye(5 , dtype=np.floataa )[::-1]
a , a = index.search_batch(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
import faiss
a = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
a = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__UpperCAmelCase ):
a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = faiss.IndexFlat(5 )
a = FaissIndex(custom_index=__UpperCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
index.save(tmp_file.name )
a = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _a ( a :Dict ) -> Any:
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
a = '''index.faiss'''
a = F"""mock://{index_name}"""
index.save(a , storage_options=mockfs.storage_options )
a = FaissIndex.load(a , storage_options=mockfs.storage_options )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(a )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = Elasticsearch()
a = {'''acknowledged''': True}
a = ElasticSearchIndex(es_client=__UpperCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
# batched queries with timeout
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
| 0 | 1 |
def _a ( a :int ) -> bool:
if num < 0:
return False
a = num
a = 0
while num > 0:
a = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''t5'''
__snake_case = ['''past_key_values''']
__snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=32_128 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=128 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=1e-6 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str , ) ->Optional[Any]:
"""simple docstring"""
a = vocab_size
a = d_model
a = d_kv
a = d_ff
a = num_layers
a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a = num_heads
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = feed_forward_proj
a = use_cache
a = self.feed_forward_proj.split('''-''' )
a = act_info[-1]
a = act_info[0] == '''gated'''
if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a = '''gelu_new'''
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
a = '''past_encoder_sequence + sequence'''
a = {0: '''batch'''}
a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''decoder_sequence'''}
a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
return common_inputs
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return 13
| 0 | 1 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''t5'''
__snake_case = ['''past_key_values''']
__snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=32_128 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=128 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=1e-6 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str , ) ->Optional[Any]:
"""simple docstring"""
a = vocab_size
a = d_model
a = d_kv
a = d_ff
a = num_layers
a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a = num_heads
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = feed_forward_proj
a = use_cache
a = self.feed_forward_proj.split('''-''' )
a = act_info[-1]
a = act_info[0] == '''gated'''
if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a = '''gelu_new'''
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
a = '''past_encoder_sequence + sequence'''
a = {0: '''batch'''}
a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''decoder_sequence'''}
a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
return common_inputs
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return 13
| 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''llama'''
__snake_case = ['''past_key_values''']
def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str:
"""simple docstring"""
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = intermediate_size
a = num_hidden_layers
a = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a = num_attention_heads
a = num_key_value_heads
a = hidden_act
a = initializer_range
a = rms_norm_eps
a = pretraining_tp
a = use_cache
a = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"""got {self.rope_scaling}""" )
a = self.rope_scaling.get('''type''' , __UpperCAmelCase )
a = self.rope_scaling.get('''factor''' , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 0 | 1 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {"vocab_file": "spiece.model"}
UpperCAmelCase__ = {
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
UpperCAmelCase__ = {
"AI-Sweden/gpt-sw3-126m": 2048,
"AI-Sweden/gpt-sw3-350m": 2048,
"AI-Sweden/gpt-sw3-1.6b": 2048,
"AI-Sweden/gpt-sw3-6.7b": 2048,
"AI-Sweden/gpt-sw3-20b": 2048,
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ['''input_ids''', '''attention_mask''']
def __init__( self : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Dict=False , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : List[Any] , ) ->None:
"""simple docstring"""
a = {} if sp_model_kwargs is None else sp_model_kwargs
a = kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
a = '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
a = '''<|endoftext|>''' if eos_token is None else eos_token
a = '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
a = unk_token if pad_token is None else pad_token
a = eos_token if bos_token is None else bos_token
else:
a = '''<pad>''' if pad_token is None else pad_token
a = '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
a = do_lower_case
a = remove_space
a = keep_accents
a = vocab_file
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
# Used for whitespace normalization in input texts
# fmt : off
a = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
a = re.compile(
F"""[{''.join(map(__UpperCAmelCase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]""" )
def __getstate__( self : int ) ->Any:
"""simple docstring"""
a = self.__dict__.copy()
a = None
return state
def __setstate__( self : int , __UpperCAmelCase : List[Any] ) ->Optional[int]:
"""simple docstring"""
a = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
a = {}
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def __lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
return len(self.sp_model )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str ) ->str:
"""simple docstring"""
a = self.non_printing_characters_re.sub('''''' , __UpperCAmelCase )
# Normalize whitespaces
a = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
a = unicodedata.normalize('''NFC''' , __UpperCAmelCase )
return text
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) ->List[str]:
"""simple docstring"""
a = self.preprocess_text(__UpperCAmelCase )
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str ) ->int:
"""simple docstring"""
return self.sp_model.PieceToId(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : int ) ->str:
"""simple docstring"""
return self.sp_model.IdToPiece(__UpperCAmelCase )
@staticmethod
def __lowerCAmelCase ( __UpperCAmelCase : str ) ->str:
"""simple docstring"""
return out_string
def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[str] ) ->str:
"""simple docstring"""
a = []
a = ''''''
a = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__UpperCAmelCase ) + token
a = True
a = []
else:
current_sub_tokens.append(__UpperCAmelCase )
a = False
out_string += self.sp_model.decode(__UpperCAmelCase )
return out_string
def __lowerCAmelCase ( self : List[str] ) ->Dict[str, int]:
"""simple docstring"""
a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , '''wb''' ) as fi:
a = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : Union[str, bool] = False ) ->Union[List[int], List[List[int]], "torch.Tensor"]:
"""simple docstring"""
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
a = self.preprocess_text(__UpperCAmelCase )
a = self.sp_model.encode(__UpperCAmelCase )
else:
a = [self.preprocess_text(__UpperCAmelCase ) for t in text]
a = self.sp_model.encode(__UpperCAmelCase )
if return_tensors is True or return_tensors == "pt":
a = torch.tensor(__UpperCAmelCase )
return token_ids
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Union[int, List[int]] ) ->str:
"""simple docstring"""
return self.sp_model.decode(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : "Conversation" ) ->List[int]:
"""simple docstring"""
a = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()]
a = (
F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(__UpperCAmelCase ) + F"""{self.bos_token}Bot:"""
)
return self.encode(text=__UpperCAmelCase )
| 0 |
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0 | 1 |
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict ) ->List[str]:
"""simple docstring"""
a = {}
def __lowerCAmelCase ( self : str ) ->None:
"""simple docstring"""
print(self.vertex )
for i in self.vertex:
print(__UpperCAmelCase , ''' -> ''' , ''' -> '''.join([str(__UpperCAmelCase ) for j in self.vertex[i]] ) )
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->None:
"""simple docstring"""
if from_vertex in self.vertex:
self.vertex[from_vertex].append(__UpperCAmelCase )
else:
# else make a new vertex
a = [to_vertex]
def __lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
a = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : str , __UpperCAmelCase : int , __UpperCAmelCase : list ) ->None:
"""simple docstring"""
a = True
print(__UpperCAmelCase , end=''' ''' )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(__UpperCAmelCase , __UpperCAmelCase )
if __name__ == "__main__":
UpperCAmelCase__ = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print("DFS:")
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 0 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ = logging.getLogger()
def _a ( ) -> Optional[int]:
a = argparse.ArgumentParser()
parser.add_argument('''-f''' )
a = parser.parse_args()
return args.f
def _a ( a :Any ) -> Tuple:
a = {}
a = os.path.join(a , '''all_results.json''' )
if os.path.exists(a ):
with open(a , '''r''' ) as f:
a = json.load(a )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _a ( ) -> int:
a = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
UpperCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ ( lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
a = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
a = 7 if get_gpu_count() > 1 else 2
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
a = logging.StreamHandler(sys.stdout )
logger.addHandler(__UpperCAmelCase )
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
| 0 | 1 |
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
UpperCAmelCase__ = logging.get_logger(__name__)
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Optional[int] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
warnings.warn(
'''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PerceiverImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 0 |
import math
def _a ( a :int ) -> list:
a = [True] * n
a = False
a = False
a = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
a = i * 2
while index < n:
a = False
a = index + i
a = [2]
for i in range(3 , a , 2 ):
if is_prime[i]:
primes.append(a )
return primes
def _a ( a :int = 999_966_663_333 ) -> int:
a = math.floor(math.sqrt(a ) ) + 100
a = prime_sieve(a )
a = 0
a = 0
a = primes[prime_index]
while (last_prime**2) <= limit:
a = primes[prime_index + 1]
a = last_prime**2
a = next_prime**2
# Get numbers divisible by lps(current)
a = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
a = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
a = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
a = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 0 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
UpperCAmelCase__ = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
UpperCAmelCase__ = TaTokenizerFast
UpperCAmelCase__ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
UpperCAmelCase__ = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 0 |
def _a ( a :float , a :float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 0 | 1 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def _a ( *a :Optional[Any] , a :Optional[Union[Dict, Any]] = None , a :List[str]=True , a :List[str]=2 ) -> int:
from .. import __version__
a = take_from
a = ()
if not isinstance(args[0] , a ):
a = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(a ).base_version ) >= version.parse(a ):
raise ValueError(
F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"""
F""" version {__version__} is >= {version_name}""" )
a = None
if isinstance(a , a ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(a ),)
a = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}."""
