code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json',
# See all AltCLIP models at https://huggingface.co/models?filter=altclip
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any = """altclip_text_model"""
def __init__( self , lowercase_=25_0002 , lowercase_=1024 , lowercase_=24 , lowercase_=16 , lowercase_=4096 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=514 , lowercase_=1 , lowercase_=0.02 , lowercase_=0.02 , lowercase_=1E-0_5 , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_="absolute" , lowercase_=True , lowercase_=768 , **lowercase_ , ):
"""simple docstring"""
super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : Any = hidden_size
UpperCAmelCase_ : List[str] = num_hidden_layers
UpperCAmelCase_ : Union[str, Any] = num_attention_heads
UpperCAmelCase_ : Optional[Any] = hidden_act
UpperCAmelCase_ : Tuple = intermediate_size
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : int = attention_probs_dropout_prob
UpperCAmelCase_ : Tuple = max_position_embeddings
UpperCAmelCase_ : Optional[Any] = type_vocab_size
UpperCAmelCase_ : List[str] = initializer_range
UpperCAmelCase_ : int = initializer_factor
UpperCAmelCase_ : Tuple = layer_norm_eps
UpperCAmelCase_ : int = position_embedding_type
UpperCAmelCase_ : List[str] = use_cache
UpperCAmelCase_ : Union[str, Any] = project_dim
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = """altclip_vision_model"""
def __init__( self , lowercase_=768 , lowercase_=3072 , lowercase_=512 , lowercase_=12 , lowercase_=12 , lowercase_=3 , lowercase_=224 , lowercase_=32 , lowercase_="quick_gelu" , lowercase_=1E-5 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , **lowercase_ , ):
"""simple docstring"""
super().__init__(**lowercase_ )
UpperCAmelCase_ : List[str] = hidden_size
UpperCAmelCase_ : List[str] = intermediate_size
UpperCAmelCase_ : Tuple = projection_dim
UpperCAmelCase_ : Any = num_hidden_layers
UpperCAmelCase_ : Optional[Any] = num_attention_heads
UpperCAmelCase_ : Union[str, Any] = num_channels
UpperCAmelCase_ : List[str] = patch_size
UpperCAmelCase_ : Any = image_size
UpperCAmelCase_ : Optional[int] = initializer_range
UpperCAmelCase_ : Optional[Any] = initializer_factor
UpperCAmelCase_ : int = attention_dropout
UpperCAmelCase_ : Union[str, Any] = layer_norm_eps
UpperCAmelCase_ : str = hidden_act
@classmethod
def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ):
"""simple docstring"""
cls._set_token_in_kwargs(lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = cls.get_config_dict(lowercase_ , **lowercase_ )
# get the vision config dict if we are loading from AltCLIPConfig
if config_dict.get("model_type" ) == "altclip":
UpperCAmelCase_ : List[str] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(lowercase_ , **lowercase_ )
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any = """altclip"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = True
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=768 , lowercase_=2.65_92 , **lowercase_ ):
"""simple docstring"""
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
UpperCAmelCase_ : Dict = kwargs.pop("text_config_dict" , lowercase_ )
UpperCAmelCase_ : List[Any] = kwargs.pop("vision_config_dict" , lowercase_ )
super().__init__(**lowercase_ )
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
UpperCAmelCase_ : Union[str, Any] = {}
# This is the complete result when using `text_config_dict`.
UpperCAmelCase_ : int = AltCLIPTextConfig(**lowercase_ ).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
UpperCAmelCase_ : int = (
F"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """
F"""The value `text_config_dict[\"{key}\"]` will be used instead."""
)
# If inferred from default argument values (just to be super careful)
else:
UpperCAmelCase_ : Optional[int] = (
F"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """
F"""value `text_config[\"{key}\"]` will be overriden."""
)
logger.warning(lowercase_ )
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict )
if vision_config_dict is not None:
if vision_config is None:
UpperCAmelCase_ : Optional[int] = {}
# This is the complete result when using `vision_config_dict`.
UpperCAmelCase_ : int = AltCLIPVisionConfig(**lowercase_ ).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
UpperCAmelCase_ : Dict = {
str(lowercase_ ): value for key, value in _vision_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
UpperCAmelCase_ : Optional[Any] = (
F"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """
F"""values. The value `vision_config_dict[\"{key}\"]` will be used instead."""
)
# If inferred from default argument values (just to be super careful)
else:
UpperCAmelCase_ : List[str] = (
F"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """
F"""The value `vision_config[\"{key}\"]` will be overriden."""
)
logger.warning(lowercase_ )
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict )
if text_config is None:
UpperCAmelCase_ : str = {}
logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." )
if vision_config is None:
UpperCAmelCase_ : str = {}
logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." )
UpperCAmelCase_ : Tuple = AltCLIPTextConfig(**lowercase_ )
UpperCAmelCase_ : List[str] = AltCLIPVisionConfig(**lowercase_ )
UpperCAmelCase_ : Optional[int] = projection_dim
UpperCAmelCase_ : str = logit_scale_init_value
UpperCAmelCase_ : Union[str, Any] = 1.0
@classmethod
def UpperCamelCase__ ( cls , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ )
UpperCAmelCase_ : int = self.text_config.to_dict()
UpperCAmelCase_ : Union[str, Any] = self.vision_config.to_dict()
UpperCAmelCase_ : Dict = self.__class__.model_type
return output
| 61 |
'''simple docstring'''
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase : Union[str, Any] = {
'text_branch': 'text_model',
'audio_branch': 'audio_model.audio_encoder',
'attn': 'attention.self',
'self.proj': 'output.dense',
'attention.self_mask': 'attn_mask',
'mlp.fc1': 'intermediate.dense',
'mlp.fc2': 'output.dense',
'norm1': 'layernorm_before',
'norm2': 'layernorm_after',
'bn0': 'batch_norm',
}
lowercase : Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc')
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : Tuple = create_model(
'''HTSAT-tiny''' , '''roberta''' , snake_case__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=snake_case__ , fusion_type='''aff_2d''' if enable_fusion else None , )
return model, model_cfg
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = {}
A : str = R'''.*sequential.(\d+).*'''
A : Union[str, Any] = R'''.*_projection.(\d+).*'''
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
A : Any = key.replace(snake_case__ , snake_case__ )
if re.match(snake_case__ , snake_case__ ):
# replace sequential layers with list
A : Any = re.match(snake_case__ , snake_case__ ).group(1 )
A : List[str] = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case__ )//3}.linear.' )
elif re.match(snake_case__ , snake_case__ ):
A : Union[str, Any] = int(re.match(snake_case__ , snake_case__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
A : str = 1 if projecton_layer == 0 else 2
A : Optional[Any] = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' )
if "audio" and "qkv" in key:
# split qkv into query key and value
A : int = value
A : List[Any] = mixed_qkv.size(0 ) // 3
A : Union[str, Any] = mixed_qkv[:qkv_dim]
A : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2]
A : Optional[int] = mixed_qkv[qkv_dim * 2 :]
A : Tuple = query_layer
A : Union[str, Any] = key_layer
A : Optional[int] = value_layer
else:
A : Dict = value
return model_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : int = init_clap(snake_case__ , enable_fusion=snake_case__ )
clap_model.eval()
A : str = clap_model.state_dict()
A : Union[str, Any] = rename_state_dict(snake_case__ )
A : Tuple = ClapConfig()
A : str = enable_fusion
A : str = ClapModel(snake_case__ )
# ignore the spectrogram embedding layer
model.load_state_dict(snake_case__ , strict=snake_case__ )
model.save_pretrained(snake_case__ )
transformers_config.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase : List[str] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not')
lowercase : Tuple = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 3 | 0 |
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
_A = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$')
@total_ordering
@dataclass
class UpperCAmelCase__ :
"""simple docstring"""
UpperCAmelCase__ : str
UpperCAmelCase__ : Optional[str] = None
UpperCAmelCase__ : Optional[Union[str, int]] = None
UpperCAmelCase__ : Optional[Union[str, int]] = None
UpperCAmelCase__ : Optional[Union[str, int]] = None
def _a ( self ) -> Dict:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase =_str_to_version_tuple(self.version_str )
def __repr__( self ) -> List[Any]:
return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'
@property
def _a ( self ) -> List[str]:
return self.major, self.minor, self.patch
def _a ( self , A_ ) -> Optional[Any]:
if isinstance(A_ , A_ ):
return Version(A_ )
elif isinstance(A_ , A_ ):
return other
raise TypeError(f'{other} (type {type(A_ )}) cannot be compared to version.' )
def __eq__( self , A_ ) -> Union[str, Any]:
try:
__UpperCamelCase =self._validate_operand(A_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , A_ ) -> Optional[int]:
__UpperCamelCase =self._validate_operand(A_ )
return self.tuple < other.tuple
def __hash__( self ) -> Optional[Any]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def _a ( cls , A_ ) -> Tuple:
__UpperCamelCase ={f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def _a ( self ) -> str:
return self.version_str
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ):
__UpperCamelCase =_VERSION_REG.match(SCREAMING_SNAKE_CASE__ )
if not res:
raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' )
return tuple(int(SCREAMING_SNAKE_CASE__ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ):
return ".".join(str(SCREAMING_SNAKE_CASE__ ) for v in version_tuple )
| 62 |
'''simple docstring'''
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
lowercase : Dict = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
if not is_sharded:
A : Union[str, Any] = os.path.abspath(snake_case__ )
logger.info(F'Loading PyTorch weights from {pt_path}' )
A : Any = torch.load(snake_case__ , map_location='''cpu''' )
logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' )
A : List[str] = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
A : Any = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ )
return flax_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ):
'''simple docstring'''
def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool:
return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0
# layer norm
A : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
A : Tuple = pt_tuple_key[:-1] + ('''mean''',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
A : Dict = pt_tuple_key[:-1] + ('''var''',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# embedding
A : Any = pt_tuple_key[:-1] + ('''embedding''',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
A : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ):
A : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
A : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ):
A : str = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
A : Dict = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
A : List[Any] = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
A : Dict = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
A : List[Any] = pt_tuple_key[-2] + '''_g'''
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
A : List[str] = pt_tuple_key[-2] + '''_v'''
if name is not None:
A : int = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()}
A : int = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
A : List[str] = flax_model.params['''params''']
else:
A : Dict = flax_model.params
A : List[Any] = flatten_dict(snake_case__ )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
A : List[str] = flatten_dict(flax_model.params['''batch_stats'''] )
random_flax_state_dict.update(snake_case__ )
A : int = {}
A : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
A : int = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
A : str = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
A : Union[str, Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
A : Any = pt_tuple_key[1:]
# Correctly rename weight parameters
A, A : Dict = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
A : Any = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
A : int = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
A : Tuple = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
A : List[str] = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
# Load the index
A : Union[str, Any] = {}
for shard_file in shard_filenames:
# load using msgpack utils
A : List[str] = torch.load(snake_case__ )
A : int = {k: v.numpy() for k, v in pt_state_dict.items()}
A : Tuple = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
A : Optional[int] = flax_model.params['''params''']
A : List[Any] = flatten_dict(snake_case__ )
random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) )
else:
A : Dict = flax_model.params
A : Tuple = flatten_dict(snake_case__ )
A : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
A : List[str] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
A : int = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
A : List[str] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
A : Union[str, Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
A, A : Any = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
A : int = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
A : int = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
A : Optional[int] = jnp.asarray(snake_case__ )
continue
if "var" in flax_key[-1]:
A : Optional[int] = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = os.path.abspath(snake_case__ )
logger.info(F'Loading Flax weights from {flax_checkpoint_path}' )
# import correct flax class
A : List[str] = getattr(snake_case__ , '''Flax''' + model.__class__.__name__ )
# load flax weight dict
with open(snake_case__ , '''rb''' ) as state_f:
try:
A : int = from_bytes(snake_case__ , state_f.read() )
except UnpicklingError:
raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' )
return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
A : List[str] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values()
if any(snake_case__ ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
A : Optional[Any] = jax.tree_util.tree_map(
lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ )
A : Union[str, Any] = flatten_dict(snake_case__ )
A : List[Any] = pt_model.state_dict()
A : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
A : Tuple = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
A : int = []
A : Any = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
A : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix
A : int = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
A : List[str] = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
A : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict:
# conv layer
A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
A : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict:
# linear layer
A : Tuple = flax_key_tuple[:-1] + ('''weight''',)
A : Tuple = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
A : Tuple = flax_key_tuple[:-1] + ('''running_mean''',)
elif "var" in flax_key_tuple[-1]:
A : Tuple = flax_key_tuple[:-1] + ('''running_var''',)
if "batch_stats" in flax_state:
A : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
A : Union[str, Any] = '''.'''.join(snake_case__ )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
A : int = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
A : Optional[int] = key.split('''.''' )
A : Dict = None
if key_components[-3::2] == ["parametrizations", "original0"]:
A : List[str] = key_components[-2] + '''_g'''
elif key_components[-3::2] == ["parametrizations", "original1"]:
A : List[Any] = key_components[-2] + '''_v'''
if name is not None:
A : str = key_components[:-3] + [name]
A : Optional[Any] = '''.'''.join(snake_case__ )
A : Optional[Any] = key
if flax_key in special_pt_names:
A : Optional[Any] = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '
F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
else:
# add weight to pytorch dict
A : Dict = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor
A : Dict = torch.from_numpy(snake_case__ )
# remove from missing keys
missing_keys.remove(snake_case__ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(snake_case__ )
pt_model.load_state_dict(snake_case__ )
# re-transform missing_keys to list
A : List[Any] = list(snake_case__ )
if len(snake_case__ ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'
F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
else:
logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' )
if len(snake_case__ ) > 0:
logger.warning(
F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'
F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'
''' use it for predictions and inference.''' )
else:
logger.warning(
F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n'
'''If your task is similar to the task the model of the checkpoint was trained on, '''
F'you can already use {pt_model.__class__.__name__} for predictions without further training.' )
return pt_model
| 3 | 0 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='naver-clova-ix/donut-base-finetuned-docvqa'
__a =(
'This is a tool that answers a question about an document (pdf). It takes an input named `document` which '
'should be the document containing the information, as well as a `question` that is the question about the '
'document. It returns a text that contains the answer to the question.'
)
__a ='document_qa'
__a =AutoProcessor
__a =VisionEncoderDecoderModel
__a =['image', 'text']
__a =['text']
def __init__( self : Optional[Any] , *__a : Any , **__a : Union[str, Any] ):
if not is_vision_available():
raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." )
super().__init__(*__a , **__a )
def UpperCamelCase__ ( self : Union[str, Any] , __a : "Image" , __a : str ):
_a = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
_a = task_prompt.replace("{user_input}" , __a )
_a = self.pre_processor.tokenizer(
__a , add_special_tokens=__a , return_tensors="pt" ).input_ids
_a = self.pre_processor(__a , return_tensors="pt" ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def UpperCamelCase__ ( self : List[Any] , __a : List[Any] ):
return self.model.generate(
inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__a , ).sequences
def UpperCamelCase__ ( self : str , __a : Tuple ):
_a = self.pre_processor.batch_decode(__a )[0]
_a = sequence.replace(self.pre_processor.tokenizer.eos_token , "" )
_a = sequence.replace(self.pre_processor.tokenizer.pad_token , "" )
_a = re.sub(r"<.*?>" , "" , __a , count=1 ).strip() # remove first task start token
_a = self.pre_processor.tokenajson(__a )
return sequence["answer"]
| 63 |
'''simple docstring'''
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
lowercase : Optional[int] = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
lowercase : Optional[Any] = {
'169M': 7_68,
'430M': 10_24,
'1B5': 20_48,
'3B': 25_60,
'7B': 40_96,
'14B': 51_20,
}
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[Any] = list(state_dict.keys() )
for name in state_dict_keys:
A : str = state_dict.pop(snake_case__ )
# emb -> embedding
if name.startswith('''emb.''' ):
A : Optional[Any] = name.replace('''emb.''' , '''embeddings.''' )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('''blocks.0.ln0''' ):
A : Union[str, Any] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' )
# att -> attention
A : int = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , snake_case__ )
# ffn -> feed_forward
A : List[Any] = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , snake_case__ )
# time_mix_k -> time_mix_key and reshape
if name.endswith('''.time_mix_k''' ):
A : List[str] = name.replace('''.time_mix_k''' , '''.time_mix_key''' )
# time_mix_v -> time_mix_value and reshape
if name.endswith('''.time_mix_v''' ):
A : Union[str, Any] = name.replace('''.time_mix_v''' , '''.time_mix_value''' )
# time_mix_r -> time_mix_key and reshape
if name.endswith('''.time_mix_r''' ):
A : Union[str, Any] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' )
if name != "head.weight":
A : List[Any] = '''rwkv.''' + name
A : Dict = weight
return state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=None ):
'''simple docstring'''
if tokenizer_file is None:
print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' )
A : int = 5_0277
A : Optional[int] = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' )
else:
A : str = PreTrainedTokenizerFast(tokenizer_file=snake_case__ )
A : Any = len(snake_case__ )
tokenizer.save_pretrained(snake_case__ )
# 2. Build the config
A : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
A : List[str] = candidate
break
if size is None:
raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' )
if size not in possible_sizes:
raise ValueError(F'`size` should be one of {possible_sizes}, got {size}.' )
A : Any = RwkvConfig(
vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(snake_case__ )
# 3. Download model file then convert state_dict
A : Union[str, Any] = hf_hub_download(snake_case__ , snake_case__ )
A : Tuple = torch.load(snake_case__ , map_location='''cpu''' )
A : List[Any] = convert_state_dict(snake_case__ )
# 4. Split in shards and save
A, A : List[str] = shard_checkpoint(snake_case__ )
for shard_file, shard in shards.items():
torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
if index is not None:
A : Dict = os.path.join(snake_case__ , snake_case__ )
# Save the index as well
with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f:
A : List[Any] = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n'''
f.write(snake_case__ )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' )
A : List[Any] = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
A : Union[str, Any] = torch.load(os.path.join(snake_case__ , snake_case__ ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' )
A : int = AutoModelForCausalLM.from_pretrained(snake_case__ )
model.push_to_hub(snake_case__ , max_shard_size='''2GB''' )
tokenizer.push_to_hub(snake_case__ )
if __name__ == "__main__":
lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
lowercase : Union[str, Any] = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 3 | 0 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
A_ = logging.get_logger(__name__)
A_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
A_ = {
'''tokenizer_file''': {
'''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''',
},
}
A_ = {
'''gpt-neox-20b''': 20_48,
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = ["input_ids", "attention_mask"]
def __init__( self: Dict, a_: Dict=None, a_: Tuple=None, a_: Dict=None, a_: str="<|endoftext|>", a_: Union[str, Any]="<|endoftext|>", a_: Tuple="<|endoftext|>", a_: Optional[int]=False, **a_: str, ):
'''simple docstring'''
super().__init__(
a_, a_, tokenizer_file=a_, unk_token=a_, bos_token=a_, eos_token=a_, add_prefix_space=a_, **a_, )
_snake_case : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""", a_ ) != add_prefix_space:
_snake_case : Optional[int] = getattr(a_, pre_tok_state.pop("""type""" ) )
_snake_case : Any = add_prefix_space
_snake_case : List[str] = pre_tok_class(**a_ )
_snake_case : Tuple = add_prefix_space
def UpperCamelCase_ ( self: List[Any], a_: str, a_: Optional[str] = None ):
'''simple docstring'''
_snake_case : Dict = self._tokenizer.model.save(a_, name=a_ )
return tuple(a_ )
def UpperCamelCase_ ( self: List[Any], a_: "Conversation" ):
'''simple docstring'''
_snake_case : List[Any] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(a_, add_special_tokens=a_ ) + [self.eos_token_id] )
if len(a_ ) > self.model_max_length:
_snake_case : int = input_ids[-self.model_max_length :]
return input_ids
| 64 |
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(__snake_case )
class A ( __snake_case ):
def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
self.check_model_type(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A, A : Dict = {}, {}
if padding is not None:
A : List[str] = padding
if truncation is not None:
A : Dict = truncation
if top_k is not None:
A : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = {'''image''': image, '''question''': question}
else:
A : Any = image
A : Any = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
return results
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
A : Union[str, Any] = load_image(inputs['''image'''] )
A : Optional[Any] = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE )
A : Dict = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(SCREAMING_SNAKE_CASE )
return model_inputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : List[Any] = self.model(**SCREAMING_SNAKE_CASE )
return model_outputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> int:
"""simple docstring"""
if top_k > self.model.config.num_labels:
A : Dict = self.model.config.num_labels
if self.framework == "pt":
A : Optional[int] = model_outputs.logits.sigmoid()[0]
A, A : int = probs.topk(SCREAMING_SNAKE_CASE )
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
A : int = scores.tolist()
A : List[str] = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
| 3 | 0 |
from __future__ import annotations
from scipy.special import comb # type: ignore
class A :
def __init__(self : List[Any] , __UpperCAmelCase : list[tuple[float, float]] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
UpperCAmelCase__ = len(__UpperCAmelCase ) - 1
def lowercase_ (self : int , __UpperCAmelCase : float ) -> list[float]:
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
UpperCAmelCase__ = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , __UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(__UpperCAmelCase ) , 5 ) == 1
return output_values
def lowercase_ (self : Dict , __UpperCAmelCase : float ) -> tuple[float, float]:
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
UpperCAmelCase__ = self.basis_function(__UpperCAmelCase )
UpperCAmelCase__ = 0.0
UpperCAmelCase__ = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def lowercase_ (self : Optional[int] , __UpperCAmelCase : float = 0.01 ) -> Optional[int]:
"""simple docstring"""
from matplotlib import pyplot as plt # type: ignore
UpperCAmelCase__ = [] # x coordinates of points to plot
UpperCAmelCase__ = [] # y coordinates of points to plot
UpperCAmelCase__ = 0.0
while t <= 1:
UpperCAmelCase__ = self.bezier_curve_function(__UpperCAmelCase )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
UpperCAmelCase__ = [i[0] for i in self.list_of_points]
UpperCAmelCase__ = [i[1] for i in self.list_of_points]
plt.plot(
__UpperCAmelCase , __UpperCAmelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , )
plt.scatter(__UpperCAmelCase , __UpperCAmelCase , color="red" , label="Control Points" )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 65 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase : Union[str, Any] = logging.get_logger(__name__)
lowercase : str = {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json',
'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json',
'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json',
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json',
'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json',
'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json',
'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json',
'cl-tohoku/bert-base-japanese-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'
),
'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class A ( __snake_case ):
__magic_name__ = '''bert'''
def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]:
"""simple docstring"""
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = vocab_size
A : Optional[Any] = hidden_size
A : List[Any] = num_hidden_layers
A : List[str] = num_attention_heads
A : Dict = hidden_act
A : Optional[Any] = intermediate_size
A : List[Any] = hidden_dropout_prob
A : List[Any] = attention_probs_dropout_prob
A : Optional[Any] = max_position_embeddings
A : List[str] = type_vocab_size
A : Dict = initializer_range
A : str = layer_norm_eps
A : int = position_embedding_type
A : Dict = use_cache
A : str = classifier_dropout
class A ( __snake_case ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A : Optional[int] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 3 | 0 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def A_ ( _lowercase, _lowercase=False ):
'''simple docstring'''
snake_case_ :List[Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """deit.embeddings.cls_token"""),
("""dist_token""", """deit.embeddings.distillation_token"""),
("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """deit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
snake_case_ :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("""norm.weight""", """deit.layernorm.weight"""),
("""norm.bias""", """deit.layernorm.bias"""),
("""head.weight""", """cls_classifier.weight"""),
("""head.bias""", """cls_classifier.bias"""),
("""head_dist.weight""", """distillation_classifier.weight"""),
("""head_dist.bias""", """distillation_classifier.bias"""),
] )
return rename_keys
def A_ ( _lowercase, _lowercase, _lowercase=False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
snake_case_ :Any = """"""
else:
snake_case_ :str = """deit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case_ :str = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
snake_case_ :Any = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
snake_case_ :Dict = in_proj_weight[
: config.hidden_size, :
]
snake_case_ :int = in_proj_bias[: config.hidden_size]
snake_case_ :str = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case_ :str = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case_ :Union[str, Any] = in_proj_weight[
-config.hidden_size :, :
]
snake_case_ :Union[str, Any] = in_proj_bias[-config.hidden_size :]
def A_ ( _lowercase, _lowercase, _lowercase ):
'''simple docstring'''
snake_case_ :int = dct.pop(_lowercase )
snake_case_ :Tuple = val
def A_ ( ):
'''simple docstring'''
snake_case_ :Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case_ :Union[str, Any] = Image.open(requests.get(_lowercase, stream=_lowercase ).raw )
return im
@torch.no_grad()
def A_ ( _lowercase, _lowercase ):
'''simple docstring'''
snake_case_ :List[Any] = DeiTConfig()
# all deit models have fine-tuned heads
snake_case_ :Optional[int] = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
snake_case_ :int = 1000
snake_case_ :Optional[int] = """huggingface/label-files"""
snake_case_ :List[Any] = """imagenet-1k-id2label.json"""
snake_case_ :str = json.load(open(hf_hub_download(_lowercase, _lowercase, repo_type="""dataset""" ), """r""" ) )
snake_case_ :Dict = {int(_lowercase ): v for k, v in idalabel.items()}
snake_case_ :Optional[Any] = idalabel
snake_case_ :Union[str, Any] = {v: k for k, v in idalabel.items()}
snake_case_ :Any = int(deit_name[-6:-4] )
snake_case_ :Any = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("""tiny""" ):
snake_case_ :Tuple = 192
snake_case_ :Optional[int] = 768
snake_case_ :Tuple = 12
snake_case_ :Tuple = 3
elif deit_name[9:].startswith("""small""" ):
snake_case_ :List[Any] = 384
snake_case_ :Dict = 1536
snake_case_ :Optional[int] = 12
snake_case_ :str = 6
if deit_name[9:].startswith("""base""" ):
pass
elif deit_name[4:].startswith("""large""" ):
snake_case_ :int = 1024
snake_case_ :List[Any] = 4096
snake_case_ :Any = 24
snake_case_ :Optional[int] = 16
# load original model from timm
snake_case_ :int = timm.create_model(_lowercase, pretrained=_lowercase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case_ :Any = timm_model.state_dict()
snake_case_ :Optional[Any] = create_rename_keys(_lowercase, _lowercase )
for src, dest in rename_keys:
rename_key(_lowercase, _lowercase, _lowercase )
read_in_q_k_v(_lowercase, _lowercase, _lowercase )
# load HuggingFace model
snake_case_ :Union[str, Any] = DeiTForImageClassificationWithTeacher(_lowercase ).eval()
model.load_state_dict(_lowercase )
# Check outputs on an image, prepared by DeiTImageProcessor
snake_case_ :Optional[Any] = int(
(256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
snake_case_ :Any = DeiTImageProcessor(size=_lowercase, crop_size=config.image_size )
snake_case_ :List[str] = image_processor(images=prepare_img(), return_tensors="""pt""" )
snake_case_ :Optional[Any] = encoding["""pixel_values"""]
snake_case_ :Optional[Any] = model(_lowercase )
snake_case_ :Dict = timm_model(_lowercase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_lowercase, outputs.logits, atol=1e-3 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowercase )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--deit_name",
default="vit_deit_base_distilled_patch16_224",
type=str,
help="Name of the DeiT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
__a = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 66 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : str = BeautifulSoup(requests.get(snake_case__ , params=snake_case__ ).content , '''html.parser''' )
A : Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A : Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
lowercase : str = {
'title': (
'Precisely geometry controlled microsupercapacitors for ultrahigh areal '
'capacitance, volumetric capacitance, and energy density'
),
'journal': 'Chem. Mater.',
'volume': 30,
'pages': '3979-3990',
'year': 20_18,
'hl': 'en',
}
print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
| 3 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class a__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
lowerCamelCase : int =StableDiffusionPanoramaPipeline
lowerCamelCase : Dict =TEXT_TO_IMAGE_PARAMS
lowerCamelCase : Union[str, Any] =TEXT_TO_IMAGE_BATCH_PARAMS
lowerCamelCase : Dict =TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase : int =TEXT_TO_IMAGE_IMAGE_PARAMS
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
torch.manual_seed(0 )
__lowerCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
__lowerCamelCase = DDIMScheduler()
torch.manual_seed(0 )
__lowerCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__lowerCamelCase = CLIPTextModel(a )
__lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__lowerCamelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : Dict , a : Union[str, Any]=0 ):
"""simple docstring"""
__lowerCamelCase = torch.manual_seed(a )
__lowerCamelCase = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
# Setting height and width to None to prevent OOMs on CPU.
'''height''': None,
'''width''': None,
'''num_inference_steps''': 1,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
__lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = StableDiffusionPanoramaPipeline(**a )
__lowerCamelCase = sd_pipe.to(a )
sd_pipe.set_progress_bar_config(disable=a )
__lowerCamelCase = self.get_dummy_inputs(a )
__lowerCamelCase = sd_pipe(**a ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
super().test_inference_batch_consistent(batch_sizes=[1, 2] )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
__lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = StableDiffusionPanoramaPipeline(**a )
__lowerCamelCase = sd_pipe.to(a )
sd_pipe.set_progress_bar_config(disable=a )
__lowerCamelCase = self.get_dummy_inputs(a )
__lowerCamelCase = '''french fries'''
__lowerCamelCase = sd_pipe(**a , negative_prompt=a )
__lowerCamelCase = output.images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
__lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = StableDiffusionPanoramaPipeline(**a )
__lowerCamelCase = sd_pipe.to(a )
sd_pipe.set_progress_bar_config(disable=a )
__lowerCamelCase = self.get_dummy_inputs(a )
__lowerCamelCase = sd_pipe(**a , view_batch_size=2 )
__lowerCamelCase = output.images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
__lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = EulerAncestralDiscreteScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' )
__lowerCamelCase = StableDiffusionPanoramaPipeline(**a )
__lowerCamelCase = sd_pipe.to(a )
sd_pipe.set_progress_bar_config(disable=a )
__lowerCamelCase = self.get_dummy_inputs(a )
__lowerCamelCase = sd_pipe(**a ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
__lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = PNDMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , skip_prk_steps=a )
__lowerCamelCase = StableDiffusionPanoramaPipeline(**a )
__lowerCamelCase = sd_pipe.to(a )
sd_pipe.set_progress_bar_config(disable=a )
__lowerCamelCase = self.get_dummy_inputs(a )
__lowerCamelCase = sd_pipe(**a ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self : str , a : str=0 ):
"""simple docstring"""
__lowerCamelCase = torch.manual_seed(a )
__lowerCamelCase = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
__lowerCamelCase = '''stabilityai/stable-diffusion-2-base'''
__lowerCamelCase = DDIMScheduler.from_pretrained(a , subfolder='''scheduler''' )
__lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(a , scheduler=a , safety_checker=a )
pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing()
__lowerCamelCase = self.get_inputs()
__lowerCamelCase = pipe(**a ).images
__lowerCamelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 20_48, 3)
__lowerCamelCase = np.array(
[
0.36_96_83_92,
0.27_02_53_72,
0.32_44_67_66,
0.28_37_93_87,
0.36_36_32_74,
0.30_73_33_47,
0.27_10_00_27,
0.27_05_41_25,
0.25_53_60_96,
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
__lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-base''' , safety_checker=a )
__lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing()
__lowerCamelCase = self.get_inputs()
__lowerCamelCase = pipe(**a ).images
__lowerCamelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 20_48, 3)
__lowerCamelCase = np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
__lowerCamelCase = 0
def callback_fn(a : int , a : int , a : torch.FloatTensor ) -> None:
__lowerCamelCase = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
__lowerCamelCase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 2_56)
__lowerCamelCase = latents[0, -3:, -3:, -1]
__lowerCamelCase = np.array(
[
0.18_68_18_69,
0.33_90_78_16,
0.5_36_12_76,
0.14_43_28_65,
-0.02_85_66_11,
-0.73_94_11_23,
0.23_39_79_87,
0.47_32_26_82,
-0.37_82_31_64,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
__lowerCamelCase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 2_56)
__lowerCamelCase = latents[0, -3:, -3:, -1]
__lowerCamelCase = np.array(
[
0.18_53_96_45,
0.33_98_72_48,
0.5_37_85_59,
0.14_43_71_42,
-0.02_45_52_61,
-0.7_33_83_17,
0.23_99_07_55,
0.47_35_62_72,
-0.3_78_65_05,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
__lowerCamelCase = False
__lowerCamelCase = '''stabilityai/stable-diffusion-2-base'''
__lowerCamelCase = DDIMScheduler.from_pretrained(a , subfolder='''scheduler''' )
__lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(a , scheduler=a , safety_checker=a )
__lowerCamelCase = pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing()
__lowerCamelCase = self.get_inputs()
pipe(**a , callback=a , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowerCamelCase = '''stabilityai/stable-diffusion-2-base'''
__lowerCamelCase = DDIMScheduler.from_pretrained(a , subfolder='''scheduler''' )
__lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(a , scheduler=a , safety_checker=a )
__lowerCamelCase = pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__lowerCamelCase = self.get_inputs()
__lowerCamelCase = pipe(**a )
__lowerCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
| 67 |
'''simple docstring'''
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Any = None
A : Optional[Any] = None
A : Tuple = graph
self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Dict = len(SCREAMING_SNAKE_CASE )
A : Optional[Any] = None
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if sources is int:
A : Dict = [sources]
if sinks is int:
A : str = [sinks]
if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0:
return
A : Optional[int] = sources[0]
A : Union[str, Any] = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1:
A : Optional[int] = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
A : Dict = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
A : Dict = max_input_flow
A : Tuple = 0
A : Tuple = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
A : Optional[Any] = max_input_flow
A : Optional[Any] = size - 1
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
if self.maximum_flow_algorithm is None:
raise Exception('''You need to set maximum flow algorithm before.''' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : List[Any] = algorithm(self )
class A :
def __init__( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = flow_network
A : Optional[Any] = flow_network.verticesCount
A : Tuple = flow_network.sourceIndex
A : Dict = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
A : str = flow_network.graph
A : Optional[Any] = False
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
if not self.executed:
self._algorithm()
A : Optional[int] = True
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
pass
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__(SCREAMING_SNAKE_CASE )
# use this to save your result
A : List[str] = -1
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
if not self.executed:
raise Exception('''You should execute algorithm before using its result!''' )
return self.maximum_flow
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
super().__init__(SCREAMING_SNAKE_CASE )
A : Optional[Any] = [[0] * self.verticies_count for i in range(self.verticies_count )]
A : Union[str, Any] = [0] * self.verticies_count
A : List[Any] = [0] * self.verticies_count
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
A : Optional[Any] = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
A : Union[str, Any] = 0
while i < len(SCREAMING_SNAKE_CASE ):
A : str = vertices_list[i]
A : List[str] = self.heights[vertex_index]
self.process_vertex(SCREAMING_SNAKE_CASE )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) )
A : int = 0
else:
i += 1
A : Optional[Any] = sum(self.preflow[self.source_index] )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.relabel(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Dict = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Dict = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
A : Dict = self.heights[to_index]
if min_height is not None:
A : Dict = min_height + 1
if __name__ == "__main__":
lowercase : Optional[int] = [0]
lowercase : List[Any] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
lowercase : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
lowercase : List[str] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
lowercase : List[str] = flow_network.find_maximum_flow()
print(f'''maximum flow is {maximum_flow}''')
| 3 | 0 |
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
'''simple docstring'''
try:
A__ = int(SCREAMING_SNAKE_CASE_ )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
A__ = 2
A__ = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
A__ = i
while n % i == 0:
A__ = n // i
i += 1
return int(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 68 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ = 10 ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ) or n < 0:
raise ValueError('''Invalid input''' )
A : List[str] = 10**n
A : Tuple = 2_8433 * (pow(2 , 783_0457 , snake_case__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f'''{solution(10) = }''')
| 3 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
__UpperCamelCase = None
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCamelCase = {
'''vocab_file''': {
'''facebook/nllb-200-distilled-600M''': (
'''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/nllb-200-distilled-600M''': (
'''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json'''
),
},
}
__UpperCamelCase = {
'''facebook/nllb-large-en-ro''': 1024,
'''facebook/nllb-200-distilled-600M''': 1024,
}
# fmt: off
__UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn''']
class UpperCamelCase ( lowerCAmelCase__ ):
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"]
SCREAMING_SNAKE_CASE_ = NllbTokenizer
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = []
def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=False, **lowerCAmelCase__, ) -> List[str]:
# Mask token behave like a normal word, i.e. include the space before it
snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token
snake_case_ = legacy_behaviour
super().__init__(
vocab_file=lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, src_lang=lowerCAmelCase__, tgt_lang=lowerCAmelCase__, additional_special_tokens=lowerCAmelCase__, legacy_behaviour=lowerCAmelCase__, **lowerCAmelCase__, )
snake_case_ = vocab_file
snake_case_ = False if not self.vocab_file else True
snake_case_ = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens])
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens})
snake_case_ = {
lang_code: self.convert_tokens_to_ids(lowerCAmelCase__) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
snake_case_ = src_lang if src_lang is not None else 'eng_Latn'
snake_case_ = self.convert_tokens_to_ids(self._src_lang)
snake_case_ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def a_ ( self) -> str:
return self._src_lang
@src_lang.setter
def a_ ( self, lowerCAmelCase__) -> None:
snake_case_ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]:
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> str:
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model')
snake_case_ = src_lang
snake_case_ = self(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__)
snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__)
snake_case_ = tgt_lang_id
return inputs
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = "eng_Latn", lowerCAmelCase__ = None, lowerCAmelCase__ = "fra_Latn", **lowerCAmelCase__, ) -> BatchEncoding:
snake_case_ = src_lang
snake_case_ = tgt_lang
return super().prepare_seqaseq_batch(lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__)
def a_ ( self) -> List[Any]:
return self.set_src_lang_special_tokens(self.src_lang)
def a_ ( self) -> Tuple:
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def a_ ( self, lowerCAmelCase__) -> None:
snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__)
if self.legacy_behaviour:
snake_case_ = []
snake_case_ = [self.eos_token_id, self.cur_lang_code]
else:
snake_case_ = [self.cur_lang_code]
snake_case_ = [self.eos_token_id]
snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens)
snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens)
snake_case_ = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), )
def a_ ( self, lowerCAmelCase__) -> None:
snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__)
if self.legacy_behaviour:
snake_case_ = []
snake_case_ = [self.eos_token_id, self.cur_lang_code]
else:
snake_case_ = [self.cur_lang_code]
snake_case_ = [self.eos_token_id]
snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens)
snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens)
snake_case_ = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), )
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.')