elif hasattr(a , a ):
values += (getattr(a , a ),)
a = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}."""
elif deprecated_kwargs is None:
a = F"""`{attribute}` is deprecated and will be removed in version {version_name}."""
if warning is not None:
a = warning + ''' ''' if standard_warn else ''''''
warnings.warn(warning + message , a , stacklevel=a )
if isinstance(a , a ) and len(a ) > 0:
a = inspect.getouterframes(inspect.currentframe() )[1]
a = call_frame.filename
a = call_frame.lineno
a = call_frame.function
a , a = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" )
if len(a ) == 0:
return
elif len(a ) == 1:
return values[0]
return values
| 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
a = SMALL_MODEL_IDENTIFIER
a = '''pt'''
a = '''tf'''
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase )
model_tf.save_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = '''mock_framework'''
# Framework provided - return whatever the user provides
a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCAmelCase )
a = FeaturesManager.determine_framework(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
a = MagicMock(return_value=__UpperCAmelCase )
a = MagicMock(return_value=__UpperCAmelCase )
with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch(
'''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ):
with self.assertRaises(__UpperCAmelCase ):
a = FeaturesManager.determine_framework(self.test_model )
| 0 | 1 |
import gc
import unittest
from transformers import CTRLConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
)
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any]=14 , __UpperCAmelCase : Any=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : int=99 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : int=5 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Optional[int]=37 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : str=512 , __UpperCAmelCase : int=16 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Any=0.02 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : Optional[int]=None , ) ->Union[str, Any]:
"""simple docstring"""
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_token_type_ids
a = use_input_mask
a = use_labels
a = use_mc_token_ids
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_labels
a = num_choices
a = scope
a = self.vocab_size - 1
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = None
if self.use_mc_token_ids:
a = ids_tensor([self.batch_size, self.num_choices] , self.seq_length )
a = None
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
a = ids_tensor([self.batch_size] , self.num_choices )
a = self.get_config()
a = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def __lowerCAmelCase ( self : Tuple ) ->Union[str, Any]:
"""simple docstring"""
return CTRLConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , *__UpperCAmelCase : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = CTRLModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase )
model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(len(result.past_key_values ) , config.n_layer )
def __lowerCAmelCase ( self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , *__UpperCAmelCase : Tuple ) ->Optional[int]:
"""simple docstring"""
a = CTRLLMHeadModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask}
return config, inputs_dict
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , *__UpperCAmelCase : Dict ) ->Optional[int]:
"""simple docstring"""
a = self.num_labels
a = CTRLForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
@require_torch
class lowercase_ ( lowercase , lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
__snake_case = (CTRLLMHeadModel,) if is_torch_available() else ()
__snake_case = (
{
'''feature-extraction''': CTRLModel,
'''text-classification''': CTRLForSequenceClassification,
'''text-generation''': CTRLLMHeadModel,
'''zero-shot''': CTRLForSequenceClassification,
}
if is_torch_available()
else {}
)
__snake_case = True
__snake_case = False
__snake_case = False
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] ) ->Any:
"""simple docstring"""
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
# config could not be created.
return True
return False
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = CTRLModelTester(self )
a = ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_model(*__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__UpperCAmelCase )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
pass
@slow
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = CTRLModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
pass
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
@slow
def __lowerCAmelCase ( self : str ) ->Union[str, Any]:
"""simple docstring"""
a = CTRLLMHeadModel.from_pretrained('''ctrl''' )
model.to(__UpperCAmelCase )
a = torch.tensor(
[[11_859, 0, 1_611, 8]] , dtype=torch.long , device=__UpperCAmelCase ) # Legal the president is
a = [
11_859,
0,
1_611,
8,
5,
150,
26_449,
2,
19,
348,
469,
3,
2_595,
48,
20_740,
246_533,
246_533,
19,
30,
5,
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
a = model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase )
self.assertListEqual(output_ids[0].tolist() , __UpperCAmelCase )
| 0 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ProphetNetTokenizer
__snake_case = False
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
super().setUp()
a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Dict:
"""simple docstring"""
a = '''UNwant\u00E9d,running'''
a = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file )
a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
a = {}
for i, token in enumerate(__UpperCAmelCase ):
a = i
a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
a = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102]
a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 0 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
"tokenizer_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json",
},
}
UpperCAmelCase__ = {
"gpt2": 1024,
"gpt2-medium": 1024,
"gpt2-large": 1024,
"gpt2-xl": 1024,
"distilgpt2": 1024,
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ['''input_ids''', '''attention_mask''']
__snake_case = GPTaTokenizer
def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : List[Any]="<|endoftext|>" , __UpperCAmelCase : Optional[Any]="<|endoftext|>" , __UpperCAmelCase : Optional[int]="<|endoftext|>" , __UpperCAmelCase : List[Any]=False , **__UpperCAmelCase : Optional[Any] , ) ->List[str]:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , )
a = kwargs.pop('''add_bos_token''' , __UpperCAmelCase )
a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , __UpperCAmelCase ) != add_prefix_space:
a = getattr(__UpperCAmelCase , pre_tok_state.pop('''type''' ) )
a = add_prefix_space
a = pre_tok_class(**__UpperCAmelCase )
a = add_prefix_space
def __lowerCAmelCase ( self : Dict , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Dict ) ->BatchEncoding:
"""simple docstring"""
a = kwargs.get('''is_split_into_words''' , __UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : int , *__UpperCAmelCase : Any , **__UpperCAmelCase : Any ) ->BatchEncoding:
"""simple docstring"""
a = kwargs.get('''is_split_into_words''' , __UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : "Conversation" ) ->List[int]:
"""simple docstring"""
a = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] )
if len(__UpperCAmelCase ) > self.model_max_length:
a = input_ids[-self.model_max_length :]
return input_ids
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''timesformer'''
def __init__( self : Optional[int] , __UpperCAmelCase : int=224 , __UpperCAmelCase : Tuple=16 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Union[str, Any]=8 , __UpperCAmelCase : List[str]=768 , __UpperCAmelCase : List[Any]=12 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : Union[str, Any]=3_072 , __UpperCAmelCase : int="gelu" , __UpperCAmelCase : Dict=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Any=0.02 , __UpperCAmelCase : List[str]=1e-6 , __UpperCAmelCase : int=True , __UpperCAmelCase : Tuple="divided_space_time" , __UpperCAmelCase : Any=0 , **__UpperCAmelCase : List[str] , ) ->str:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = image_size
a = patch_size
a = num_channels
a = num_frames
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = layer_norm_eps
a = qkv_bias
a = attention_type
a = drop_path_rate
| 0 |
def _a ( a :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
a = gray_code_sequence_string(a )
#
# convert them to integers
for i in range(len(a ) ):
a = int(sequence[i] , 2 )
return sequence
def _a ( a :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
a = gray_code_sequence_string(bit_count - 1 )
a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
a = '''0''' + smaller_sequence[i]
sequence.append(a )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
a = '''1''' + smaller_sequence[i]
sequence.append(a )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
UpperCAmelCase__ = "."
if __name__ == "__main__":
UpperCAmelCase__ = os.path.join(REPO_PATH, "utils/documentation_tests.txt")
UpperCAmelCase__ = []
UpperCAmelCase__ = []
with open(doctest_file_path) as fp:
for line in fp:
UpperCAmelCase__ = line.strip()
UpperCAmelCase__ = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
UpperCAmelCase__ = "\n".join(non_existent_paths)
raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""")
if all_paths != sorted(all_paths):
raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
| 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
# fmt: off
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
a = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
a = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
a = self.get_tokenizer()
a = self.get_image_processor()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
a = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
a = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = self.prepare_image_inputs()
a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = processor(text=__UpperCAmelCase )
a = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__UpperCAmelCase )
a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = self.get_image_processor()
a = self.get_tokenizer()
a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 0 | 1 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase__ = logging.get_logger(__name__)
def _a ( a :int , a :Dict=False ) -> Optional[Any]:
a = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('''head''' ):
a = '''segformer.encoder.''' + key
if key.startswith('''backbone''' ):
a = key.replace('''backbone''' , '''segformer.encoder''' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
a = key[key.find('''patch_embed''' ) + len('''patch_embed''' )]
a = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(a )-1}""" )
if "norm" in key:
a = key.replace('''norm''' , '''layer_norm''' )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
a = key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )]
a = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(a )-1}""" )
if "layer_norm1" in key:
a = key.replace('''layer_norm1''' , '''layer_norm_1''' )
if "layer_norm2" in key:
a = key.replace('''layer_norm2''' , '''layer_norm_2''' )
if "block" in key:
# replace for example block1 by block.0
a = key[key.find('''block''' ) + len('''block''' )]
a = key.replace(F"""block{idx}""" , F"""block.{int(a )-1}""" )
if "attn.q" in key:
a = key.replace('''attn.q''' , '''attention.self.query''' )
if "attn.proj" in key:
a = key.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in key:
a = key.replace('''attn''' , '''attention.self''' )
if "fc1" in key:
a = key.replace('''fc1''' , '''dense1''' )
if "fc2" in key:
a = key.replace('''fc2''' , '''dense2''' )
if "linear_pred" in key:
a = key.replace('''linear_pred''' , '''classifier''' )
if "linear_fuse" in key:
a = key.replace('''linear_fuse.conv''' , '''linear_fuse''' )
a = key.replace('''linear_fuse.bn''' , '''batch_norm''' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
a = key[key.find('''linear_c''' ) + len('''linear_c''' )]
a = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(a )-1}""" )
if key.startswith('''head''' ):
a = key.replace('''head''' , '''classifier''' )
a = value
return new_state_dict
def _a ( a :List[str] , a :Union[str, Any] ) -> Tuple:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
a = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" )
a = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
a = kv_weight[
: config.hidden_sizes[i], :
]
a = kv_bias[: config.hidden_sizes[i]]
a = kv_weight[
config.hidden_sizes[i] :, :
]
a = kv_bias[
config.hidden_sizes[i] :
]
def _a ( ) -> Optional[Any]:
a = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
a = Image.open(requests.get(a , stream=a ).raw )
return image
@torch.no_grad()
def _a ( a :Tuple , a :Any , a :int ) -> Any:
a = SegformerConfig()
a = False
# set attributes based on model_name
a = '''huggingface/label-files'''
if "segformer" in model_name:
a = model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2]
if "ade" in model_name:
a = 150
a = '''ade20k-id2label.json'''
a = (1, 150, 128, 128)
elif "city" in model_name:
a = 19
a = '''cityscapes-id2label.json'''
a = (1, 19, 128, 128)
else:
raise ValueError(F"""Model {model_name} not supported""" )
elif "mit" in model_name:
a = True
a = model_name[4:6]
a = 1_000
a = '''imagenet-1k-id2label.json'''
a = (1, 1_000)
else:
raise ValueError(F"""Model {model_name} not supported""" )
# set config attributes
a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
a = [64, 128, 320, 512]
a = 256
elif size == "b2":
a = [64, 128, 320, 512]
a = 768
a = [3, 4, 6, 3]
elif size == "b3":
a = [64, 128, 320, 512]
a = 768
a = [3, 4, 18, 3]
elif size == "b4":
a = [64, 128, 320, 512]
a = 768
a = [3, 8, 27, 3]
elif size == "b5":
a = [64, 128, 320, 512]
a = 768
a = [3, 6, 40, 3]
else:
raise ValueError(F"""Size {size} not supported""" )
# load image processor (only resize + normalize)
a = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=a , align=a , do_random_crop=a )
# prepare image
a = prepare_img()
a = image_processor(images=a , return_tensors='''pt''' ).pixel_values
logger.info(F"""Converting model {model_name}...""" )
# load original state dict
if encoder_only:
a = torch.load(a , map_location=torch.device('''cpu''' ) )
else:
a = torch.load(a , map_location=torch.device('''cpu''' ) )['''state_dict''']
# rename keys
a = rename_keys(a , encoder_only=a )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(a , a )
# create HuggingFace model and load state dict
if encoder_only:
a = False
a = SegformerForImageClassification(a )
else:
a = SegformerForSemanticSegmentation(a )
model.load_state_dict(a )
model.eval()
# forward pass
a = model(a )
a = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
a = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
a = torch.tensor(
[
[[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]],
[[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]],
[[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
a = torch.tensor(
[
[[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]],
[[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]],
[[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
a = torch.tensor(
[
[[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]],
[[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]],
[[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
a = torch.tensor(
[
[[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]],
[[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]],
[[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
a = torch.tensor(
[
[[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]],
[[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]],
[[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
a = torch.tensor(
[
[[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]],
[[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]],
[[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
a = torch.tensor(
[
[[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]],
[[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]],
[[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
a = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
a = torch.tensor(
[
[[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]],
[[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]],
[[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
a = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
a = torch.tensor(
[
[[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]],
[[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]],
[[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
a = torch.tensor(
[
[[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]],
[[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]],
[[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
a = torch.tensor(
[
[[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]],
[[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]],
[[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
a = torch.tensor(
[
[[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]],
[[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]],
[[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]],
] )
else:
a = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , a , atol=1e-2 )
# finally, save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(a ).mkdir(exist_ok=a )
model.save_pretrained(a )
image_processor.save_pretrained(a )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="segformer.b0.512x512.ade.160k",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
UpperCAmelCase__ = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 0 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _a ( a :List[Any] ) -> Optional[int]:
a = []
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
F"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
F"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
F"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
F"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def _a ( a :List[Any] , a :Optional[int] ) -> Dict:
a = []
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
F"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
F"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def _a ( a :Any ) -> List[Any]:
a = []
token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') )
return token
def _a ( ) -> Optional[int]:
a = []
head.append(('''layernorm.weight''', '''norm.weight''') )
head.append(('''layernorm.bias''', '''norm.bias''') )
head.append(('''classifier.weight''', '''head.weight''') )
head.append(('''classifier.bias''', '''head.bias''') )
return head
def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]:
a = '''imagenet-1k-id2label.json'''
a = 1_000
a = '''huggingface/label-files'''
a = num_labels
a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13":
a = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21":
a = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
a = [2, 2, 20]
a = [3, 12, 16]
a = [192, 768, 1_024]
a = CvtForImageClassification(a )
a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
a = image_size
a = torch.load(a , map_location=torch.device('''cpu''' ) )
a = OrderedDict()
a = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
a = list_of_state_dict + cls_token(a )
a = list_of_state_dict + embeddings(a )
for cnt in range(config.depth[idx] ):
a = list_of_state_dict + attention(a , a )
a = list_of_state_dict + final()
for gg in list_of_state_dict:
print(a )
for i in range(len(a ) ):
a = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(a )
model.save_pretrained(a )
image_processor.save_pretrained(a )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase__ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 0 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ShapEPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
return 8
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
a = PriorTransformer(**__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
a = ShapERenderer(**__UpperCAmelCase )
return model
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_renderer
a = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , )
a = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.images[0]
a = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
a = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = 1
a = 2
a = self.get_dummy_inputs(__UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
a = batch_size * [inputs[key]]
a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
a = ShapEPipeline.from_pretrained('''openai/shap-e''' )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a = pipe(
'''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 0 |
from __future__ import annotations
UpperCAmelCase__ = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase__ = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase__ = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _a ( a :Matrix , a :int , a :int , a :int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _a ( a :Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _a ( a :Matrix ) -> Matrix | None:
if location := find_empty_location(a ):
a , a = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(a , a , a , a ):
a = digit
if sudoku(a ) is not None:
return grid
a = 0
return None
def _a ( a :Matrix ) -> None:
for row in grid:
for cell in row:
print(a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
UpperCAmelCase__ = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 0 | 1 |
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = (PNDMScheduler,)
__snake_case = (('''num_inference_steps''', 50),)
def __lowerCAmelCase ( self : int , **__UpperCAmelCase : Optional[int] ) ->int:
"""simple docstring"""
a = {
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**__UpperCAmelCase )
return config
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str]=0 , **__UpperCAmelCase : Tuple ) ->Tuple:
"""simple docstring"""
a = dict(self.forward_default_kwargs )
a = kwargs.pop('''num_inference_steps''' , __UpperCAmelCase )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__UpperCAmelCase )
a = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals
a = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__UpperCAmelCase )
a = scheduler_class.from_pretrained(__UpperCAmelCase )
new_scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals
a = dummy_past_residuals[:]
a = scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
a = new_scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
a = scheduler.step_plms(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
a = new_scheduler.step_plms(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str]=0 , **__UpperCAmelCase : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = dict(self.forward_default_kwargs )
a = kwargs.pop('''num_inference_steps''' , __UpperCAmelCase )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__UpperCAmelCase )
a = scheduler_class.from_pretrained(__UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[:]
a = scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
a = new_scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
a = scheduler.step_plms(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