if not os.path.isdir(lowerCAmelCase__):
logger.error(f'Vocabulary path ({save_directory}) should be a directory.')
return
snake_case_ = os.path.join(
lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__):
copyfile(self.vocab_file, lowerCAmelCase__)
return (out_vocab_file,)
| 69 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
lowercase : List[str] = logging.get_logger(__name__)
lowercase : str = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class A ( __snake_case ):
__magic_name__ = '''gpt_neo'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self , SCREAMING_SNAKE_CASE=50257 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=24 , SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=50256 , SCREAMING_SNAKE_CASE=50256 , **SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
A : Union[str, Any] = vocab_size
A : Optional[Any] = max_position_embeddings
A : Dict = hidden_size
A : Optional[Any] = num_layers
A : Tuple = num_heads
A : int = intermediate_size
A : Optional[Any] = window_size
A : List[Any] = activation_function
A : Union[str, Any] = resid_dropout
A : Any = embed_dropout
A : List[Any] = attention_dropout
A : str = classifier_dropout
A : List[Any] = layer_norm_epsilon
A : str = initializer_range
A : List[str] = use_cache
A : Optional[int] = bos_token_id
A : List[Any] = eos_token_id
A : int = attention_types
A : int = self.expand_attention_types_params(SCREAMING_SNAKE_CASE )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.attention_layers)` == `config.num_layers` '''
F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, '
F'`config.num_layers = {self.num_layers}`. '
'''`config.attention_layers` is prepared using `config.attention_types`. '''
'''Please verify the value of `config.attention_types` argument.''' )
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
@staticmethod
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : List[str] = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
A : Tuple = input.size()
A : Union[str, Any] = len(snake_case__ )
A : List[str] = shape[dimension]
A : Union[str, Any] = torch.arange(0 , snake_case__ , snake_case__ )
A : List[str] = torch.div(sizedim - size , snake_case__ , rounding_mode='''floor''' ) + 1
A : Optional[int] = torch.arange(snake_case__ ) + low_indices[:min_length][:, None]
A : str = [slice(snake_case__ )] * rank
A : List[Any] = indices
A : Union[str, Any] = input[s]
A : List[str] = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
A : List[str] = torch.arange(1 , snake_case__ )
A : Optional[int] = torch.remainder(snake_case__ , snake_case__ )
A : Optional[int] = remainders == 0
A : Optional[Any] = candidates[divisor_indices]
A : Optional[int] = torch.max(snake_case__ )
return largest_divisor, torch.div(snake_case__ , snake_case__ , rounding_mode='''floor''' )
class A ( __snake_case ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
A : Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction='''inputs''' )
A : Optional[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
A : Dict = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return self._config.num_heads
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]:
"""simple docstring"""
A : List[str] = super(SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs(
SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
A : Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
A, A : Dict = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
A : str = seqlen + 2
A : List[Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
A : Any = [
(torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
A : str = common_inputs['''attention_mask''']
if self.use_past:
A : Optional[int] = ordered_inputs['''attention_mask'''].dtype
A : List[str] = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 )
return ordered_inputs
@property
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return 13
| 3 | 0 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class UpperCAmelCase :
def __init__( self : Optional[int] , __snake_case : int , __snake_case : Optional[Any]=2 , __snake_case : int=True , __snake_case : str=False , __snake_case : List[str]=10 , __snake_case : Union[str, Any]=3 , __snake_case : List[Any]=32 * 4 , __snake_case : str=32 * 6 , __snake_case : int=4 , __snake_case : str=32 , ) -> str:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = is_training
_lowerCAmelCase = use_auxiliary_loss
_lowerCAmelCase = num_queries
_lowerCAmelCase = num_channels
_lowerCAmelCase = min_size
_lowerCAmelCase = max_size
_lowerCAmelCase = num_labels
_lowerCAmelCase = mask_feature_size
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
_lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__snake_case )
_lowerCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case )
_lowerCAmelCase = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5
).float()
_lowerCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long()
_lowerCAmelCase = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def lowercase__ ( self : Tuple ) -> Tuple:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs()
_lowerCAmelCase = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def lowercase__ ( self : List[Any] , __snake_case : str , __snake_case : Optional[int] ) -> List[Any]:
_lowerCAmelCase = output.encoder_hidden_states
_lowerCAmelCase = output.pixel_decoder_hidden_states
_lowerCAmelCase = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , config.decoder_config.decoder_layers )
def lowercase__ ( self : str , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict=False ) -> Dict:
with torch.no_grad():
_lowerCAmelCase = MaskFormerModel(config=__snake_case )
model.to(__snake_case )
model.eval()
_lowerCAmelCase = model(pixel_values=__snake_case , pixel_mask=__snake_case )
_lowerCAmelCase = model(__snake_case , output_hidden_states=__snake_case )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__snake_case , __snake_case )
def lowercase__ ( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : Dict , __snake_case : Dict , __snake_case : str ) -> str:
_lowerCAmelCase = MaskFormerForInstanceSegmentation(config=__snake_case )
model.to(__snake_case )
model.eval()
def comm_check_on_output(__snake_case : List[str] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_lowerCAmelCase = model(pixel_values=__snake_case , pixel_mask=__snake_case )
_lowerCAmelCase = model(__snake_case )
comm_check_on_output(__snake_case )
_lowerCAmelCase = model(
pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
comm_check_on_output(__snake_case )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ):
_lowercase: Any = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
_lowercase: int = (
{'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
_lowercase: Optional[int] = False
_lowercase: Union[str, Any] = False
_lowercase: Dict = False
_lowercase: Union[str, Any] = False
def lowercase__ ( self : Tuple ) -> List[Any]:
_lowerCAmelCase = MaskFormerModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case )
def lowercase__ ( self : Dict ) -> Dict:
self.config_tester.run_common_tests()
def lowercase__ ( self : Optional[Any] ) -> str:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def lowercase__ ( self : str ) -> Optional[int]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__snake_case )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def lowercase__ ( self : List[Any] ) -> List[str]:
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def lowercase__ ( self : Union[str, Any] ) -> List[str]:
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def lowercase__ ( self : List[str] ) -> Any:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase__ ( self : Optional[Any] ) -> Dict:
pass
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(__snake_case )
_lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase = [*signature.parameters.keys()]
_lowerCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __snake_case )
@slow
def lowercase__ ( self : Optional[Any] ) -> str:
for model_name in ["facebook/maskformer-swin-small-coco"]:
_lowerCAmelCase = MaskFormerModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def lowercase__ ( self : str ) -> int:
_lowerCAmelCase = (self.model_tester.min_size,) * 2
_lowerCAmelCase = {
"""pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ),
"""mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ),
"""class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(),
}
_lowerCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__snake_case )
_lowerCAmelCase = model(**__snake_case )
self.assertTrue(outputs.loss is not None )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def lowercase__ ( self : str ) -> Optional[int]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(__snake_case ).to(__snake_case )
_lowerCAmelCase = model(**__snake_case , output_attentions=__snake_case )
self.assertTrue(outputs.attentions is not None )
def lowercase__ ( self : Tuple ) -> str:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_lowerCAmelCase = self.all_model_classes[1]
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
_lowerCAmelCase = model_class(__snake_case )
model.to(__snake_case )
model.train()
_lowerCAmelCase = model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss
loss.backward()
def lowercase__ ( self : Dict ) -> int:
# only MaskFormerForInstanceSegmentation has the loss
_lowerCAmelCase = self.all_model_classes[1]
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
_lowerCAmelCase = True
_lowerCAmelCase = True
_lowerCAmelCase = model_class(__snake_case )
model.to(__snake_case )
model.train()
_lowerCAmelCase = model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
_lowerCAmelCase = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_lowerCAmelCase = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_lowerCAmelCase = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_lowerCAmelCase = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__snake_case )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
A__ : int =1e-4
def UpperCamelCase__ ( ):
"""simple docstring"""
_lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class UpperCAmelCase ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Dict ) -> Dict:
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def lowercase__ ( self : str ) -> Union[str, Any]:
_lowerCAmelCase = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(__snake_case )
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
_lowerCAmelCase = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 8_00, 10_88) )
with torch.no_grad():
_lowerCAmelCase = model(**__snake_case )
_lowerCAmelCase = torch.tensor(
[[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
_lowerCAmelCase = torch.tensor(
[[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
_lowerCAmelCase = torch.tensor(
[[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) )
def lowercase__ ( self : Any ) -> Tuple:
_lowerCAmelCase = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(__snake_case )
.eval()
)
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
_lowerCAmelCase = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 8_00, 10_88) )
with torch.no_grad():
_lowerCAmelCase = model(**__snake_case )
# masks_queries_logits
_lowerCAmelCase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_lowerCAmelCase = [
[-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33],
[-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95],
[-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42],
]
_lowerCAmelCase = torch.tensor(__snake_case ).to(__snake_case )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
# class_queries_logits
_lowerCAmelCase = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_lowerCAmelCase = torch.tensor(
[
[1.6_5_1_2E0_0, -5.2_5_7_2E0_0, -3.3_5_1_9E0_0],
[3.6_1_6_9E-0_2, -5.9_0_2_5E0_0, -2.9_3_1_3E0_0],
[1.0_7_6_6E-0_4, -7.7_6_3_0E0_0, -5.1_2_6_3E0_0],
] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) )
def lowercase__ ( self : Tuple ) -> Optional[Any]:
_lowerCAmelCase = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(__snake_case )
.eval()
)
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
_lowerCAmelCase = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 8_00, 10_88) )
with torch.no_grad():
_lowerCAmelCase = model(**__snake_case )
# masks_queries_logits
_lowerCAmelCase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_lowerCAmelCase = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]]
_lowerCAmelCase = torch.tensor(__snake_case ).to(__snake_case )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
# class_queries_logits
_lowerCAmelCase = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_lowerCAmelCase = torch.tensor(
[[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) )
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
_lowerCAmelCase = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(__snake_case )
.eval()
)
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = image_processor(
[np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , )
_lowerCAmelCase = inputs["""pixel_values"""].to(__snake_case )
_lowerCAmelCase = [el.to(__snake_case ) for el in inputs["""mask_labels"""]]
_lowerCAmelCase = [el.to(__snake_case ) for el in inputs["""class_labels"""]]
with torch.no_grad():
_lowerCAmelCase = model(**__snake_case )
self.assertTrue(outputs.loss is not None )
| 70 |
'''simple docstring'''
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = []
A : Union[str, Any] = []
for i in range(self.num_layers ):
A : Any = self.in_channels if i == 0 else self.out_channels
A : Optional[Any] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : Optional[int] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = resnets
A : Union[str, Any] = attentions
if self.add_downsample:
A : int = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[Any] = ()
for resnet, attn in zip(self.resnets , self.attentions ):
A : int = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Dict = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
A : Optional[Any] = self.downsamplers_a(SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[Any] = []
for i in range(self.num_layers ):
A : Optional[Any] = self.in_channels if i == 0 else self.out_channels
A : List[str] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : Dict = resnets
if self.add_downsample:
A : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
"""simple docstring"""
A : str = ()
for resnet in self.resnets:
A : Optional[int] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
A : Optional[int] = self.downsamplers_a(SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = []
A : Optional[int] = []
for i in range(self.num_layers ):
A : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : Dict = self.prev_output_channel if i == 0 else self.out_channels
A : List[str] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : int = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Dict = resnets
A : Optional[Any] = attentions
if self.add_upsample:
A : Optional[int] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[int]:
"""simple docstring"""
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
A : List[str] = res_hidden_states_tuple[-1]
A : int = res_hidden_states_tuple[:-1]
A : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Tuple = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
if self.add_upsample:
A : Dict = self.upsamplers_a(SCREAMING_SNAKE_CASE )
return hidden_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : int = []
for i in range(self.num_layers ):
A : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : List[str] = self.prev_output_channel if i == 0 else self.out_channels
A : str = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : List[Any] = resnets
if self.add_upsample:
A : Optional[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Tuple:
"""simple docstring"""
for resnet in self.resnets:
# pop res hidden states
A : Optional[int] = res_hidden_states_tuple[-1]
A : Optional[Any] = res_hidden_states_tuple[:-1]
A : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Optional[Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
if self.add_upsample:
A : List[str] = self.upsamplers_a(SCREAMING_SNAKE_CASE )
return hidden_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : str = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
A : List[Any] = []
for _ in range(self.num_layers ):
A : int = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : List[str] = resnets
A : List[str] = attentions
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict:
"""simple docstring"""
A : Optional[Any] = self.resnets[0](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
A : Optional[int] = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
return hidden_states
| 3 | 0 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' ,['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' ,['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' ,[None, 'v2'] )
def A ( a_ ,a_ ,a_ ) -> Optional[int]:
__UpperCamelCase : Tuple =hf_hub_url(repo_id=a_ ,path=a_ ,revision=a_ )
assert url == F'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a_ )}'
| 71 |
'''simple docstring'''
import os
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : List[Any] = os.path.join(os.path.dirname(snake_case__ ) , '''num.txt''' )
with open(snake_case__ ) as file_hand:
return str(sum(int(snake_case__ ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 3 | 0 |
"""simple docstring"""
from __future__ import annotations
import math
def snake_case_ ( A_ : float, A_ : int ):
'''simple docstring'''
_lowerCamelCase : Tuple = u
for i in range(1, A_ ):
_lowerCamelCase : int = temp * (u - i)
return temp
def snake_case_ ( ):
'''simple docstring'''
_lowerCamelCase : Tuple = int(input('''enter the numbers of values: ''' ) )
_lowerCamelCase : list[list[float]] = []
for _ in range(A_ ):
y.append([] )
for i in range(A_ ):
for j in range(A_ ):
y[i].append(A_ )
_lowerCamelCase : Optional[int] = 0
print('''enter the values of parameters in a list: ''' )
_lowerCamelCase : Optional[int] = list(map(A_, input().split() ) )
print('''enter the values of corresponding parameters: ''' )
for i in range(A_ ):
_lowerCamelCase : Dict = float(input() )
_lowerCamelCase : Tuple = int(input('''enter the value to interpolate: ''' ) )
_lowerCamelCase : List[Any] = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1, A_ ):
for j in range(n - i ):
_lowerCamelCase : Optional[Any] = y[j + 1][i - 1] - y[j][i - 1]
_lowerCamelCase : Any = y[0][0]
for i in range(1, A_ ):
summ += (ucal(A_, A_ ) * y[0][i]) / math.factorial(A_ )
print(F'''the value at {value} is {summ}''' )
if __name__ == "__main__":
main()
| 72 |
'''simple docstring'''
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , snake_case__ )
A : Dict = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
A : Dict = dataset_size < in_memory_max_size
else:
A : Tuple = False
A : int = is_small_dataset(snake_case__ )
assert result == expected
| 3 | 0 |
import logging
from transformers.configuration_utils import PretrainedConfig
a =logging.getLogger(__name__)
class A_ ( SCREAMING_SNAKE_CASE ):
_UpperCAmelCase : List[Any] = '''masked_bert'''
def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : List[Any]=3_0_5_2_2 ,SCREAMING_SNAKE_CASE__ : str=7_6_8 ,SCREAMING_SNAKE_CASE__ : List[str]=1_2 ,SCREAMING_SNAKE_CASE__ : List[str]=1_2 ,SCREAMING_SNAKE_CASE__ : str=3_0_7_2 ,SCREAMING_SNAKE_CASE__ : Tuple="gelu" ,SCREAMING_SNAKE_CASE__ : Tuple=0.1 ,SCREAMING_SNAKE_CASE__ : Any=0.1 ,SCREAMING_SNAKE_CASE__ : Any=5_1_2 ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 ,SCREAMING_SNAKE_CASE__ : Any=1E-12 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0 ,SCREAMING_SNAKE_CASE__ : Optional[int]="topK" ,SCREAMING_SNAKE_CASE__ : Optional[Any]="constant" ,SCREAMING_SNAKE_CASE__ : str=0.0 ,**SCREAMING_SNAKE_CASE__ : Tuple ,):
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Union[str, Any] = vocab_size
__lowerCamelCase : Any = hidden_size
__lowerCamelCase : Optional[Any] = num_hidden_layers
__lowerCamelCase : Any = num_attention_heads
__lowerCamelCase : List[Any] = hidden_act
__lowerCamelCase : Optional[Any] = intermediate_size
__lowerCamelCase : Optional[Any] = hidden_dropout_prob
__lowerCamelCase : Optional[int] = attention_probs_dropout_prob
__lowerCamelCase : Union[str, Any] = max_position_embeddings
__lowerCamelCase : List[Any] = type_vocab_size
__lowerCamelCase : Optional[Any] = initializer_range
__lowerCamelCase : str = layer_norm_eps
__lowerCamelCase : int = pruning_method
__lowerCamelCase : str = mask_init
__lowerCamelCase : Union[str, Any] = mask_scale
| 73 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class A ( __snake_case ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 3 | 0 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
'''microsoft/unispeech-sat-base-100h-libri-ft''': (
'''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'''
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class lowerCAmelCase_ ( _lowercase ):
'''simple docstring'''
_lowerCamelCase: Optional[Any] = '''unispeech-sat'''
def __init__( self : int ,A_ : Optional[int]=32 ,A_ : Optional[int]=768 ,A_ : Union[str, Any]=12 ,A_ : Optional[int]=12 ,A_ : Optional[int]=3072 ,A_ : Union[str, Any]="gelu" ,A_ : Union[str, Any]=0.1 ,A_ : List[str]=0.1 ,A_ : Any=0.1 ,A_ : Optional[int]=0.0 ,A_ : Union[str, Any]=0.0 ,A_ : str=0.1 ,A_ : Union[str, Any]=0.1 ,A_ : int=0.02 ,A_ : int=1e-5 ,A_ : int="group" ,A_ : List[str]="gelu" ,A_ : Dict=(512, 512, 512, 512, 512, 512, 512) ,A_ : Optional[int]=(5, 2, 2, 2, 2, 2, 2) ,A_ : Any=(10, 3, 3, 3, 3, 2, 2) ,A_ : Optional[Any]=False ,A_ : str=128 ,A_ : Union[str, Any]=16 ,A_ : List[str]=False ,A_ : str=True ,A_ : Dict=0.05 ,A_ : Optional[Any]=10 ,A_ : Optional[int]=2 ,A_ : List[Any]=0.0 ,A_ : Union[str, Any]=10 ,A_ : str=0 ,A_ : str=320 ,A_ : Any=2 ,A_ : Dict=0.1 ,A_ : Optional[Any]=100 ,A_ : Optional[int]=256 ,A_ : Union[str, Any]=256 ,A_ : Tuple=0.1 ,A_ : int="mean" ,A_ : List[Any]=False ,A_ : Tuple=False ,A_ : Dict=256 ,A_ : List[str]=(512, 512, 512, 512, 1500) ,A_ : Optional[Any]=(5, 3, 3, 1, 1) ,A_ : Optional[Any]=(1, 2, 3, 1, 1) ,A_ : List[Any]=512 ,A_ : Any=0 ,A_ : Tuple=1 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=504 ,**A_ : Dict ,) -> List[str]:
super().__init__(**A_ ,pad_token_id=A_ ,bos_token_id=A_ ,eos_token_id=A_ )
A = hidden_size
A = feat_extract_norm
A = feat_extract_activation
A = list(A_ )
A = list(A_ )
A = list(A_ )
A = conv_bias
A = num_conv_pos_embeddings
A = num_conv_pos_embedding_groups
A = len(self.conv_dim )
A = num_hidden_layers
A = intermediate_size
A = hidden_act
A = num_attention_heads
A = hidden_dropout
A = attention_dropout
A = activation_dropout
A = feat_proj_dropout
A = final_dropout
A = layerdrop
A = layer_norm_eps
A = initializer_range
A = vocab_size
A = num_clusters
A = do_stable_layer_norm
A = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A = apply_spec_augment
A = mask_time_prob
A = mask_time_length
A = mask_time_min_masks
A = mask_feature_prob
A = mask_feature_length
A = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
A = num_codevectors_per_group
A = num_codevector_groups
A = contrastive_logits_temperature
A = feat_quantizer_dropout
A = num_negatives
A = codevector_dim
A = proj_codevector_dim
A = diversity_loss_weight
# ctc loss
A = ctc_loss_reduction
A = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
A = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
A = list(A_ )
A = list(A_ )
A = list(A_ )
A = xvector_output_dim
@property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]:
return functools.reduce(operator.mul ,self.conv_stride ,1 ) | 74 |
'''simple docstring'''
from scipy.stats import pearsonr
import datasets
lowercase : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
lowercase : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
lowercase : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float''' ),
'''references''': datasets.Value('''float''' ),
} ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
"""simple docstring"""
if return_pvalue:
A : Union[str, Any] = pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] )}
| 3 | 0 |
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , )
@pytest.mark.usefixtures('sm_env' )
@parameterized_class(
[
{
'framework': 'pytorch',
'script': 'run_glue.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_50, 'eval_accuracy': 0.7, 'eval_loss': 0.6},
},
{
'framework': 'pytorch',
'script': 'run_ddp.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_00, 'eval_accuracy': 0.7, 'eval_loss': 0.6},
},
{
'framework': 'tensorflow',
'script': 'run_tf_dist.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 6_00, 'eval_accuracy': 0.6, 'eval_loss': 0.7},
},
] )
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self ):
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split(), encoding='''utf-8''', check=lowerCAmelCase, )
assert hasattr(self, '''env''' )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}'''
# distributed data settings
lowerCamelCase_ ={'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None
# creates estimator
return HuggingFace(
entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=lowerCAmelCase, instance_count=lowerCAmelCase, instance_type=self.instance_type, debugger_hook_config=lowerCAmelCase, hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path}, metric_definitions=self.env.metric_definitions, distribution=lowerCAmelCase, py_version='''py36''', )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
TrainingJobAnalytics(lowerCAmelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(2,)] )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.create_estimator(lowerCAmelCase )
# run training
estimator.fit()
# result dataframe
lowerCamelCase_ =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCamelCase_ =list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
lowerCamelCase_ =list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCamelCase_ =(
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''', 999_999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f'''{estimator.latest_training_job.name}.json''', '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss}, lowerCAmelCase )
| 75 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
lowercase : Dict = {
'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'],
'processing_speech_to_text': ['Speech2TextProcessor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[Any] = ['Speech2TextTokenizer']
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[str] = ['Speech2TextFeatureExtractor']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Dict = [
'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFSpeech2TextForConditionalGeneration',
'TFSpeech2TextModel',
'TFSpeech2TextPreTrainedModel',
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Any = [
'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Speech2TextForConditionalGeneration',
'Speech2TextModel',
'Speech2TextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 0 |
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : List[Any] , a : Optional[Any] , a : List[Any]=99 , a : Union[str, Any]=13 , a : List[str]=16 , a : Tuple=7 , a : Dict=True , a : List[str]=True , a : Union[str, Any]=True , a : Optional[int]=False , a : Union[str, Any]=True , a : List[str]=2 , a : Dict=32 , a : List[Any]=4 , a : Optional[Any]=4 , a : List[str]=30 , a : str=0 , a : str=1 , a : Tuple=2 , a : Optional[Any]=None , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = parent
SCREAMING_SNAKE_CASE : Tuple = batch_size
SCREAMING_SNAKE_CASE : Dict = decoder_seq_length
# For common tests
SCREAMING_SNAKE_CASE : Dict = self.decoder_seq_length
SCREAMING_SNAKE_CASE : Tuple = is_training
SCREAMING_SNAKE_CASE : int = use_attention_mask
SCREAMING_SNAKE_CASE : str = use_labels
SCREAMING_SNAKE_CASE : List[str] = vocab_size
SCREAMING_SNAKE_CASE : Union[str, Any] = d_model
SCREAMING_SNAKE_CASE : List[Any] = d_model
SCREAMING_SNAKE_CASE : Tuple = decoder_layers
SCREAMING_SNAKE_CASE : Any = decoder_layers
SCREAMING_SNAKE_CASE : Tuple = decoder_ffn_dim
SCREAMING_SNAKE_CASE : int = decoder_attention_heads
SCREAMING_SNAKE_CASE : int = decoder_attention_heads
SCREAMING_SNAKE_CASE : Any = eos_token_id
SCREAMING_SNAKE_CASE : int = bos_token_id
SCREAMING_SNAKE_CASE : Optional[int] = pad_token_id
SCREAMING_SNAKE_CASE : str = decoder_start_token_id
SCREAMING_SNAKE_CASE : Optional[Any] = use_cache
SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : Optional[int] = decoder_seq_length
SCREAMING_SNAKE_CASE : Union[str, Any] = 2
SCREAMING_SNAKE_CASE : Tuple = 1
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : List[Any] = None
if self.use_attention_mask:
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_labels:
SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : Optional[int] = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def __UpperCamelCase ( self : Tuple , a : Optional[Any] , a : int , a : Tuple , a : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = True
SCREAMING_SNAKE_CASE : Optional[int] = TrOCRDecoder(config=a ).to(a ).eval()
SCREAMING_SNAKE_CASE : Any = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
SCREAMING_SNAKE_CASE : Union[str, Any] = model(a , use_cache=a )
SCREAMING_SNAKE_CASE : Tuple = model(a )
SCREAMING_SNAKE_CASE : Tuple = model(a , use_cache=a )
self.parent.assertTrue(len(a ) == len(a ) )
self.parent.assertTrue(len(a ) == len(a ) + 1 )
SCREAMING_SNAKE_CASE : Any = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
SCREAMING_SNAKE_CASE : Any = model(a )["last_hidden_state"]
SCREAMING_SNAKE_CASE : List[str] = model(a , past_key_values=a )["last_hidden_state"]
# select random slice
SCREAMING_SNAKE_CASE : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
SCREAMING_SNAKE_CASE : Optional[int] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(a , a , atol=1e-3 )
def __UpperCamelCase ( self : Dict ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = config_and_inputs
SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class _UpperCamelCase ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase__ =(TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase__ ={'text-generation': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase__ =True
lowerCamelCase__ =False
def __UpperCamelCase ( self : int ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=a )
SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=a )
def __UpperCamelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
pass
def __UpperCamelCase ( self : Dict ) -> Any:
"""simple docstring"""
pass
def __UpperCamelCase ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
pass
def __UpperCamelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*a )
def __UpperCamelCase ( self : List[Any] ) -> Any:
"""simple docstring"""
return
@unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :)
def __UpperCamelCase ( self : List[str] ) -> int:
"""simple docstring"""
pass | 76 |
'''simple docstring'''
import os
import sys
import unittest
lowercase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py')
lowercase : Optional[int] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py')
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : List[Any] = {'''BertModelTest''': '''BertModelTester'''}
A : int = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : List[str] = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A : Union[str, Any] = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : int = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Dict = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A : str = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
| 3 | 0 |
"""simple docstring"""
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class UpperCAmelCase_ ( _a , _a):
lowerCamelCase__ : Any = 1
@register_to_config
def __init__( self , a = 1_0_0_0 , a = None ) -> Dict:
# set `betas`, `alphas`, `timesteps`
self.set_timesteps(a )
# standard deviation of the initial noise distribution
lowercase__ : Optional[int] = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
lowercase__ : List[Any] = 4
# running values
lowercase__ : Dict = []
def _UpperCAmelCase ( self , a , a = None ) -> Optional[int]:
lowercase__ : int = num_inference_steps
lowercase__ : Optional[int] = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1]
lowercase__ : str = torch.cat([steps, torch.tensor([0.0] )] )
if self.config.trained_betas is not None:
lowercase__ : Optional[int] = torch.tensor(self.config.trained_betas , dtype=torch.floataa )
else:
lowercase__ : Optional[int] = torch.sin(steps * math.pi / 2 ) ** 2
lowercase__ : int = (1.0 - self.betas**2) ** 0.5
lowercase__ : Optional[int] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1]
lowercase__ : int = timesteps.to(a )
lowercase__ : Any = []
def _UpperCAmelCase ( self , a , a , a , a = True , ) -> Union[SchedulerOutput, Tuple]:
if self.num_inference_steps is None:
raise ValueError(
'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' )
lowercase__ : Optional[int] = (self.timesteps == timestep).nonzero().item()
lowercase__ : int = timestep_index + 1
lowercase__ : Tuple = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(a )
if len(self.ets ) == 1:
lowercase__ : Tuple = self.ets[-1]
elif len(self.ets ) == 2:
lowercase__ : Dict = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets ) == 3:
lowercase__ : List[Any] = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2
else:
lowercase__ : Dict = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4])
lowercase__ : str = self._get_prev_sample(a , a , a , a )
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=a )
def _UpperCAmelCase ( self , a , *a , **a ) -> torch.FloatTensor:
return sample
def _UpperCAmelCase ( self , a , a , a , a ) -> int:
lowercase__ : Dict = self.alphas[timestep_index]
lowercase__ : Tuple = self.betas[timestep_index]
lowercase__ : Dict = self.alphas[prev_timestep_index]
lowercase__ : Tuple = self.betas[prev_timestep_index]
lowercase__ : Optional[Any] = (sample - sigma * ets) / max(a , 1e-8 )
lowercase__ : Optional[int] = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__( self ) -> Union[str, Any]:
return self.config.num_train_timesteps
| 77 |
'''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class A ( __snake_case ):
__magic_name__ = DistilBertTokenizer
__magic_name__ = DistilBertTokenizerFast
__magic_name__ = True
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : List[Any] = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
A : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE )
A : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE )
A : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE )
A : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 3 | 0 |
"""simple docstring"""
import random
class A_ :
"""simple docstring"""
@staticmethod
def UpperCAmelCase__ ( lowercase_ :str ) -> tuple[list[int], list[int]]:
UpperCAmelCase = [ord(lowercase_ ) for i in text]
UpperCAmelCase = []
UpperCAmelCase = []
for i in plain:
UpperCAmelCase = random.randint(1 , 3_00 )
UpperCAmelCase = (i + k) * k
cipher.append(lowercase_ )
key.append(lowercase_ )
return cipher, key
@staticmethod
def UpperCAmelCase__ ( lowercase_ :list[int] , lowercase_ :list[int] ) -> str:
UpperCAmelCase = []
for i in range(len(lowercase_ ) ):
UpperCAmelCase = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(lowercase_ ) )
return "".join(lowercase_ )
if __name__ == "__main__":
snake_case_ , snake_case_ = Onepad().encrypt("""Hello""")
print(c, k)
print(Onepad().decrypt(c, k))
| 78 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
lowercase : Optional[int] = logging.get_logger(__name__)
class A ( __snake_case ):
__magic_name__ = ['''input_features''', '''attention_mask''']
def __init__( self , SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=16000 , SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
super().__init__(feature_size=SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , padding_value=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = num_mel_bins
A : Tuple = do_ceptral_normalize
A : Dict = normalize_means
A : List[Any] = normalize_vars
A : List[str] = True
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
A : List[Any] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
A : Any = torch.from_numpy(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
A : Any = ta_kaldi.fbank(SCREAMING_SNAKE_CASE , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 0.0 , ) -> np.ndarray:
"""simple docstring"""
if normalize_means:
A : Dict = x[:input_length].mean(axis=0 )
A : Optional[Any] = np.subtract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if normalize_vars:
A : str = x[:input_length].std(axis=0 )
A : int = np.divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if input_length < x.shape[0]:
A : List[str] = padding_value
# make sure array is in float32
A : Tuple = x.astype(np.floataa )
return x
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[np.ndarray]:
"""simple docstring"""
A : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
]
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
A : List[Any] = isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
A : Tuple = is_batched_numpy or (
isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
A : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ):
A : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
A : Optional[int] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
A : Any = [raw_speech]
# extract fbank features
A : List[str] = [self._extract_fbank_features(SCREAMING_SNAKE_CASE ) for waveform in raw_speech]
# convert into correct format for padding
A : str = BatchFeature({'''input_features''': features} )
A : Union[str, Any] = self.pad(
SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
# make sure list is in array format
A : List[str] = padded_inputs.get('''input_features''' )
if isinstance(input_features[0] , SCREAMING_SNAKE_CASE ):
A : str = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features]
A : Union[str, Any] = padded_inputs.get('''attention_mask''' )
if attention_mask is not None:
A : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
A : Dict = (
np.array(SCREAMING_SNAKE_CASE , dtype=np.intaa )
if self._get_padding_strategies(SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD
else None
)
A : List[Any] = self.normalize(
padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE )
if return_tensors is not None:
A : int = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE )
return padded_inputs
| 3 | 0 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def __lowercase ( __lowercase , __lowercase=False ) -> List[str]:
'''simple docstring'''
_A = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head" ):
_A = "segformer.encoder." + key
if key.startswith("backbone" ):
_A = key.replace("backbone" , "segformer.encoder" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_A = key[key.find("patch_embed" ) + len("patch_embed" )]
_A = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(__lowercase )-1}''' )
if "norm" in key:
_A = key.replace("norm" , "layer_norm" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_A = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )]
_A = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(__lowercase )-1}''' )
if "layer_norm1" in key:
_A = key.replace("layer_norm1" , "layer_norm_1" )
if "layer_norm2" in key:
_A = key.replace("layer_norm2" , "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_A = key[key.find("block" ) + len("block" )]
_A = key.replace(F'''block{idx}''' , F'''block.{int(__lowercase )-1}''' )
if "attn.q" in key:
_A = key.replace("attn.q" , "attention.self.query" )
if "attn.proj" in key:
_A = key.replace("attn.proj" , "attention.output.dense" )
if "attn" in key:
_A = key.replace("attn" , "attention.self" )
if "fc1" in key:
_A = key.replace("fc1" , "dense1" )
if "fc2" in key:
_A = key.replace("fc2" , "dense2" )
if "linear_pred" in key:
_A = key.replace("linear_pred" , "classifier" )
if "linear_fuse" in key:
_A = key.replace("linear_fuse.conv" , "linear_fuse" )
_A = key.replace("linear_fuse.bn" , "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_A = key[key.find("linear_c" ) + len("linear_c" )]
_A = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(__lowercase )-1}''' )
if key.startswith("head" ):
_A = key.replace("head" , "classifier" )
_A = value
return new_state_dict
def __lowercase ( __lowercase , __lowercase ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_A = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
_A = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
_A = kv_weight[
: config.hidden_sizes[i], :
]
_A = kv_bias[: config.hidden_sizes[i]]
_A = kv_weight[
config.hidden_sizes[i] :, :
]
_A = kv_bias[
config.hidden_sizes[i] :
]
def __lowercase ( ) -> List[str]:
'''simple docstring'''
_A = "http://images.cocodataset.org/val2017/000000039769.jpg"
_A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw )
return image
@torch.no_grad()
def __lowercase ( __lowercase , __lowercase , __lowercase ) -> str:
'''simple docstring'''
_A = SegformerConfig()
_A = False
# set attributes based on model_name
_A = "huggingface/label-files"
if "segformer" in model_name:
_A = model_name[len("segformer." ) : len("segformer." ) + 2]
if "ade" in model_name:
_A = 150
_A = "ade20k-id2label.json"
_A = (1, 150, 128, 128)
elif "city" in model_name:
_A = 19
_A = "cityscapes-id2label.json"
_A = (1, 19, 128, 128)
else:
raise ValueError(F'''Model {model_name} not supported''' )
elif "mit" in model_name:
_A = True
_A = model_name[4:6]
_A = 1000
_A = "imagenet-1k-id2label.json"
_A = (1, 1000)
else:
raise ValueError(F'''Model {model_name} not supported''' )
# set config attributes
_A = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) )
_A = {int(__lowercase ): v for k, v in idalabel.items()}
_A = idalabel
_A = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
_A = [64, 128, 320, 512]
_A = 256
elif size == "b2":
_A = [64, 128, 320, 512]
_A = 768
_A = [3, 4, 6, 3]
elif size == "b3":
_A = [64, 128, 320, 512]
_A = 768
_A = [3, 4, 18, 3]
elif size == "b4":
_A = [64, 128, 320, 512]
_A = 768
_A = [3, 8, 27, 3]
elif size == "b5":
_A = [64, 128, 320, 512]
_A = 768
_A = [3, 6, 40, 3]
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor (only resize + normalize)
_A = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=__lowercase , align=__lowercase , do_random_crop=__lowercase )
# prepare image
_A = prepare_img()
_A = image_processor(images=__lowercase , return_tensors="pt" ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
_A = torch.load(__lowercase , map_location=torch.device("cpu" ) )
else:
_A = torch.load(__lowercase , map_location=torch.device("cpu" ) )["state_dict"]
# rename keys
_A = rename_keys(__lowercase , encoder_only=__lowercase )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(__lowercase , __lowercase )
# create HuggingFace model and load state dict
if encoder_only:
_A = False
_A = SegformerForImageClassification(__lowercase )
else:
_A = SegformerForSemanticSegmentation(__lowercase )
model.load_state_dict(__lowercase )
model.eval()
# forward pass
_A = model(__lowercase )
_A = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
_A = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
_A = torch.tensor(
[
[[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]],
[[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]],
[[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
_A = torch.tensor(
[
[[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]],
[[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]],
[[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
_A = torch.tensor(
[
[[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]],
[[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]],
[[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
_A = torch.tensor(
[
[[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]],
[[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]],
[[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
_A = torch.tensor(
[
[[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]],
[[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]],
[[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
_A = torch.tensor(
[
[[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]],
[[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]],
[[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
_A = torch.tensor(
[
[[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]],
[[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]],
[[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
_A = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
_A = torch.tensor(
[
[[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]],
[[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]],
[[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
_A = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
_A = torch.tensor(
[
[[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]],
[[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]],
[[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
_A = torch.tensor(
[
[[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]],
[[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]],
[[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
_A = torch.tensor(
[
[[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]],
[[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]],
[[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
_A = torch.tensor(
[
[[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]],
[[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]],
[[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]],
] )
else:
_A = logits.argmax(-1 ).item()
print("Predicted class:" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__lowercase ).mkdir(exist_ok=__lowercase )
model.save_pretrained(__lowercase )
image_processor.save_pretrained(__lowercase )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''segformer.b0.512x512.ade.160k''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
lowerCamelCase_ = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 79 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
lowercase : str = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
lowercase : str = get_tests_dir('fixtures/vocab.json')
lowercase : int = get_tests_dir('fixtures')
class A ( unittest.TestCase ):
__magic_name__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = 0
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : List[Any] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : Union[str, Any] = WavaVecaConfig()
A : List[str] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
# save in new folder
model_config.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) )
A : Optional[Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : Dict = WavaVecaFeatureExtractor()
A : List[str] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
A : str = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# save in new folder
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# drop `processor_class` in tokenizer
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''r''' ) as f:
A : Dict = json.load(SCREAMING_SNAKE_CASE )
config_dict.pop('''processor_class''' )
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE ) )
A : Optional[Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : List[Any] = WavaVecaFeatureExtractor()
A : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
A : str = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# save in new folder
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# drop `processor_class` in feature extractor
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''r''' ) as f:
A : str = json.load(SCREAMING_SNAKE_CASE )
config_dict.pop('''processor_class''' )
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE ) )
A : str = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : str = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' )
model_config.save_pretrained(SCREAMING_SNAKE_CASE )
# copy relevant files
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) )
# create emtpy sample processor
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write('''{}''' )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
with self.assertRaises(SCREAMING_SNAKE_CASE ):
A : Optional[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(SCREAMING_SNAKE_CASE ):
A : Union[str, Any] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
A : List[str] = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
A : Tuple = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
# Test we can also load the slow version
A : List[str] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
A : int = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' )
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
try:
AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE )
AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(SCREAMING_SNAKE_CASE ):
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
A : List[Any] = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
A : Tuple = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.txt''' )
with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
A : Optional[int] = CustomTokenizer(SCREAMING_SNAKE_CASE )
A : Any = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
class A ( __snake_case ):
__magic_name__ = False
class A ( __snake_case ):
__magic_name__ = False
class A ( __snake_case ):
__magic_name__ = '''AutoFeatureExtractor'''
__magic_name__ = '''AutoTokenizer'''
__magic_name__ = False
try:
AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE )
AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local classes.