a = new_scheduler.step_plms(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self : int , **__UpperCAmelCase : Optional[int] ) ->str:
"""simple docstring"""
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__UpperCAmelCase )
a = scheduler_class(**__UpperCAmelCase )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__UpperCAmelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
a = model(__UpperCAmelCase , __UpperCAmelCase )
a = scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
a = model(__UpperCAmelCase , __UpperCAmelCase )
a = scheduler.step_plms(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
return sample
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = dict(self.forward_default_kwargs )
a = kwargs.pop('''num_inference_steps''' , __UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__UpperCAmelCase )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__UpperCAmelCase , '''set_timesteps''' ):
scheduler.set_timesteps(__UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(__UpperCAmelCase , '''set_timesteps''' ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
a = dummy_past_residuals[:]
a = scheduler.step_prk(__UpperCAmelCase , 0 , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
a = scheduler.step_prk(__UpperCAmelCase , 1 , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
a = scheduler.step_plms(__UpperCAmelCase , 0 , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
a = scheduler.step_plms(__UpperCAmelCase , 1 , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def __lowerCAmelCase ( self : List[Any] ) ->List[Any]:
"""simple docstring"""
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=__UpperCAmelCase )
def __lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__UpperCAmelCase )
a = self.scheduler_classes[0]
a = self.get_scheduler_config(steps_offset=1 )
a = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )
def __lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=__UpperCAmelCase , beta_end=__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__UpperCAmelCase )
def __lowerCAmelCase ( self : Dict ) ->Dict:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=__UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = 27
for scheduler_class in self.scheduler_classes:
a = self.dummy_sample
a = 0.1 * sample
a = self.get_scheduler_config()
a = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(__UpperCAmelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
a = scheduler.step_prk(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
with self.assertRaises(__UpperCAmelCase ):
a = self.scheduler_classes[0]
a = self.get_scheduler_config()
a = scheduler_class(**__UpperCAmelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def __lowerCAmelCase ( self : Any ) ->Optional[int]:
"""simple docstring"""
a = self.full_loop()
a = torch.sum(torch.abs(__UpperCAmelCase ) )
a = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1e-2
assert abs(result_mean.item() - 0.2580 ) < 1e-3
def __lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
a = self.full_loop(prediction_type='''v_prediction''' )
a = torch.sum(torch.abs(__UpperCAmelCase ) )
a = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1e-2
assert abs(result_mean.item() - 0.0878 ) < 1e-3
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = self.full_loop(set_alpha_to_one=__UpperCAmelCase , beta_start=0.01 )
a = torch.sum(torch.abs(__UpperCAmelCase ) )
a = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1e-2
assert abs(result_mean.item() - 0.2995 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
a = self.full_loop(set_alpha_to_one=__UpperCAmelCase , beta_start=0.01 )
a = torch.sum(torch.abs(__UpperCAmelCase ) )
a = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1e-2
assert abs(result_mean.item() - 0.2434 ) < 1e-3
| 0 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = KandinskyVaaPriorPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''', '''negative_prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
return 100
@property
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
a = PriorTransformer(**__UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , )
a = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
@skip_mps
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = torch_device == '''cpu'''
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
| 0 | 1 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
UpperCAmelCase__ = {"LayoutLMv2Config", "LayoutLMv3Config"}
@is_pipeline_test
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
__snake_case = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__snake_case = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
__snake_case = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
__snake_case = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
a = ZeroShotClassificationPipeline(
model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , candidate_labels=['''polics''', '''health'''] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ) ->int:
"""simple docstring"""
a = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' )
self.assertEqual(__UpperCAmelCase , {'''sequence''': ANY(__UpperCAmelCase ), '''labels''': [ANY(__UpperCAmelCase )], '''scores''': [ANY(__UpperCAmelCase )]} )
# No kwarg
a = classifier('''Who are you voting for in 2020?''' , ['''politics'''] )
self.assertEqual(__UpperCAmelCase , {'''sequence''': ANY(__UpperCAmelCase ), '''labels''': [ANY(__UpperCAmelCase )], '''scores''': [ANY(__UpperCAmelCase )]} )
a = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] )
self.assertEqual(__UpperCAmelCase , {'''sequence''': ANY(__UpperCAmelCase ), '''labels''': [ANY(__UpperCAmelCase )], '''scores''': [ANY(__UpperCAmelCase )]} )
a = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' )
self.assertEqual(
__UpperCAmelCase , {'''sequence''': ANY(__UpperCAmelCase ), '''labels''': [ANY(__UpperCAmelCase ), ANY(__UpperCAmelCase )], '''scores''': [ANY(__UpperCAmelCase ), ANY(__UpperCAmelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 )
a = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] )
self.assertEqual(
__UpperCAmelCase , {'''sequence''': ANY(__UpperCAmelCase ), '''labels''': [ANY(__UpperCAmelCase ), ANY(__UpperCAmelCase )], '''scores''': [ANY(__UpperCAmelCase ), ANY(__UpperCAmelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 )
a = classifier(
'''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' )
self.assertEqual(__UpperCAmelCase , {'''sequence''': ANY(__UpperCAmelCase ), '''labels''': [ANY(__UpperCAmelCase )], '''scores''': [ANY(__UpperCAmelCase )]} )
# https://github.com/huggingface/transformers/issues/13846
a = classifier(['''I am happy'''] , ['''positive''', '''negative'''] )
self.assertEqual(
__UpperCAmelCase , [
{'''sequence''': ANY(__UpperCAmelCase ), '''labels''': [ANY(__UpperCAmelCase ), ANY(__UpperCAmelCase )], '''scores''': [ANY(__UpperCAmelCase ), ANY(__UpperCAmelCase )]}
for i in range(1 )
] , )
a = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] )
self.assertEqual(
__UpperCAmelCase , [
{'''sequence''': ANY(__UpperCAmelCase ), '''labels''': [ANY(__UpperCAmelCase ), ANY(__UpperCAmelCase )], '''scores''': [ANY(__UpperCAmelCase ), ANY(__UpperCAmelCase )]}
for i in range(2 )
] , )
with self.assertRaises(__UpperCAmelCase ):
classifier('''''' , candidate_labels='''politics''' )
with self.assertRaises(__UpperCAmelCase ):
classifier(__UpperCAmelCase , candidate_labels='''politics''' )
with self.assertRaises(__UpperCAmelCase ):
classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' )
with self.assertRaises(__UpperCAmelCase ):
classifier('''Who are you voting for in 2020?''' , candidate_labels=__UpperCAmelCase )
with self.assertRaises(__UpperCAmelCase ):
classifier(
'''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , )
with self.assertRaises(__UpperCAmelCase ):
classifier(
'''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=__UpperCAmelCase , )
self.run_entailment_id(__UpperCAmelCase )
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Pipeline ) ->int:
"""simple docstring"""
a = zero_shot_classifier.model.config
a = config.labelaid
a = zero_shot_classifier.entailment_id
a = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
a = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
a = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
a = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
a = original_labelaid
self.assertEqual(__UpperCAmelCase , zero_shot_classifier.entailment_id )
@require_torch
def __lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
a = pipeline(
'''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
'''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] )
@require_torch
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
a = pipeline(
'''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , )
a = zero_shot_classifier(
'''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {
'''sequence''': '''Who are you voting for in 2020?''',
'''labels''': ['''science''', '''public health''', '''politics'''],
'''scores''': [0.333, 0.333, 0.333],
} , )
@require_tf
def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
a = pipeline(
'''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , )
a = zero_shot_classifier(
'''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {
'''sequence''': '''Who are you voting for in 2020?''',
'''labels''': ['''science''', '''public health''', '''politics'''],
'''scores''': [0.333, 0.333, 0.333],
} , )
@slow
@require_torch
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
a = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' )
a = zero_shot_classifier(
'''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {
'''sequence''': '''Who are you voting for in 2020?''',
'''labels''': ['''politics''', '''public health''', '''science'''],
'''scores''': [0.976, 0.015, 0.009],
} , )
a = zero_shot_classifier(
'''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'''
''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'''
''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'''
''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'''
''' machine translation tasks show these models to be superior in quality while being more parallelizable'''
''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'''
''' English-to-German translation task, improving over the existing best results, including ensembles by'''
''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'''
''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'''
''' fraction of the training costs of the best models from the literature. We show that the Transformer'''
''' generalizes well to other tasks by applying it successfully to English constituency parsing both with'''
''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {
'''sequence''': (
'''The dominant sequence transduction models are based on complex recurrent or convolutional neural'''
''' networks in an encoder-decoder configuration. The best performing models also connect the'''
''' encoder and decoder through an attention mechanism. We propose a new simple network'''
''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'''
''' and convolutions entirely. Experiments on two machine translation tasks show these models to be'''
''' superior in quality while being more parallelizable and requiring significantly less time to'''
''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'''
''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'''
''' English-to-French translation task, our model establishes a new single-model state-of-the-art'''
''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'''
''' costs of the best models from the literature. We show that the Transformer generalizes well to'''
''' other tasks by applying it successfully to English constituency parsing both with large and'''
''' limited training data.'''
),
'''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''],
'''scores''': [0.817, 0.713, 0.018, 0.018],
} , )
@slow
@require_tf
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
a = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' )
a = zero_shot_classifier(
'''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {
'''sequence''': '''Who are you voting for in 2020?''',
'''labels''': ['''politics''', '''public health''', '''science'''],
'''scores''': [0.976, 0.015, 0.009],
} , )
a = zero_shot_classifier(
'''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'''
''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'''
''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'''
''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'''
''' machine translation tasks show these models to be superior in quality while being more parallelizable'''
''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'''
''' English-to-German translation task, improving over the existing best results, including ensembles by'''
''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'''
''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'''
''' fraction of the training costs of the best models from the literature. We show that the Transformer'''
''' generalizes well to other tasks by applying it successfully to English constituency parsing both with'''
''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__UpperCAmelCase , )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {
'''sequence''': (
'''The dominant sequence transduction models are based on complex recurrent or convolutional neural'''
''' networks in an encoder-decoder configuration. The best performing models also connect the'''
''' encoder and decoder through an attention mechanism. We propose a new simple network'''
''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'''
''' and convolutions entirely. Experiments on two machine translation tasks show these models to be'''
''' superior in quality while being more parallelizable and requiring significantly less time to'''
''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'''
''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'''
''' English-to-French translation task, our model establishes a new single-model state-of-the-art'''
''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'''
''' costs of the best models from the literature. We show that the Transformer generalizes well to'''
''' other tasks by applying it successfully to English constituency parsing both with large and'''
''' limited training data.'''
),
'''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''],
'''scores''': [0.817, 0.713, 0.018, 0.018],
} , )
| 0 |
from math import factorial
UpperCAmelCase__ = {str(digit): factorial(digit) for digit in range(10)}
def _a ( a :int ) -> int:
if not isinstance(a , a ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) )
def _a ( a :int = 60 , a :int = 1_000_000 ) -> int:
if not isinstance(a , a ) or not isinstance(a , a ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
a = 0
# the cached sizes of the previous chains
a = {}
for start_chain_element in range(1 , a ):
# The temporary set will contain the elements of the chain
a = set()
a = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
a = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(a )
chain_set_length += 1
a = digit_factorial_sum(a )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
a = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution()}""")
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"edbeeching/decision-transformer-gym-hopper-medium": (
"https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''decision_transformer'''
__snake_case = ['''past_key_values''']
__snake_case = {
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Any , __UpperCAmelCase : List[Any]=17 , __UpperCAmelCase : int=4 , __UpperCAmelCase : Optional[int]=128 , __UpperCAmelCase : Union[str, Any]=4_096 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=1 , __UpperCAmelCase : Optional[Any]=1_024 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : Dict=1 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Tuple=1e-5 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=50_256 , __UpperCAmelCase : int=50_256 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Tuple=False , **__UpperCAmelCase : List[str] , ) ->str:
"""simple docstring"""
a = state_dim
a = act_dim
a = hidden_size
a = max_ep_len
a = action_tanh
a = vocab_size
a = n_positions
a = n_layer
a = n_head
a = n_inner
a = activation_function
a = resid_pdrop
a = embd_pdrop
a = attn_pdrop
a = layer_norm_epsilon
a = initializer_range
a = scale_attn_weights
a = use_cache
a = scale_attn_by_inverse_layer_idx
a = reorder_and_upcast_attn
a = bos_token_id
a = eos_token_id
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 0 |
def _a ( a :int = 100 ) -> int:
a = n * (n + 1) * (2 * n + 1) / 6
a = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 0 | 1 |
def _a ( a :str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
a = set()
# Replace all the whitespace in our sentence
a = input_str.replace(''' ''' , '''''' )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(a ) == 26
def _a ( a :str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
a = [False] * 26
for char in input_str:
if char.islower():
a = True
elif char.isupper():
a = True
return all(a )
def _a ( a :str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
return len({char for char in input_str.lower() if char.isalpha()} ) == 26
def _a ( ) -> None:
from timeit import timeit
a = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest'''
print(timeit('''is_pangram()''' , setup=a ) )
print(timeit('''is_pangram_faster()''' , setup=a ) )
print(timeit('''is_pangram_fastest()''' , setup=a ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase__ = {
"configuration_groupvit": [
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroupViTConfig",
"GroupViTOnnxConfig",
"GroupViTTextConfig",
"GroupViTVisionConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroupViTModel",
"GroupViTPreTrainedModel",
"GroupViTTextModel",
"GroupViTVisionModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGroupViTModel",
"TFGroupViTPreTrainedModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 | 1 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model")
UpperCAmelCase__ = {"target_lang": "fi", "source_lang": "en"}
UpperCAmelCase__ = ">>zh<<"
UpperCAmelCase__ = "Helsinki-NLP/"
if is_torch_available():
UpperCAmelCase__ = "pt"
elif is_tf_available():
UpperCAmelCase__ = "tf"
else:
UpperCAmelCase__ = "jax"
@require_sentencepiece
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = MarianTokenizer
__snake_case = False
__snake_case = True
def __lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
super().setUp()
a = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>''']
a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
a = Path(self.tmpdirname )
save_json(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['''vocab'''] )
save_json(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['''source_spm'''] )
copyfile(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['''target_spm'''] )
a = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self : Optional[int] , **__UpperCAmelCase : Dict ) ->MarianTokenizer:
"""simple docstring"""
return MarianTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[Any] ) ->List[str]:
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
a = '''</s>'''
a = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''</s>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''<pad>''' )
self.assertEqual(len(__UpperCAmelCase ) , 9 )
def __lowerCAmelCase ( self : Dict ) ->List[str]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
a = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" )
a = en_de_tokenizer(['''I am a small frog'''] , return_tensors=__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
a = [38, 121, 14, 697, 38_848, 0]
self.assertListEqual(__UpperCAmelCase , batch.input_ids[0] )
a = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(__UpperCAmelCase )
a = [x.name for x in Path(__UpperCAmelCase ).glob('''*''' )]
self.assertIn('''source.spm''' , __UpperCAmelCase )
MarianTokenizer.from_pretrained(__UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
a = self.get_tokenizer()
a = tok(
['''I am a small frog''' * 1_000, '''I am a small frog'''] , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(batch.input_ids.shape , (2, 512) )
def __lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
a = self.get_tokenizer()
a = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(batch_smaller.input_ids.shape , (2, 10) )
@slow
def __lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
a = {'''input_ids''': [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__UpperCAmelCase , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , )
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' )
a = '''Tämä on testi'''
a = '''This is a test'''
a = [76, 7, 2_047, 2]
a = [69, 12, 11, 940, 2]
a = tokenizer(__UpperCAmelCase ).input_ids
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
a = tokenizer(text_target=__UpperCAmelCase ).input_ids
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
a = tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = ShapEPipeline
__snake_case = ['''prompt''']
__snake_case = ['''prompt''']
__snake_case = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
__snake_case = False
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
return 8
@property
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(__UpperCAmelCase )
@property
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
a = PriorTransformer(**__UpperCAmelCase )
return model
@property
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
torch.manual_seed(0 )
a = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
a = ShapERenderer(**__UpperCAmelCase )
return model
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
a = self.dummy_prior
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_renderer
a = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , )
a = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
a = output.images[0]
a = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
a = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = torch_device == '''cpu'''
a = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = 1
a = 2
a = self.get_dummy_inputs(__UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
a = batch_size * [inputs[key]]
a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
a = ShapEPipeline.from_pretrained('''openai/shap-e''' )
a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
a = pipe(
'''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 0 | 1 |
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCAmelCase__ = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
UpperCAmelCase__ = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeqaSeqLM,
"translation": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCAmelCase__ = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCAmelCase__ = sorted(arg_to_scheduler.keys())
UpperCAmelCase__ = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class lowercase_ ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : str , __UpperCAmelCase : argparse.Namespace , __UpperCAmelCase : str=None , __UpperCAmelCase : List[str]="base" , __UpperCAmelCase : str=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[int] , ) ->Tuple:
"""simple docstring"""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__UpperCAmelCase )
a = 0
a = Path(self.hparams.output_dir )
a = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
a = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , )
else:
a = config
a = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ):
assert hasattr(self.config , __UpperCAmelCase ), F"""model config doesn't have a `{p}` attribute"""
setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) )
if tokenizer is None:
a = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , )
else:
a = tokenizer
a = MODEL_MODES[mode]
if model is None:
a = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , )
else:
a = model
def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) ->str:
"""simple docstring"""
a = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
a = arg_to_scheduler[self.hparams.lr_scheduler]
a = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
a = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.model
a = ['''bias''', '''LayerNorm.weight''']
a = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
a = Adafactor(
__UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase )
else:
a = AdamW(
__UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
a = optimizer
a = self.get_lr_scheduler()
return [optimizer], [scheduler]
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) ->Dict:
"""simple docstring"""
return self.validation_step(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] ) ->Any:
"""simple docstring"""
return self.validation_end(__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Dict ) ->Optional[int]:
"""simple docstring"""
if stage == "test":
a = len(self.test_dataloader().dataset )
else:
a = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase )
a = len(self.train_dataloader().dataset )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : bool = False ) ->str:
"""simple docstring"""
raise NotImplementedError('''You must implement this for your task''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
return self.train_loader
def __lowerCAmelCase ( self : List[Any] ) ->List[Any]:
"""simple docstring"""
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
__UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Dict[str, Any] ) ->None:
"""simple docstring"""
a = self.output_dir.joinpath('''best_tfmr''' )
a = self.step_count
self.model.save_pretrained(__UpperCAmelCase )
self.tokenizer.save_pretrained(__UpperCAmelCase )
@staticmethod
def __lowerCAmelCase ( __UpperCAmelCase : Dict , __UpperCAmelCase : int ) ->int:
"""simple docstring"""
parser.add_argument(