A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
A : Optional[int] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
A : Tuple = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : int = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Optional[int] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' )
self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' )
@is_staging_test
class A ( unittest.TestCase ):
__magic_name__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
@classmethod
def __lowerCAmelCase ( cls ) -> Dict:
"""simple docstring"""
A : Optional[int] = TOKEN
HfFolder.save_token(SCREAMING_SNAKE_CASE )
@classmethod
def __lowerCAmelCase ( cls ) -> Any:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-processor''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' )
except HTTPError:
pass
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Union[str, Any] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(SCREAMING_SNAKE_CASE , '''test-processor''' ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token )
A : int = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Tuple = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(SCREAMING_SNAKE_CASE , '''test-processor-org''' ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token , organization='''valid_org''' , )
A : int = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
A : Any = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
A : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.txt''' )
with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
A : str = CustomTokenizer(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(F'{USER}/test-dynamic-processor' , token=self._token )
A : List[str] = Repository(SCREAMING_SNAKE_CASE , clone_from=F'{USER}/test-dynamic-processor' , token=self._token )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''',
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) ) as f:
A : Dict = json.load(SCREAMING_SNAKE_CASE )
self.assertDictEqual(
tokenizer_config['''auto_map'''] , {
'''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None],
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_feature_extraction.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_tokenization.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_processing.py''' ) ) )
repo.push_to_hub()
A : Optional[int] = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=SCREAMING_SNAKE_CASE )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
| 3 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class lowercase_ :
def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=2 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , a=10_00 , ):
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = seq_length
UpperCamelCase__ = is_training
UpperCamelCase__ = use_input_mask
UpperCamelCase__ = use_token_type_ids
UpperCamelCase__ = use_labels
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = type_vocab_size
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
UpperCamelCase__ = num_labels
UpperCamelCase__ = num_choices
UpperCamelCase__ = scope
UpperCamelCase__ = range_bbox
def __a ( self ):
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCamelCase__ = bbox[i, j, 3]
UpperCamelCase__ = bbox[i, j, 1]
UpperCamelCase__ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCamelCase__ = bbox[i, j, 2]
UpperCamelCase__ = bbox[i, j, 0]
UpperCamelCase__ = t
UpperCamelCase__ = tf.convert_to_tensor(a )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self , a , a , a , a , a , a , a , a ):
UpperCamelCase__ = TFLayoutLMModel(config=a )
UpperCamelCase__ = model(a , a , attention_mask=a , token_type_ids=a )
UpperCamelCase__ = model(a , a , token_type_ids=a )
UpperCamelCase__ = model(a , a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self , a , a , a , a , a , a , a , a ):
UpperCamelCase__ = TFLayoutLMForMaskedLM(config=a )
UpperCamelCase__ = model(a , a , attention_mask=a , token_type_ids=a , labels=a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , a , a , a , a , a , a , a , a ):
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFLayoutLMForSequenceClassification(config=a )
UpperCamelCase__ = model(a , a , attention_mask=a , token_type_ids=a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , a , a , a , a , a , a , a , a ):
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFLayoutLMForTokenClassification(config=a )
UpperCamelCase__ = model(a , a , attention_mask=a , token_type_ids=a , labels=a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , a , a , a , a , a , a , a , a ):
UpperCamelCase__ = TFLayoutLMForQuestionAnswering(config=a )
UpperCamelCase__ = model(a , a , attention_mask=a , token_type_ids=a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self ):
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {
"input_ids": input_ids,
"bbox": bbox,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_tf
class lowercase_ ( a__ , a__ , unittest.TestCase ):
__UpperCAmelCase = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
__UpperCAmelCase = (
{
'feature-extraction': TFLayoutLMModel,
'fill-mask': TFLayoutLMForMaskedLM,
'text-classification': TFLayoutLMForSequenceClassification,
'token-classification': TFLayoutLMForTokenClassification,
'zero-shot': TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = 10
def __a ( self ):
UpperCamelCase__ = TFLayoutLMModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=a , hidden_size=37 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a )
def __a ( self ):
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*a )
def __a ( self ):
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*a )
def __a ( self ):
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a )
def __a ( self ):
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a )
@slow
def __a ( self ):
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ = TFLayoutLMModel.from_pretrained(a )
self.assertIsNotNone(a )
@unittest.skip("Onnx compliancy broke with TF 2.10" )
def __a ( self ):
pass
def _UpperCamelCase ( ) -> int:
'''simple docstring'''
UpperCamelCase__ = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231
UpperCamelCase__ = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
UpperCamelCase__ = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231
UpperCamelCase__ = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
UpperCamelCase__ = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class lowercase_ ( unittest.TestCase ):
@slow
def __a ( self ):
UpperCamelCase__ = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = prepare_layoutlm_batch_inputs()
# forward pass
UpperCamelCase__ = model(input_ids=a , bbox=a , attention_mask=a , token_type_ids=a )
# test the sequence output on [0, :3, :3]
UpperCamelCase__ = tf.convert_to_tensor(
[[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1e-3 ) )
# test the pooled output on [1, :3]
UpperCamelCase__ = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , a , atol=1e-3 ) )
@slow
def __a ( self ):
# initialize model with randomly initialized sequence classification head
UpperCamelCase__ = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = prepare_layoutlm_batch_inputs()
# forward pass
UpperCamelCase__ = model(
input_ids=a , bbox=a , attention_mask=a , token_type_ids=a , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
UpperCamelCase__ = outputs.loss
UpperCamelCase__ = (2,)
self.assertEqual(loss.shape , a )
# test the shape of the logits
UpperCamelCase__ = outputs.logits
UpperCamelCase__ = (2, 2)
self.assertEqual(logits.shape , a )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
UpperCamelCase__ = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = prepare_layoutlm_batch_inputs()
# forward pass
UpperCamelCase__ = model(
input_ids=a , bbox=a , attention_mask=a , token_type_ids=a , labels=a )
# test the shape of the logits
UpperCamelCase__ = outputs.logits
UpperCamelCase__ = tf.convert_to_tensor((2, 25, 13) )
self.assertEqual(logits.shape , a )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
UpperCamelCase__ = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = prepare_layoutlm_batch_inputs()
# forward pass
UpperCamelCase__ = model(input_ids=a , bbox=a , attention_mask=a , token_type_ids=a )
# test the shape of the logits
UpperCamelCase__ = tf.convert_to_tensor((2, 25) )
self.assertEqual(outputs.start_logits.shape , a )
self.assertEqual(outputs.end_logits.shape , a )
| 80 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase : Optional[Any] = None
lowercase : Tuple = logging.get_logger(__name__)
lowercase : Dict = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase : Tuple = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase : List[str] = {
'google/rembert': 2_56,
}
lowercase : Dict = '▁'
class A ( __snake_case ):
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = RemBertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token
super().__init__(
SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
A : List[Any] = do_lower_case
A : str = remove_space
A : int = keep_accents
A : Union[str, Any] = vocab_file
A : List[Any] = False if not self.vocab_file else True
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
A : List[Any] = [self.sep_token_id]
A : Tuple = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
A : Tuple = [self.sep_token_id]
A : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) )
return
A : Any = os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 3 | 0 |
"""simple docstring"""
def _A ( lowercase = 2_00 ):
"""simple docstring"""
a =[1, 2, 5, 10, 20, 50, 1_00, 2_00]
a =[0] * (pence + 1)
a =1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(lowercase , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(2_0_0) == 7_3_6_8_2 | 81 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase : Optional[Any] = logging.get_logger(__name__)
class A ( __snake_case ):
__magic_name__ = ['''pixel_values''']
def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : str = size if size is not None else {'''shortest_edge''': 384}
A : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : str = do_resize
A : List[Any] = size
# Default value set here for backwards compatibility where the value in config is None
A : List[Any] = crop_pct if crop_pct is not None else 224 / 256
A : Optional[int] = resample
A : Union[str, Any] = do_rescale
A : List[str] = rescale_factor
A : Union[str, Any] = do_normalize
A : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
A : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
A : str = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
A : Any = size['''shortest_edge''']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
A : Dict = int(shortest_edge / crop_pct )
A : str = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : int = resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image:
"""simple docstring"""
A : int = do_resize if do_resize is not None else self.do_resize
A : Tuple = crop_pct if crop_pct is not None else self.crop_pct
A : Optional[Any] = resample if resample is not None else self.resample
A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
A : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
A : List[str] = image_std if image_std is not None else self.image_std
A : Union[str, Any] = size if size is not None else self.size
A : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : Any = make_list_of_images(SCREAMING_SNAKE_CASE )
if not valid_images(SCREAMING_SNAKE_CASE ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError('''crop_pct must be specified if size < 384.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
A : Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images]
if do_resize:
A : Any = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , crop_pct=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images]
if do_rescale:
A : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images]
if do_normalize:
A : Dict = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images]
A : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images]
A : Optional[int] = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
| 3 | 0 |
from collections import defaultdict
from math import ceil, sqrt
def _UpperCAmelCase ( snake_case = 1_00_00_00 , snake_case = 10 ):
"""simple docstring"""
_lowerCAmelCase = defaultdict(snake_case )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
_lowerCAmelCase = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
_lowerCAmelCase = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(snake_case , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(f"{solution() = }")
| 82 |
'''simple docstring'''
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(SCREAMING_SNAKE_CASE ):
A : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[str] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(SCREAMING_SNAKE_CASE ):
A : Any = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Any = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
for model_name in ["bert-base-cased", "bert-large-uncased"]:
A : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE )
A : Optional[Any] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX )
@jax.jit
def eval(**SCREAMING_SNAKE_CASE ):
return model(**SCREAMING_SNAKE_CASE )
eval(**SCREAMING_SNAKE_CASE ).block_until_ready()
@slow
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for model_name in ["roberta-base", "roberta-large"]:
A : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE )
A : int = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX )
@jax.jit
def eval(**SCREAMING_SNAKE_CASE ):
return model(**SCREAMING_SNAKE_CASE )
eval(**SCREAMING_SNAKE_CASE ).block_until_ready()
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ):
A : List[Any] = FlaxAutoModel.from_pretrained('''bert-base''' )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
A : Optional[int] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE , revision='''aaaaaa''' )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ):
A : List[str] = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE , '''Use `from_pt=True` to load this model''' ):
A : Any = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
| 3 | 0 |
'''simple docstring'''
from manim import *
class lowercase__ ( lowercase ):
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
_UpperCamelCase : Any = Rectangle(height=0.5 ,width=0.5 )
_UpperCamelCase : Tuple = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0 )
_UpperCamelCase : Union[str, Any] = [mem.copy() for i in range(6 )]
_UpperCamelCase : Dict = [mem.copy() for i in range(6 )]
_UpperCamelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 )
_UpperCamelCase : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 )
_UpperCamelCase : List[Any] = VGroup(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 )
_UpperCamelCase : Tuple = Text('CPU' ,font_size=24 )
_UpperCamelCase : Optional[Any] = Group(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0.5 ,aligned_edge=lowerCamelCase__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowerCamelCase__ )
_UpperCamelCase : Optional[Any] = [mem.copy() for i in range(1 )]
_UpperCamelCase : int = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 )
_UpperCamelCase : Any = Text('GPU' ,font_size=24 )
_UpperCamelCase : Dict = Group(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0.5 ,aligned_edge=lowerCamelCase__ )
gpu.align_to(lowerCamelCase__ ,lowerCamelCase__ )
gpu.set_x(gpu.get_x() - 1 )
self.add(lowerCamelCase__ )
_UpperCamelCase : int = [mem.copy() for i in range(6 )]
_UpperCamelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0 )
_UpperCamelCase : Optional[Any] = Text('Model' ,font_size=24 )
_UpperCamelCase : int = Group(lowerCamelCase__ ,lowerCamelCase__ ).arrange(lowerCamelCase__ ,buff=0.5 ,aligned_edge=lowerCamelCase__ )
model.move_to([3, -1.0, 0] )
self.play(
Create(lowerCamelCase__ ,run_time=1 ) ,Create(lowerCamelCase__ ,run_time=1 ) ,Create(lowerCamelCase__ ,run_time=1 ) ,)
_UpperCamelCase : List[Any] = MarkupText(
F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' ,font_size=24 ,)
_UpperCamelCase : int = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_UpperCamelCase : Tuple = MarkupText(
F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,)
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase__ ,run_time=2.5 ) ,Write(lowerCamelCase__ ) ,Write(lowerCamelCase__ ) )
self.add(lowerCamelCase__ )
_UpperCamelCase : int = []
_UpperCamelCase : Optional[Any] = []
_UpperCamelCase : str = []
for i, rect in enumerate(lowerCamelCase__ ):
_UpperCamelCase : Any = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ ,opacity=0.7 )
cpu_target.move_to(lowerCamelCase__ )
cpu_target.generate_target()
_UpperCamelCase : List[Any] = 0.4_6 / 4
_UpperCamelCase : Optional[Any] = 0.4_6 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.0_2 ,direction=lowerCamelCase__ )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target ,direction=lowerCamelCase__ ,buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=lowerCamelCase__ ,buff=0.0 )
cpu_targs.append(lowerCamelCase__ )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) )
second_animations.append(MoveToTarget(lowerCamelCase__ ,run_time=1.5 ) )
self.play(*lowerCamelCase__ )
self.play(*lowerCamelCase__ )
self.wait()
| 83 |
'''simple docstring'''
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase : Union[str, Any] = {
'text_branch': 'text_model',
'audio_branch': 'audio_model.audio_encoder',
'attn': 'attention.self',
'self.proj': 'output.dense',
'attention.self_mask': 'attn_mask',
'mlp.fc1': 'intermediate.dense',
'mlp.fc2': 'output.dense',
'norm1': 'layernorm_before',
'norm2': 'layernorm_after',
'bn0': 'batch_norm',
}
lowercase : Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc')
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : Tuple = create_model(
'''HTSAT-tiny''' , '''roberta''' , snake_case__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=snake_case__ , fusion_type='''aff_2d''' if enable_fusion else None , )
return model, model_cfg
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = {}
A : str = R'''.*sequential.(\d+).*'''
A : Union[str, Any] = R'''.*_projection.(\d+).*'''
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
A : Any = key.replace(snake_case__ , snake_case__ )
if re.match(snake_case__ , snake_case__ ):
# replace sequential layers with list
A : Any = re.match(snake_case__ , snake_case__ ).group(1 )
A : List[str] = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case__ )//3}.linear.' )
elif re.match(snake_case__ , snake_case__ ):
A : Union[str, Any] = int(re.match(snake_case__ , snake_case__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
A : str = 1 if projecton_layer == 0 else 2
A : Optional[Any] = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' )
if "audio" and "qkv" in key:
# split qkv into query key and value
A : int = value
A : List[Any] = mixed_qkv.size(0 ) // 3
A : Union[str, Any] = mixed_qkv[:qkv_dim]
A : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2]
A : Optional[int] = mixed_qkv[qkv_dim * 2 :]
A : Tuple = query_layer
A : Union[str, Any] = key_layer
A : Optional[int] = value_layer
else:
A : Dict = value
return model_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : int = init_clap(snake_case__ , enable_fusion=snake_case__ )
clap_model.eval()
A : str = clap_model.state_dict()
A : Union[str, Any] = rename_state_dict(snake_case__ )
A : Tuple = ClapConfig()
A : str = enable_fusion
A : str = ClapModel(snake_case__ )
# ignore the spectrogram embedding layer
model.load_state_dict(snake_case__ , strict=snake_case__ )
model.save_pretrained(snake_case__ )
transformers_config.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase : List[str] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not')
lowercase : Tuple = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 3 | 0 |
"""simple docstring"""
def _snake_case ( lowercase__ : str , lowercase__ : str ) -> int:
'''simple docstring'''
if len(lowercase__ ) != len(lowercase__ ):
raise ValueError("""String lengths must match!""" )
lowerCAmelCase_ :Optional[int] = 0
for chara, chara in zip(lowercase__ , lowercase__ ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 84 |
'''simple docstring'''
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
lowercase : Dict = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
if not is_sharded:
A : Union[str, Any] = os.path.abspath(snake_case__ )
logger.info(F'Loading PyTorch weights from {pt_path}' )
A : Any = torch.load(snake_case__ , map_location='''cpu''' )
logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' )
A : List[str] = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
A : Any = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ )
return flax_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ):
'''simple docstring'''
def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool:
return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0
# layer norm
A : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
A : Tuple = pt_tuple_key[:-1] + ('''mean''',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
A : Dict = pt_tuple_key[:-1] + ('''var''',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# embedding
A : Any = pt_tuple_key[:-1] + ('''embedding''',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
A : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ):
A : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
A : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ):
A : str = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
A : Dict = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
A : List[Any] = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
A : Dict = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
A : List[Any] = pt_tuple_key[-2] + '''_g'''
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
A : List[str] = pt_tuple_key[-2] + '''_v'''
if name is not None:
A : int = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()}
A : int = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
A : List[str] = flax_model.params['''params''']
else:
A : Dict = flax_model.params
A : List[Any] = flatten_dict(snake_case__ )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
A : List[str] = flatten_dict(flax_model.params['''batch_stats'''] )
random_flax_state_dict.update(snake_case__ )
A : int = {}
A : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
A : int = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
A : str = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
A : Union[str, Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
A : Any = pt_tuple_key[1:]
# Correctly rename weight parameters
A, A : Dict = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
A : Any = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
A : int = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
A : Tuple = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
A : List[str] = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
# Load the index
A : Union[str, Any] = {}
for shard_file in shard_filenames:
# load using msgpack utils
A : List[str] = torch.load(snake_case__ )
A : int = {k: v.numpy() for k, v in pt_state_dict.items()}
A : Tuple = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
A : Optional[int] = flax_model.params['''params''']
A : List[Any] = flatten_dict(snake_case__ )
random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) )
else:
A : Dict = flax_model.params
A : Tuple = flatten_dict(snake_case__ )
A : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
A : List[str] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
A : int = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
A : List[str] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
A : Union[str, Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
A, A : Any = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
A : int = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
A : int = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
A : Optional[int] = jnp.asarray(snake_case__ )
continue
if "var" in flax_key[-1]:
A : Optional[int] = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = os.path.abspath(snake_case__ )
logger.info(F'Loading Flax weights from {flax_checkpoint_path}' )
# import correct flax class
A : List[str] = getattr(snake_case__ , '''Flax''' + model.__class__.__name__ )
# load flax weight dict
with open(snake_case__ , '''rb''' ) as state_f:
try:
A : int = from_bytes(snake_case__ , state_f.read() )
except UnpicklingError:
raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' )
return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
A : List[str] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values()
if any(snake_case__ ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
A : Optional[Any] = jax.tree_util.tree_map(
lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ )
A : Union[str, Any] = flatten_dict(snake_case__ )
A : List[Any] = pt_model.state_dict()
A : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
A : Tuple = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
A : int = []
A : Any = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
A : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix
A : int = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
A : List[str] = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
A : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict:
# conv layer
A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
A : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict:
# linear layer
A : Tuple = flax_key_tuple[:-1] + ('''weight''',)
A : Tuple = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
A : Tuple = flax_key_tuple[:-1] + ('''running_mean''',)
elif "var" in flax_key_tuple[-1]:
A : Tuple = flax_key_tuple[:-1] + ('''running_var''',)
if "batch_stats" in flax_state:
A : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
A : Union[str, Any] = '''.'''.join(snake_case__ )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
A : int = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
A : Optional[int] = key.split('''.''' )
A : Dict = None
if key_components[-3::2] == ["parametrizations", "original0"]:
A : List[str] = key_components[-2] + '''_g'''
elif key_components[-3::2] == ["parametrizations", "original1"]:
A : List[Any] = key_components[-2] + '''_v'''
if name is not None:
A : str = key_components[:-3] + [name]
A : Optional[Any] = '''.'''.join(snake_case__ )
A : Optional[Any] = key
if flax_key in special_pt_names:
A : Optional[Any] = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '
F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
else:
# add weight to pytorch dict
A : Dict = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor
A : Dict = torch.from_numpy(snake_case__ )
# remove from missing keys
missing_keys.remove(snake_case__ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(snake_case__ )
pt_model.load_state_dict(snake_case__ )
# re-transform missing_keys to list
A : List[Any] = list(snake_case__ )
if len(snake_case__ ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'
F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
else:
logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' )
if len(snake_case__ ) > 0:
logger.warning(
F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'
F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'
''' use it for predictions and inference.''' )
else:
logger.warning(
F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n'
'''If your task is similar to the task the model of the checkpoint was trained on, '''
F'you can already use {pt_model.__class__.__name__} for predictions without further training.' )
return pt_model
| 3 | 0 |
'''simple docstring'''
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
_SCREAMING_SNAKE_CASE : List[str] = 2_9979_2458
# Symbols
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = symbols("ct x y z")
def UpperCamelCase_( snake_case : float ):
'''simple docstring'''
if velocity > c:
raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError("Speed must be greater than or equal to 1!" )
return velocity / c
def UpperCamelCase_( snake_case : float ):
'''simple docstring'''
return 1 / sqrt(1 - beta(snake_case ) ** 2 )
def UpperCamelCase_( snake_case : float ):
'''simple docstring'''
return np.array(
[
[gamma(snake_case ), -gamma(snake_case ) * beta(snake_case ), 0, 0],
[-gamma(snake_case ) * beta(snake_case ), gamma(snake_case ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def UpperCamelCase_( snake_case : float , snake_case : np.ndarray | None = None ):
'''simple docstring'''
if event is None:
snake_case_ = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(snake_case ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
_SCREAMING_SNAKE_CASE : List[str] = transform(2997_9245)
print("Example of four vector: ")
print(F"ct' = {four_vector[0]}")
print(F"x' = {four_vector[1]}")
print(F"y' = {four_vector[2]}")
print(F"z' = {four_vector[3]}")
# Substitute symbols with numerical values
_SCREAMING_SNAKE_CASE : List[Any] = {ct: c, x: 1, y: 1, z: 1}
_SCREAMING_SNAKE_CASE : List[Any] = [four_vector[i].subs(sub_dict) for i in range(4)]
print(F"\n{numerical_vector}")
| 85 |
'''simple docstring'''
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
lowercase : Optional[int] = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
lowercase : Optional[Any] = {
'169M': 7_68,
'430M': 10_24,
'1B5': 20_48,
'3B': 25_60,
'7B': 40_96,
'14B': 51_20,
}
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[Any] = list(state_dict.keys() )
for name in state_dict_keys:
A : str = state_dict.pop(snake_case__ )
# emb -> embedding
if name.startswith('''emb.''' ):
A : Optional[Any] = name.replace('''emb.''' , '''embeddings.''' )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('''blocks.0.ln0''' ):
A : Union[str, Any] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' )
# att -> attention
A : int = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , snake_case__ )
# ffn -> feed_forward
A : List[Any] = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , snake_case__ )
# time_mix_k -> time_mix_key and reshape
if name.endswith('''.time_mix_k''' ):
A : List[str] = name.replace('''.time_mix_k''' , '''.time_mix_key''' )
# time_mix_v -> time_mix_value and reshape
if name.endswith('''.time_mix_v''' ):
A : Union[str, Any] = name.replace('''.time_mix_v''' , '''.time_mix_value''' )
# time_mix_r -> time_mix_key and reshape
if name.endswith('''.time_mix_r''' ):
A : Union[str, Any] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' )
if name != "head.weight":
A : List[Any] = '''rwkv.''' + name
A : Dict = weight
return state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=None ):
'''simple docstring'''
if tokenizer_file is None:
print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' )
A : int = 5_0277
A : Optional[int] = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' )
else:
A : str = PreTrainedTokenizerFast(tokenizer_file=snake_case__ )
A : Any = len(snake_case__ )
tokenizer.save_pretrained(snake_case__ )
# 2. Build the config
A : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
A : List[str] = candidate
break
if size is None:
raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' )
if size not in possible_sizes:
raise ValueError(F'`size` should be one of {possible_sizes}, got {size}.' )
A : Any = RwkvConfig(
vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(snake_case__ )
# 3. Download model file then convert state_dict
A : Union[str, Any] = hf_hub_download(snake_case__ , snake_case__ )
A : Tuple = torch.load(snake_case__ , map_location='''cpu''' )
A : List[Any] = convert_state_dict(snake_case__ )
# 4. Split in shards and save
A, A : List[str] = shard_checkpoint(snake_case__ )
for shard_file, shard in shards.items():
torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
if index is not None:
A : Dict = os.path.join(snake_case__ , snake_case__ )
# Save the index as well
with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f:
A : List[Any] = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n'''
f.write(snake_case__ )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' )
A : List[Any] = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
A : Union[str, Any] = torch.load(os.path.join(snake_case__ , snake_case__ ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' )
A : int = AutoModelForCausalLM.from_pretrained(snake_case__ )
model.push_to_hub(snake_case__ , max_shard_size='''2GB''' )
tokenizer.push_to_hub(snake_case__ )
if __name__ == "__main__":
lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
lowercase : Union[str, Any] = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 3 | 0 |
"""simple docstring"""
import os
from pathlib import Path
def __lowerCAmelCase ():
from torch.utils.cpp_extension import load
__lowerCAmelCase : Dict = Path(_UpperCamelCase ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr'
__lowerCAmelCase : int = [
root / filename
for filename in [
'vision.cpp',
os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ),
os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ),
]
]
load(
'MultiScaleDeformableAttention' , _UpperCamelCase , with_cuda=_UpperCamelCase , extra_include_paths=[str(_UpperCamelCase )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[
'-DCUDA_HAS_FP16=1',
'-D__CUDA_NO_HALF_OPERATORS__',
'-D__CUDA_NO_HALF_CONVERSIONS__',
'-D__CUDA_NO_HALF2_OPERATORS__',
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA | 86 |
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(__snake_case )
class A ( __snake_case ):
def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
self.check_model_type(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A, A : Dict = {}, {}
if padding is not None:
A : List[str] = padding
if truncation is not None:
A : Dict = truncation
if top_k is not None:
A : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = {'''image''': image, '''question''': question}
else:
A : Any = image
A : Any = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
return results
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
A : Union[str, Any] = load_image(inputs['''image'''] )
A : Optional[Any] = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE )
A : Dict = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(SCREAMING_SNAKE_CASE )
return model_inputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : List[Any] = self.model(**SCREAMING_SNAKE_CASE )
return model_outputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> int:
"""simple docstring"""
if top_k > self.model.config.num_labels:
A : Dict = self.model.config.num_labels
if self.framework == "pt":
A : Optional[int] = model_outputs.logits.sigmoid()[0]
A, A : int = probs.topk(SCREAMING_SNAKE_CASE )
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
A : int = scores.tolist()
A : List[str] = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
| 3 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCamelCase = {
'''configuration_groupvit''': [
'''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''GroupViTConfig''',
'''GroupViTOnnxConfig''',
'''GroupViTTextConfig''',
'''GroupViTVisionConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GroupViTModel''',
'''GroupViTPreTrainedModel''',
'''GroupViTTextModel''',
'''GroupViTVisionModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFGroupViTModel''',
'''TFGroupViTPreTrainedModel''',
'''TFGroupViTTextModel''',
'''TFGroupViTVisionModel''',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 87 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase : Union[str, Any] = logging.get_logger(__name__)
lowercase : str = {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json',
'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json',
'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json',
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json',
'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json',
'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json',
'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json',
'cl-tohoku/bert-base-japanese-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'
),
'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class A ( __snake_case ):
__magic_name__ = '''bert'''
def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]:
"""simple docstring"""
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = vocab_size
A : Optional[Any] = hidden_size
A : List[Any] = num_hidden_layers
A : List[str] = num_attention_heads
A : Dict = hidden_act
A : Optional[Any] = intermediate_size
A : List[Any] = hidden_dropout_prob
A : List[Any] = attention_probs_dropout_prob
A : Optional[Any] = max_position_embeddings
A : List[str] = type_vocab_size
A : Dict = initializer_range
A : str = layer_norm_eps
A : int = position_embedding_type
A : Dict = use_cache
A : str = classifier_dropout
class A ( __snake_case ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A : Optional[int] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 3 | 0 |
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
__lowerCAmelCase : Optional[Any] = logging.getLogger(__name__)
def a__ ( A_, A_ ):
'''simple docstring'''
__magic_name__ = np.argmax(A_, axis=1 )
return np.sum(outputs == labels )
def a__ ( A_ ):
'''simple docstring'''
with open(A_, encoding="""utf_8""" ) as f:
__magic_name__ = csv.reader(A_ )
__magic_name__ = []
next(A_ ) # skip the first line
for line in tqdm(A_ ):
output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def a__ ( A_, A_, A_, A_, A_, A_ ):
'''simple docstring'''
__magic_name__ = []
for dataset in encoded_datasets:
__magic_name__ = len(A_ )
__magic_name__ = np.zeros((n_batch, 2, input_len), dtype=np.intaa )
__magic_name__ = np.zeros((n_batch, 2), dtype=np.intaa )
__magic_name__ = np.full((n_batch, 2, input_len), fill_value=-100, dtype=np.intaa )
__magic_name__ = np.zeros((n_batch,), dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(A_ ):
__magic_name__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
__magic_name__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
__magic_name__ = with_conta
__magic_name__ = with_conta
__magic_name__ = len(A_ ) - 1
__magic_name__ = len(A_ ) - 1
__magic_name__ = with_conta
__magic_name__ = with_conta
__magic_name__ = mc_label
__magic_name__ = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(A_ ) for t in all_inputs ) )
return tensor_datasets
def a__ ( ):
'''simple docstring'''
__magic_name__ = argparse.ArgumentParser()
parser.add_argument("""--model_name""", type=A_, default="""openai-gpt""", help="""pretrained model name""" )
parser.add_argument("""--do_train""", action="""store_true""", help="""Whether to run training.""" )
parser.add_argument("""--do_eval""", action="""store_true""", help="""Whether to run eval on the dev set.""" )
parser.add_argument(
"""--output_dir""", default=A_, type=A_, required=A_, help="""The output directory where the model predictions and checkpoints will be written.""", )
parser.add_argument("""--train_dataset""", type=A_, default="""""" )
parser.add_argument("""--eval_dataset""", type=A_, default="""""" )
parser.add_argument("""--seed""", type=A_, default=42 )
parser.add_argument("""--num_train_epochs""", type=A_, default=3 )
parser.add_argument("""--train_batch_size""", type=A_, default=8 )
parser.add_argument("""--eval_batch_size""", type=A_, default=16 )
parser.add_argument("""--adam_epsilon""", default=1e-8, type=A_, help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""", type=A_, default=1 )
parser.add_argument(
"""--max_steps""", default=-1, type=A_, help=(
"""If > 0: set total number of training steps to perform. Override num_train_epochs."""