'''--model_name_or_path''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=__UpperCAmelCase , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''cache''' ) , type=__UpperCAmelCase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=__UpperCAmelCase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=__UpperCAmelCase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=__UpperCAmelCase , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=__UpperCAmelCase , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5e-5 , type=__UpperCAmelCase , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=__UpperCAmelCase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=__UpperCAmelCase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=__UpperCAmelCase , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=__UpperCAmelCase , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=__UpperCAmelCase )
parser.add_argument('''--train_batch_size''' , default=32 , type=__UpperCAmelCase )
parser.add_argument('''--eval_batch_size''' , default=32 , type=__UpperCAmelCase )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class lowercase_ ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) ->int:
"""simple docstring"""
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class lowercase_ ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__UpperCAmelCase )
class lowercase_ ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict ) ->int:
"""simple docstring"""
a = trainer.lr_schedulers[0]['''scheduler''']
a = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) ->Union[str, Any]:
"""simple docstring"""
rank_zero_info('''***** Validation results *****''' )
a = trainer.callback_metrics
# Log results
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
def __lowerCAmelCase ( self : int , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) ->Optional[int]:
"""simple docstring"""
rank_zero_info('''***** Test results *****''' )
a = trainer.callback_metrics
# Log and save results to file
a = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(__UpperCAmelCase , '''w''' ) as writer:
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
def _a ( a :Union[str, Any] , a :int ) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'''--output_dir''' , default=str(Path(a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=a , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=a , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=a )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=a , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=a , default=42 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def _a ( a :BaseTransformer , a :argparse.Namespace , a :Tuple=None , a :Any=True , a :List[str]=[] , a :List[Any]=None , a :Union[str, Any]=None , **a :Optional[Any] , ) -> List[str]:
pl.seed_everything(args.seed )
# init model
a = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=a )
# add custom checkpoints
if checkpoint_callback is None:
a = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(a )
if logging_callback is None:
a = LoggingCallback()
a = {}
if args.fpaa:
a = 16
if args.gpus > 1:
a = '''auto'''
a = '''ddp'''
a = args.accumulate_grad_batches
a = None
a = '''auto'''
a = pl.Trainer.from_argparse_args(
a , weights_summary=a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a , val_check_interval=1 , num_sanity_val_steps=2 , **a , )
if args.do_train:
trainer.fit(a )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 0 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase__ = [8, 5, 9, 7]
UpperCAmelCase__ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase__ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[list[int]] , ) ->None:
"""simple docstring"""
a = claim_vector
a = allocated_resources_table
a = maximum_claim_table
def __lowerCAmelCase ( self : Any ) ->list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __lowerCAmelCase ( self : Optional[int] ) ->list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __lowerCAmelCase ( self : Union[str, Any] ) ->list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __lowerCAmelCase ( self : Tuple ) ->dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()}
def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->None:
"""simple docstring"""
a = self.__need()
a = self.__allocated_resources_table
a = self.__available_resources()
a = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
a = False
for each_need in need_list:
a = True
for index, need in enumerate(__UpperCAmelCase ):
if need > available_resources[index]:
a = False
break
if execution:
a = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
a = original_need_index
print(F"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(__UpperCAmelCase )
# update available/freed resources stack
a = np.array(__UpperCAmelCase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
F"""P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
F"""P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}"""
+ ''' '''.join(F"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 1 |
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def _a ( a :List[str] , a :Tuple , a :List[str] , a :Dict ) -> int:
if isinstance(a , a ):
a = np.full((len(a ), sequence_length, 2) , a )
else:
a = np.full((len(a ), sequence_length) , a )
for i, tensor in enumerate(a ):
if padding_side == "right":
if isinstance(a , a ):
a = tensor[:sequence_length]
else:
a = tensor[:sequence_length]
else:
if isinstance(a , a ):
a = tensor[:sequence_length]
else:
a = tensor[:sequence_length]
return out_tensor.tolist()
def _a ( a :Optional[int] ) -> int:
a = ord(a )
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
a = unicodedata.category(a )
if cat.startswith('''P''' ):
return True
return False
@dataclass
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = 42
__snake_case = True
__snake_case = None
__snake_case = None
__snake_case = -1_00
__snake_case = "pt"
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Any ) ->Tuple:
"""simple docstring"""
import torch
a = '''label''' if '''label''' in features[0].keys() else '''labels'''
a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
a = self.tokenizer.pad(
__UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , )
if labels is None:
return batch
a = torch.tensor(batch['''entity_ids'''] ).shape[1]
a = self.tokenizer.padding_side
if padding_side == "right":
a = [
list(__UpperCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) for label in labels
]
else:
a = [
[self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) + list(__UpperCAmelCase ) for label in labels
]
a = [feature['''ner_tags'''] for feature in features]
a = padding_tensor(__UpperCAmelCase , -1 , __UpperCAmelCase , __UpperCAmelCase )
a = [feature['''original_entity_spans'''] for feature in features]
a = padding_tensor(__UpperCAmelCase , (-1, -1) , __UpperCAmelCase , __UpperCAmelCase )
a = {k: torch.tensor(__UpperCAmelCase , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCAmelCase__ = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_INIT_CONFIGURATION
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ElectraTokenizer
def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str:
"""simple docstring"""
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
a = do_lower_case
a = strip_accents
a = tokenize_chinese_chars
a = normalizer_class(**__UpperCAmelCase )
a = do_lower_case
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str:
"""simple docstring"""
a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 0 | 1 |
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = BertJapaneseTokenizer
__snake_case = False
__snake_case = True
def __lowerCAmelCase ( self : List[str] ) ->Tuple:
"""simple docstring"""
super().setUp()
a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''こんにちは''',
'''こん''',
'''にちは''',
'''ばんは''',
'''##こん''',
'''##にちは''',
'''##ばんは''',
'''世界''',
'''##世界''',
'''、''',
'''##、''',
'''。''',
'''##。''',
]
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
a = '''こんにちは、世界。 \nこんばんは、世界。'''
a = '''こんにちは 、 世界 。 こんばんは 、 世界 。'''
return input_text, output_text
def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a , a = self.get_input_output_texts(__UpperCAmelCase )
a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
a = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase )
return text, ids
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
pass # TODO add if relevant
def __lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
pass # TODO add if relevant
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
pass # TODO add if relevant
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file )
a = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' )
self.assertListEqual(__UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
def __lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' )
self.assertIsNotNone(__UpperCAmelCase )
a = '''こんにちは、世界。\nこんばんは、世界。'''
a = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
a = os.path.join(self.tmpdirname , '''tokenizer.bin''' )
with open(__UpperCAmelCase , '''wb''' ) as handle:
pickle.dump(__UpperCAmelCase , __UpperCAmelCase )
with open(__UpperCAmelCase , '''rb''' ) as handle:
a = pickle.load(__UpperCAmelCase )
a = tokenizer_new.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
a = MecabTokenizer(mecab_dic='''ipadic''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
try:
a = MecabTokenizer(mecab_dic='''unidic_lite''' )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
try:
a = MecabTokenizer(mecab_dic='''unidic''' )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
a = MecabTokenizer(do_lower_case=__UpperCAmelCase , mecab_dic='''ipadic''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
try:
a = MecabTokenizer(
do_lower_case=__UpperCAmelCase , normalize_text=__UpperCAmelCase , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
a = MecabTokenizer(normalize_text=__UpperCAmelCase , mecab_dic='''ipadic''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , )
@require_sudachi
def __lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' )
self.assertIsNotNone(__UpperCAmelCase )
a = '''こんにちは、世界。\nこんばんは、世界。'''
a = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
a = os.path.join(self.tmpdirname , '''tokenizer.bin''' )
with open(__UpperCAmelCase , '''wb''' ) as handle:
pickle.dump(__UpperCAmelCase , __UpperCAmelCase )
with open(__UpperCAmelCase , '''rb''' ) as handle:
a = pickle.load(__UpperCAmelCase )
a = tokenizer_new.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
@require_sudachi
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
a = SudachiTokenizer(sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , )
@require_sudachi
def __lowerCAmelCase ( self : Union[str, Any] ) ->Any:
"""simple docstring"""
a = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' )
self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] )
@require_sudachi
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' )
self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] )
@require_sudachi
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' )
self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] )
@require_sudachi
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
a = SudachiTokenizer(do_lower_case=__UpperCAmelCase , sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , )
@require_sudachi
def __lowerCAmelCase ( self : Union[str, Any] ) ->Any:
"""simple docstring"""
a = SudachiTokenizer(normalize_text=__UpperCAmelCase , sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , )
@require_sudachi
def __lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
a = SudachiTokenizer(trim_whitespace=__UpperCAmelCase , sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
@require_jumanpp
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' )
self.assertIsNotNone(__UpperCAmelCase )
a = '''こんにちは、世界。\nこんばんは、世界。'''
a = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
a = os.path.join(self.tmpdirname , '''tokenizer.bin''' )