), )
parser.add_argument(
"""--gradient_accumulation_steps""", type=A_, default=1, help="""Number of updates steps to accumulate before performing a backward/update pass.""", )
parser.add_argument("""--learning_rate""", type=A_, default=6.25e-5 )
parser.add_argument("""--warmup_steps""", default=0, type=A_, help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--lr_schedule""", type=A_, default="""warmup_linear""" )
parser.add_argument("""--weight_decay""", type=A_, default=0.01 )
parser.add_argument("""--lm_coef""", type=A_, default=0.9 )
parser.add_argument("""--n_valid""", type=A_, default=374 )
parser.add_argument("""--server_ip""", type=A_, default="""""", help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""", type=A_, default="""""", help="""Can be used for distant debugging.""" )
__magic_name__ = parser.parse_args()
print(A_ )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=A_ )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
__magic_name__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
__magic_name__ = torch.cuda.device_count()
logger.info("""device: {}, n_gpu {}""".format(A_, A_ ) )
if not args.do_train and not args.do_eval:
raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
__magic_name__ = ["""_start_""", """_delimiter_""", """_classify_"""]
__magic_name__ = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(A_ )
__magic_name__ = tokenizer.convert_tokens_to_ids(A_ )
__magic_name__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(A_ ) )
model.to(A_ )
# Load and encode the datasets
def tokenize_and_encode(A_ ):
if isinstance(A_, A_ ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(A_ ) )
elif isinstance(A_, A_ ):
return obj
return [tokenize_and_encode(A_ ) for o in obj]
logger.info("""Encoding dataset...""" )
__magic_name__ = load_rocstories_dataset(args.train_dataset )
__magic_name__ = load_rocstories_dataset(args.eval_dataset )
__magic_name__ = (train_dataset, eval_dataset)
__magic_name__ = tokenize_and_encode(A_ )
# Compute the max input length for the Transformer
__magic_name__ = model.config.n_positions // 2 - 2
__magic_name__ = max(
len(story[:max_length] ) + max(len(conta[:max_length] ), len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
__magic_name__ = min(A_, model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
__magic_name__ = pre_process_datasets(A_, A_, A_, *A_ )
__magic_name__ , __magic_name__ = tensor_datasets[0], tensor_datasets[1]
__magic_name__ = TensorDataset(*A_ )
__magic_name__ = RandomSampler(A_ )
__magic_name__ = DataLoader(A_, sampler=A_, batch_size=args.train_batch_size )
__magic_name__ = TensorDataset(*A_ )
__magic_name__ = SequentialSampler(A_ )
__magic_name__ = DataLoader(A_, sampler=A_, batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
__magic_name__ = args.max_steps
__magic_name__ = args.max_steps // (len(A_ ) // args.gradient_accumulation_steps) + 1
else:
__magic_name__ = len(A_ ) // args.gradient_accumulation_steps * args.num_train_epochs
__magic_name__ = list(model.named_parameters() )
__magic_name__ = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""]
__magic_name__ = [
{
"""params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
"""weight_decay""": args.weight_decay,
},
{"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0},
]
__magic_name__ = AdamW(A_, lr=args.learning_rate, eps=args.adam_epsilon )
__magic_name__ = get_linear_schedule_with_warmup(
A_, num_warmup_steps=args.warmup_steps, num_training_steps=A_ )
if args.do_train:
__magic_name__ , __magic_name__ , __magic_name__ = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ), desc="""Epoch""" ):
__magic_name__ = 0
__magic_name__ = 0
__magic_name__ = tqdm(A_, desc="""Training""" )
for step, batch in enumerate(A_ ):
__magic_name__ = tuple(t.to(A_ ) for t in batch )
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = batch
__magic_name__ = model(A_, mc_token_ids=A_, lm_labels=A_, mc_labels=A_ )
__magic_name__ = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
__magic_name__ = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
__magic_name__ = """Training loss: {:.2e} lr: {:.2e}""".format(A_, scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
__magic_name__ = model.module if hasattr(A_, """module""" ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
__magic_name__ = os.path.join(args.output_dir, A_ )
__magic_name__ = os.path.join(args.output_dir, A_ )
torch.save(model_to_save.state_dict(), A_ )
model_to_save.config.to_json_file(A_ )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
__magic_name__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
__magic_name__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(A_ )
if args.do_eval:
model.eval()
__magic_name__ , __magic_name__ = 0, 0
__magic_name__ , __magic_name__ = 0, 0
for batch in tqdm(A_, desc="""Evaluating""" ):
__magic_name__ = tuple(t.to(A_ ) for t in batch )
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = batch
with torch.no_grad():
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = model(
A_, mc_token_ids=A_, lm_labels=A_, mc_labels=A_ )
__magic_name__ = mc_logits.detach().cpu().numpy()
__magic_name__ = mc_labels.to("""cpu""" ).numpy()
__magic_name__ = accuracy(A_, A_ )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
__magic_name__ = eval_loss / nb_eval_steps
__magic_name__ = eval_accuracy / nb_eval_examples
__magic_name__ = tr_loss / nb_tr_steps if args.do_train else None
__magic_name__ = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss}
__magic_name__ = os.path.join(args.output_dir, """eval_results.txt""" )
with open(A_, """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""", A_, str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 88 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : str = BeautifulSoup(requests.get(snake_case__ , params=snake_case__ ).content , '''html.parser''' )
A : Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A : Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
lowercase : str = {
'title': (
'Precisely geometry controlled microsupercapacitors for ultrahigh areal '
'capacitance, volumetric capacitance, and energy density'
),
'journal': 'Chem. Mater.',
'volume': 30,
'pages': '3979-3990',
'year': 20_18,
'hl': 'en',
}
print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
| 3 | 0 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {'''vocab_file''': '''spiece.model'''}
__lowerCAmelCase = {
'''vocab_file''': {
'''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''',
}
}
class __magic_name__ ( _UpperCamelCase ):
def __init__( self : Optional[int] ,_UpperCAmelCase : str ,_UpperCAmelCase : List[Any]=False ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Optional[int]=False ,_UpperCAmelCase : Dict="<s>" ,_UpperCAmelCase : Tuple="</s>" ,_UpperCAmelCase : Dict="<unk>" ,_UpperCAmelCase : Dict="<sep>" ,_UpperCAmelCase : List[str]="<pad>" ,_UpperCAmelCase : List[Any]="<cls>" ,_UpperCAmelCase : Union[str, Any]="<mask>" ,_UpperCAmelCase : Optional[Any]=["<eop>", "<eod>"] ,_UpperCAmelCase : Optional[Dict[str, Any]] = None ,**_UpperCAmelCase : Union[str, Any] ,):
_a : List[Any] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else mask_token
_a : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase ,remove_space=_UpperCAmelCase ,keep_accents=_UpperCAmelCase ,bos_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,sep_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,cls_token=_UpperCAmelCase ,mask_token=_UpperCAmelCase ,additional_special_tokens=_UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_UpperCAmelCase ,)
_a : List[Any] = 3
_a : Optional[int] = do_lower_case
_a : Dict = remove_space
_a : Union[str, Any] = keep_accents
_a : Any = vocab_file
_a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. '
'See https://pypi.org/project/jieba/ for installation.' )
_a : Optional[int] = jieba
_a : Union[str, Any] = str.maketrans(' \n' ,'\u2582\u2583' )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def __lowercase ( self : Dict ):
return len(self.sp_model )
def __lowercase ( self : Dict ):
_a : Optional[Any] = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : int ):
_a : Tuple = self.__dict__.copy()
_a : Any = None
return state
def __setstate__( self : Any ,_UpperCAmelCase : Optional[int] ):
_a : Any = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
_a : Optional[int] = {}
_a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : str ):
if self.remove_space:
_a : List[str] = ' '.join(inputs.strip().split() )
else:
_a : int = inputs
_a : str = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' )
if not self.keep_accents:
_a : Dict = unicodedata.normalize('NFKD' ,_UpperCAmelCase )
_a : List[str] = ''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
_a : Dict = outputs.lower()
return outputs
def __lowercase ( self : List[str] ,_UpperCAmelCase : str ):
_a : int = self.preprocess_text(_UpperCAmelCase )
_a : Dict = self.sp_model.encode(_UpperCAmelCase ,out_type=_UpperCAmelCase )
_a : Optional[Any] = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit():
_a : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase ,'' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_a : Optional[int] = cur_pieces[1:]
else:
_a : Optional[int] = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Union[str, Any] ):
return self.sp_model.PieceToId(_UpperCAmelCase )
def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : List[str] ):
return self.sp_model.IdToPiece(_UpperCAmelCase )
def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Any ):
_a : Dict = ''.join(_UpperCAmelCase ).replace(_UpperCAmelCase ,' ' ).strip()
return out_string
def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ):
_a : List[str] = [self.sep_token_id]
_a : int = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ,_UpperCAmelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase ,token_ids_a=_UpperCAmelCase ,already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ):
_a : Union[str, Any] = [self.sep_token_id]
_a : List[str] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def __lowercase ( self : List[str] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] = None ):
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_a : List[Any] = os.path.join(
_UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase ,'wb' ) as fi:
_a : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def __lowercase ( self : int ,*_UpperCAmelCase : Dict ,**_UpperCAmelCase : List[Any] ):
_a : List[str] = super()._decode(*_UpperCAmelCase ,**_UpperCAmelCase )
_a : List[str] = text.replace(' ' ,'' ).replace('\u2582' ,' ' ).replace('\u2583' ,'\n' )
return text
| 89 |
'''simple docstring'''
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Any = None
A : Optional[Any] = None
A : Tuple = graph
self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Dict = len(SCREAMING_SNAKE_CASE )
A : Optional[Any] = None
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if sources is int:
A : Dict = [sources]
if sinks is int:
A : str = [sinks]
if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0:
return
A : Optional[int] = sources[0]
A : Union[str, Any] = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1:
A : Optional[int] = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
A : Dict = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
A : Dict = max_input_flow
A : Tuple = 0
A : Tuple = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
A : Optional[Any] = max_input_flow
A : Optional[Any] = size - 1
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
if self.maximum_flow_algorithm is None:
raise Exception('''You need to set maximum flow algorithm before.''' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : List[Any] = algorithm(self )
class A :
def __init__( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = flow_network
A : Optional[Any] = flow_network.verticesCount
A : Tuple = flow_network.sourceIndex
A : Dict = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
A : str = flow_network.graph
A : Optional[Any] = False
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
if not self.executed:
self._algorithm()
A : Optional[int] = True
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
pass
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__(SCREAMING_SNAKE_CASE )
# use this to save your result
A : List[str] = -1
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
if not self.executed:
raise Exception('''You should execute algorithm before using its result!''' )
return self.maximum_flow
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
super().__init__(SCREAMING_SNAKE_CASE )
A : Optional[Any] = [[0] * self.verticies_count for i in range(self.verticies_count )]
A : Union[str, Any] = [0] * self.verticies_count
A : List[Any] = [0] * self.verticies_count
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
A : Optional[Any] = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
A : Union[str, Any] = 0
while i < len(SCREAMING_SNAKE_CASE ):
A : str = vertices_list[i]
A : List[str] = self.heights[vertex_index]
self.process_vertex(SCREAMING_SNAKE_CASE )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) )
A : int = 0
else:
i += 1
A : Optional[Any] = sum(self.preflow[self.source_index] )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.relabel(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Dict = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Dict = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
A : Dict = self.heights[to_index]
if min_height is not None:
A : Dict = min_height + 1
if __name__ == "__main__":
lowercase : Optional[int] = [0]
lowercase : List[Any] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
lowercase : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
lowercase : List[str] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
lowercase : List[str] = flow_network.find_maximum_flow()
print(f'''maximum flow is {maximum_flow}''')
| 3 | 0 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ) -> Dict:
"""simple docstring"""
__lowerCamelCase = TapasConfig.from_json_file(UpperCamelCase__ )
# set absolute/relative position embeddings parameter
__lowerCamelCase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__lowerCamelCase = TapasForQuestionAnswering(config=UpperCamelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
__lowerCamelCase = 4
__lowerCamelCase = True
# hparam_utils.py hparams
__lowerCamelCase = 0.66_46_94
__lowerCamelCase = 0.20_79_51
__lowerCamelCase = 0.12_11_94
__lowerCamelCase = True
__lowerCamelCase = True
__lowerCamelCase = False
__lowerCamelCase = 0.0_35_25_13
__lowerCamelCase = TapasForQuestionAnswering(config=UpperCamelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__lowerCamelCase = 4
__lowerCamelCase = False
# hparam_utils.py hparams
__lowerCamelCase = 36.45_19
__lowerCamelCase = 0.90_34_21
__lowerCamelCase = 2_22.0_88
__lowerCamelCase = True
__lowerCamelCase = True
__lowerCamelCase = True
__lowerCamelCase = 0.76_31_41
__lowerCamelCase = TapasForQuestionAnswering(config=UpperCamelCase__ )
elif task == "TABFACT":
__lowerCamelCase = TapasForSequenceClassification(config=UpperCamelCase__ )
elif task == "MLM":
__lowerCamelCase = TapasForMaskedLM(config=UpperCamelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
__lowerCamelCase = TapasModel(config=UpperCamelCase__ )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(UpperCamelCase__ )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
__lowerCamelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(UpperCamelCase__ )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA."
)
parser.add_argument(
"--reset_position_index_per_cell",
default=False,
action="store_true",
help="Whether to use relative position embeddings or not. Defaults to True.",
)
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--tapas_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained TAPAS model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__A = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 90 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ = 10 ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ) or n < 0:
raise ValueError('''Invalid input''' )
A : List[str] = 10**n
A : Tuple = 2_8433 * (pow(2 , 783_0457 , snake_case__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f'''{solution(10) = }''')
| 3 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ : List[str] = {
"""configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""],
"""tokenization_ctrl""": ["""CTRLTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Union[str, Any] = [
"""CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CTRLForSequenceClassification""",
"""CTRLLMHeadModel""",
"""CTRLModel""",
"""CTRLPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : List[Any] = [
"""TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFCTRLForSequenceClassification""",
"""TFCTRLLMHeadModel""",
"""TFCTRLModel""",
"""TFCTRLPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 91 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
lowercase : List[str] = logging.get_logger(__name__)
lowercase : str = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class A ( __snake_case ):
__magic_name__ = '''gpt_neo'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self , SCREAMING_SNAKE_CASE=50257 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=24 , SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=50256 , SCREAMING_SNAKE_CASE=50256 , **SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
A : Union[str, Any] = vocab_size
A : Optional[Any] = max_position_embeddings
A : Dict = hidden_size
A : Optional[Any] = num_layers
A : Tuple = num_heads
A : int = intermediate_size
A : Optional[Any] = window_size
A : List[Any] = activation_function
A : Union[str, Any] = resid_dropout
A : Any = embed_dropout
A : List[Any] = attention_dropout
A : str = classifier_dropout
A : List[Any] = layer_norm_epsilon
A : str = initializer_range
A : List[str] = use_cache
A : Optional[int] = bos_token_id
A : List[Any] = eos_token_id
A : int = attention_types
A : int = self.expand_attention_types_params(SCREAMING_SNAKE_CASE )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.attention_layers)` == `config.num_layers` '''
F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, '
F'`config.num_layers = {self.num_layers}`. '
'''`config.attention_layers` is prepared using `config.attention_types`. '''
'''Please verify the value of `config.attention_types` argument.''' )
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
@staticmethod
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : List[str] = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
A : Tuple = input.size()
A : Union[str, Any] = len(snake_case__ )
A : List[str] = shape[dimension]
A : Union[str, Any] = torch.arange(0 , snake_case__ , snake_case__ )
A : List[str] = torch.div(sizedim - size , snake_case__ , rounding_mode='''floor''' ) + 1
A : Optional[int] = torch.arange(snake_case__ ) + low_indices[:min_length][:, None]
A : str = [slice(snake_case__ )] * rank
A : List[Any] = indices
A : Union[str, Any] = input[s]
A : List[str] = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
A : List[str] = torch.arange(1 , snake_case__ )
A : Optional[int] = torch.remainder(snake_case__ , snake_case__ )
A : Optional[int] = remainders == 0
A : Optional[Any] = candidates[divisor_indices]
A : Optional[int] = torch.max(snake_case__ )
return largest_divisor, torch.div(snake_case__ , snake_case__ , rounding_mode='''floor''' )
class A ( __snake_case ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
A : Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction='''inputs''' )
A : Optional[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
A : Dict = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return self._config.num_heads
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]:
"""simple docstring"""
A : List[str] = super(SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs(
SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
A : Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
A, A : Dict = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
A : str = seqlen + 2
A : List[Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
A : Any = [
(torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
A : str = common_inputs['''attention_mask''']
if self.use_past:
A : Optional[int] = ordered_inputs['''attention_mask'''].dtype
A : List[str] = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 )
return ordered_inputs
@property
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return 13
| 3 | 0 |
import unittest
import numpy as np
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.bert.modeling_flax_bert import (
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
)
class a__ ( unittest.TestCase ):
def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=4 , ):
"""simple docstring"""
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_attention_mask
__lowerCAmelCase = use_token_type_ids
__lowerCAmelCase = use_labels
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = type_sequence_label_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = num_choices
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = None
if self.use_attention_mask:
__lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase = None
if self.use_token_type_ids:
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCAmelCase = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs
__lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs
__lowerCAmelCase = True
__lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class a__ ( snake_case__ , unittest.TestCase ):
_a : List[str] = True
_a : List[str] = (
(
FlaxBertModel,
FlaxBertForPreTraining,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForQuestionAnswering,
FlaxBertForNextSentencePrediction,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = FlaxBertModelTester(self )
@slow
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = FlaxBertModel.from_pretrained("bert-base-cased" )
__lowerCAmelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(_A )
| 92 |
'''simple docstring'''
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = []
A : Union[str, Any] = []
for i in range(self.num_layers ):
A : Any = self.in_channels if i == 0 else self.out_channels
A : Optional[Any] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : Optional[int] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = resnets
A : Union[str, Any] = attentions
if self.add_downsample:
A : int = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[Any] = ()
for resnet, attn in zip(self.resnets , self.attentions ):
A : int = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Dict = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
A : Optional[Any] = self.downsamplers_a(SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[Any] = []
for i in range(self.num_layers ):
A : Optional[Any] = self.in_channels if i == 0 else self.out_channels
A : List[str] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : Dict = resnets
if self.add_downsample:
A : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
"""simple docstring"""
A : str = ()
for resnet in self.resnets:
A : Optional[int] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
A : Optional[int] = self.downsamplers_a(SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = []
A : Optional[int] = []
for i in range(self.num_layers ):
A : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : Dict = self.prev_output_channel if i == 0 else self.out_channels
A : List[str] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : int = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Dict = resnets
A : Optional[Any] = attentions
if self.add_upsample:
A : Optional[int] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[int]:
"""simple docstring"""
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
A : List[str] = res_hidden_states_tuple[-1]
A : int = res_hidden_states_tuple[:-1]
A : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Tuple = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
if self.add_upsample:
A : Dict = self.upsamplers_a(SCREAMING_SNAKE_CASE )
return hidden_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : int = []
for i in range(self.num_layers ):
A : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : List[str] = self.prev_output_channel if i == 0 else self.out_channels
A : str = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : List[Any] = resnets
if self.add_upsample:
A : Optional[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Tuple:
"""simple docstring"""
for resnet in self.resnets:
# pop res hidden states
A : Optional[int] = res_hidden_states_tuple[-1]
A : Optional[Any] = res_hidden_states_tuple[:-1]
A : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Optional[Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
if self.add_upsample:
A : List[str] = self.upsamplers_a(SCREAMING_SNAKE_CASE )
return hidden_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : str = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
A : List[Any] = []
for _ in range(self.num_layers ):
A : int = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : List[str] = resnets
A : List[str] = attentions
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict:
"""simple docstring"""
A : Optional[Any] = self.resnets[0](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
A : Optional[int] = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
return hidden_states
| 3 | 0 |
'''simple docstring'''
import random
class lowerCAmelCase__ :
@staticmethod
def _snake_case ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : Dict = [ord(__SCREAMING_SNAKE_CASE ) for i in text]
lowercase_ : Optional[Any] = []
lowercase_ : Union[str, Any] = []
for i in plain:
lowercase_ : List[str] = random.randint(1 , 3_00 )
lowercase_ : Optional[int] = (i + k) * k
cipher.append(__SCREAMING_SNAKE_CASE )
key.append(__SCREAMING_SNAKE_CASE )
return cipher, key
@staticmethod
def _snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : Tuple = []
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
lowercase_ : Union[str, Any] = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(__SCREAMING_SNAKE_CASE ) )
return "".join(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
_lowercase , _lowercase : Optional[int] = Onepad().encrypt("Hello")
print(c, k)
print(Onepad().decrypt(c, k))
| 93 |
'''simple docstring'''
import os
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : List[Any] = os.path.join(os.path.dirname(snake_case__ ) , '''num.txt''' )
with open(snake_case__ ) as file_hand:
return str(sum(int(snake_case__ ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 3 | 0 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
snake_case : List[str] = abspath(join(dirname(__file__), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def __lowerCamelCase ( UpperCAmelCase_ : str ):
"""simple docstring"""
config.addinivalue_line(
'''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' )
config.addinivalue_line(
'''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' )
config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' )
config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' )
config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' )
config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' )
def __lowerCamelCase ( UpperCAmelCase_ : List[Any] ):
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(UpperCAmelCase_ )
def __lowerCamelCase ( UpperCAmelCase_ : Dict ):
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
a :Union[str, Any] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ )
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ):
"""simple docstring"""
if exitstatus == 5:
a :Union[str, Any] = 0
# Doctest custom flag to ignore output.
snake_case : str = doctest.register_optionflag('''IGNORE_RESULT''')
snake_case : Tuple = doctest.OutputChecker
class _snake_case ( _snake_case ):
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
snake_case : int = CustomOutputChecker
snake_case : Union[str, Any] = HfDoctestModule
snake_case : Any = HfDocTestParser
| 94 |
'''simple docstring'''
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , snake_case__ )
A : Dict = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
A : Dict = dataset_size < in_memory_max_size
else:
A : Tuple = False
A : int = is_small_dataset(snake_case__ )
assert result == expected
| 3 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : List[str] = {
"""openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""",
}
# fmt: off
UpperCAmelCase : Optional[Any] = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
]
UpperCAmelCase : Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
]
class __lowerCAmelCase ( UpperCamelCase__):
_lowercase : List[str] = """whisper"""
_lowercase : List[Any] = ["""past_key_values"""]
_lowercase : str = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self , lowerCAmelCase__=5_1_8_6_5 , lowerCAmelCase__=8_0 , lowerCAmelCase__=6 , lowerCAmelCase__=4 , lowerCAmelCase__=6 , lowerCAmelCase__=4 , lowerCAmelCase__=1_5_3_6 , lowerCAmelCase__=1_5_3_6 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=5_0_2_5_7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=False , lowerCAmelCase__=1_5_0_0 , lowerCAmelCase__=4_4_8 , lowerCAmelCase__=5_0_2_5_6 , lowerCAmelCase__=5_0_2_5_6 , lowerCAmelCase__=5_0_2_5_6 , lowerCAmelCase__=None , lowerCAmelCase__=[2_2_0, 5_0_2_5_6] , lowerCAmelCase__=False , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=False , lowerCAmelCase__=0.05 , lowerCAmelCase__=1_0 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1_0 , lowerCAmelCase__=0 , lowerCAmelCase__=7 , **lowerCAmelCase__ , ) -> Any:
'''simple docstring'''
a__ : Optional[Any] =vocab_size
a__ : List[str] =num_mel_bins
a__ : List[str] =d_model
a__ : Optional[Any] =encoder_layers
a__ : Union[str, Any] =encoder_attention_heads
a__ : List[Any] =decoder_layers
a__ : Dict =decoder_attention_heads
a__ : str =decoder_ffn_dim
a__ : int =encoder_ffn_dim
a__ : Tuple =dropout
a__ : Optional[Any] =attention_dropout
a__ : List[str] =activation_dropout
a__ : str =activation_function
a__ : Dict =init_std
a__ : List[str] =encoder_layerdrop
a__ : Optional[Any] =decoder_layerdrop
a__ : Optional[Any] =use_cache
a__ : Tuple =encoder_layers
a__ : int =scale_embedding # scale factor will be sqrt(d_model) if True
a__ : Union[str, Any] =max_source_positions
a__ : Union[str, Any] =max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
a__ : List[Any] =classifier_proj_size
a__ : int =use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
a__ : str =apply_spec_augment
a__ : Union[str, Any] =mask_time_prob
a__ : Dict =mask_time_length
a__ : int =mask_time_min_masks
a__ : Optional[int] =mask_feature_prob
a__ : List[Any] =mask_feature_length
a__ : Tuple =mask_feature_min_masks
a__ : List[str] =median_filter_width
super().__init__(
pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , suppress_tokens=lowerCAmelCase__ , begin_suppress_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , )
class __lowerCAmelCase ( UpperCamelCase__):
@property
def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
a__ : List[str] =OrderedDict(
[
("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
] )
if self.use_past:
a__ : str ={0: "batch"}
else:
a__ : List[str] ={0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" )
return common_inputs
def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = 2_2_0_5_0 , lowerCAmelCase__ = 5.0 , lowerCAmelCase__ = 2_2_0 , ) -> Mapping[str, Any]:
'''simple docstring'''
a__ : str =OrderedDict()
a__ : Optional[int] =OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCAmelCase__ , framework=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , time_duration=lowerCAmelCase__ , frequency=lowerCAmelCase__ , )
a__ : Optional[Any] =encoder_inputs["input_features"].shape[2]
a__ : Dict =encoder_sequence_length // 2 if self.use_past else seq_length
a__ : List[str] =super().generate_dummy_inputs(
preprocessor.tokenizer , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
a__ : Optional[Any] =encoder_inputs.pop("input_features" )
a__ : Optional[Any] =decoder_inputs.pop("decoder_input_ids" )
if "past_key_values" in decoder_inputs:
a__ : List[Any] =decoder_inputs.pop("past_key_values" )
return dummy_inputs
@property
def _lowercase ( self ) -> float:
'''simple docstring'''
return 1E-3
| 95 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class A ( __snake_case ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 3 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker | 96 |
'''simple docstring'''
from scipy.stats import pearsonr
import datasets
lowercase : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
lowercase : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
lowercase : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float''' ),
'''references''': datasets.Value('''float''' ),
} ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
"""simple docstring"""
if return_pvalue:
A : Union[str, Any] = pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] )}
| 3 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def a ( __a , __a , __a ) -> Any:
'''simple docstring'''
UpperCamelCase__ :List[Any] = MobileBertConfig.from_json_file(__a )
print(f'''Building PyTorch model from configuration: {config}''' )
UpperCamelCase__ :List[str] = MobileBertForPreTraining(__a )
# Load weights from tf checkpoint
UpperCamelCase__ :str = load_tf_weights_in_mobilebert(__a , __a , __a )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , __a )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--mobilebert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained MobileBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__snake_case = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path) | 97 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
lowercase : Dict = {
'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'],
'processing_speech_to_text': ['Speech2TextProcessor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[Any] = ['Speech2TextTokenizer']
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[str] = ['Speech2TextFeatureExtractor']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Dict = [
'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFSpeech2TextForConditionalGeneration',
'TFSpeech2TextModel',
'TFSpeech2TextPreTrainedModel',
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Any = [
'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Speech2TextForConditionalGeneration',
'Speech2TextModel',
'Speech2TextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 0 |
"""simple docstring"""
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__)
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ):
# Recurse if needed
if "." in tensor_name:
UpperCAmelCase__ = tensor_name.split('.' )
for split in splits[:-1]:
UpperCAmelCase__ = getattr(lowerCamelCase , lowerCamelCase )
if new_module is None:
raise ValueError(f'''{module} has no attribute {split}.''' )
UpperCAmelCase__ = new_module
UpperCAmelCase__ = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(f'''{module} does not have a parameter or a buffer named {tensor_name}.''' )
UpperCAmelCase__ = tensor_name in module._buffers
UpperCAmelCase__ = getattr(lowerCamelCase , lowerCamelCase )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(f'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if is_buffer or not is_bitsandbytes_available():
UpperCAmelCase__ = False
UpperCAmelCase__ = False
else:
UpperCAmelCase__ = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
UpperCAmelCase__ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
UpperCAmelCase__ = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
UpperCAmelCase__ = old_value.to(lowerCamelCase )
elif isinstance(lowerCamelCase , torch.Tensor ):
UpperCAmelCase__ = value.to('cpu' )
if value.dtype == torch.inta:
UpperCAmelCase__ = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
UpperCAmelCase__ = torch.tensor(lowerCamelCase , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , lowerCamelCase ) and fpaa_statistics is None:
UpperCAmelCase__ = new_value.T
UpperCAmelCase__ = old_value.__dict__
if is_abit:
UpperCAmelCase__ = bnb.nn.IntaParams(lowerCamelCase , requires_grad=lowerCamelCase , **lowerCamelCase ).to(lowerCamelCase )
elif is_abit:
UpperCAmelCase__ = bnb.nn.Paramsabit(lowerCamelCase , requires_grad=lowerCamelCase , **lowerCamelCase ).to(lowerCamelCase )
UpperCAmelCase__ = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(lowerCamelCase ) )
else:
if value is None:
UpperCAmelCase__ = old_value.to(lowerCamelCase )
elif isinstance(lowerCamelCase , torch.Tensor ):
UpperCAmelCase__ = value.to(lowerCamelCase )
else:
UpperCAmelCase__ = torch.tensor(lowerCamelCase , device=lowerCamelCase )
if is_buffer:
UpperCAmelCase__ = new_value
else:
UpperCAmelCase__ = nn.Parameter(lowerCamelCase , requires_grad=old_value.requires_grad )
UpperCAmelCase__ = new_value
def a_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False ):
for name, module in model.named_children():
if current_key_name is None:
UpperCAmelCase__ = []
current_key_name.append(lowerCamelCase )
if (isinstance(lowerCamelCase , nn.Linear ) or isinstance(lowerCamelCase , lowerCamelCase )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(lowerCamelCase ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ , UpperCAmelCase__ = module.weight.shape
else:
UpperCAmelCase__ = module.in_features
UpperCAmelCase__ = module.out_features
if quantization_config.quantization_method() == "llm_int8":
UpperCAmelCase__ = bnb.nn.LinearabitLt(
lowerCamelCase , lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
UpperCAmelCase__ = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
UpperCAmelCase__ = bnb.nn.Linearabit(
lowerCamelCase , lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
UpperCAmelCase__ = True
# Store the module class in case we need to transpose the weight later
UpperCAmelCase__ = type(lowerCamelCase )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(lowerCamelCase )
if len(list(module.children() ) ) > 0:
UpperCAmelCase__ , UpperCAmelCase__ = _replace_with_bnb_linear(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , has_been_replaced=lowerCamelCase , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def a_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None ):
UpperCAmelCase__ = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
UpperCAmelCase__ , UpperCAmelCase__ = _replace_with_bnb_linear(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def a_ ( *lowerCamelCase , **lowerCamelCase ):
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , lowerCamelCase , )
return replace_with_bnb_linear(*lowerCamelCase , **lowerCamelCase )
def a_ ( *lowerCamelCase , **lowerCamelCase ):
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , lowerCamelCase , )
return set_module_quantized_tensor_to_device(*lowerCamelCase , **lowerCamelCase )
def a_ ( lowerCamelCase ):
UpperCAmelCase__ = deepcopy(lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
UpperCAmelCase__ = find_tied_parameters(lowerCamelCase )
# For compatibility with Accelerate < 0.18
if isinstance(lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
UpperCAmelCase__ = sum(lowerCamelCase , [] )
UpperCAmelCase__ = len(lowerCamelCase ) > 0
# Check if it is a base model
UpperCAmelCase__ = not hasattr(lowerCamelCase , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
UpperCAmelCase__ = list(model.named_children() )
UpperCAmelCase__ = [list_modules[-1][0]]
# add last module together with tied weights
UpperCAmelCase__ = set(lowerCamelCase ) - set(lowerCamelCase )
UpperCAmelCase__ = list(set(lowerCamelCase ) ) + list(lowerCamelCase )
# remove ".weight" from the keys
UpperCAmelCase__ = ['.weight', '.bias']
UpperCAmelCase__ = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
UpperCAmelCase__ = name.replace(lowerCamelCase , '' )
filtered_module_names.append(lowerCamelCase )
return filtered_module_names
| 98 |
'''simple docstring'''
import os
import sys
import unittest
lowercase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py')
lowercase : Optional[int] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py')
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : List[Any] = {'''BertModelTest''': '''BertModelTester'''}
A : int = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : List[str] = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A : Union[str, Any] = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : int = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Dict = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A : str = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
| 3 | 0 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
lowercase : str = """2.13.1"""
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("""3.7"""):
raise ImportWarning(
"""To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."""
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"""To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"""
"""If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."""
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
lowercase : Optional[Any] = concatenate_datasets
lowercase : List[Any] = DownloadConfig
lowercase : List[str] = DownloadManager
lowercase : int = DownloadMode
lowercase : Optional[Any] = DownloadConfig
lowercase : Union[str, Any] = DownloadMode
lowercase : Dict = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 99 |
'''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class A ( __snake_case ):
__magic_name__ = DistilBertTokenizer
__magic_name__ = DistilBertTokenizerFast
__magic_name__ = True
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : List[Any] = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
A : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE )
A : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE )
A : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE )
A : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 3 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin
@dataclass
class SCREAMING_SNAKE_CASE_ ( __a ):
"""simple docstring"""
__lowercase : torch.FloatTensor
class SCREAMING_SNAKE_CASE_ ( __a , __a ):
"""simple docstring"""
@register_to_config
def __init__( self , lowerCAmelCase__ = 1_6 , lowerCAmelCase__ = 8_8 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = "geglu" , lowerCAmelCase__ = True , lowerCAmelCase__ = True , ):
super().__init__()
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = attention_head_dim
__SCREAMING_SNAKE_CASE = num_attention_heads * attention_head_dim
__SCREAMING_SNAKE_CASE = in_channels
__SCREAMING_SNAKE_CASE = torch.nn.GroupNorm(num_groups=lowerCAmelCase__ , num_channels=lowerCAmelCase__ , eps=1E-6 , affine=lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__)
# 3. Define transformers blocks
__SCREAMING_SNAKE_CASE = nn.ModuleList(
[
BasicTransformerBlock(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dropout=lowerCAmelCase__ , cross_attention_dim=lowerCAmelCase__ , activation_fn=lowerCAmelCase__ , attention_bias=lowerCAmelCase__ , double_self_attention=lowerCAmelCase__ , norm_elementwise_affine=lowerCAmelCase__ , )
for d in range(lowerCAmelCase__)
])
__SCREAMING_SNAKE_CASE = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__)
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=1 , lowerCAmelCase__=None , lowerCAmelCase__ = True , ):
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = hidden_states.shape
__SCREAMING_SNAKE_CASE = batch_frames // num_frames
__SCREAMING_SNAKE_CASE = hidden_states
__SCREAMING_SNAKE_CASE = hidden_states[None, :].reshape(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = hidden_states.permute(0 , 2 , 1 , 3 , 4)
__SCREAMING_SNAKE_CASE = self.norm(lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = hidden_states.permute(0 , 3 , 4 , 2 , 1).reshape(batch_size * height * width , lowerCAmelCase__ , lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = self.proj_in(lowerCAmelCase__)
# 2. Blocks
for block in self.transformer_blocks:
__SCREAMING_SNAKE_CASE = block(
lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , timestep=lowerCAmelCase__ , cross_attention_kwargs=lowerCAmelCase__ , class_labels=lowerCAmelCase__ , )
# 3. Output
__SCREAMING_SNAKE_CASE = self.proj_out(lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = (
hidden_states[None, None, :]
.reshape(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__)
.permute(0 , 3 , 4 , 1 , 2)
.contiguous()
)
__SCREAMING_SNAKE_CASE = hidden_states.reshape(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=lowerCAmelCase__)
| 100 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
lowercase : Optional[int] = logging.get_logger(__name__)
class A ( __snake_case ):
__magic_name__ = ['''input_features''', '''attention_mask''']
def __init__( self , SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=16000 , SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
super().__init__(feature_size=SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , padding_value=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = num_mel_bins
A : Tuple = do_ceptral_normalize
A : Dict = normalize_means
A : List[Any] = normalize_vars
A : List[str] = True
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
A : List[Any] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
A : Any = torch.from_numpy(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
A : Any = ta_kaldi.fbank(SCREAMING_SNAKE_CASE , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 0.0 , ) -> np.ndarray:
"""simple docstring"""
if normalize_means:
A : Dict = x[:input_length].mean(axis=0 )
A : Optional[Any] = np.subtract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if normalize_vars:
A : str = x[:input_length].std(axis=0 )
A : int = np.divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if input_length < x.shape[0]:
A : List[str] = padding_value
# make sure array is in float32
A : Tuple = x.astype(np.floataa )
return x
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[np.ndarray]:
"""simple docstring"""
A : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
]
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
A : List[Any] = isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
A : Tuple = is_batched_numpy or (
isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
A : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ):
A : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
A : Optional[int] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
A : Any = [raw_speech]
# extract fbank features
A : List[str] = [self._extract_fbank_features(SCREAMING_SNAKE_CASE ) for waveform in raw_speech]
# convert into correct format for padding
A : str = BatchFeature({'''input_features''': features} )
A : Union[str, Any] = self.pad(
SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
# make sure list is in array format
A : List[str] = padded_inputs.get('''input_features''' )
if isinstance(input_features[0] , SCREAMING_SNAKE_CASE ):
A : str = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features]
A : Union[str, Any] = padded_inputs.get('''attention_mask''' )
if attention_mask is not None:
A : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
A : Dict = (
np.array(SCREAMING_SNAKE_CASE , dtype=np.intaa )
if self._get_padding_strategies(SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD
else None
)
A : List[Any] = self.normalize(
padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE )
if return_tensors is not None:
A : int = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE )
return padded_inputs
| 3 | 0 |
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
lowercase_ : List[Any] =IFInpaintingPipeline
lowercase_ : Optional[int] =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
lowercase_ : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowercase_ : str =PipelineTesterMixin.required_optional_params - {'''latents'''}
def A__ ( self):
return self._get_dummy_components()
def A__ ( self ,A__ ,A__=0):
if str(A__).startswith('''mps'''):
lowercase = torch.manual_seed(A__)
else:
lowercase = torch.Generator(device=A__).manual_seed(A__)
lowercase = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(A__)).to(A__)
lowercase = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(A__)).to(A__)
lowercase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,)
def A__ ( self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3)
def A__ ( self):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''')
def A__ ( self):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1)
def A__ ( self):
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2)
def A__ ( self):
self._test_save_load_local()
def A__ ( self):
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 ,)
| 101 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
lowercase : str = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
lowercase : str = get_tests_dir('fixtures/vocab.json')
lowercase : int = get_tests_dir('fixtures')
class A ( unittest.TestCase ):
__magic_name__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = 0
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : List[Any] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : Union[str, Any] = WavaVecaConfig()
A : List[str] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
# save in new folder
model_config.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) )
A : Optional[Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : Dict = WavaVecaFeatureExtractor()
A : List[str] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
A : str = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# save in new folder
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# drop `processor_class` in tokenizer
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''r''' ) as f:
A : Dict = json.load(SCREAMING_SNAKE_CASE )
config_dict.pop('''processor_class''' )
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE ) )
A : Optional[Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : List[Any] = WavaVecaFeatureExtractor()
A : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
A : str = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# save in new folder
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# drop `processor_class` in feature extractor
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''r''' ) as f:
A : str = json.load(SCREAMING_SNAKE_CASE )
config_dict.pop('''processor_class''' )
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE ) )
A : str = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : str = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' )
model_config.save_pretrained(SCREAMING_SNAKE_CASE )
# copy relevant files
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) )
# create emtpy sample processor
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write('''{}''' )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
with self.assertRaises(SCREAMING_SNAKE_CASE ):
A : Optional[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(SCREAMING_SNAKE_CASE ):
A : Union[str, Any] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
A : List[str] = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
A : Tuple = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
# Test we can also load the slow version
A : List[str] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
A : int = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' )
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
try:
AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE )
AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(SCREAMING_SNAKE_CASE ):
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
A : List[Any] = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
A : Tuple = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.txt''' )
with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
A : Optional[int] = CustomTokenizer(SCREAMING_SNAKE_CASE )
A : Any = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
class A ( __snake_case ):
__magic_name__ = False
class A ( __snake_case ):
__magic_name__ = False
class A ( __snake_case ):
__magic_name__ = '''AutoFeatureExtractor'''
__magic_name__ = '''AutoTokenizer'''
__magic_name__ = False
try:
AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE )
AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local classes.
A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
A : Optional[int] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
A : Tuple = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : int = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Optional[int] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' )
self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' )
@is_staging_test
class A ( unittest.TestCase ):
__magic_name__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
@classmethod
def __lowerCAmelCase ( cls ) -> Dict:
"""simple docstring"""
A : Optional[int] = TOKEN
HfFolder.save_token(SCREAMING_SNAKE_CASE )
@classmethod
def __lowerCAmelCase ( cls ) -> Any:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-processor''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' )
except HTTPError:
pass
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Union[str, Any] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(SCREAMING_SNAKE_CASE , '''test-processor''' ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token )
A : int = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Tuple = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(SCREAMING_SNAKE_CASE , '''test-processor-org''' ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token , organization='''valid_org''' , )
A : int = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
A : Any = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
A : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.txt''' )
with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
A : str = CustomTokenizer(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(F'{USER}/test-dynamic-processor' , token=self._token )
A : List[str] = Repository(SCREAMING_SNAKE_CASE , clone_from=F'{USER}/test-dynamic-processor' , token=self._token )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''',
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) ) as f:
A : Dict = json.load(SCREAMING_SNAKE_CASE )
self.assertDictEqual(
tokenizer_config['''auto_map'''] , {
'''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None],
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_feature_extraction.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_tokenization.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_processing.py''' ) ) )
repo.push_to_hub()
A : Optional[int] = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=SCREAMING_SNAKE_CASE )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
| 3 | 0 |
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _UpperCAmelCase :
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE (*a_ , **a_ ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Any = ObjectDetectionPipeline(model=a_ , image_processor=a_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 )
self.assertGreater(len(a_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
a_ , {
'''score''': ANY(a_ ),
'''label''': ANY(a_ ),
'''box''': {'''xmin''': ANY(a_ ), '''ymin''': ANY(a_ ), '''xmax''': ANY(a_ ), '''ymax''': ANY(a_ )},
} , )
import datasets
__snake_case : Dict = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' )
__snake_case : Tuple = [
Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ),
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
# RGBA
dataset[0]['''file'''],
# LA
dataset[1]['''file'''],
# L
dataset[2]['''file'''],
]
__snake_case : List[Any] = object_detector(a_ , threshold=0.0 )
self.assertEqual(len(a_ ) , len(a_ ) )
for outputs in batch_outputs:
self.assertGreater(len(a_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
a_ , {
'''score''': ANY(a_ ),
'''label''': ANY(a_ ),
'''box''': {'''xmin''': ANY(a_ ), '''ymin''': ANY(a_ ), '''xmax''': ANY(a_ ), '''ymax''': ANY(a_ )},
} , )
@require_tf
@unittest.skip('''Object detection not implemented in TF''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@require_torch
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''hf-internal-testing/tiny-detr-mobilenetsv3'''
__snake_case : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a_ )
__snake_case : Dict = AutoFeatureExtractor.from_pretrained(a_ )
__snake_case : Optional[Any] = ObjectDetectionPipeline(model=a_ , feature_extractor=a_ )
__snake_case : Dict = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 )
self.assertEqual(
nested_simplify(a_ , decimals=4 ) , [
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}},
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}},
] , )
__snake_case : Dict = object_detector(
[
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(a_ , decimals=4 ) , [
[
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}},
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}},
],
[
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}},
{'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}},
],
] , )
@require_torch
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = '''facebook/detr-resnet-50'''
__snake_case : int = AutoModelForObjectDetection.from_pretrained(a_ )
__snake_case : int = AutoFeatureExtractor.from_pretrained(a_ )
__snake_case : List[Any] = ObjectDetectionPipeline(model=a_ , feature_extractor=a_ )
__snake_case : Union[str, Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' )
self.assertEqual(
nested_simplify(a_ , decimals=4 ) , [
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}},
] , )
__snake_case : Optional[Any] = object_detector(
[
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
] )
self.assertEqual(
nested_simplify(a_ , decimals=4 ) , [
[
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}},
],
[
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}},
],
] , )
@require_torch
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = '''facebook/detr-resnet-50'''
__snake_case : Any = pipeline('''object-detection''' , model=a_ )
__snake_case : Dict = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' )
self.assertEqual(
nested_simplify(a_ , decimals=4 ) , [
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}},
] , )
__snake_case : Optional[Any] = object_detector(
[
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
] )
self.assertEqual(
nested_simplify(a_ , decimals=4 ) , [
[
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}},
],
[
{'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}},
{'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}},
{'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}},
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}},
],
] , )
@require_torch
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = 0.9985
__snake_case : Optional[int] = '''facebook/detr-resnet-50'''
__snake_case : Any = pipeline('''object-detection''' , model=a_ )
__snake_case : Optional[Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=a_ )
self.assertEqual(
nested_simplify(a_ , decimals=4 ) , [
{'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}},
{'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}},
] , )
@require_torch
@require_pytesseract
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = '''Narsil/layoutlmv3-finetuned-funsd'''
__snake_case : Optional[Any] = 0.9993
__snake_case : int = pipeline('''object-detection''' , model=a_ , threshold=a_ )
__snake_case : Dict = object_detector(
'''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' )
self.assertEqual(
nested_simplify(a_ , decimals=4 ) , [
{'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_94, '''ymin''': 2_54, '''xmax''': 3_43, '''ymax''': 2_64}},
{'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_94, '''ymin''': 2_54, '''xmax''': 3_43, '''ymax''': 2_64}},
] , )
| 102 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase : Optional[Any] = None
lowercase : Tuple = logging.get_logger(__name__)
lowercase : Dict = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase : Tuple = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase : List[str] = {
'google/rembert': 2_56,
}
lowercase : Dict = '▁'
class A ( __snake_case ):
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = RemBertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token
super().__init__(
SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
A : List[Any] = do_lower_case
A : str = remove_space
A : int = keep_accents
A : Union[str, Any] = vocab_file
A : List[Any] = False if not self.vocab_file else True
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
A : List[Any] = [self.sep_token_id]
A : Tuple = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
A : Tuple = [self.sep_token_id]
A : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) )
return
A : Any = os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 3 | 0 |
from __future__ import annotations
def UpperCamelCase( __UpperCamelCase : str ):
return [ord(__UpperCamelCase ) - 96 for elem in plain]
def UpperCamelCase( __UpperCamelCase : list[int] ):
return "".join(chr(elem + 96 ) for elem in encoded )
def UpperCamelCase( ):
lowerCAmelCase_ : Dict = encode(input('''-> ''' ).strip().lower() )
print('''Encoded: ''' ,__UpperCamelCase )
print('''Decoded:''' ,decode(__UpperCamelCase ) )
if __name__ == "__main__":
main()
| 103 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase : Optional[Any] = logging.get_logger(__name__)
class A ( __snake_case ):
__magic_name__ = ['''pixel_values''']
def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : str = size if size is not None else {'''shortest_edge''': 384}
A : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : str = do_resize
A : List[Any] = size
# Default value set here for backwards compatibility where the value in config is None
A : List[Any] = crop_pct if crop_pct is not None else 224 / 256
A : Optional[int] = resample
A : Union[str, Any] = do_rescale
A : List[str] = rescale_factor
A : Union[str, Any] = do_normalize
A : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
A : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
A : str = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
A : Any = size['''shortest_edge''']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
A : Dict = int(shortest_edge / crop_pct )
A : str = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : int = resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image:
"""simple docstring"""
A : int = do_resize if do_resize is not None else self.do_resize
A : Tuple = crop_pct if crop_pct is not None else self.crop_pct
A : Optional[Any] = resample if resample is not None else self.resample
A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
A : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
A : List[str] = image_std if image_std is not None else self.image_std
A : Union[str, Any] = size if size is not None else self.size
A : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : Any = make_list_of_images(SCREAMING_SNAKE_CASE )
if not valid_images(SCREAMING_SNAKE_CASE ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError('''crop_pct must be specified if size < 384.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
A : Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images]
if do_resize:
A : Any = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , crop_pct=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images]
if do_rescale:
A : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images]
if do_normalize:
A : Dict = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images]
A : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images]
A : Optional[int] = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
| 3 | 0 |
'''simple docstring'''
def _A ( A__ ):
"""simple docstring"""
__lowercase = generate_pascal_triangle(A__ )
for row_idx in range(A__ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=''' ''' )
else:
print(triangle[row_idx][col_idx] , end='''''' )
print()
def _A ( A__ ):
"""simple docstring"""
if not isinstance(A__ , A__ ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__lowercase = []
for current_row_idx in range(A__ ):
__lowercase = populate_current_row(A__ , A__ )
triangle.append(A__ )
return triangle
def _A ( A__ , A__ ):
"""simple docstring"""
__lowercase = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
__lowercase , __lowercase = 1, 1
for current_col_idx in range(1 , A__ ):
calculate_current_element(
A__ , A__ , A__ , A__ )
return current_row
def _A ( A__ , A__ , A__ , A__ , ):
"""simple docstring"""
__lowercase = triangle[current_row_idx - 1][current_col_idx - 1]
__lowercase = triangle[current_row_idx - 1][current_col_idx]
__lowercase = above_to_left_elt + above_to_right_elt
def _A ( A__ ):
"""simple docstring"""
if not isinstance(A__ , A__ ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__lowercase = [[1]]
for row_index in range(1 , A__ ):
__lowercase = [0] + result[-1] + [0]
__lowercase = row_index + 1
# Calculate the number of distinct elements in a row
__lowercase = sum(divmod(A__ , 2 ) )
__lowercase = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
__lowercase = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
__lowercase = row_first_half + row_second_half
result.append(A__ )
return result
def _A ( ):
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(A__ , A__ ) -> None:
__lowercase = F"{func.__name__}({value})"
__lowercase = timeit(F"__main__.{call}" , setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(A__ , A__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 104 |
'''simple docstring'''
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(SCREAMING_SNAKE_CASE ):
A : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[str] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(SCREAMING_SNAKE_CASE ):
A : Any = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Any = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
for model_name in ["bert-base-cased", "bert-large-uncased"]:
A : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE )
A : Optional[Any] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX )
@jax.jit
def eval(**SCREAMING_SNAKE_CASE ):
return model(**SCREAMING_SNAKE_CASE )
eval(**SCREAMING_SNAKE_CASE ).block_until_ready()
@slow
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for model_name in ["roberta-base", "roberta-large"]:
A : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE )
A : int = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX )
@jax.jit
def eval(**SCREAMING_SNAKE_CASE ):
return model(**SCREAMING_SNAKE_CASE )
eval(**SCREAMING_SNAKE_CASE ).block_until_ready()
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ):
A : List[Any] = FlaxAutoModel.from_pretrained('''bert-base''' )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
A : Optional[int] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE , revision='''aaaaaa''' )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ):
A : List[str] = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE , '''Use `from_pt=True` to load this model''' ):
A : Any = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
| 3 | 0 |
"""simple docstring"""
import unittest
import numpy as np
def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray , _lowercase : np.ndarray , _lowercase : np.ndarray | None = None , ) ->np.ndarray:
'''simple docstring'''
a : Tuple = np.shape(_lowercase )
a : Optional[int] = np.shape(_lowercase )
a : Any = np.shape(_lowercase )
if shape_a[0] != shape_b[0]:
a : Dict = (
"Expected the same number of rows for A and B. "
F"""Instead found A of size {shape_a} and B of size {shape_b}"""
)
raise ValueError(_lowercase )
if shape_b[1] != shape_c[1]:
a : int = (
"Expected the same number of columns for B and C. "
F"""Instead found B of size {shape_b} and C of size {shape_c}"""
)
raise ValueError(_lowercase )
a : List[str] = pseudo_inv
if a_inv is None:
try:
a : Union[str, Any] = np.linalg.inv(_lowercase )
except np.linalg.LinAlgError:
raise ValueError(
"Input matrix A is not invertible. Cannot compute Schur complement." )
return mat_c - mat_b.T @ a_inv @ mat_b
class __UpperCamelCase ( unittest.TestCase ):
def __a ( self ) -> None:
a : List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
a : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] )
a : int = np.array([[2, 1], [6, 3]] )
a : str = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
a : Tuple = np.block([[a, b], [b.T, c]] )
a : Tuple = np.linalg.det(lowerCAmelCase__ )
a : int = np.linalg.det(lowerCAmelCase__ )
a : List[Any] = np.linalg.det(lowerCAmelCase__ )
self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s )
def __a ( self ) -> None:
a : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
a : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] )
a : Optional[Any] = np.array([[2, 1], [6, 3]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __a ( self ) -> None:
a : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
a : Tuple = np.array([[0, 3], [3, 0], [2, 3]] )
a : Tuple = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 105 |
'''simple docstring'''
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase : Union[str, Any] = {
'text_branch': 'text_model',
'audio_branch': 'audio_model.audio_encoder',
'attn': 'attention.self',
'self.proj': 'output.dense',
'attention.self_mask': 'attn_mask',
'mlp.fc1': 'intermediate.dense',
'mlp.fc2': 'output.dense',
'norm1': 'layernorm_before',
'norm2': 'layernorm_after',
'bn0': 'batch_norm',
}
lowercase : Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc')
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : Tuple = create_model(
'''HTSAT-tiny''' , '''roberta''' , snake_case__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=snake_case__ , fusion_type='''aff_2d''' if enable_fusion else None , )
return model, model_cfg
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = {}
A : str = R'''.*sequential.(\d+).*'''
A : Union[str, Any] = R'''.*_projection.(\d+).*'''
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
A : Any = key.replace(snake_case__ , snake_case__ )
if re.match(snake_case__ , snake_case__ ):
# replace sequential layers with list
A : Any = re.match(snake_case__ , snake_case__ ).group(1 )
A : List[str] = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case__ )//3}.linear.' )
elif re.match(snake_case__ , snake_case__ ):
A : Union[str, Any] = int(re.match(snake_case__ , snake_case__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
A : str = 1 if projecton_layer == 0 else 2
A : Optional[Any] = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' )
if "audio" and "qkv" in key:
# split qkv into query key and value
A : int = value
A : List[Any] = mixed_qkv.size(0 ) // 3
A : Union[str, Any] = mixed_qkv[:qkv_dim]
A : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2]
A : Optional[int] = mixed_qkv[qkv_dim * 2 :]
A : Tuple = query_layer
A : Union[str, Any] = key_layer
A : Optional[int] = value_layer
else:
A : Dict = value
return model_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : int = init_clap(snake_case__ , enable_fusion=snake_case__ )
clap_model.eval()
A : str = clap_model.state_dict()
A : Union[str, Any] = rename_state_dict(snake_case__ )
A : Tuple = ClapConfig()
A : str = enable_fusion
A : str = ClapModel(snake_case__ )
# ignore the spectrogram embedding layer
model.load_state_dict(snake_case__ , strict=snake_case__ )
model.save_pretrained(snake_case__ )
transformers_config.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase : List[str] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not')
lowercase : Tuple = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 3 | 0 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase : str = logging.get_logger(__name__)
__UpperCamelCase : Union[str, Any] = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
__UpperCamelCase : List[Any] = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ):
for attribute in key.split('''.''' ):
lowerCAmelCase__ : Any = getattr(A_ , A_ )
if weight_type is not None:
lowerCAmelCase__ : Tuple = getattr(A_ , A_ ).shape
else:
lowerCAmelCase__ : int = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
lowerCAmelCase__ : Any = value
elif weight_type == "weight_g":
lowerCAmelCase__ : List[str] = value
elif weight_type == "weight_v":
lowerCAmelCase__ : Union[str, Any] = value
elif weight_type == "bias":
lowerCAmelCase__ : Dict = value
else:
lowerCAmelCase__ : Union[str, Any] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def __SCREAMING_SNAKE_CASE ( A_ , A_ ):
lowerCAmelCase__ : Tuple = []
lowerCAmelCase__ : Union[str, Any] = fairseq_model.state_dict()
lowerCAmelCase__ : List[str] = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
lowerCAmelCase__ : Any = None
for name, value in fairseq_dict.items():
lowerCAmelCase__ : Dict = False
if "conv_layers" in name:
load_conv_layer(
A_ , A_ , A_ , A_ , hf_model.config.feat_extract_norm == '''group''' , )
lowerCAmelCase__ : List[Any] = True
elif name.split('''.''' )[0] == "proj":
lowerCAmelCase__ : List[Any] = fairseq_model.proj
lowerCAmelCase__ : str = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
lowerCAmelCase__ : Optional[Any] = True
if "*" in mapped_key:
lowerCAmelCase__ : List[Any] = name.split(A_ )[0].split('''.''' )[-2]
lowerCAmelCase__ : Optional[Any] = mapped_key.replace('''*''' , A_ )
if "weight_g" in name:
lowerCAmelCase__ : Dict = '''weight_g'''
elif "weight_v" in name:
lowerCAmelCase__ : Dict = '''weight_v'''
elif "bias" in name:
lowerCAmelCase__ : List[Any] = '''bias'''
elif "weight" in name:
lowerCAmelCase__ : Union[str, Any] = '''weight'''
else:
lowerCAmelCase__ : str = None
set_recursively(A_ , A_ , A_ , A_ , A_ )
continue
if not is_used:
unused_weights.append(A_ )
logger.warning(f'Unused weights: {unused_weights}' )
return proj_weight
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ):
lowerCAmelCase__ : List[Any] = full_name.split('''conv_layers.''' )[-1]
lowerCAmelCase__ : int = name.split('''.''' )
lowerCAmelCase__ : Tuple = int(items[0] )
lowerCAmelCase__ : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
lowerCAmelCase__ : Dict = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
lowerCAmelCase__ : Optional[int] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
lowerCAmelCase__ : Dict = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
lowerCAmelCase__ : Dict = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(A_ )
def __SCREAMING_SNAKE_CASE ( A_ ):
lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = emb.weight.shape
lowerCAmelCase__ : List[str] = nn.Linear(A_ , A_ , bias=A_ )
lowerCAmelCase__ : Optional[Any] = emb.weight.data
return lin_layer
def __SCREAMING_SNAKE_CASE ( A_ ):
with open(A_ , '''r''' , encoding='''utf-8''' ) as f:
lowerCAmelCase__ : str = f.readlines()
lowerCAmelCase__ : Any = [line.split(''' ''' )[0] for line in lines]
lowerCAmelCase__ : Tuple = len(A_ )
lowerCAmelCase__ : Dict = {
'''<s>''': 0,
'''<pad>''': 1,
'''</s>''': 2,
'''<unk>''': 3,
}
vocab_dict.update(dict(zip(A_ , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ , A_ , A_ , ):
lowerCAmelCase__ : Optional[int] = WavaVecaConfig.from_pretrained(A_ )
lowerCAmelCase__ : Dict = SpeechaTextaConfig.from_pretrained(
A_ , vocab_size=A_ , decoder_layers=A_ , do_stable_layer_norm=A_ )
lowerCAmelCase__ : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=A_ , return_attention_mask=A_ , )
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
lowerCAmelCase__ : Optional[int] = model[0].eval()
# set weights for wav2vec2 encoder
lowerCAmelCase__ : str = WavaVecaModel(A_ )
lowerCAmelCase__ : Dict = recursively_load_weights_wavaveca(model.encoder , A_ )
lowerCAmelCase__ : List[Any] = SpeechaTextaForCausalLM(A_ )
lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=A_ )
# set output linear layer
unexpected_keys.remove('''embed_out''' )
lowerCAmelCase__ : Optional[Any] = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' )
logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' )
lowerCAmelCase__ : Union[str, Any] = SpeechEncoderDecoderModel(encoder=A_ , decoder=A_ )
lowerCAmelCase__ : Union[str, Any] = False
# add projection layer
lowerCAmelCase__ : Optional[int] = nn.Parameter(projection_layer.weight )
lowerCAmelCase__ : List[Any] = nn.Parameter(projection_layer.bias )
lowerCAmelCase__ : str = create_vocab_dict(A_ )
with open(os.path.join(A_ , '''vocab.json''' ) , '''w''' ) as fp:
json.dump(A_ , A_ )
lowerCAmelCase__ : str = SpeechaTextaTokenizer(os.path.join(A_ , '''vocab.json''' ) )
tokenizer.save_pretrained(A_ )
lowerCAmelCase__ : Any = hf_wavavec.config.to_dict()
lowerCAmelCase__ : Any = tokenizer.pad_token_id
lowerCAmelCase__ : Optional[Any] = tokenizer.bos_token_id
lowerCAmelCase__ : str = tokenizer.eos_token_id
lowerCAmelCase__ : Optional[Any] = '''speech_to_text_2'''
lowerCAmelCase__ : List[str] = '''wav2vec2'''
lowerCAmelCase__ : Dict = SpeechEncoderDecoderConfig.from_dict(A_ )
hf_wavavec.save_pretrained(A_ )
feature_extractor.save_pretrained(A_ )
if __name__ == "__main__":
__UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument(
'''--encoder_config_path''',
default='''facebook/wav2vec2-large-lv60''',
type=str,
help='''Path to hf encoder wav2vec2 checkpoint config''',
)
parser.add_argument(
'''--decoder_config_path''',
default='''facebook/s2t-small-mustc-en-fr-st''',
type=str,
help='''Path to hf decoder s2t checkpoint config''',
)
parser.add_argument('''--vocab_size''', default=1_0_2_2_4, type=int, help='''Vocab size of decoder''')
parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''')
__UpperCamelCase : List[Any] = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 106 |
'''simple docstring'''
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
lowercase : Dict = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
if not is_sharded:
A : Union[str, Any] = os.path.abspath(snake_case__ )
logger.info(F'Loading PyTorch weights from {pt_path}' )
A : Any = torch.load(snake_case__ , map_location='''cpu''' )
logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' )
A : List[str] = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
A : Any = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ )
return flax_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ):
'''simple docstring'''
def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool:
return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0
# layer norm
A : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
A : Tuple = pt_tuple_key[:-1] + ('''mean''',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
A : Dict = pt_tuple_key[:-1] + ('''var''',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# embedding
A : Any = pt_tuple_key[:-1] + ('''embedding''',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
A : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ):
A : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
A : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ):
A : str = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
A : Dict = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
A : List[Any] = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
A : Dict = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
A : List[Any] = pt_tuple_key[-2] + '''_g'''
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
A : List[str] = pt_tuple_key[-2] + '''_v'''
if name is not None:
A : int = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()}
A : int = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
A : List[str] = flax_model.params['''params''']
else:
A : Dict = flax_model.params
A : List[Any] = flatten_dict(snake_case__ )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
A : List[str] = flatten_dict(flax_model.params['''batch_stats'''] )
random_flax_state_dict.update(snake_case__ )
A : int = {}
A : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
A : int = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
A : str = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
A : Union[str, Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
A : Any = pt_tuple_key[1:]
# Correctly rename weight parameters
A, A : Dict = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
A : Any = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
A : int = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
A : Tuple = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
A : List[str] = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
# Load the index
A : Union[str, Any] = {}
for shard_file in shard_filenames:
# load using msgpack utils
A : List[str] = torch.load(snake_case__ )
A : int = {k: v.numpy() for k, v in pt_state_dict.items()}
A : Tuple = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
A : Optional[int] = flax_model.params['''params''']
A : List[Any] = flatten_dict(snake_case__ )
random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) )
else:
A : Dict = flax_model.params
A : Tuple = flatten_dict(snake_case__ )
A : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
A : List[str] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
A : int = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
A : List[str] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
A : Union[str, Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
A, A : Any = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
A : int = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
A : int = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
A : Optional[int] = jnp.asarray(snake_case__ )
continue
if "var" in flax_key[-1]:
A : Optional[int] = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = os.path.abspath(snake_case__ )
logger.info(F'Loading Flax weights from {flax_checkpoint_path}' )
# import correct flax class
A : List[str] = getattr(snake_case__ , '''Flax''' + model.__class__.__name__ )
# load flax weight dict
with open(snake_case__ , '''rb''' ) as state_f:
try:
A : int = from_bytes(snake_case__ , state_f.read() )
except UnpicklingError:
raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' )
return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
A : List[str] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values()
if any(snake_case__ ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
A : Optional[Any] = jax.tree_util.tree_map(
lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ )
A : Union[str, Any] = flatten_dict(snake_case__ )
A : List[Any] = pt_model.state_dict()
A : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
A : Tuple = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
A : int = []
A : Any = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
A : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix
A : int = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
A : List[str] = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
A : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict:
# conv layer
A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
A : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict:
# linear layer
A : Tuple = flax_key_tuple[:-1] + ('''weight''',)
A : Tuple = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
A : Tuple = flax_key_tuple[:-1] + ('''running_mean''',)
elif "var" in flax_key_tuple[-1]:
A : Tuple = flax_key_tuple[:-1] + ('''running_var''',)
if "batch_stats" in flax_state:
A : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
A : Union[str, Any] = '''.'''.join(snake_case__ )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
A : int = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
A : Optional[int] = key.split('''.''' )
A : Dict = None
if key_components[-3::2] == ["parametrizations", "original0"]:
A : List[str] = key_components[-2] + '''_g'''
elif key_components[-3::2] == ["parametrizations", "original1"]:
A : List[Any] = key_components[-2] + '''_v'''
if name is not None:
A : str = key_components[:-3] + [name]
A : Optional[Any] = '''.'''.join(snake_case__ )
A : Optional[Any] = key
if flax_key in special_pt_names:
A : Optional[Any] = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '
F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
else:
# add weight to pytorch dict
A : Dict = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor
A : Dict = torch.from_numpy(snake_case__ )
# remove from missing keys
missing_keys.remove(snake_case__ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(snake_case__ )
pt_model.load_state_dict(snake_case__ )
# re-transform missing_keys to list
A : List[Any] = list(snake_case__ )
if len(snake_case__ ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'
F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
else:
logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' )
if len(snake_case__ ) > 0:
logger.warning(
F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'
F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'
''' use it for predictions and inference.''' )
else:
logger.warning(
F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n'
'''If your task is similar to the task the model of the checkpoint was trained on, '''
F'you can already use {pt_model.__class__.__name__} for predictions without further training.' )
return pt_model
| 3 | 0 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case__ (_UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = RobertaTokenizer
SCREAMING_SNAKE_CASE_ : List[str] = RobertaTokenizerFast
SCREAMING_SNAKE_CASE_ : int = True
SCREAMING_SNAKE_CASE_ : Optional[Any] = {"""cls_token""": """<s>"""}
def __UpperCAmelCase ( self : str ) -> Tuple:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
a = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
a = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
a = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
a = {"unk_token": "<unk>"}
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCamelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__lowerCamelCase ) )
def __UpperCAmelCase ( self : Any , **__lowerCamelCase : str ) -> Any:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def __UpperCAmelCase ( self : Optional[int] , **__lowerCamelCase : List[Any] ) -> List[Any]:
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def __UpperCAmelCase ( self : str , __lowerCamelCase : List[str] ) -> Any:
a = "lower newer"
a = "lower newer"
return input_text, output_text
def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]:
a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
a = "lower newer"
a = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
a = tokenizer.tokenize(__lowerCamelCase ) # , add_prefix_space=True)
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
a = tokens + [tokenizer.unk_token]
a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
a = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=__lowerCamelCase ) , [0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=__lowerCamelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , )
@slow
def __UpperCAmelCase ( self : Dict ) -> List[Any]:
a = self.tokenizer_class.from_pretrained("roberta-base" )
a = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCamelCase )
a = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCamelCase )
a = tokenizer.encode(
"sequence builders" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase )
a = tokenizer.encode(
"sequence builders" , "multi-sequence build" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase )
a = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase )
a = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]:
a = self.get_tokenizer()
a = "Encode this sequence."
a = tokenizer.byte_encoder[" ".encode("utf-8" )[0]]
# Testing encoder arguments
a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase )
a = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__lowerCamelCase , __lowerCamelCase )
a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase )
a = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
tokenizer.add_special_tokens({"bos_token": "<s>"} )
a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
a = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__lowerCamelCase , __lowerCamelCase )
# Testing spaces after special tokens
a = "<mask>"
tokenizer.add_special_tokens(
{"mask_token": AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase )} ) # mask token has a left space
a = tokenizer.convert_tokens_to_ids(__lowerCamelCase )
a = "Encode <mask> sequence"
a = "Encode <mask>sequence"
a = tokenizer.encode(__lowerCamelCase )
a = encoded.index(__lowerCamelCase )
a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
a = tokenizer.encode(__lowerCamelCase )
a = encoded.index(__lowerCamelCase )
a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( self : int ) -> int:
pass
def __UpperCAmelCase ( self : Optional[Any] ) -> Any:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
a = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
a = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
a = "A, <mask> AllenNLP sentence."