with open(__UpperCAmelCase , '''wb''' ) as handle:
pickle.dump(__UpperCAmelCase , __UpperCAmelCase )
with open(__UpperCAmelCase , '''rb''' ) as handle:
a = pickle.load(__UpperCAmelCase )
a = tokenizer_new.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
@require_jumanpp
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
@require_jumanpp
def __lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
a = JumanppTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
@require_jumanpp
def __lowerCAmelCase ( self : List[str] ) ->Tuple:
"""simple docstring"""
a = JumanppTokenizer(normalize_text=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
@require_jumanpp
def __lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
a = JumanppTokenizer(trim_whitespace=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , )
@require_jumanpp
def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
a = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , )
def __lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''']
a = {}
for i, token in enumerate(__UpperCAmelCase ):
a = i
a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] )
self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] )
self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] )
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
a = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' )
a = tokenizer.subword_tokenizer
a = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' )
self.assertListEqual(__UpperCAmelCase , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] )
a = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' )
self.assertListEqual(__UpperCAmelCase , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] )
def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' )
a = tokenizer.encode('''ありがとう。''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.encode('''どういたしまして。''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = BertJapaneseTokenizer
__snake_case = False
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
super().setUp()
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。''']
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self : List[str] , **__UpperCAmelCase : str ) ->List[Any]:
"""simple docstring"""
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) ->int:
"""simple docstring"""
a = '''こんにちは、世界。 \nこんばんは、世界。'''
a = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。'''
return input_text, output_text
def __lowerCAmelCase ( self : Any ) ->Optional[int]:
"""simple docstring"""
pass # TODO add if relevant
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
pass # TODO add if relevant
def __lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
pass # TODO add if relevant
def __lowerCAmelCase ( self : Tuple ) ->Optional[int]:
"""simple docstring"""
a = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' )
a = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' )
self.assertListEqual(
__UpperCAmelCase , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def __lowerCAmelCase ( self : Any ) ->Optional[int]:
"""simple docstring"""
a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。''']
a = {}
for i, token in enumerate(__UpperCAmelCase ):
a = i
a = CharacterTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] )
self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] )
def __lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
a = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' )
a = tokenizer.encode('''ありがとう。''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.encode('''どういたしまして。''' , add_special_tokens=__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Union[str, Any] ) ->Any:
"""simple docstring"""
a = '''cl-tohoku/bert-base-japanese'''
a = AutoTokenizer.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
a = '''cl-tohoku/bert-base-japanese'''
with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm:
BertTokenizer.from_pretrained(__UpperCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
'''The tokenizer class you load from this checkpoint is not the same type as the class this function'''
''' is called from.''' ) )
a = '''bert-base-cased'''
with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm:
BertJapaneseTokenizer.from_pretrained(__UpperCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
'''The tokenizer class you load from this checkpoint is not the same type as the class this function'''
''' is called from.''' ) )
| 0 |
def _a ( a :int ) -> bool:
a = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 0 | 1 |
UpperCAmelCase__ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)]
def _a ( a :int ) -> int:
a = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 100_000]
number //= 100_000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
UpperCAmelCase__ = [None] * 10000000
UpperCAmelCase__ = True
UpperCAmelCase__ = False
def _a ( a :int ) -> bool:
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
a = chain(next_number(a ) )
a = number_chain
while number < 10_000_000:
a = number_chain
number *= 10
return number_chain
def _a ( a :int = 10_000_000 ) -> int:
for i in range(1 , a ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(a )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution() = }""")
| 0 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ = pytest.mark.integration
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
a = dset.map(
lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase )
a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
import faiss
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
from elasticsearch import Elasticsearch
a = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
a = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase )
a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
a = np.eye(5 , dtype=np.floataa )[::-1]
a , a = index.search_batch(__UpperCAmelCase )
self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
import faiss
a = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
a = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__UpperCAmelCase ):
a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
import faiss
a = faiss.IndexFlat(5 )
a = FaissIndex(custom_index=__UpperCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file:
index.save(tmp_file.name )
a = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(__UpperCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _a ( a :Dict ) -> Any:
import faiss
a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
a = '''index.faiss'''
a = F"""mock://{index_name}"""
index.save(a , storage_options=mockfs.storage_options )
a = FaissIndex.load(a , storage_options=mockfs.storage_options )
a = np.zeros(5 , dtype=np.floataa )
a = 1
a , a = index.search(a )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
a = Elasticsearch()
a = {'''acknowledged''': True}
a = ElasticSearchIndex(es_client=__UpperCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
a = '''foo'''
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
a , a = index.search(__UpperCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
# batched queries with timeout
a = ['''foo''', '''bar''', '''foobar''']
a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 )
a = [scores[0] for scores in total_scores]
a = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
| 0 | 1 |
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def _a ( *a :List[str] ) -> Dict:
if not isinstance(a , a ):
a = list(a )
for i in range(len(a ) ):
a = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def _a ( a :Exception ) -> bool:
a = [
'''CUDA out of memory.''', # CUDA OOM
'''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU
'''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM
]
if isinstance(a , a ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def _a ( a :callable = None , a :int = 128 ) -> Optional[Any]:
if function is None:
return functools.partial(a , starting_batch_size=a )
a = starting_batch_size
def decorator(*a :Union[str, Any] , **a :Dict ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
a = list(inspect.signature(a ).parameters.keys() )
# Guard against user error
if len(a ) < (len(a ) + 1):
a = ''', '''.join([F"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
F"""Batch size was passed into `{function.__name__}` as the first argument when called."""
F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" )
while True:
if batch_size == 0:
raise RuntimeError('''No executable batch size found, reached zero.''' )
try:
return function(a , *a , **a )
except Exception as e:
if should_reduce_batch_size(a ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''t5'''
__snake_case = ['''past_key_values''']
__snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=32_128 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=128 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=1e-6 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str , ) ->Optional[Any]:
"""simple docstring"""
a = vocab_size
a = d_model
a = d_kv
a = d_ff
a = num_layers
a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
a = num_heads
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = feed_forward_proj
a = use_cache
a = self.feed_forward_proj.split('''-''' )
a = act_info[-1]
a = act_info[0] == '''gated'''
if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
a = '''gelu_new'''
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
class lowercase_ ( lowercase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
a = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
a = '''past_encoder_sequence + sequence'''
a = {0: '''batch'''}
a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
a = {0: '''batch''', 1: '''decoder_sequence'''}
a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
return common_inputs
@property
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return 13
| 0 | 1 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def _a ( a :Tuple ) -> Optional[Any]:
a = 384
a = 7
if "tiny" in model_name:
a = 96
a = (2, 2, 6, 2)
a = (3, 6, 12, 24)
elif "small" in model_name:
a = 96
a = (2, 2, 18, 2)
a = (3, 6, 12, 24)
elif "base" in model_name:
a = 128
a = (2, 2, 18, 2)
a = (4, 8, 16, 32)
a = 12
a = 512
elif "large" in model_name:
a = 192
a = (2, 2, 18, 2)
a = (6, 12, 24, 48)
a = 12
a = 768
# set label information
a = 150
a = '''huggingface/label-files'''
a = '''ade20k-id2label.json'''
a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) )
a = {int(a ): v for k, v in idalabel.items()}
a = {v: k for k, v in idalabel.items()}
a = SwinConfig(
embed_dim=a , depths=a , num_heads=a , window_size=a , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
a = UperNetConfig(
backbone_config=a , auxiliary_in_channels=a , num_labels=a , idalabel=a , labelaid=a , )
return config
def _a ( a :Dict ) -> List[str]:
a = []
# fmt: off
# stem
rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') )
rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') )
rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") )
rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") )
# decode head
rename_keys.extend(
[
('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''),
('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''),
('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''),
('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''),
] )
# fmt: on
return rename_keys
def _a ( a :Optional[int] , a :Optional[Any] , a :List[Any] ) -> Optional[int]:
a = dct.pop(a )
a = val
def _a ( a :Union[str, Any] , a :str ) -> Any:
a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
a = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
a = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" )
a = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
a = in_proj_weight[:dim, :]
a = in_proj_bias[: dim]
a = in_proj_weight[
dim : dim * 2, :
]
a = in_proj_bias[
dim : dim * 2
]
a = in_proj_weight[
-dim :, :
]
a = in_proj_bias[-dim :]
# fmt: on
def _a ( a :List[str] ) -> List[str]:
a , a = x.shape
a = x.reshape(a , 4 , in_channel // 4 )
a = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(a , a )
return x
def _a ( a :Optional[Any] ) -> Any:
a , a = x.shape
a = x.reshape(a , in_channel // 4 , 4 )
a = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(a , a )
return x
def _a ( a :Dict ) -> Any:
a = x.shape[0]
a = x.reshape(4 , in_channel // 4 )
a = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(a )
return x
def _a ( a :Any ) -> List[str]:
a = x.shape[0]
a = x.reshape(in_channel // 4 , 4 )
a = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(a )
return x
def _a ( a :Union[str, Any] , a :str , a :Optional[int] ) -> Any:
a = {
'''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''',
'''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''',
'''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''',
'''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''',
}
a = model_name_to_url[model_name]
a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , file_name=a )[
'''state_dict'''
]
for name, param in state_dict.items():
print(a , param.shape )
a = get_upernet_config(a )
a = UperNetForSemanticSegmentation(a )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
a = state_dict.pop(a )
if "bn" in key:
a = key.replace('''bn''' , '''batch_norm''' )
a = val
# rename keys
a = create_rename_keys(a )
for src, dest in rename_keys:
rename_key(a , a , a )
read_in_q_k_v(a , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
a = reverse_correct_unfold_reduction_order(a )
if "norm" in key:
a = reverse_correct_unfold_norm_order(a )
model.load_state_dict(a )
# verify on image
a = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'''
a = Image.open(requests.get(a , stream=a ).raw ).convert('''RGB''' )
a = SegformerImageProcessor()
a = processor(a , return_tensors='''pt''' ).pixel_values
with torch.no_grad():
a = model(a )
a = outputs.logits
print(logits.shape )
print('''First values of logits:''' , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
a = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] )
elif model_name == "upernet-swin-small":
a = torch.tensor(
[[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] )
elif model_name == "upernet-swin-base":
a = torch.tensor(
[[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] )
elif model_name == "upernet-swin-large":
a = torch.tensor(
[[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] )
print('''Logits:''' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , a , atol=1e-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(a )
print(F"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(a )
if push_to_hub:
print(F"""Pushing model and processor for {model_name} to hub""" )
model.push_to_hub(F"""openmmlab/{model_name}""" )
processor.push_to_hub(F"""openmmlab/{model_name}""" )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
UpperCAmelCase__ = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''llama'''
__snake_case = ['''past_key_values''']
def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str:
"""simple docstring"""
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = intermediate_size
a = num_hidden_layers
a = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a = num_attention_heads
a = num_key_value_heads
a = hidden_act
a = initializer_range
a = rms_norm_eps
a = pretraining_tp
a = use_cache
a = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"""got {self.rope_scaling}""" )
a = self.rope_scaling.get('''type''' , __UpperCAmelCase )
a = self.rope_scaling.get('''factor''' , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 0 | 1 |
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : str , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Union[str, Any] , ) ->int:
"""simple docstring"""
super().__init__()
a = value_function
a = unet
a = scheduler
a = env
a = env.get_dataset()
a = {}
for key in self.data.keys():
try:
a = self.data[key].mean()
except: # noqa: E722
pass
a = {}
for key in self.data.keys():
try:
a = self.data[key].std()
except: # noqa: E722
pass
a = env.observation_space.shape[0]
a = env.action_space.shape[0]
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict ) ->Optional[Any]:
"""simple docstring"""
return (x_in - self.means[key]) / self.stds[key]
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Any , __UpperCAmelCase : int ) ->Dict:
"""simple docstring"""
return x_in * self.stds[key] + self.means[key]
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any ) ->Any:
"""simple docstring"""
if type(__UpperCAmelCase ) is dict:
return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()}
elif torch.is_tensor(__UpperCAmelCase ):
return x_in.to(self.unet.device )
return torch.tensor(__UpperCAmelCase , device=self.unet.device )
def __lowerCAmelCase ( self : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] ) ->Tuple:
"""simple docstring"""
for key, val in cond.items():
a = val.clone()
return x_in
def __lowerCAmelCase ( self : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] ) ->List[Any]:
"""simple docstring"""
a = x.shape[0]
a = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long )
for _ in range(__UpperCAmelCase ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample
a = torch.autograd.grad([y.sum()] , [x] )[0]
a = self.scheduler._get_variance(__UpperCAmelCase )
a = torch.exp(0.5 * posterior_variance )
a = model_std * grad
a = 0
a = x.detach()
a = x + scale * grad
a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim )
a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 )
# TODO: verify deprecation of this kwarg
a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample''']
# apply conditions to the trajectory (set the initial state)
a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim )
a = self.to_torch(__UpperCAmelCase )
return x, y
def __call__( self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : int=0.1 ) ->Optional[Any]:
"""simple docstring"""
a = self.normalize(__UpperCAmelCase , '''observations''' )
a = obs[None].repeat(__UpperCAmelCase , axis=0 )
a = {0: self.to_torch(__UpperCAmelCase )}
a = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
a = randn_tensor(__UpperCAmelCase , device=self.unet.device )
a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim )
a = self.to_torch(__UpperCAmelCase )
# run the diffusion process
a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# sort output trajectories by value
a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze()
a = x[sorted_idx]
a = sorted_values[:, :, : self.action_dim]
a = actions.detach().cpu().numpy()
a = self.de_normalize(__UpperCAmelCase , key='''actions''' )
# select the action with the highest value
if y is not None:
a = 0
else:
# if we didn't run value guiding, select a random action
a = np.random.randint(0 , __UpperCAmelCase )
a = denorm_actions[selected_index, 0]
return denorm_actions
| 0 |
from __future__ import annotations
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "MIT"
UpperCAmelCase__ = "1.0.0"
UpperCAmelCase__ = "Muhammad Umer Farooq"
UpperCAmelCase__ = "contact@muhammadumerfarooq.me"
UpperCAmelCase__ = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowercase_ ( lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None:
"""simple docstring"""
super().__init__()
a = []
a = domain
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
a = parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _a ( a :str ) -> str:
return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] )
def _a ( a :str ) -> str:
return parse.urlparse(a ).netloc
def _a ( a :str = "https://github.com" ) -> list[str]:
a = get_domain_name(a )
# Initialize the parser
a = Parser(a )
try:
# Open URL
a = requests.get(a )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
a = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
a = requests.get(a )
# Get the valid email.
a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a )
if __name__ == "__main__":
UpperCAmelCase__ = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 0 | 1 |
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
UpperCAmelCase__ = logging.get_logger(__name__)
def _a ( a :Union[str, Any] , a :List[str] , a :List[str] ) -> int:
a = UniSpeechSatForSequenceClassification.from_pretrained(a , config=a )
a = downstream_dict['''projector.weight''']
a = downstream_dict['''projector.bias''']
a = downstream_dict['''model.post_net.linear.weight''']
a = downstream_dict['''model.post_net.linear.bias''']
return model
def _a ( a :Any , a :str , a :List[Any] ) -> Tuple:
a = UniSpeechSatForAudioFrameClassification.from_pretrained(a , config=a )
a = downstream_dict['''model.linear.weight''']
a = downstream_dict['''model.linear.bias''']
return model
def _a ( a :Dict , a :int , a :Union[str, Any] ) -> Dict:
a = UniSpeechSatForXVector.from_pretrained(a , config=a )
a = downstream_dict['''connector.weight''']
a = downstream_dict['''connector.bias''']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
a = downstream_dict[
F"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
a = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight''']
a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias''']
a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight''']
a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias''']
a = downstream_dict['''objective.W''']
return model
@torch.no_grad()
def _a ( a :str , a :List[Any] , a :Optional[int] , a :Any ) -> str:
a = torch.load(a , map_location='''cpu''' )
a = checkpoint['''Downstream''']
a = UniSpeechSatConfig.from_pretrained(a )
a = WavaVecaFeatureExtractor.from_pretrained(
a , return_attention_mask=a , do_normalize=a )
a = hf_config.architectures[0]
if arch.endswith('''ForSequenceClassification''' ):
a = convert_classification(a , a , a )
elif arch.endswith('''ForAudioFrameClassification''' ):
a = convert_diarization(a , a , a )
elif arch.endswith('''ForXVector''' ):
a = convert_xvector(a , a , a )
else:
raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
a = checkpoint['''Featurizer''']['''weights''']
hf_feature_extractor.save_pretrained(a )
hf_model.save_pretrained(a )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
UpperCAmelCase__ = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 0 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ = logging.getLogger()
def _a ( ) -> Optional[int]:
a = argparse.ArgumentParser()
parser.add_argument('''-f''' )
a = parser.parse_args()
return args.f
def _a ( a :Any ) -> Tuple:
a = {}
a = os.path.join(a , '''all_results.json''' )
if os.path.exists(a ):
with open(a , '''r''' ) as f:
a = json.load(a )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _a ( ) -> int:
a = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
UpperCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ ( lowercase ):
'''simple docstring'''
@classmethod
def __lowerCAmelCase ( cls : str ) ->Tuple:
"""simple docstring"""
a = tempfile.mkdtemp()
a = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
a = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __lowerCAmelCase ( cls : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
a = 7 if get_gpu_count() > 1 else 2
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''translation_no_trainer''' ) ) )
@slow
def __lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
a = logging.StreamHandler(sys.stdout )
logger.addHandler(__UpperCAmelCase )
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = self.get_auto_remove_tmp_dir()
a = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
a = get_results(__UpperCAmelCase )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''image_classification_no_trainer''' ) ) )
| 0 | 1 |