a = tokenizer_r.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
a = tokenizer_p.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
a = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
a = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
__lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
__lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
a = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase )
a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["add_prefix_space"] , __lowerCamelCase )
self.assertEqual(post_processor_state["add_prefix_space"] , __lowerCamelCase )
self.assertEqual(post_processor_state["trim_offsets"] , __lowerCamelCase )
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
a = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
a = f"""{text_of_1_token} {text_of_1_token}"""
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
a = f""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ) + 1, 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
| 107 |
'''simple docstring'''
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
lowercase : Optional[int] = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
lowercase : Optional[Any] = {
'169M': 7_68,
'430M': 10_24,
'1B5': 20_48,
'3B': 25_60,
'7B': 40_96,
'14B': 51_20,
}
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[Any] = list(state_dict.keys() )
for name in state_dict_keys:
A : str = state_dict.pop(snake_case__ )
# emb -> embedding
if name.startswith('''emb.''' ):
A : Optional[Any] = name.replace('''emb.''' , '''embeddings.''' )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('''blocks.0.ln0''' ):
A : Union[str, Any] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' )
# att -> attention
A : int = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , snake_case__ )
# ffn -> feed_forward
A : List[Any] = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , snake_case__ )
# time_mix_k -> time_mix_key and reshape
if name.endswith('''.time_mix_k''' ):
A : List[str] = name.replace('''.time_mix_k''' , '''.time_mix_key''' )
# time_mix_v -> time_mix_value and reshape
if name.endswith('''.time_mix_v''' ):
A : Union[str, Any] = name.replace('''.time_mix_v''' , '''.time_mix_value''' )
# time_mix_r -> time_mix_key and reshape
if name.endswith('''.time_mix_r''' ):
A : Union[str, Any] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' )
if name != "head.weight":
A : List[Any] = '''rwkv.''' + name
A : Dict = weight
return state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=None ):
'''simple docstring'''
if tokenizer_file is None:
print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' )
A : int = 5_0277
A : Optional[int] = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' )
else:
A : str = PreTrainedTokenizerFast(tokenizer_file=snake_case__ )
A : Any = len(snake_case__ )
tokenizer.save_pretrained(snake_case__ )
# 2. Build the config
A : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
A : List[str] = candidate
break
if size is None:
raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' )
if size not in possible_sizes:
raise ValueError(F'`size` should be one of {possible_sizes}, got {size}.' )
A : Any = RwkvConfig(
vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(snake_case__ )
# 3. Download model file then convert state_dict
A : Union[str, Any] = hf_hub_download(snake_case__ , snake_case__ )
A : Tuple = torch.load(snake_case__ , map_location='''cpu''' )
A : List[Any] = convert_state_dict(snake_case__ )
# 4. Split in shards and save
A, A : List[str] = shard_checkpoint(snake_case__ )
for shard_file, shard in shards.items():
torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
if index is not None:
A : Dict = os.path.join(snake_case__ , snake_case__ )
# Save the index as well
with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f:
A : List[Any] = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n'''
f.write(snake_case__ )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' )
A : List[Any] = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
A : Union[str, Any] = torch.load(os.path.join(snake_case__ , snake_case__ ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' )
A : int = AutoModelForCausalLM.from_pretrained(snake_case__ )
model.push_to_hub(snake_case__ , max_shard_size='''2GB''' )
tokenizer.push_to_hub(snake_case__ )
if __name__ == "__main__":
lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
lowercase : Union[str, Any] = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 3 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ):
"""simple docstring"""
a : Optional[Any] =KandinskyVaaControlnetPipeline
a : Optional[Any] =["image_embeds", "negative_image_embeds", "hint"]
a : Tuple =["image_embeds", "negative_image_embeds", "hint"]
a : Dict =[
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
a : int =False
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self ):
"""simple docstring"""
return 100
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase : Any = {
"in_channels": 8,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image_hint",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCAmelCase : Optional[Any] = UNetaDConditionModel(**snake_case__ )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase : Optional[Any] = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Union[str, Any] = self.dummy_unet
lowerCAmelCase : Optional[Any] = self.dummy_movq
lowerCAmelCase : str = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type="epsilon" , thresholding=snake_case__ , )
lowerCAmelCase : Optional[Any] = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowercase__ ( self , snake_case__ , snake_case__=0 ):
"""simple docstring"""
lowerCAmelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
lowerCAmelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
snake_case__ )
# create hint
lowerCAmelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
if str(snake_case__ ).startswith("mps" ):
lowerCAmelCase : Union[str, Any] = torch.manual_seed(snake_case__ )
else:
lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
lowerCAmelCase : Any = {
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"hint": hint,
"generator": generator,
"height": 64,
"width": 64,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : List[Any] = "cpu"
lowerCAmelCase : Optional[int] = self.get_dummy_components()
lowerCAmelCase : int = self.pipeline_class(**snake_case__ )
lowerCAmelCase : Tuple = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
lowerCAmelCase : Dict = pipe(**self.get_dummy_inputs(snake_case__ ) )
lowerCAmelCase : List[Any] = output.images
lowerCAmelCase : Tuple = pipe(
**self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0]
lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
lowerCAmelCase : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase : Any = np.array(
[0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def lowercase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : int = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" )
lowerCAmelCase : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/hint_image_cat.png" )
lowerCAmelCase : Any = torch.from_numpy(np.array(snake_case__ ) ).float() / 255.0
lowerCAmelCase : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
lowerCAmelCase : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(snake_case__ )
lowerCAmelCase : Dict = KandinskyVaaControlnetPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa )
lowerCAmelCase : Union[str, Any] = pipeline.to(snake_case__ )
pipeline.set_progress_bar_config(disable=snake_case__ )
lowerCAmelCase : Dict = "A robot, 4k photo"
lowerCAmelCase : Union[str, Any] = torch.Generator(device="cuda" ).manual_seed(0 )
lowerCAmelCase , lowerCAmelCase : Union[str, Any] = pipe_prior(
snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCAmelCase : Dict = torch.Generator(device="cuda" ).manual_seed(0 )
lowerCAmelCase : Tuple = pipeline(
image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , output_type="np" , )
lowerCAmelCase : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(snake_case__ , snake_case__ )
| 108 |
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(__snake_case )
class A ( __snake_case ):
def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
self.check_model_type(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A, A : Dict = {}, {}
if padding is not None:
A : List[str] = padding
if truncation is not None:
A : Dict = truncation
if top_k is not None:
A : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = {'''image''': image, '''question''': question}
else:
A : Any = image
A : Any = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
return results
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
A : Union[str, Any] = load_image(inputs['''image'''] )
A : Optional[Any] = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE )
A : Dict = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(SCREAMING_SNAKE_CASE )
return model_inputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : List[Any] = self.model(**SCREAMING_SNAKE_CASE )
return model_outputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> int:
"""simple docstring"""
if top_k > self.model.config.num_labels:
A : Dict = self.model.config.num_labels
if self.framework == "pt":
A : Optional[int] = model_outputs.logits.sigmoid()[0]
A, A : int = probs.topk(SCREAMING_SNAKE_CASE )
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
A : int = scores.tolist()
A : List[str] = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
| 3 | 0 |
"""simple docstring"""
import flax.linen as nn
import jax
import jax.numpy as jnp
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
__lowerCAmelCase : int
__lowerCAmelCase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : List[str] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = hidden_states.shape
UpperCAmelCase : str = jax.image.resize(
_SCREAMING_SNAKE_CASE , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , )
UpperCAmelCase : Optional[int] = self.conv(_SCREAMING_SNAKE_CASE )
return hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
__lowerCAmelCase : int
__lowerCAmelCase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE ( self ) -> List[str]:
'''simple docstring'''
UpperCAmelCase : Tuple = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , _SCREAMING_SNAKE_CASE ) -> Any:
'''simple docstring'''
UpperCAmelCase : Any = self.conv(_SCREAMING_SNAKE_CASE )
return hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
__lowerCAmelCase : int
__lowerCAmelCase : int = None
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : bool = None
__lowerCAmelCase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE ( self ) -> List[str]:
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
UpperCAmelCase : Optional[Any] = nn.Conv(
_SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
UpperCAmelCase : str = nn.Dense(_SCREAMING_SNAKE_CASE , dtype=self.dtype )
UpperCAmelCase : str = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
UpperCAmelCase : List[str] = nn.Dropout(self.dropout_prob )
UpperCAmelCase : str = nn.Conv(
_SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
UpperCAmelCase : Tuple = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
UpperCAmelCase : Dict = None
if use_nin_shortcut:
UpperCAmelCase : str = nn.Conv(
_SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , )
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Tuple = hidden_states
UpperCAmelCase : Dict = self.norma(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = nn.swish(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[int] = self.conva(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : str = self.time_emb_proj(nn.swish(_SCREAMING_SNAKE_CASE ) )
UpperCAmelCase : Optional[int] = jnp.expand_dims(jnp.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , 1 )
UpperCAmelCase : Union[str, Any] = hidden_states + temb
UpperCAmelCase : Any = self.norma(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Union[str, Any] = nn.swish(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : int = self.dropout(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = self.conva(_SCREAMING_SNAKE_CASE )
if self.conv_shortcut is not None:
UpperCAmelCase : Dict = self.conv_shortcut(_SCREAMING_SNAKE_CASE )
return hidden_states + residual
| 109 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase : Union[str, Any] = logging.get_logger(__name__)
lowercase : str = {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json',
'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json',
'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json',
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json',
'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json',
'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json',
'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json',
'cl-tohoku/bert-base-japanese-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'
),
'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class A ( __snake_case ):
__magic_name__ = '''bert'''
def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]:
"""simple docstring"""
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = vocab_size
A : Optional[Any] = hidden_size
A : List[Any] = num_hidden_layers
A : List[str] = num_attention_heads
A : Dict = hidden_act
A : Optional[Any] = intermediate_size
A : List[Any] = hidden_dropout_prob
A : List[Any] = attention_probs_dropout_prob
A : Optional[Any] = max_position_embeddings
A : List[str] = type_vocab_size
A : Dict = initializer_range
A : str = layer_norm_eps
A : int = position_embedding_type
A : Dict = use_cache
A : str = classifier_dropout
class A ( __snake_case ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A : Optional[int] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 3 | 0 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase = {'UserAgent': UserAgent().random}
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = script.contents[0]
lowercase__ = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class _a :
def __init__( self: List[str] , UpperCamelCase_: Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = f'https://www.instagram.com/{username}/'
lowercase__ = self.get_json()
def lowerCamelCase_ ( self: Any ) -> dict:
"""simple docstring"""
lowercase__ = requests.get(self.url , headers=UpperCamelCase_ ).text
lowercase__ = BeautifulSoup(UpperCamelCase_ , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self: Union[str, Any] ) -> str:
"""simple docstring"""
return f'{self.__class__.__name__}(\'{self.username}\')'
def __str__( self: Tuple ) -> str:
"""simple docstring"""
return f'{self.fullname} ({self.username}) is {self.biography}'
@property
def lowerCamelCase_ ( self: List[Any] ) -> str:
"""simple docstring"""
return self.user_data["username"]
@property
def lowerCamelCase_ ( self: int ) -> str:
"""simple docstring"""
return self.user_data["full_name"]
@property
def lowerCamelCase_ ( self: str ) -> str:
"""simple docstring"""
return self.user_data["biography"]
@property
def lowerCamelCase_ ( self: str ) -> str:
"""simple docstring"""
return self.user_data["business_email"]
@property
def lowerCamelCase_ ( self: int ) -> str:
"""simple docstring"""
return self.user_data["external_url"]
@property
def lowerCamelCase_ ( self: Dict ) -> int:
"""simple docstring"""
return self.user_data["edge_followed_by"]["count"]
@property
def lowerCamelCase_ ( self: Optional[Any] ) -> int:
"""simple docstring"""
return self.user_data["edge_follow"]["count"]
@property
def lowerCamelCase_ ( self: Union[str, Any] ) -> int:
"""simple docstring"""
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def lowerCamelCase_ ( self: int ) -> str:
"""simple docstring"""
return self.user_data["profile_pic_url_hd"]
@property
def lowerCamelCase_ ( self: Optional[int] ) -> bool:
"""simple docstring"""
return self.user_data["is_verified"]
@property
def lowerCamelCase_ ( self: str ) -> bool:
"""simple docstring"""
return self.user_data["is_private"]
def _a ( SCREAMING_SNAKE_CASE = "github" ):
"""simple docstring"""
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
lowercase__ = InstagramUser(SCREAMING_SNAKE_CASE )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , SCREAMING_SNAKE_CASE )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 1_50
assert instagram_user.number_of_followers > 12_00_00
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "support@github.com"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase = InstagramUser('github')
print(instagram_user)
print(f"""{instagram_user.number_of_posts = }""")
print(f"""{instagram_user.number_of_followers = }""")
print(f"""{instagram_user.number_of_followings = }""")
print(f"""{instagram_user.email = }""")
print(f"""{instagram_user.website = }""")
print(f"""{instagram_user.profile_picture_url = }""")
print(f"""{instagram_user.is_verified = }""")
print(f"""{instagram_user.is_private = }""")
| 110 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : str = BeautifulSoup(requests.get(snake_case__ , params=snake_case__ ).content , '''html.parser''' )
A : Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A : Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
lowercase : str = {
'title': (
'Precisely geometry controlled microsupercapacitors for ultrahigh areal '
'capacitance, volumetric capacitance, and energy density'
),
'journal': 'Chem. Mater.',
'volume': 30,
'pages': '3979-3990',
'year': 20_18,
'hl': 'en',
}
print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
| 3 | 0 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase : List[str] = logging.get_logger(__name__)
__UpperCamelCase : List[Any] = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def A ( _lowercase ):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(snake_case__ , snake_case__ )
if k.startswith('''encoder''' ):
SCREAMING_SNAKE_CASE : List[Any] = k.replace('''.attn''' , '''.self_attn''' )
SCREAMING_SNAKE_CASE : Any = k.replace('''norm1''' , '''self_attn_layer_norm''' )
SCREAMING_SNAKE_CASE : str = k.replace('''norm2''' , '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
SCREAMING_SNAKE_CASE : str = k.replace('''norm1''' , '''self_attn_layer_norm''' )
SCREAMING_SNAKE_CASE : Tuple = k.replace('''norm2''' , '''encoder_attn_layer_norm''' )
SCREAMING_SNAKE_CASE : Any = k.replace('''norm3''' , '''final_layer_norm''' )
return k
def A ( _lowercase ):
SCREAMING_SNAKE_CASE : Optional[int] = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
SCREAMING_SNAKE_CASE : Optional[Any] = sd.pop(snake_case__ )
SCREAMING_SNAKE_CASE : Tuple = k.replace('''layernorm_embedding''' , '''layer_norm''' )
assert new_k not in sd
SCREAMING_SNAKE_CASE : List[str] = v
__UpperCamelCase : Any = ['START']
@torch.no_grad()
def A ( _lowercase , _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(snake_case__ , map_location='''cpu''' )
SCREAMING_SNAKE_CASE : Any = model['''model''']
SCREAMING_SNAKE_CASE : Dict = BlenderbotConfig.from_json_file(snake_case__ )
SCREAMING_SNAKE_CASE : List[Any] = BlenderbotForConditionalGeneration(snake_case__ )
SCREAMING_SNAKE_CASE : Optional[int] = m.model.state_dict().keys()
SCREAMING_SNAKE_CASE : Optional[Any] = []
SCREAMING_SNAKE_CASE : List[Any] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
SCREAMING_SNAKE_CASE : List[Any] = rename_state_dict_key(snake_case__ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
SCREAMING_SNAKE_CASE : List[str] = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(snake_case__ )
m.model.load_state_dict(snake_case__ , strict=snake_case__ )
m.half()
m.save_pretrained(snake_case__ )
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
__UpperCamelCase : int = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 182 |
'''simple docstring'''
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Any = None
A : Optional[Any] = None
A : Tuple = graph
self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Dict = len(SCREAMING_SNAKE_CASE )
A : Optional[Any] = None
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if sources is int:
A : Dict = [sources]
if sinks is int:
A : str = [sinks]
if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0:
return
A : Optional[int] = sources[0]
A : Union[str, Any] = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1:
A : Optional[int] = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
A : Dict = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
A : Dict = max_input_flow
A : Tuple = 0
A : Tuple = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
A : Optional[Any] = max_input_flow
A : Optional[Any] = size - 1
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
if self.maximum_flow_algorithm is None:
raise Exception('''You need to set maximum flow algorithm before.''' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : List[Any] = algorithm(self )
class A :
def __init__( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = flow_network
A : Optional[Any] = flow_network.verticesCount
A : Tuple = flow_network.sourceIndex
A : Dict = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
A : str = flow_network.graph
A : Optional[Any] = False
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
if not self.executed:
self._algorithm()
A : Optional[int] = True
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
pass
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__(SCREAMING_SNAKE_CASE )
# use this to save your result
A : List[str] = -1
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
if not self.executed:
raise Exception('''You should execute algorithm before using its result!''' )
return self.maximum_flow
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
super().__init__(SCREAMING_SNAKE_CASE )
A : Optional[Any] = [[0] * self.verticies_count for i in range(self.verticies_count )]
A : Union[str, Any] = [0] * self.verticies_count
A : List[Any] = [0] * self.verticies_count
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
A : Optional[Any] = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
A : Union[str, Any] = 0
while i < len(SCREAMING_SNAKE_CASE ):
A : str = vertices_list[i]
A : List[str] = self.heights[vertex_index]
self.process_vertex(SCREAMING_SNAKE_CASE )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) )
A : int = 0
else:
i += 1
A : Optional[Any] = sum(self.preflow[self.source_index] )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.relabel(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Dict = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Dict = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
A : Dict = self.heights[to_index]
if min_height is not None:
A : Dict = min_height + 1
if __name__ == "__main__":
lowercase : Optional[int] = [0]
lowercase : List[Any] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
lowercase : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
lowercase : List[str] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
lowercase : List[str] = flow_network.find_maximum_flow()
print(f'''maximum flow is {maximum_flow}''')
| 3 | 0 |
'''simple docstring'''
from copy import deepcopy
class lowerCAmelCase__ :
def __init__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if arr is None and size is not None:
lowercase_ : List[Any] = size
lowercase_ : Any = [0] * size
elif arr is not None:
self.init(__SCREAMING_SNAKE_CASE )
else:
raise ValueError('''Either arr or size must be specified''' )
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = deepcopy(__SCREAMING_SNAKE_CASE )
for i in range(1 , self.size ):
lowercase_ : List[str] = self.next_(__SCREAMING_SNAKE_CASE )
if j < self.size:
self.tree[j] += self.tree[i]
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Tuple = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
lowercase_ : Dict = self.next_(__SCREAMING_SNAKE_CASE )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def _snake_case ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return index + (index & (-index))
@staticmethod
def _snake_case ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return index - (index & (-index))
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
lowercase_ : Optional[int] = self.next_(__SCREAMING_SNAKE_CASE )
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
self.add(__SCREAMING_SNAKE_CASE , value - self.get(__SCREAMING_SNAKE_CASE ) )
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if right == 0:
return 0
lowercase_ : Tuple = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
lowercase_ : Optional[Any] = self.prev(__SCREAMING_SNAKE_CASE )
return result
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.prefix(__SCREAMING_SNAKE_CASE ) - self.prefix(__SCREAMING_SNAKE_CASE )
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.query(__SCREAMING_SNAKE_CASE , index + 1 )
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
value -= self.tree[0]
if value < 0:
return -1
lowercase_ : Tuple = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
lowercase_ : int = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 93 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ = 10 ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ) or n < 0:
raise ValueError('''Invalid input''' )
A : List[str] = 10**n
A : Tuple = 2_8433 * (pow(2 , 783_0457 , snake_case__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f'''{solution(10) = }''')
| 3 | 0 |
from __future__ import annotations
from random import choice
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str:
"""simple docstring"""
return choice(snake_case__ )
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = random_pivot(snake_case__ )
# partition based on pivot
# linear time
SCREAMING_SNAKE_CASE__ = [e for e in lst if e < pivot]
SCREAMING_SNAKE_CASE__ = [e for e in lst if e > pivot]
# if we get lucky, pivot might be the element we want.
# we can easily see this:
# small (elements smaller than k)
# + pivot (kth element)
# + big (elements larger than k)
if len(snake_case__ ) == k - 1:
return pivot
# pivot is in elements bigger than k
elif len(snake_case__ ) < k - 1:
return kth_number(snake_case__ , k - len(snake_case__ ) - 1 )
# pivot is in elements smaller than k
else:
return kth_number(snake_case__ , snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 219 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
lowercase : List[str] = logging.get_logger(__name__)
lowercase : str = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class A ( __snake_case ):
__magic_name__ = '''gpt_neo'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self , SCREAMING_SNAKE_CASE=50257 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=24 , SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=50256 , SCREAMING_SNAKE_CASE=50256 , **SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
A : Union[str, Any] = vocab_size
A : Optional[Any] = max_position_embeddings
A : Dict = hidden_size
A : Optional[Any] = num_layers
A : Tuple = num_heads
A : int = intermediate_size
A : Optional[Any] = window_size
A : List[Any] = activation_function
A : Union[str, Any] = resid_dropout
A : Any = embed_dropout
A : List[Any] = attention_dropout
A : str = classifier_dropout
A : List[Any] = layer_norm_epsilon
A : str = initializer_range
A : List[str] = use_cache
A : Optional[int] = bos_token_id
A : List[Any] = eos_token_id
A : int = attention_types
A : int = self.expand_attention_types_params(SCREAMING_SNAKE_CASE )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.attention_layers)` == `config.num_layers` '''
F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, '
F'`config.num_layers = {self.num_layers}`. '
'''`config.attention_layers` is prepared using `config.attention_types`. '''
'''Please verify the value of `config.attention_types` argument.''' )
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
@staticmethod
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : List[str] = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
A : Tuple = input.size()
A : Union[str, Any] = len(snake_case__ )
A : List[str] = shape[dimension]
A : Union[str, Any] = torch.arange(0 , snake_case__ , snake_case__ )
A : List[str] = torch.div(sizedim - size , snake_case__ , rounding_mode='''floor''' ) + 1
A : Optional[int] = torch.arange(snake_case__ ) + low_indices[:min_length][:, None]
A : str = [slice(snake_case__ )] * rank
A : List[Any] = indices
A : Union[str, Any] = input[s]
A : List[str] = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
A : List[str] = torch.arange(1 , snake_case__ )
A : Optional[int] = torch.remainder(snake_case__ , snake_case__ )
A : Optional[int] = remainders == 0
A : Optional[Any] = candidates[divisor_indices]
A : Optional[int] = torch.max(snake_case__ )
return largest_divisor, torch.div(snake_case__ , snake_case__ , rounding_mode='''floor''' )
class A ( __snake_case ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
A : Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction='''inputs''' )
A : Optional[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
A : Dict = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return self._config.num_heads
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]:
"""simple docstring"""
A : List[str] = super(SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs(
SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
A : Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
A, A : Dict = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
A : str = seqlen + 2
A : List[Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
A : Any = [
(torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
A : str = common_inputs['''attention_mask''']
if self.use_past:
A : Optional[int] = ordered_inputs['''attention_mask'''].dtype
A : List[str] = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 )
return ordered_inputs
@property
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return 13
| 3 | 0 |
import copy
import re
class _lowerCAmelCase :
_lowercase ='''hp'''
_lowercase ={}
_lowercase =None
@classmethod
def __a ( cls , _UpperCamelCase , _UpperCamelCase ) -> List[Any]:
lowerCAmelCase_ = prefix
lowerCAmelCase_ = defaults
cls.build_naming_info()
@staticmethod
def __a ( _UpperCamelCase , _UpperCamelCase ) -> List[str]:
if len(_UpperCamelCase ) == 0:
return ""
lowerCAmelCase_ = None
if any(char.isdigit() for char in word ):
raise Exception(f"""Parameters should not contain numbers: \'{word}\' contains a number""" )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 , len(_UpperCamelCase ) + 1 ):
lowerCAmelCase_ = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
lowerCAmelCase_ = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(_UpperCamelCase ):
lowerCAmelCase_ = ''''''
while integer != 0:
lowerCAmelCase_ = chr(ord("A" ) + integer % 10 ) + s
integer //= 10
return s
lowerCAmelCase_ = 0
while True:
lowerCAmelCase_ = word + '''#''' + int_to_alphabetic(_UpperCamelCase )
if sword in info["reverse_short_word"]:
continue
else:
lowerCAmelCase_ = sword
break
lowerCAmelCase_ = short_word
lowerCAmelCase_ = word
return short_word
@staticmethod
def __a ( _UpperCamelCase , _UpperCamelCase ) -> int:
lowerCAmelCase_ = param_name.split("_" )
lowerCAmelCase_ = [TrialShortNamer.shortname_for_word(_UpperCamelCase , _UpperCamelCase ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
lowerCAmelCase_ = ['''''', '''_''']
for separator in separators:
lowerCAmelCase_ = separator.join(_UpperCamelCase )
if shortname not in info["reverse_short_param"]:
lowerCAmelCase_ = shortname
lowerCAmelCase_ = param_name
return shortname
return param_name
@staticmethod
def __a ( _UpperCamelCase , _UpperCamelCase ) -> Any:
lowerCAmelCase_ = TrialShortNamer.shortname_for_key(_UpperCamelCase , _UpperCamelCase )
lowerCAmelCase_ = short_name
lowerCAmelCase_ = param_name
@classmethod
def __a ( cls ) -> Union[str, Any]:
if cls.NAMING_INFO is not None:
return
lowerCAmelCase_ = {
'''short_word''': {},
'''reverse_short_word''': {},
'''short_param''': {},
'''reverse_short_param''': {},
}
lowerCAmelCase_ = list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(_UpperCamelCase , _UpperCamelCase )
lowerCAmelCase_ = info
@classmethod
def __a ( cls , _UpperCamelCase ) -> Tuple:
cls.build_naming_info()
assert cls.PREFIX is not None
lowerCAmelCase_ = [copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(f"""You should provide a default value for the param name {k} with value {v}""" )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
lowerCAmelCase_ = cls.NAMING_INFO['''short_param'''][k]
if isinstance(_UpperCamelCase , _UpperCamelCase ):
lowerCAmelCase_ = 1 if v else 0
lowerCAmelCase_ = '''''' if isinstance(_UpperCamelCase , (int, float) ) else '''-'''
lowerCAmelCase_ = f"""{key}{sep}{v}"""
name.append(_UpperCamelCase )
return "_".join(_UpperCamelCase )
@classmethod
def __a ( cls , _UpperCamelCase ) -> Union[str, Any]:
lowerCAmelCase_ = repr[len(cls.PREFIX ) + 1 :]
if repr == "":
lowerCAmelCase_ = []
else:
lowerCAmelCase_ = repr.split("_" )
lowerCAmelCase_ = {}
for value in values:
if "-" in value:
lowerCAmelCase_ = value.split("-" )
else:
lowerCAmelCase_ = re.sub("[0-9.]" , "" , _UpperCamelCase )
lowerCAmelCase_ = float(re.sub("[^0-9.]" , "" , _UpperCamelCase ) )
lowerCAmelCase_ = cls.NAMING_INFO['''reverse_short_param'''][p_k]
lowerCAmelCase_ = p_v
for k in cls.DEFAULTS:
if k not in parameters:
lowerCAmelCase_ = cls.DEFAULTS[k]
return parameters
| 231 |
'''simple docstring'''
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = []
A : Union[str, Any] = []
for i in range(self.num_layers ):
A : Any = self.in_channels if i == 0 else self.out_channels
A : Optional[Any] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : Optional[int] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = resnets
A : Union[str, Any] = attentions
if self.add_downsample:
A : int = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[Any] = ()
for resnet, attn in zip(self.resnets , self.attentions ):
A : int = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Dict = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
A : Optional[Any] = self.downsamplers_a(SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[Any] = []
for i in range(self.num_layers ):
A : Optional[Any] = self.in_channels if i == 0 else self.out_channels
A : List[str] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : Dict = resnets
if self.add_downsample:
A : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
"""simple docstring"""
A : str = ()
for resnet in self.resnets:
A : Optional[int] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
A : Optional[int] = self.downsamplers_a(SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = []
A : Optional[int] = []
for i in range(self.num_layers ):
A : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : Dict = self.prev_output_channel if i == 0 else self.out_channels
A : List[str] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : int = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Dict = resnets
A : Optional[Any] = attentions
if self.add_upsample:
A : Optional[int] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[int]:
"""simple docstring"""
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
A : List[str] = res_hidden_states_tuple[-1]
A : int = res_hidden_states_tuple[:-1]
A : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Tuple = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
if self.add_upsample:
A : Dict = self.upsamplers_a(SCREAMING_SNAKE_CASE )
return hidden_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : int = []
for i in range(self.num_layers ):
A : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : List[str] = self.prev_output_channel if i == 0 else self.out_channels
A : str = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : List[Any] = resnets
if self.add_upsample:
A : Optional[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Tuple:
"""simple docstring"""
for resnet in self.resnets:
# pop res hidden states
A : Optional[int] = res_hidden_states_tuple[-1]
A : Optional[Any] = res_hidden_states_tuple[:-1]
A : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Optional[Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
if self.add_upsample:
A : List[str] = self.upsamplers_a(SCREAMING_SNAKE_CASE )
return hidden_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : str = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
A : List[Any] = []
for _ in range(self.num_layers ):
A : int = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : List[str] = resnets
A : List[str] = attentions
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict:
"""simple docstring"""
A : Optional[Any] = self.resnets[0](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
A : Optional[int] = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
return hidden_states
| 3 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
lowerCamelCase : List[str] = logging.get_logger(__name__)
lowerCamelCase : str = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class __lowerCAmelCase (__snake_case ):
'''simple docstring'''
lowerCAmelCase__ : List[Any] = """gpt_neo"""
lowerCAmelCase__ : Dict = ["""past_key_values"""]
lowerCAmelCase__ : Optional[int] = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__(self : int , UpperCamelCase : List[str]=50257 , UpperCamelCase : List[Any]=2048 , UpperCamelCase : Dict=2048 , UpperCamelCase : Optional[Any]=24 , UpperCamelCase : Dict=[[["global", "local"], 12]] , UpperCamelCase : Any=16 , UpperCamelCase : Any=None , UpperCamelCase : Tuple=256 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Tuple=1E-5 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : Optional[int]=True , UpperCamelCase : List[str]=50256 , UpperCamelCase : Dict=50256 , **UpperCamelCase : int , ):
'''simple docstring'''
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = hidden_size
lowercase__ = num_layers
lowercase__ = num_heads
lowercase__ = intermediate_size
lowercase__ = window_size
lowercase__ = activation_function
lowercase__ = resid_dropout
lowercase__ = embed_dropout
lowercase__ = attention_dropout
lowercase__ = classifier_dropout
lowercase__ = layer_norm_epsilon
lowercase__ = initializer_range
lowercase__ = use_cache
lowercase__ = bos_token_id
lowercase__ = eos_token_id
lowercase__ = attention_types
lowercase__ = self.expand_attention_types_params(UpperCamelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.attention_layers)` == `config.num_layers` '''
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
'''`config.attention_layers` is prepared using `config.attention_types`. '''
'''Please verify the value of `config.attention_types` argument.''' )
super().__init__(bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase )
@staticmethod
def UpperCamelCase__ (UpperCamelCase : Dict ):
'''simple docstring'''
lowercase__ = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def _SCREAMING_SNAKE_CASE (A , A , A , A ) -> List[str]:
"""simple docstring"""
import torch
lowercase__ = input.size()
lowercase__ = len(snake_case__ )
lowercase__ = shape[dimension]
lowercase__ = torch.arange(0 , snake_case__ , snake_case__ )
lowercase__ = torch.div(sizedim - size , snake_case__ , rounding_mode='''floor''' ) + 1
lowercase__ = torch.arange(snake_case__ ) + low_indices[:min_length][:, None]
lowercase__ = [slice(snake_case__ )] * rank
lowercase__ = indices
lowercase__ = input[s]
lowercase__ = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(snake_case__ )
def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]:
"""simple docstring"""
import torch
lowercase__ = torch.arange(1 , snake_case__ )
lowercase__ = torch.remainder(snake_case__ , snake_case__ )
lowercase__ = remainders == 0
lowercase__ = candidates[divisor_indices]
lowercase__ = torch.max(snake_case__ )
return largest_divisor, torch.div(snake_case__ , snake_case__ , rounding_mode='''floor''' )
class __lowerCAmelCase (__snake_case ):
'''simple docstring'''
@property
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCamelCase , direction='''inputs''' )
lowercase__ = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
lowercase__ = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return self._config.num_heads
def UpperCamelCase__ (self : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : str = -1 , UpperCamelCase : Tuple = -1 , UpperCamelCase : Tuple = False , UpperCamelCase : Optional[Any] = None , ):
'''simple docstring'''
lowercase__ = super(UpperCamelCase , self ).generate_dummy_inputs(
UpperCamelCase , batch_size=UpperCamelCase , seq_length=UpperCamelCase , is_pair=UpperCamelCase , framework=UpperCamelCase )
# We need to order the input in the way they appears in the forward()
lowercase__ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
lowercase__ = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
lowercase__ = seqlen + 2
lowercase__ = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowercase__ = [
(torch.zeros(UpperCamelCase ), torch.zeros(UpperCamelCase )) for _ in range(self.num_layers )
]
lowercase__ = common_inputs['''attention_mask''']
if self.use_past:
lowercase__ = ordered_inputs['''attention_mask'''].dtype
lowercase__ = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(UpperCamelCase , UpperCamelCase , dtype=UpperCamelCase )] , dim=1 )
return ordered_inputs
@property
def UpperCamelCase__ (self : Dict ):
'''simple docstring'''
return 13
| 2 |
'''simple docstring'''
import os
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : List[Any] = os.path.join(os.path.dirname(snake_case__ ) , '''num.txt''' )
with open(snake_case__ ) as file_hand:
return str(sum(int(snake_case__ ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 3 | 0 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Optional[int]:
if discount_rate < 0:
raise ValueError('''Discount rate cannot be negative''' )
if not cash_flows:
raise ValueError('''Cash flows list cannot be empty''' )
lowerCAmelCase = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(snake_case__ ) )
return round(snake_case__ , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 |
'''simple docstring'''
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , snake_case__ )
A : Dict = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
A : Dict = dataset_size < in_memory_max_size
else:
A : Tuple = False
A : int = is_small_dataset(snake_case__ )
assert result == expected
| 3 | 0 |
def _UpperCAmelCase ( a__):
'''simple docstring'''
a_ : str = []
if len(snake_case__) == 1:
return [nums.copy()]
for _ in range(len(snake_case__)):
a_ : Dict = nums.pop(0)
a_ : int = permute(snake_case__)
for perm in permutations:
perm.append(snake_case__)
result.extend(snake_case__)
nums.append(snake_case__)
return result
def _UpperCAmelCase ( a__):
'''simple docstring'''
def backtrack(a__):
if start == len(snake_case__) - 1:
output.append(nums[:])
else:
for i in range(snake_case__ , len(snake_case__)):
a_ : Any = nums[i], nums[start]
backtrack(start + 1)
a_ : List[str] = nums[i], nums[start] # backtrack
a_ : Optional[Any] = []
backtrack(0)
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
__snake_case : Union[str, Any] = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 248 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class A ( __snake_case ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 3 | 0 |
from ..utils import DummyObject, requires_backends
class __snake_case ( metaclass=__snake_case ):
_a : Any= ["transformers", "torch", "note_seq"]
def __init__( self ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(self ,["""transformers""", """torch""", """note_seq"""] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(cls ,["""transformers""", """torch""", """note_seq"""] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(cls ,["""transformers""", """torch""", """note_seq"""] )
| 20 |
'''simple docstring'''
from scipy.stats import pearsonr
import datasets
lowercase : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
lowercase : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
lowercase : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float''' ),
'''references''': datasets.Value('''float''' ),
} ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
"""simple docstring"""
if return_pvalue:
A : Union[str, Any] = pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] )}
| 3 | 0 |
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class SCREAMING_SNAKE_CASE_ ( __snake_case ):
__magic_name__: Dict = "EncodecFeatureExtractor"
__magic_name__: Dict = ("T5Tokenizer", "T5TokenizerFast")
def __init__( self : str , _A : int , _A : str ) -> Optional[int]:
"""simple docstring"""
super().__init__(_A , _A )
snake_case_ : List[Any] = self.feature_extractor
snake_case_ : Union[str, Any] = False
def UpperCAmelCase_ ( self : Any , _A : List[Any]=None , _A : Optional[int]=None , _A : List[str]=True ) -> Tuple:
"""simple docstring"""
return self.tokenizer.get_decoder_prompt_ids(task=_A , language=_A , no_timestamps=_A )
def __call__( self : List[Any] , *_A : Optional[int] , **_A : Optional[Any] ) -> List[str]:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*_A , **_A )
snake_case_ : Any = kwargs.pop('audio' , _A )
snake_case_ : Optional[int] = kwargs.pop('sampling_rate' , _A )
snake_case_ : Any = kwargs.pop('text' , _A )
if len(_A ) > 0:
snake_case_ : List[Any] = args[0]
snake_case_ : Dict = args[1:]
if audio is None and text is None:
raise ValueError('You need to specify either an `audio` or `text` input to process.' )
if text is not None:
snake_case_ : Tuple = self.tokenizer(_A , **_A )
if audio is not None:
snake_case_ : List[str] = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
snake_case_ : Optional[Any] = audio_inputs['''input_values''']
if "padding_mask" in audio_inputs:
snake_case_ : Optional[int] = audio_inputs['''padding_mask''']
return inputs
def UpperCAmelCase_ ( self : Tuple , *_A : Dict , **_A : Dict ) -> int:
"""simple docstring"""
snake_case_ : Optional[Any] = kwargs.pop('audio' , _A )
snake_case_ : Optional[int] = kwargs.pop('padding_mask' , _A )
if len(_A ) > 0:
snake_case_ : List[str] = args[0]
snake_case_ : Union[str, Any] = args[1:]
if audio_values is not None:
return self._decode_audio(_A , padding_mask=_A )
else:
return self.tokenizer.batch_decode(*_A , **_A )
def UpperCAmelCase_ ( self : Optional[Any] , *_A : int , **_A : Any ) -> Dict:
"""simple docstring"""
return self.tokenizer.decode(*_A , **_A )
def UpperCAmelCase_ ( self : Tuple , _A : Optional[Any] , _A : Dict = None ) -> List[np.ndarray]:
"""simple docstring"""
snake_case_ : Tuple = to_numpy(_A )
snake_case_ : Union[str, Any] = audio_values.shape
if padding_mask is None:
return list(_A )
snake_case_ : List[str] = to_numpy(_A )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
snake_case_ : Any = seq_len - padding_mask.shape[-1]
snake_case_ : List[Any] = 1 - self.feature_extractor.padding_value
snake_case_ : Tuple = np.pad(_A , ((0, 0), (0, difference)) , 'constant' , constant_values=_A )
snake_case_ : Union[str, Any] = audio_values.tolist()
for i in range(_A ):
snake_case_ : Tuple = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
snake_case_ : Any = sliced_audio.reshape(_A , -1 )
return audio_values
| 327 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
lowercase : Dict = {
'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'],
'processing_speech_to_text': ['Speech2TextProcessor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[Any] = ['Speech2TextTokenizer']
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[str] = ['Speech2TextFeatureExtractor']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Dict = [
'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFSpeech2TextForConditionalGeneration',
'TFSpeech2TextModel',
'TFSpeech2TextPreTrainedModel',
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Any = [
'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Speech2TextForConditionalGeneration',
'Speech2TextModel',
'Speech2TextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
_snake_case = logging.get_logger(__name__)
_snake_case = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_snake_case = [
'small',
'small-base',
'medium',
'medium-base',
'intermediate',
'intermediate-base',
'large',
'large-base',
'xlarge',
'xlarge-base',
]
_snake_case = {
'vocab_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json',
'funnel-transformer/small-base': (
'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json'
),
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json',
'funnel-transformer/large-base': (
'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json'
),
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json'
),
},
}
_snake_case = {F'''funnel-transformer/{name}''': 512 for name in _model_names}
_snake_case = {F'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names}
class UpperCamelCase ( __snake_case ):
UpperCamelCase : Dict = VOCAB_FILES_NAMES
UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase : Optional[int] = FunnelTokenizer
UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase : Optional[Any] = 2
def __init__( self : Any , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : List[str]="<sep>" , UpperCAmelCase__ : Any="<pad>" , UpperCAmelCase__ : Any="<cls>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Union[str, Any]="</s>" , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : List[str]="##" , **UpperCAmelCase__ : Any , ) -> Tuple:
super().__init__(
UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , clean_text=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , wordpieces_prefix=UpperCAmelCase__ , **UpperCAmelCase__ , )
_a : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase__ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase__ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase__ ) != tokenize_chinese_chars
):
_a : List[Any] = getattr(UpperCAmelCase__ , normalizer_state.pop("""type""" ) )
_a : Union[str, Any] = do_lower_case
_a : Optional[int] = strip_accents
_a : Union[str, Any] = tokenize_chinese_chars
_a : Tuple = normalizer_class(**UpperCAmelCase__ )
_a : int = do_lower_case
def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]=None ) -> Union[str, Any]:
_a : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _lowercase ( self : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple = None ) -> List[int]:
_a : List[Any] = [self.sep_token_id]
_a : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowercase ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any = None ) -> Tuple[str]:
_a : Tuple = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ )
return tuple(UpperCAmelCase__ )
| 294 |
'''simple docstring'''
import os
import sys
import unittest
lowercase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py')
lowercase : Optional[int] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py')
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : List[Any] = {'''BertModelTest''': '''BertModelTester'''}
A : int = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : List[str] = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A : Union[str, Any] = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : int = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Dict = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A : str = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
| 3 | 0 |
"""simple docstring"""
import requests
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ) -> Union[str, Any]:
_lowerCAmelCase : int = {'''Content-Type''': '''application/json'''}
_lowerCAmelCase : List[str] = requests.post(snake_case__ ,json={"""text""": message_body} ,headers=snake_case__ )
if response.status_code != 200:
_lowerCAmelCase : Optional[Any] = (
'''Request to slack returned an error '''
f"{response.status_code}, the response is:\n{response.text}"
)
raise ValueError(snake_case__ )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
| 44 |
'''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class A ( __snake_case ):
__magic_name__ = DistilBertTokenizer
__magic_name__ = DistilBertTokenizerFast
__magic_name__ = True
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : List[Any] = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
A : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE )
A : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE )
A : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE )
A : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 3 | 0 |
from collections import deque
def A ( _lowercase ):
SCREAMING_SNAKE_CASE : Dict = len(snake_case__ )
SCREAMING_SNAKE_CASE : str = deque()
SCREAMING_SNAKE_CASE : int = [False for _ in range(snake_case__ )]
SCREAMING_SNAKE_CASE : List[Any] = [-1 for _ in range(snake_case__ )]
SCREAMING_SNAKE_CASE : Optional[int] = index_of[:]
def strong_connect(_lowercase , _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : int = index # the number when this node is seen
SCREAMING_SNAKE_CASE : Tuple = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
SCREAMING_SNAKE_CASE : List[str] = True
for w in g[v]:
if index_of[w] == -1:
SCREAMING_SNAKE_CASE : List[str] = strong_connect(snake_case__ , snake_case__ , snake_case__ )
SCREAMING_SNAKE_CASE : str = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
SCREAMING_SNAKE_CASE : List[Any] = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : List[str] = stack.pop()
SCREAMING_SNAKE_CASE : List[str] = False
component.append(snake_case__ )
while w != v:
SCREAMING_SNAKE_CASE : Optional[Any] = stack.pop()
SCREAMING_SNAKE_CASE : List[str] = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
SCREAMING_SNAKE_CASE : Any = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def A ( _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : Optional[Any] = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
__UpperCamelCase : str = 7
__UpperCamelCase : Any = [0, 0, 1, 2, 3, 3, 4, 4, 6]
__UpperCamelCase : Tuple = [1, 3, 2, 0, 1, 4, 5, 6, 5]
__UpperCamelCase : Optional[int] = [(u, v) for u, v in zip(source, target)]
__UpperCamelCase : Any = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 182 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
lowercase : Optional[int] = logging.get_logger(__name__)
class A ( __snake_case ):
__magic_name__ = ['''input_features''', '''attention_mask''']
def __init__( self , SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=16000 , SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
super().__init__(feature_size=SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , padding_value=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = num_mel_bins
A : Tuple = do_ceptral_normalize
A : Dict = normalize_means
A : List[Any] = normalize_vars
A : List[str] = True
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
A : List[Any] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
A : Any = torch.from_numpy(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
A : Any = ta_kaldi.fbank(SCREAMING_SNAKE_CASE , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 0.0 , ) -> np.ndarray:
"""simple docstring"""
if normalize_means:
A : Dict = x[:input_length].mean(axis=0 )
A : Optional[Any] = np.subtract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if normalize_vars:
A : str = x[:input_length].std(axis=0 )
A : int = np.divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if input_length < x.shape[0]:
A : List[str] = padding_value
# make sure array is in float32
A : Tuple = x.astype(np.floataa )
return x
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[np.ndarray]:
"""simple docstring"""
A : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
]
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
A : List[Any] = isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
A : Tuple = is_batched_numpy or (
isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
A : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ):
A : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
A : Optional[int] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
A : Any = [raw_speech]
# extract fbank features
A : List[str] = [self._extract_fbank_features(SCREAMING_SNAKE_CASE ) for waveform in raw_speech]
# convert into correct format for padding
A : str = BatchFeature({'''input_features''': features} )
A : Union[str, Any] = self.pad(
SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
# make sure list is in array format
A : List[str] = padded_inputs.get('''input_features''' )
if isinstance(input_features[0] , SCREAMING_SNAKE_CASE ):
A : str = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features]
A : Union[str, Any] = padded_inputs.get('''attention_mask''' )
if attention_mask is not None:
A : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
A : Dict = (
np.array(SCREAMING_SNAKE_CASE , dtype=np.intaa )
if self._get_padding_strategies(SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD
else None
)
A : List[Any] = self.normalize(
padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE )
if return_tensors is not None:
A : int = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE )
return padded_inputs
| 3 | 0 |
'''simple docstring'''
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Any = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class lowerCAmelCase__ ( __snake_case , unittest.TestCase ):
lowerCAmelCase_ = BartphoTokenizer
lowerCAmelCase_ = False
lowerCAmelCase_ = True
def _snake_case ( self ):
"""simple docstring"""
super().setUp()
lowercase_ : Dict = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']
lowercase_ : List[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
lowercase_ : str = {'''unk_token''': '''<unk>'''}
lowercase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] )
with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
for token in vocab_tokens:
fp.write(F'''{token} {vocab_tokens[token]}\n''' )
lowercase_ : Dict = BartphoTokenizer(__SCREAMING_SNAKE_CASE , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : Tuple = '''This is a là test'''
lowercase_ : Tuple = '''This is a<unk><unk> test'''
return input_text, output_text
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Any = BartphoTokenizer(__SCREAMING_SNAKE_CASE , self.monolingual_vocab_file , **self.special_tokens_map )
lowercase_ : Tuple = '''This is a là test'''
lowercase_ : Any = '''▁This ▁is ▁a ▁l à ▁t est'''.split()
lowercase_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = tokens + [tokenizer.unk_token]
lowercase_ : Tuple = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
| 93 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
lowercase : str = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
lowercase : str = get_tests_dir('fixtures/vocab.json')
lowercase : int = get_tests_dir('fixtures')
class A ( unittest.TestCase ):
__magic_name__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = 0
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : List[Any] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : Union[str, Any] = WavaVecaConfig()
A : List[str] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
# save in new folder
model_config.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) )
A : Optional[Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : Dict = WavaVecaFeatureExtractor()
A : List[str] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
A : str = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# save in new folder
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# drop `processor_class` in tokenizer
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''r''' ) as f:
A : Dict = json.load(SCREAMING_SNAKE_CASE )
config_dict.pop('''processor_class''' )
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE ) )
A : Optional[Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : List[Any] = WavaVecaFeatureExtractor()
A : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
A : str = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# save in new folder
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# drop `processor_class` in feature extractor
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''r''' ) as f:
A : str = json.load(SCREAMING_SNAKE_CASE )
config_dict.pop('''processor_class''' )
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE ) )
A : str = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : str = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' )
model_config.save_pretrained(SCREAMING_SNAKE_CASE )
# copy relevant files
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) )
# create emtpy sample processor
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write('''{}''' )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
with self.assertRaises(SCREAMING_SNAKE_CASE ):
A : Optional[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(SCREAMING_SNAKE_CASE ):
A : Union[str, Any] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
A : List[str] = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
A : Tuple = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
# Test we can also load the slow version
A : List[str] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
A : int = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' )
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
try:
AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE )
AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(SCREAMING_SNAKE_CASE ):
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
A : List[Any] = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
A : Tuple = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.txt''' )
with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
A : Optional[int] = CustomTokenizer(SCREAMING_SNAKE_CASE )
A : Any = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
class A ( __snake_case ):
__magic_name__ = False
class A ( __snake_case ):
__magic_name__ = False
class A ( __snake_case ):
__magic_name__ = '''AutoFeatureExtractor'''
__magic_name__ = '''AutoTokenizer'''
__magic_name__ = False
try:
AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE )
AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local classes.
A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
A : Optional[int] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
A : Tuple = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : int = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Optional[int] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' )
self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' )
@is_staging_test
class A ( unittest.TestCase ):
__magic_name__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
@classmethod
def __lowerCAmelCase ( cls ) -> Dict:
"""simple docstring"""
A : Optional[int] = TOKEN
HfFolder.save_token(SCREAMING_SNAKE_CASE )
@classmethod
def __lowerCAmelCase ( cls ) -> Any:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-processor''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' )
except HTTPError:
pass
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Union[str, Any] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(SCREAMING_SNAKE_CASE , '''test-processor''' ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token )
A : int = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Tuple = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(SCREAMING_SNAKE_CASE , '''test-processor-org''' ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token , organization='''valid_org''' , )
A : int = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
A : Any = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
A : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.txt''' )
with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
A : str = CustomTokenizer(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(F'{USER}/test-dynamic-processor' , token=self._token )
A : List[str] = Repository(SCREAMING_SNAKE_CASE , clone_from=F'{USER}/test-dynamic-processor' , token=self._token )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''',
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) ) as f:
A : Dict = json.load(SCREAMING_SNAKE_CASE )
self.assertDictEqual(
tokenizer_config['''auto_map'''] , {
'''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None],
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_feature_extraction.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_tokenization.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_processing.py''' ) ) )
repo.push_to_hub()
A : Optional[int] = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=SCREAMING_SNAKE_CASE )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
| 3 | 0 |
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__lowerCamelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
__lowerCamelCase : str = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n'
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int]=8 ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
SCREAMING_SNAKE_CASE__ = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any=5_12 , __UpperCamelCase : Optional[int]=5_12 ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
SCREAMING_SNAKE_CASE__ = np.array(pil_image.convert("""RGB""" ) )
SCREAMING_SNAKE_CASE__ = arr.astype(np.floataa ) / 1_27.5 - 1
SCREAMING_SNAKE_CASE__ = np.transpose(snake_case__ , [2, 0, 1] )
SCREAMING_SNAKE_CASE__ = torch.from_numpy(snake_case__ ).unsqueeze(0 )
return image
class __snake_case ( __snake_case ):
def __init__( self : Any , _lowercase : Tuple , _lowercase : Dict , _lowercase : int , ):
"""simple docstring"""
super().__init__()
self.register_modules(
unet=_lowercase , scheduler=_lowercase , movq=_lowercase , )
SCREAMING_SNAKE_CASE__ = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def __a ( self : str , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = min(int(num_inference_steps * strength ) , _lowercase )
SCREAMING_SNAKE_CASE__ = max(num_inference_steps - init_timestep , 0 )
SCREAMING_SNAKE_CASE__ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def __a ( self : Union[str, Any] , _lowercase : List[Any] , _lowercase : str , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Any=None ):
"""simple docstring"""
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}""" )
SCREAMING_SNAKE_CASE__ = image.to(device=_lowercase , dtype=_lowercase )
SCREAMING_SNAKE_CASE__ = batch_size * num_images_per_prompt
if image.shape[1] == 4:
SCREAMING_SNAKE_CASE__ = image
else:
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
f"""You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch"""
f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
elif isinstance(_lowercase , _lowercase ):
SCREAMING_SNAKE_CASE__ = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase )
]
SCREAMING_SNAKE_CASE__ = torch.cat(_lowercase , dim=0 )
else:
SCREAMING_SNAKE_CASE__ = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase )
SCREAMING_SNAKE_CASE__ = self.movq.config.scaling_factor * init_latents
SCREAMING_SNAKE_CASE__ = torch.cat([init_latents] , dim=0 )
SCREAMING_SNAKE_CASE__ = init_latents.shape
SCREAMING_SNAKE_CASE__ = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
SCREAMING_SNAKE_CASE__ = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
SCREAMING_SNAKE_CASE__ = init_latents
return latents
def __a ( self : Any , _lowercase : List[str]=0 ):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
SCREAMING_SNAKE_CASE__ = torch.device(f"""cuda:{gpu_id}""" )
SCREAMING_SNAKE_CASE__ = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_lowercase , _lowercase )
def __a ( self : Optional[Any] , _lowercase : Optional[int]=0 ):
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
SCREAMING_SNAKE_CASE__ = torch.device(f"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=_lowercase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
SCREAMING_SNAKE_CASE__ = None
for cpu_offloaded_model in [self.unet, self.movq]:
SCREAMING_SNAKE_CASE__ = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase )
# We'll offload the last model manually.
SCREAMING_SNAKE_CASE__ = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __a ( self : Union[str, Any] ):
"""simple docstring"""
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(_lowercase , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(_lowercase )
def __call__( self : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Optional[int] = 5_12 , _lowercase : Union[str, Any] = 5_12 , _lowercase : Union[str, Any] = 1_00 , _lowercase : Optional[Any] = 4.0 , _lowercase : Optional[int] = 0.3 , _lowercase : List[str] = 1 , _lowercase : Any = None , _lowercase : Union[str, Any] = "pil" , _lowercase : Optional[Any] = True , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self._execution_device
SCREAMING_SNAKE_CASE__ = guidance_scale > 1.0
if isinstance(_lowercase , _lowercase ):
SCREAMING_SNAKE_CASE__ = torch.cat(_lowercase , dim=0 )
SCREAMING_SNAKE_CASE__ = image_embeds.shape[0]
if isinstance(_lowercase , _lowercase ):
SCREAMING_SNAKE_CASE__ = torch.cat(_lowercase , dim=0 )
if do_classifier_free_guidance:
SCREAMING_SNAKE_CASE__ = image_embeds.repeat_interleave(_lowercase , dim=0 )
SCREAMING_SNAKE_CASE__ = negative_image_embeds.repeat_interleave(_lowercase , dim=0 )
SCREAMING_SNAKE_CASE__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase )
if not isinstance(_lowercase , _lowercase ):
SCREAMING_SNAKE_CASE__ = [image]
if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
f"""Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" )
SCREAMING_SNAKE_CASE__ = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 )
SCREAMING_SNAKE_CASE__ = image.to(dtype=image_embeds.dtype , device=_lowercase )
SCREAMING_SNAKE_CASE__ = self.movq.encode(_lowercase )['''latents''']
SCREAMING_SNAKE_CASE__ = latents.repeat_interleave(_lowercase , dim=0 )
self.scheduler.set_timesteps(_lowercase , device=_lowercase )
SCREAMING_SNAKE_CASE__ = self.get_timesteps(_lowercase , _lowercase , _lowercase )
SCREAMING_SNAKE_CASE__ = timesteps[:1].repeat(batch_size * num_images_per_prompt )
SCREAMING_SNAKE_CASE__ = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor )
SCREAMING_SNAKE_CASE__ = self.prepare_latents(
_lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase )
for i, t in enumerate(self.progress_bar(_lowercase ) ):
# expand the latents if we are doing classifier free guidance
SCREAMING_SNAKE_CASE__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
SCREAMING_SNAKE_CASE__ = {'''image_embeds''': image_embeds}
SCREAMING_SNAKE_CASE__ = self.unet(
sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0]
if do_classifier_free_guidance:
SCREAMING_SNAKE_CASE__ = noise_pred.split(latents.shape[1] , dim=1 )
SCREAMING_SNAKE_CASE__ = noise_pred.chunk(2 )
SCREAMING_SNAKE_CASE__ = variance_pred.chunk(2 )
SCREAMING_SNAKE_CASE__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
SCREAMING_SNAKE_CASE__ = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
SCREAMING_SNAKE_CASE__ = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
SCREAMING_SNAKE_CASE__ = self.scheduler.step(
_lowercase , _lowercase , _lowercase , generator=_lowercase , )[0]
# post-processing
SCREAMING_SNAKE_CASE__ = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
SCREAMING_SNAKE_CASE__ = image * 0.5 + 0.5
SCREAMING_SNAKE_CASE__ = image.clamp(0 , 1 )
SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_lowercase )
| 219 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase : Optional[Any] = None
lowercase : Tuple = logging.get_logger(__name__)
lowercase : Dict = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase : Tuple = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase : List[str] = {
'google/rembert': 2_56,
}
lowercase : Dict = '▁'
class A ( __snake_case ):
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = RemBertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token
super().__init__(
SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
A : List[Any] = do_lower_case
A : str = remove_space
A : int = keep_accents
A : Union[str, Any] = vocab_file
A : List[Any] = False if not self.vocab_file else True
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
A : List[Any] = [self.sep_token_id]
A : Tuple = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
A : Tuple = [self.sep_token_id]
A : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) )
return
A : Any = os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 3 | 0 |
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCamelCase__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
if gpta_config_file == "":
lowerCAmelCase_ = GPTaConfig()
else:
lowerCAmelCase_ = GPTaConfig.from_json_file(snake_case__ )
lowerCAmelCase_ = GPTaModel(snake_case__ )
# Load weights from numpy
load_tf_weights_in_gpta(snake_case__ , snake_case__ , snake_case__ )
# Save pytorch-model
lowerCAmelCase_ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
lowerCAmelCase_ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict() , snake_case__ )
print(F"""Save configuration file to {pytorch_config_dump_path}""" )
with open(snake_case__ , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--gpt2_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
_A = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 231 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase : Optional[Any] = logging.get_logger(__name__)
class A ( __snake_case ):
__magic_name__ = ['''pixel_values''']
def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : str = size if size is not None else {'''shortest_edge''': 384}
A : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : str = do_resize
A : List[Any] = size
# Default value set here for backwards compatibility where the value in config is None
A : List[Any] = crop_pct if crop_pct is not None else 224 / 256
A : Optional[int] = resample
A : Union[str, Any] = do_rescale
A : List[str] = rescale_factor
A : Union[str, Any] = do_normalize
A : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
A : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
A : str = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
A : Any = size['''shortest_edge''']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
A : Dict = int(shortest_edge / crop_pct )
A : str = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : int = resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image:
"""simple docstring"""
A : int = do_resize if do_resize is not None else self.do_resize
A : Tuple = crop_pct if crop_pct is not None else self.crop_pct
A : Optional[Any] = resample if resample is not None else self.resample
A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
A : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
A : List[str] = image_std if image_std is not None else self.image_std
A : Union[str, Any] = size if size is not None else self.size
A : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : Any = make_list_of_images(SCREAMING_SNAKE_CASE )
if not valid_images(SCREAMING_SNAKE_CASE ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError('''crop_pct must be specified if size < 384.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
A : Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images]
if do_resize:
A : Any = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , crop_pct=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images]
if do_rescale:
A : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images]
if do_normalize:
A : Dict = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images]
A : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images]
A : Optional[int] = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
| 3 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class __lowerCAmelCase (__snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = IFPipeline
lowerCAmelCase__ : Optional[Any] = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""}
lowerCAmelCase__ : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
lowerCAmelCase__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
return self._get_dummy_components()
def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int]=0 ):
'''simple docstring'''
if str(UpperCamelCase ).startswith('''mps''' ):
lowercase__ = torch.manual_seed(UpperCamelCase )
else:
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase )
lowercase__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
self._test_save_load_local()
def UpperCamelCase__ (self : Dict ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@slow
@require_torch_gpu
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa )
lowercase__ = IFSuperResolutionPipeline.from_pretrained(
'''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('''cuda''' )
lowercase__ = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
lowercase__ = None
lowercase__ = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
lowercase__ = IFImgaImgPipeline(**pipe_a.components )
lowercase__ = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
lowercase__ = IFInpaintingPipeline(**pipe_a.components )
lowercase__ = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : List[str] ):
'''simple docstring'''
_start_torch_memory_measurement()
lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowercase__ = pipe_a(
prompt_embeds=UpperCamelCase , negative_prompt_embeds=UpperCamelCase , num_inference_steps=2 , generator=UpperCamelCase , output_type='''np''' , )
lowercase__ = output.images[0]
assert image.shape == (64, 64, 3)
lowercase__ = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' )
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
# pipeline 2
_start_torch_memory_measurement()
lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase )
lowercase__ = pipe_a(
prompt_embeds=UpperCamelCase , negative_prompt_embeds=UpperCamelCase , image=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=2 , output_type='''np''' , )
lowercase__ = output.images[0]
assert image.shape == (256, 256, 3)
lowercase__ = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Dict ):
'''simple docstring'''
_start_torch_memory_measurement()
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase )
lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowercase__ = pipe_a(
prompt_embeds=UpperCamelCase , negative_prompt_embeds=UpperCamelCase , image=UpperCamelCase , num_inference_steps=2 , generator=UpperCamelCase , output_type='''np''' , )
lowercase__ = output.images[0]
assert image.shape == (64, 64, 3)
lowercase__ = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' )
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
# pipeline 2
_start_torch_memory_measurement()
lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowercase__ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(UpperCamelCase )
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase )
lowercase__ = pipe_a(
prompt_embeds=UpperCamelCase , negative_prompt_embeds=UpperCamelCase , image=UpperCamelCase , original_image=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=2 , output_type='''np''' , )
lowercase__ = output.images[0]
assert image.shape == (256, 256, 3)
lowercase__ = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ):
'''simple docstring'''
_start_torch_memory_measurement()
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase )
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(UpperCamelCase )
lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowercase__ = pipe_a(
prompt_embeds=UpperCamelCase , negative_prompt_embeds=UpperCamelCase , image=UpperCamelCase , mask_image=UpperCamelCase , num_inference_steps=2 , generator=UpperCamelCase , output_type='''np''' , )
lowercase__ = output.images[0]
assert image.shape == (64, 64, 3)
lowercase__ = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' )
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
# pipeline 2
_start_torch_memory_measurement()
lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase )
lowercase__ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(UpperCamelCase )
lowercase__ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(UpperCamelCase )
lowercase__ = pipe_a(
prompt_embeds=UpperCamelCase , negative_prompt_embeds=UpperCamelCase , image=UpperCamelCase , mask_image=UpperCamelCase , original_image=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=2 , output_type='''np''' , )
lowercase__ = output.images[0]
assert image.shape == (256, 256, 3)
lowercase__ = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
def _SCREAMING_SNAKE_CASE () -> int:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 2 |
'''simple docstring'''
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(SCREAMING_SNAKE_CASE ):
A : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[str] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(SCREAMING_SNAKE_CASE ):
A : Any = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Any = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
for model_name in ["bert-base-cased", "bert-large-uncased"]:
A : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE )
A : Optional[Any] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX )
@jax.jit
def eval(**SCREAMING_SNAKE_CASE ):
return model(**SCREAMING_SNAKE_CASE )
eval(**SCREAMING_SNAKE_CASE ).block_until_ready()
@slow
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for model_name in ["roberta-base", "roberta-large"]:
A : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE )
A : int = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX )
@jax.jit
def eval(**SCREAMING_SNAKE_CASE ):
return model(**SCREAMING_SNAKE_CASE )
eval(**SCREAMING_SNAKE_CASE ).block_until_ready()
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ):
A : List[Any] = FlaxAutoModel.from_pretrained('''bert-base''' )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
A : Optional[int] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE , revision='''aaaaaa''' )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ):
A : List[str] = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE , '''Use `from_pt=True` to load this model''' ):
A : Any = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
| 3 | 0 |
from __future__ import annotations
lowercase__ : Optional[Any] = list[tuple[int, int]]
lowercase__ : Optional[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase__ : List[str] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) ->Optional[Any]:
lowerCAmelCase = pos_x
lowerCAmelCase = pos_y
lowerCAmelCase = (pos_y, pos_x)
lowerCAmelCase = goal_x
lowerCAmelCase = goal_y
lowerCAmelCase = g_cost
lowerCAmelCase = parent
lowerCAmelCase = self.calculate_heuristic()
def SCREAMING_SNAKE_CASE_ ( self ) ->float:
lowerCAmelCase = abs(self.pos_x - self.goal_x )
lowerCAmelCase = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self , __SCREAMING_SNAKE_CASE ) ->bool:
return self.f_cost < other.f_cost
class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->str:
lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = [self.start]
lowerCAmelCase = []
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE_ ( self ) ->Path | None:
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
lowerCAmelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
lowerCAmelCase = True
return self.retrace_path(__SCREAMING_SNAKE_CASE )
self.closed_nodes.append(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.get_successors(__SCREAMING_SNAKE_CASE )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(__SCREAMING_SNAKE_CASE )
else:
# retrieve the best current path
lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(__SCREAMING_SNAKE_CASE ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(__SCREAMING_SNAKE_CASE )
else:
self.open_nodes.append(__SCREAMING_SNAKE_CASE )
if not self.reached:
return [self.start.pos]
return None
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->list[Node]:
lowerCAmelCase = []
for action in delta:
lowerCAmelCase = parent.pos_x + action[1]
lowerCAmelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__SCREAMING_SNAKE_CASE ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __SCREAMING_SNAKE_CASE , ) )
return successors
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Path:
lowerCAmelCase = node
lowerCAmelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCAmelCase = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
lowercase__ : Tuple = (0, 0)
lowercase__ : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print('''------''')
lowercase__ : List[str] = GreedyBestFirst(init, goal)
lowercase__ : Any = greedy_bf.search()
if path:
for pos_x, pos_y in path:
lowercase__ : Optional[Any] = 2
for elem in grid:
print(elem)
| 338 |
'''simple docstring'''
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase : Union[str, Any] = {
'text_branch': 'text_model',
'audio_branch': 'audio_model.audio_encoder',
'attn': 'attention.self',
'self.proj': 'output.dense',
'attention.self_mask': 'attn_mask',
'mlp.fc1': 'intermediate.dense',
'mlp.fc2': 'output.dense',
'norm1': 'layernorm_before',
'norm2': 'layernorm_after',
'bn0': 'batch_norm',
}
lowercase : Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc')
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : Tuple = create_model(
'''HTSAT-tiny''' , '''roberta''' , snake_case__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=snake_case__ , fusion_type='''aff_2d''' if enable_fusion else None , )
return model, model_cfg
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = {}
A : str = R'''.*sequential.(\d+).*'''
A : Union[str, Any] = R'''.*_projection.(\d+).*'''
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
A : Any = key.replace(snake_case__ , snake_case__ )
if re.match(snake_case__ , snake_case__ ):
# replace sequential layers with list
A : Any = re.match(snake_case__ , snake_case__ ).group(1 )
A : List[str] = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case__ )//3}.linear.' )
elif re.match(snake_case__ , snake_case__ ):
A : Union[str, Any] = int(re.match(snake_case__ , snake_case__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
A : str = 1 if projecton_layer == 0 else 2
A : Optional[Any] = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' )
if "audio" and "qkv" in key:
# split qkv into query key and value
A : int = value
A : List[Any] = mixed_qkv.size(0 ) // 3
A : Union[str, Any] = mixed_qkv[:qkv_dim]
A : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2]
A : Optional[int] = mixed_qkv[qkv_dim * 2 :]
A : Tuple = query_layer
A : Union[str, Any] = key_layer
A : Optional[int] = value_layer
else:
A : Dict = value
return model_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : int = init_clap(snake_case__ , enable_fusion=snake_case__ )
clap_model.eval()
A : str = clap_model.state_dict()
A : Union[str, Any] = rename_state_dict(snake_case__ )
A : Tuple = ClapConfig()
A : str = enable_fusion
A : str = ClapModel(snake_case__ )
# ignore the spectrogram embedding layer
model.load_state_dict(snake_case__ , strict=snake_case__ )
model.save_pretrained(snake_case__ )
transformers_config.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase : List[str] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not')
lowercase : Tuple = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 3 | 0 |
__snake_case : Tuple = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []}
__snake_case : Optional[Any] = ['a', 'b', 'c', 'd', 'e']
def _UpperCAmelCase ( a__ , a__ , a__):
'''simple docstring'''
a_ : Optional[Any] = start
# add current to visited
visited.append(snake_case__)
a_ : Optional[Any] = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
a_ : str = topological_sort(snake_case__ , snake_case__ , snake_case__)
# if all neighbors visited add current to sort
sort.append(snake_case__)
# if all vertices haven't been visited select a new one to visit
if len(snake_case__) != len(snake_case__):
for vertice in vertices:
if vertice not in visited:
a_ : int = topological_sort(snake_case__ , snake_case__ , snake_case__)
# return sort
return sort
if __name__ == "__main__":
__snake_case : Optional[Any] = topological_sort("""a""", [], [])
print(sort)
| 248 |
'''simple docstring'''
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
lowercase : Dict = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
if not is_sharded:
A : Union[str, Any] = os.path.abspath(snake_case__ )
logger.info(F'Loading PyTorch weights from {pt_path}' )
A : Any = torch.load(snake_case__ , map_location='''cpu''' )
logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' )
A : List[str] = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
A : Any = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ )
return flax_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ):
'''simple docstring'''
def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool:
return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0
# layer norm
A : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
A : Tuple = pt_tuple_key[:-1] + ('''mean''',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
A : Dict = pt_tuple_key[:-1] + ('''var''',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# embedding
A : Any = pt_tuple_key[:-1] + ('''embedding''',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
A : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ):
A : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
A : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ):
A : str = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
A : Dict = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
A : List[Any] = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
A : Dict = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
A : List[Any] = pt_tuple_key[-2] + '''_g'''
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
A : List[str] = pt_tuple_key[-2] + '''_v'''
if name is not None:
A : int = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()}
A : int = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
A : List[str] = flax_model.params['''params''']
else:
A : Dict = flax_model.params
A : List[Any] = flatten_dict(snake_case__ )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
A : List[str] = flatten_dict(flax_model.params['''batch_stats'''] )
random_flax_state_dict.update(snake_case__ )
A : int = {}
A : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
A : int = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
A : str = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
A : Union[str, Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
A : Any = pt_tuple_key[1:]
# Correctly rename weight parameters
A, A : Dict = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
A : Any = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
A : int = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
A : Tuple = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
A : List[str] = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
# Load the index
A : Union[str, Any] = {}
for shard_file in shard_filenames:
# load using msgpack utils
A : List[str] = torch.load(snake_case__ )
A : int = {k: v.numpy() for k, v in pt_state_dict.items()}
A : Tuple = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
A : Optional[int] = flax_model.params['''params''']
A : List[Any] = flatten_dict(snake_case__ )
random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) )
else:
A : Dict = flax_model.params
A : Tuple = flatten_dict(snake_case__ )
A : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
A : List[str] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
A : int = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
A : List[str] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
A : Union[str, Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
A, A : Any = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
A : int = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
A : int = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
A : Optional[int] = jnp.asarray(snake_case__ )
continue
if "var" in flax_key[-1]:
A : Optional[int] = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = os.path.abspath(snake_case__ )
logger.info(F'Loading Flax weights from {flax_checkpoint_path}' )
# import correct flax class
A : List[str] = getattr(snake_case__ , '''Flax''' + model.__class__.__name__ )
# load flax weight dict
with open(snake_case__ , '''rb''' ) as state_f:
try:
A : int = from_bytes(snake_case__ , state_f.read() )
except UnpicklingError:
raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' )
return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
A : List[str] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values()
if any(snake_case__ ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
A : Optional[Any] = jax.tree_util.tree_map(
lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ )
A : Union[str, Any] = flatten_dict(snake_case__ )
A : List[Any] = pt_model.state_dict()
A : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
A : Tuple = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
A : int = []
A : Any = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
A : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix
A : int = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
A : List[str] = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
A : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict:
# conv layer
A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
A : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict:
# linear layer
A : Tuple = flax_key_tuple[:-1] + ('''weight''',)
A : Tuple = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
A : Tuple = flax_key_tuple[:-1] + ('''running_mean''',)
elif "var" in flax_key_tuple[-1]:
A : Tuple = flax_key_tuple[:-1] + ('''running_var''',)
if "batch_stats" in flax_state:
A : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
A : Union[str, Any] = '''.'''.join(snake_case__ )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
A : int = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
A : Optional[int] = key.split('''.''' )
A : Dict = None
if key_components[-3::2] == ["parametrizations", "original0"]:
A : List[str] = key_components[-2] + '''_g'''
elif key_components[-3::2] == ["parametrizations", "original1"]:
A : List[Any] = key_components[-2] + '''_v'''
if name is not None:
A : str = key_components[:-3] + [name]
A : Optional[Any] = '''.'''.join(snake_case__ )
A : Optional[Any] = key
if flax_key in special_pt_names:
A : Optional[Any] = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '
F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
else:
# add weight to pytorch dict
A : Dict = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor
A : Dict = torch.from_numpy(snake_case__ )
# remove from missing keys
missing_keys.remove(snake_case__ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(snake_case__ )
pt_model.load_state_dict(snake_case__ )
# re-transform missing_keys to list
A : List[Any] = list(snake_case__ )
if len(snake_case__ ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'
F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
else:
logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' )
if len(snake_case__ ) > 0:
logger.warning(
F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'
F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'
''' use it for predictions and inference.''' )
else:
logger.warning(
F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n'
'''If your task is similar to the task the model of the checkpoint was trained on, '''
F'you can already use {pt_model.__class__.__name__} for predictions without further training.' )
return pt_model
| 3 | 0 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class __snake_case ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : str = '''ylacombe/bark-small'''
lowercase : Optional[Any] = tempfile.mkdtemp()
lowercase : Optional[int] = '''en_speaker_1'''
lowercase : Dict = '''This is a test string'''
lowercase : Dict = '''speaker_embeddings_path.json'''
lowercase : List[str] = '''speaker_embeddings'''
def _SCREAMING_SNAKE_CASE ( self ,**snake_case ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.checkpoint ,**snake_case )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Any = self.get_tokenizer()
lowercase : str = BarkProcessor(tokenizer=snake_case )
processor.save_pretrained(self.tmpdirname )
lowercase : Tuple = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() )
@slow
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : List[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,)
processor.save_pretrained(
self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,)
lowercase : Dict = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" )
lowercase : Optional[Any] = BarkProcessor.from_pretrained(
self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,)
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Any = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,)
lowercase : List[str] = 35
lowercase : Optional[Any] = 2
lowercase : str = 8
lowercase : str = {
'''semantic_prompt''': np.ones(snake_case ),
'''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ),
'''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
lowercase : Dict = processor(text=self.input_string ,voice_preset=snake_case )
lowercase : Dict = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(snake_case ,np.array([] ) ).tolist() )
# test loading voice preset from npz file
lowercase : Optional[int] = os.path.join(self.tmpdirname ,"""file.npz""" )
np.savez(snake_case ,**snake_case )
lowercase : Dict = processor(text=self.input_string ,voice_preset=snake_case )
lowercase : Optional[int] = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(snake_case ,np.array([] ) ).tolist() )
# test loading voice preset from the hub
lowercase : Optional[Any] = processor(text=self.input_string ,voice_preset=self.voice_preset )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : int = self.get_tokenizer()
lowercase : Dict = BarkProcessor(tokenizer=snake_case )
lowercase : List[str] = processor(text=self.input_string )
lowercase : Union[str, Any] = tokenizer(
self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=snake_case ,return_attention_mask=snake_case ,return_token_type_ids=snake_case ,)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
| 20 |
'''simple docstring'''
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
lowercase : Optional[int] = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
lowercase : Optional[Any] = {
'169M': 7_68,
'430M': 10_24,
'1B5': 20_48,
'3B': 25_60,
'7B': 40_96,
'14B': 51_20,
}
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[Any] = list(state_dict.keys() )
for name in state_dict_keys:
A : str = state_dict.pop(snake_case__ )
# emb -> embedding
if name.startswith('''emb.''' ):
A : Optional[Any] = name.replace('''emb.''' , '''embeddings.''' )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('''blocks.0.ln0''' ):
A : Union[str, Any] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' )
# att -> attention
A : int = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , snake_case__ )
# ffn -> feed_forward
A : List[Any] = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , snake_case__ )
# time_mix_k -> time_mix_key and reshape
if name.endswith('''.time_mix_k''' ):
A : List[str] = name.replace('''.time_mix_k''' , '''.time_mix_key''' )
# time_mix_v -> time_mix_value and reshape
if name.endswith('''.time_mix_v''' ):
A : Union[str, Any] = name.replace('''.time_mix_v''' , '''.time_mix_value''' )
# time_mix_r -> time_mix_key and reshape
if name.endswith('''.time_mix_r''' ):
A : Union[str, Any] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' )
if name != "head.weight":
A : List[Any] = '''rwkv.''' + name
A : Dict = weight
return state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=None ):
'''simple docstring'''
if tokenizer_file is None:
print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' )
A : int = 5_0277
A : Optional[int] = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' )
else:
A : str = PreTrainedTokenizerFast(tokenizer_file=snake_case__ )
A : Any = len(snake_case__ )
tokenizer.save_pretrained(snake_case__ )
# 2. Build the config
A : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
A : List[str] = candidate
break
if size is None:
raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' )
if size not in possible_sizes:
raise ValueError(F'`size` should be one of {possible_sizes}, got {size}.' )
A : Any = RwkvConfig(
vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(snake_case__ )
# 3. Download model file then convert state_dict
A : Union[str, Any] = hf_hub_download(snake_case__ , snake_case__ )
A : Tuple = torch.load(snake_case__ , map_location='''cpu''' )
A : List[Any] = convert_state_dict(snake_case__ )
# 4. Split in shards and save
A, A : List[str] = shard_checkpoint(snake_case__ )
for shard_file, shard in shards.items():
torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
if index is not None:
A : Dict = os.path.join(snake_case__ , snake_case__ )
# Save the index as well
with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f:
A : List[Any] = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n'''
f.write(snake_case__ )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' )
A : List[Any] = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
A : Union[str, Any] = torch.load(os.path.join(snake_case__ , snake_case__ ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' )
A : int = AutoModelForCausalLM.from_pretrained(snake_case__ )
model.push_to_hub(snake_case__ , max_shard_size='''2GB''' )
tokenizer.push_to_hub(snake_case__ )
if __name__ == "__main__":
lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
lowercase : Union[str, Any] = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 3 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( __snake_case , unittest.TestCase ):
__magic_name__: Optional[int] = KandinskyVaaImgaImgPipeline
__magic_name__: str = ["image_embeds", "negative_image_embeds", "image"]
__magic_name__: Any = [
"image_embeds",
"negative_image_embeds",
"image",
]
__magic_name__: Union[str, Any] = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
__magic_name__: Optional[Any] = False
@property
def UpperCAmelCase_ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
return 32
@property
def UpperCAmelCase_ ( self : Tuple ) -> Any:
"""simple docstring"""
return 32
@property
def UpperCAmelCase_ ( self : Tuple ) -> str:
"""simple docstring"""
return self.time_input_dim
@property
def UpperCAmelCase_ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return 100
@property
def UpperCAmelCase_ ( self : Any ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ : Union[str, Any] = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
snake_case_ : Any = UNetaDConditionModel(**_A )
return model
@property
def UpperCAmelCase_ ( self : int ) -> int:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ : Optional[Any] = VQModel(**self.dummy_movq_kwargs )
return model
def UpperCAmelCase_ ( self : Dict ) -> Any:
"""simple docstring"""
snake_case_ : Optional[int] = self.dummy_unet
snake_case_ : List[Any] = self.dummy_movq
snake_case_ : Optional[Any] = {
'''num_train_timesteps''': 1000,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.0_0_0_8_5,
'''beta_end''': 0.0_1_2,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
snake_case_ : List[Any] = DDIMScheduler(**_A )
snake_case_ : Union[str, Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : str=0 ) -> str:
"""simple docstring"""
snake_case_ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A )
snake_case_ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_A )
# create init_image
snake_case_ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A )
snake_case_ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0]
snake_case_ : Union[str, Any] = Image.fromarray(np.uinta(_A ) ).convert('RGB' ).resize((256, 256) )
if str(_A ).startswith('mps' ):
snake_case_ : int = torch.manual_seed(_A )
else:
snake_case_ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
snake_case_ : Tuple = {
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 10,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def UpperCAmelCase_ ( self : Tuple ) -> Any:
"""simple docstring"""
snake_case_ : Optional[Any] = '''cpu'''
snake_case_ : Tuple = self.get_dummy_components()
snake_case_ : List[str] = self.pipeline_class(**_A )
snake_case_ : Any = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
snake_case_ : Optional[Any] = pipe(**self.get_dummy_inputs(_A ) )
snake_case_ : List[Any] = output.images
snake_case_ : Union[str, Any] = pipe(
**self.get_dummy_inputs(_A ) , return_dict=_A , )[0]
snake_case_ : List[str] = image[0, -3:, -3:, -1]
snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ : Optional[int] = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
snake_case_ : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_img2img_frog.npy' )
snake_case_ : Dict = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
snake_case_ : int = '''A red cartoon frog, 4k'''
snake_case_ : Tuple = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(_A )
snake_case_ : Optional[Any] = KandinskyVaaImgaImgPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa )
snake_case_ : Dict = pipeline.to(_A )
pipeline.set_progress_bar_config(disable=_A )
snake_case_ : str = torch.Generator(device='cpu' ).manual_seed(0 )
snake_case_ : List[str] = pipe_prior(
_A , generator=_A , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
snake_case_ : Optional[int] = pipeline(
image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , )
snake_case_ : List[Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_A , _A )
| 327 |
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(__snake_case )
class A ( __snake_case ):
def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
self.check_model_type(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A, A : Dict = {}, {}
if padding is not None:
A : List[str] = padding
if truncation is not None:
A : Dict = truncation
if top_k is not None:
A : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = {'''image''': image, '''question''': question}
else:
A : Any = image
A : Any = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
return results
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
A : Union[str, Any] = load_image(inputs['''image'''] )
A : Optional[Any] = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE )
A : Dict = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(SCREAMING_SNAKE_CASE )
return model_inputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : List[Any] = self.model(**SCREAMING_SNAKE_CASE )
return model_outputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> int:
"""simple docstring"""
if top_k > self.model.config.num_labels:
A : Dict = self.model.config.num_labels
if self.framework == "pt":
A : Optional[int] = model_outputs.logits.sigmoid()[0]
A, A : int = probs.topk(SCREAMING_SNAKE_CASE )
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
A : int = scores.tolist()
A : List[str] = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
| 3 | 0 |
"""simple docstring"""
from __future__ import annotations
from math import pi, sqrt
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if inductance <= 0:
raise ValueError("""Inductance cannot be 0 or negative""" )
elif capacitance <= 0:
raise ValueError("""Capacitance cannot be 0 or negative""" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 294 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase : Union[str, Any] = logging.get_logger(__name__)
lowercase : str = {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json',
'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json',
'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json',
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json',
'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json',
'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json',
'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json',
'cl-tohoku/bert-base-japanese-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'
),
'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class A ( __snake_case ):
__magic_name__ = '''bert'''
def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]:
"""simple docstring"""
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = vocab_size
A : Optional[Any] = hidden_size
A : List[Any] = num_hidden_layers
A : List[str] = num_attention_heads
A : Dict = hidden_act
A : Optional[Any] = intermediate_size
A : List[Any] = hidden_dropout_prob
A : List[Any] = attention_probs_dropout_prob
A : Optional[Any] = max_position_embeddings
A : List[str] = type_vocab_size
A : Dict = initializer_range
A : str = layer_norm_eps
A : int = position_embedding_type
A : Dict = use_cache
A : str = classifier_dropout
class A ( __snake_case ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A : Optional[int] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 3 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
_a : Optional[Any] = None
_a : Tuple = logging.get_logger(__name__)
_a : Dict = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
_a : Tuple = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
_a : List[str] = {
'google/rembert': 256,
}
_a : Dict = '▁'
class __A ( __snake_case ):
_UpperCamelCase : List[Any] = VOCAB_FILES_NAMES
_UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : Union[str, Any] = RemBertTokenizer
def __init__( self , a__=None , a__=None , a__=True , a__=True , a__=False , a__="[CLS]" , a__="[SEP]" , a__="<unk>" , a__="[SEP]" , a__="<pad>" , a__="[CLS]" , a__="[MASK]" , **a__ , ):
_lowerCAmelCase : Optional[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token
super().__init__(
a__ , tokenizer_file=a__ , do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , **a__ , )
_lowerCAmelCase : List[Any] = do_lower_case
_lowerCAmelCase : str = remove_space
_lowerCAmelCase : int = keep_accents
_lowerCAmelCase : Union[str, Any] = vocab_file
_lowerCAmelCase : List[Any] = False if not self.vocab_file else True
def __A ( self , a__ , a__ = None ):
_lowerCAmelCase : List[Any] = [self.sep_token_id]
_lowerCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __A ( self , a__ , a__ = None , a__ = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1]
return [1] + ([0] * len(a__ )) + [1]
def __A ( self , a__ , a__ = None ):
_lowerCAmelCase : Tuple = [self.sep_token_id]
_lowerCAmelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self , a__ , a__ = None ):
if not os.path.isdir(a__ ):
logger.error("""Vocabulary path ({}) should be a directory""".format(a__ ) )
return
_lowerCAmelCase : Any = os.path.join(
a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ):
copyfile(self.vocab_file , a__ )
return (out_vocab_file,)
| 44 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : str = BeautifulSoup(requests.get(snake_case__ , params=snake_case__ ).content , '''html.parser''' )
A : Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A : Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
lowercase : str = {
'title': (
'Precisely geometry controlled microsupercapacitors for ultrahigh areal '
'capacitance, volumetric capacitance, and energy density'
),
'journal': 'Chem. Mater.',
'volume': 30,
'pages': '3979-3990',
'year': 20_18,
'hl': 'en',
}
print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
| 3 | 0 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def A ( _lowercase , _lowercase ):
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
SCREAMING_SNAKE_CASE : Union[str, Any] = flax_key_tuple[:-1] + ('''weight''',)
SCREAMING_SNAKE_CASE : Tuple = torch.permute(snake_case__ , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ):
# linear layer
SCREAMING_SNAKE_CASE : Any = flax_key_tuple[:-1] + ('''weight''',)
SCREAMING_SNAKE_CASE : Union[str, Any] = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
SCREAMING_SNAKE_CASE : int = flax_key_tuple[:-1] + ('''weight''',)
return flax_key_tuple, flax_tensor
def A ( _lowercase , _lowercase , _lowercase ):
if "metadata" in layer:
SCREAMING_SNAKE_CASE : Union[str, Any] = layer.split('''metadata''' )
SCREAMING_SNAKE_CASE : List[Any] = ''''''.join(split_layer[0] )[:-1]
SCREAMING_SNAKE_CASE : int = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )]
elif "kvstore" in layer:
SCREAMING_SNAKE_CASE : Any = layer.split('''kvstore''' )
SCREAMING_SNAKE_CASE : List[Any] = ''''''.join(split_layer[0] )[:-1]
SCREAMING_SNAKE_CASE : Optional[Any] = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )]
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = layer.split('''/''' )
SCREAMING_SNAKE_CASE : Optional[int] = '''/'''.join(split_layer[:-1] )
SCREAMING_SNAKE_CASE : Optional[Any] = (split_layer[-1],)
if "kvstore/path" in layer:
SCREAMING_SNAKE_CASE : int = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}"""
elif "kvstore/driver" in layer:
SCREAMING_SNAKE_CASE : int = '''file'''
else:
SCREAMING_SNAKE_CASE : Any = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def A ( _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : Optional[int] = rename_keys(snake_case__ )
SCREAMING_SNAKE_CASE : Tuple = {}
for k, v in current_block.items():
SCREAMING_SNAKE_CASE : Tuple = v
SCREAMING_SNAKE_CASE : List[str] = new_current_block
torch.save(snake_case__ , snake_case__ )
def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE : Dict = convert_file_size_to_int(snake_case__ )
SCREAMING_SNAKE_CASE : str = []
SCREAMING_SNAKE_CASE : str = {}
SCREAMING_SNAKE_CASE : Any = 0
SCREAMING_SNAKE_CASE : List[str] = 0
os.makedirs(snake_case__ , exist_ok=snake_case__ )
with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp:
SCREAMING_SNAKE_CASE : Tuple = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target''']
SCREAMING_SNAKE_CASE : List[Any] = flatten_dict(snake_case__ , sep='''/''' )
SCREAMING_SNAKE_CASE : List[str] = {}
for layer in checkpoint_info.keys():
SCREAMING_SNAKE_CASE : Tuple = get_key_and_tensorstore_dict(
snake_case__ , snake_case__ , snake_case__ )
if curr_real_layer_name in all_layers:
SCREAMING_SNAKE_CASE : List[str] = content
else:
SCREAMING_SNAKE_CASE : Optional[Any] = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
SCREAMING_SNAKE_CASE : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(snake_case__ )
SCREAMING_SNAKE_CASE : int = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
SCREAMING_SNAKE_CASE : int = rename_base_flax_keys(tuple(key.split('''/''' ) ) , snake_case__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = '''/'''.join(snake_case__ )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
SCREAMING_SNAKE_CASE : List[Any] = os.path.join(
snake_case__ , weights_name.replace('''.bin''' , f"""-{len(snake_case__ )+1:05d}-of-???.bin""" ) )
rename_and_save_block(snake_case__ , snake_case__ )
sharded_state_dicts.append(current_block.keys() )
del current_block
SCREAMING_SNAKE_CASE : Dict = {}
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : List[Any] = raw_weights.to(getattr(snake_case__ , snake_case__ ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(snake_case__ , weights_name.replace('''.bin''' , f"""-{len(snake_case__ )+1:05d}-of-???.bin""" ) )
rename_and_save_block(snake_case__ , snake_case__ )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(snake_case__ ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE : Union[str, Any] = {}
SCREAMING_SNAKE_CASE : List[str] = {}
for idx, shard in enumerate(snake_case__ ):
SCREAMING_SNAKE_CASE : int = weights_name.replace(
'''.bin''' , f"""-{idx+1:05d}-of-{len(snake_case__ ):05d}.bin""" ) # len(sharded_state_dicts):05d}
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(snake_case__ , weights_name.replace('''.bin''' , f"""-{idx+1:05d}-of-???.bin""" ) )
os.rename(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
SCREAMING_SNAKE_CASE : str = shard
for key in shard:
SCREAMING_SNAKE_CASE : Tuple = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE : Tuple = {'''total_size''': total_size}
SCREAMING_SNAKE_CASE : Optional[int] = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' ) as f:
SCREAMING_SNAKE_CASE : Union[str, Any] = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n'''
f.write(snake_case__ )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--switch_t5x_checkpoint_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size')
parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__UpperCamelCase : List[str] = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def A ( ):
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
SCREAMING_SNAKE_CASE : Optional[Any] = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' )
config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' )
SCREAMING_SNAKE_CASE : Any = SwitchTransformersForConditionalGeneration.from_pretrained(
'''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' )
SCREAMING_SNAKE_CASE : Any = TaTokenizer.from_pretrained('''t5-small''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'''
SCREAMING_SNAKE_CASE : List[Any] = tokenizer(snake_case__ , return_tensors='''pt''' ).input_ids
SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(snake_case__ , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 182 |
'''simple docstring'''
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Any = None
A : Optional[Any] = None
A : Tuple = graph
self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Dict = len(SCREAMING_SNAKE_CASE )
A : Optional[Any] = None
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if sources is int:
A : Dict = [sources]
if sinks is int:
A : str = [sinks]
if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0:
return
A : Optional[int] = sources[0]
A : Union[str, Any] = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1:
A : Optional[int] = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
A : Dict = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
A : Dict = max_input_flow
A : Tuple = 0
A : Tuple = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
A : Optional[Any] = max_input_flow
A : Optional[Any] = size - 1
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
if self.maximum_flow_algorithm is None:
raise Exception('''You need to set maximum flow algorithm before.''' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : List[Any] = algorithm(self )
class A :
def __init__( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = flow_network
A : Optional[Any] = flow_network.verticesCount
A : Tuple = flow_network.sourceIndex
A : Dict = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
A : str = flow_network.graph
A : Optional[Any] = False
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
if not self.executed:
self._algorithm()
A : Optional[int] = True
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
pass
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__(SCREAMING_SNAKE_CASE )
# use this to save your result
A : List[str] = -1
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
if not self.executed:
raise Exception('''You should execute algorithm before using its result!''' )
return self.maximum_flow
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
super().__init__(SCREAMING_SNAKE_CASE )
A : Optional[Any] = [[0] * self.verticies_count for i in range(self.verticies_count )]
A : Union[str, Any] = [0] * self.verticies_count
A : List[Any] = [0] * self.verticies_count
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
A : Optional[Any] = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
A : Union[str, Any] = 0
while i < len(SCREAMING_SNAKE_CASE ):
A : str = vertices_list[i]
A : List[str] = self.heights[vertex_index]
self.process_vertex(SCREAMING_SNAKE_CASE )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) )
A : int = 0
else:
i += 1
A : Optional[Any] = sum(self.preflow[self.source_index] )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.relabel(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Dict = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Dict = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
A : Dict = self.heights[to_index]
if min_height is not None:
A : Dict = min_height + 1
if __name__ == "__main__":
lowercase : Optional[int] = [0]
lowercase : List[Any] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
lowercase : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
lowercase : List[str] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
lowercase : List[str] = flow_network.find_maximum_flow()
print(f'''maximum flow is {maximum_flow}''')
| 3 | 0 |
'''simple docstring'''
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
_lowercase : Union[str, Any] = {
'text_branch': 'text_model',
'audio_branch': 'audio_model.audio_encoder',
'attn': 'attention.self',
'self.proj': 'output.dense',
'attention.self_mask': 'attn_mask',
'mlp.fc1': 'intermediate.dense',
'mlp.fc2': 'output.dense',
'norm1': 'layernorm_before',
'norm2': 'layernorm_after',
'bn0': 'batch_norm',
}
_lowercase : Tuple = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int=False ):
"""simple docstring"""
lowercase_ : Tuple = create_model(
'''HTSAT-tiny''' , '''roberta''' , snake_case__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=snake_case__ , fusion_type='''aff_2d''' if enable_fusion else None , )
return model, model_cfg
def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
lowercase_ : Dict = {}
lowercase_ : str = R'''.*sequential.(\d+).*'''
lowercase_ : Union[str, Any] = R'''.*_projection.(\d+).*'''
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
lowercase_ : Any = key.replace(snake_case__ , snake_case__ )
if re.match(snake_case__ , snake_case__ ):
# replace sequential layers with list
lowercase_ : Any = re.match(snake_case__ , snake_case__ ).group(1 )
lowercase_ : List[str] = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(snake_case__ )//3}.linear.''' )
elif re.match(snake_case__ , snake_case__ ):
lowercase_ : Union[str, Any] = int(re.match(snake_case__ , snake_case__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
lowercase_ : str = 1 if projecton_layer == 0 else 2
lowercase_ : Optional[Any] = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
lowercase_ : int = value
lowercase_ : List[Any] = mixed_qkv.size(0 ) // 3
lowercase_ : Union[str, Any] = mixed_qkv[:qkv_dim]
lowercase_ : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2]
lowercase_ : Optional[int] = mixed_qkv[qkv_dim * 2 :]
lowercase_ : Tuple = query_layer
lowercase_ : Union[str, Any] = key_layer
lowercase_ : Optional[int] = value_layer
else:
lowercase_ : Dict = value
return model_state_dict
def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=False ):
"""simple docstring"""
lowercase_ : int = init_clap(snake_case__ , enable_fusion=snake_case__ )
clap_model.eval()
lowercase_ : str = clap_model.state_dict()
lowercase_ : Union[str, Any] = rename_state_dict(snake_case__ )
lowercase_ : Tuple = ClapConfig()
lowercase_ : str = enable_fusion
lowercase_ : str = ClapModel(snake_case__ )
# ignore the spectrogram embedding layer
model.load_state_dict(snake_case__ , strict=snake_case__ )
model.save_pretrained(snake_case__ )
transformers_config.save_pretrained(snake_case__ )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
_lowercase : Tuple = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 93 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ = 10 ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ) or n < 0:
raise ValueError('''Invalid input''' )
A : List[str] = 10**n
A : Tuple = 2_8433 * (pow(2 , 783_0457 , snake_case__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f'''{solution(10) = }''')
| 3 | 0 |
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class __snake_case ( nn.Module ):
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 0.0
lowerCAmelCase_ = 1
lowerCAmelCase_ = 1
lowerCAmelCase_ = True
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = jnp.floataa
def __a ( self : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = []
for i in range(self.num_layers ):
SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels
SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD(
in_channels=_lowercase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_lowercase )
SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_lowercase )
SCREAMING_SNAKE_CASE__ = resnets
SCREAMING_SNAKE_CASE__ = attentions
if self.add_downsample:
SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Union[str, Any] , _lowercase : Optional[int] , _lowercase : str , _lowercase : Optional[Any] , _lowercase : List[Any]=True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ()
for resnet, attn in zip(self.resnets , self.attentions ):
SCREAMING_SNAKE_CASE__ = resnet(_lowercase , _lowercase , deterministic=_lowercase )
SCREAMING_SNAKE_CASE__ = attn(_lowercase , _lowercase , deterministic=_lowercase )
output_states += (hidden_states,)
if self.add_downsample:
SCREAMING_SNAKE_CASE__ = self.downsamplers_a(_lowercase )
output_states += (hidden_states,)
return hidden_states, output_states
class __snake_case ( nn.Module ):
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 0.0
lowerCAmelCase_ = 1
lowerCAmelCase_ = True
lowerCAmelCase_ = jnp.floataa
def __a ( self : Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = []
for i in range(self.num_layers ):
SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels
SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD(
in_channels=_lowercase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_lowercase )
SCREAMING_SNAKE_CASE__ = resnets
if self.add_downsample:
SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Any , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : Tuple=True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ()
for resnet in self.resnets:
SCREAMING_SNAKE_CASE__ = resnet(_lowercase , _lowercase , deterministic=_lowercase )
output_states += (hidden_states,)
if self.add_downsample:
SCREAMING_SNAKE_CASE__ = self.downsamplers_a(_lowercase )
output_states += (hidden_states,)
return hidden_states, output_states
class __snake_case ( nn.Module ):
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 0.0
lowerCAmelCase_ = 1
lowerCAmelCase_ = 1
lowerCAmelCase_ = True
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = jnp.floataa
def __a ( self : Any ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = []
for i in range(self.num_layers ):
SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels
SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels
SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_lowercase )
SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_lowercase )
SCREAMING_SNAKE_CASE__ = resnets
SCREAMING_SNAKE_CASE__ = attentions
if self.add_upsample:
SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : str , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Tuple=True ):
"""simple docstring"""
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1]
SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1]
SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
SCREAMING_SNAKE_CASE__ = resnet(_lowercase , _lowercase , deterministic=_lowercase )
SCREAMING_SNAKE_CASE__ = attn(_lowercase , _lowercase , deterministic=_lowercase )
if self.add_upsample:
SCREAMING_SNAKE_CASE__ = self.upsamplers_a(_lowercase )
return hidden_states
class __snake_case ( nn.Module ):
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 0.0
lowerCAmelCase_ = 1
lowerCAmelCase_ = True
lowerCAmelCase_ = jnp.floataa
def __a ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = []
for i in range(self.num_layers ):
SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels
SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels
SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_lowercase )
SCREAMING_SNAKE_CASE__ = resnets
if self.add_upsample:
SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[str] , _lowercase : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Optional[Any]=True ):
"""simple docstring"""
for resnet in self.resnets:
# pop res hidden states
SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1]
SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1]
SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
SCREAMING_SNAKE_CASE__ = resnet(_lowercase , _lowercase , deterministic=_lowercase )
if self.add_upsample:
SCREAMING_SNAKE_CASE__ = self.upsamplers_a(_lowercase )
return hidden_states
class __snake_case ( nn.Module ):
lowerCAmelCase_ = 42
lowerCAmelCase_ = 0.0
lowerCAmelCase_ = 1
lowerCAmelCase_ = 1
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = jnp.floataa
def __a ( self : Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
SCREAMING_SNAKE_CASE__ = []
for _ in range(self.num_layers ):
SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_lowercase )
SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_lowercase )
SCREAMING_SNAKE_CASE__ = resnets
SCREAMING_SNAKE_CASE__ = attentions
def __call__( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : List[Any] , _lowercase : Any=True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.resnets[0](_lowercase , _lowercase )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
SCREAMING_SNAKE_CASE__ = attn(_lowercase , _lowercase , deterministic=_lowercase )
SCREAMING_SNAKE_CASE__ = resnet(_lowercase , _lowercase , deterministic=_lowercase )
return hidden_states
| 219 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
lowercase : List[str] = logging.get_logger(__name__)
lowercase : str = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class A ( __snake_case ):
__magic_name__ = '''gpt_neo'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self , SCREAMING_SNAKE_CASE=50257 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=24 , SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=50256 , SCREAMING_SNAKE_CASE=50256 , **SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
A : Union[str, Any] = vocab_size
A : Optional[Any] = max_position_embeddings
A : Dict = hidden_size
A : Optional[Any] = num_layers
A : Tuple = num_heads
A : int = intermediate_size
A : Optional[Any] = window_size
A : List[Any] = activation_function
A : Union[str, Any] = resid_dropout
A : Any = embed_dropout
A : List[Any] = attention_dropout
A : str = classifier_dropout
A : List[Any] = layer_norm_epsilon
A : str = initializer_range
A : List[str] = use_cache
A : Optional[int] = bos_token_id
A : List[Any] = eos_token_id
A : int = attention_types
A : int = self.expand_attention_types_params(SCREAMING_SNAKE_CASE )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.attention_layers)` == `config.num_layers` '''
F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, '
F'`config.num_layers = {self.num_layers}`. '
'''`config.attention_layers` is prepared using `config.attention_types`. '''
'''Please verify the value of `config.attention_types` argument.''' )
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
@staticmethod
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : List[str] = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
A : Tuple = input.size()
A : Union[str, Any] = len(snake_case__ )
A : List[str] = shape[dimension]
A : Union[str, Any] = torch.arange(0 , snake_case__ , snake_case__ )
A : List[str] = torch.div(sizedim - size , snake_case__ , rounding_mode='''floor''' ) + 1
A : Optional[int] = torch.arange(snake_case__ ) + low_indices[:min_length][:, None]
A : str = [slice(snake_case__ )] * rank
A : List[Any] = indices
A : Union[str, Any] = input[s]
A : List[str] = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
A : List[str] = torch.arange(1 , snake_case__ )
A : Optional[int] = torch.remainder(snake_case__ , snake_case__ )
A : Optional[int] = remainders == 0
A : Optional[Any] = candidates[divisor_indices]
A : Optional[int] = torch.max(snake_case__ )
return largest_divisor, torch.div(snake_case__ , snake_case__ , rounding_mode='''floor''' )
class A ( __snake_case ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
A : Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction='''inputs''' )
A : Optional[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
A : Dict = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return self._config.num_heads
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]:
"""simple docstring"""
A : List[str] = super(SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs(
SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
A : Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
A, A : Dict = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
A : str = seqlen + 2
A : List[Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
A : Any = [
(torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
A : str = common_inputs['''attention_mask''']
if self.use_past:
A : Optional[int] = ordered_inputs['''attention_mask'''].dtype
A : List[str] = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 )
return ordered_inputs
@property
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return 13
| 3 | 0 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_A = get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( __snake_case , unittest.TestCase ):
_lowercase =PegasusTokenizer
_lowercase =PegasusTokenizerFast
_lowercase =True
_lowercase =True
def __a ( self ) -> Any:
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase_ = PegasusTokenizer(_UpperCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __a ( self ) -> str:
return PegasusTokenizer.from_pretrained("google/pegasus-large" )
def __a ( self , **_UpperCamelCase ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase )
def __a ( self , _UpperCamelCase ) -> List[str]:
return ("This is a test", "This is a test")
def __a ( self ) -> str:
lowerCAmelCase_ = '''</s>'''
lowerCAmelCase_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase )
def __a ( self ) -> Dict:
lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<pad>" )
self.assertEqual(vocab_keys[1] , "</s>" )
self.assertEqual(vocab_keys[-1] , "v" )
self.assertEqual(len(_UpperCamelCase ) , 1_103 )
def __a ( self ) -> Optional[int]:
self.assertEqual(self.get_tokenizer().vocab_size , 1_103 )
def __a ( self ) -> Dict:
lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase_ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase_ = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
lowerCAmelCase_ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids[0]
lowerCAmelCase_ = py_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids[0]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
def __a ( self ) -> List[str]:
lowerCAmelCase_ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCAmelCase_ = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
lowerCAmelCase_ = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1]
lowerCAmelCase_ = tokenizer([raw_input_str] , return_tensors=_UpperCamelCase ).input_ids[0]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
def __a ( self ) -> Dict:
lowerCAmelCase_ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96_103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_024
lowerCAmelCase_ = '''To ensure a smooth flow of bank resolutions.'''
lowerCAmelCase_ = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1]
lowerCAmelCase_ = tokenizer([raw_input_str] , return_tensors=_UpperCamelCase ).input_ids[0]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def __a ( self ) -> List[Any]:
lowerCAmelCase_ = ['''This is going to be way too long.''' * 150, '''short example''']
lowerCAmelCase_ = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCAmelCase_ = self._large_tokenizer(_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="pt" )
lowerCAmelCase_ = self._large_tokenizer(
text_target=_UpperCamelCase , max_length=5 , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="pt" )
assert batch.input_ids.shape == (2, 1_024)
assert batch.attention_mask.shape == (2, 1_024)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCamelCase ) == 2 # input_ids, attention_mask.
@slow
def __a ( self ) -> Optional[Any]:
lowerCAmelCase_ = {'''input_ids''': [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCamelCase , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , )
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( __snake_case , unittest.TestCase ):
_lowercase =PegasusTokenizer
_lowercase =PegasusTokenizerFast
_lowercase =True
_lowercase =True
def __a ( self ) -> Optional[int]:
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase_ = PegasusTokenizer(_UpperCamelCase , offset=0 , mask_token_sent=_UpperCamelCase , mask_token="[MASK]" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __a ( self ) -> Union[str, Any]:
return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" )
def __a ( self , **_UpperCamelCase ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase )
def __a ( self , _UpperCamelCase ) -> Union[str, Any]:
return ("This is a test", "This is a test")
def __a ( self ) -> Any:
lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase_ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase_ = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
lowerCAmelCase_ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids[0]
lowerCAmelCase_ = py_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids[0]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
@require_torch
def __a ( self ) -> int:
lowerCAmelCase_ = ['''This is going to be way too long.''' * 1_000, '''short example''']
lowerCAmelCase_ = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCAmelCase_ = self._large_tokenizer(_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="pt" )
lowerCAmelCase_ = self._large_tokenizer(
text_target=_UpperCamelCase , max_length=5 , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="pt" )
assert batch.input_ids.shape == (2, 4_096)
assert batch.attention_mask.shape == (2, 4_096)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCamelCase ) == 2 # input_ids, attention_mask.
def __a ( self ) -> Optional[Any]:
lowerCAmelCase_ = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
lowerCAmelCase_ = self._large_tokenizer(_UpperCamelCase ).input_ids
self.assertListEqual(
_UpperCamelCase , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
| 231 |
'''simple docstring'''
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = []
A : Union[str, Any] = []
for i in range(self.num_layers ):
A : Any = self.in_channels if i == 0 else self.out_channels
A : Optional[Any] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : Optional[int] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = resnets
A : Union[str, Any] = attentions
if self.add_downsample:
A : int = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[Any] = ()
for resnet, attn in zip(self.resnets , self.attentions ):
A : int = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Dict = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
A : Optional[Any] = self.downsamplers_a(SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[Any] = []
for i in range(self.num_layers ):
A : Optional[Any] = self.in_channels if i == 0 else self.out_channels
A : List[str] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : Dict = resnets
if self.add_downsample:
A : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
"""simple docstring"""
A : str = ()
for resnet in self.resnets:
A : Optional[int] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
A : Optional[int] = self.downsamplers_a(SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = []
A : Optional[int] = []
for i in range(self.num_layers ):
A : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : Dict = self.prev_output_channel if i == 0 else self.out_channels
A : List[str] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : int = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Dict = resnets
A : Optional[Any] = attentions
if self.add_upsample:
A : Optional[int] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[int]:
"""simple docstring"""
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
A : List[str] = res_hidden_states_tuple[-1]
A : int = res_hidden_states_tuple[:-1]
A : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Tuple = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
if self.add_upsample:
A : Dict = self.upsamplers_a(SCREAMING_SNAKE_CASE )
return hidden_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : int = []
for i in range(self.num_layers ):
A : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : List[str] = self.prev_output_channel if i == 0 else self.out_channels
A : str = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : List[Any] = resnets
if self.add_upsample:
A : Optional[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Tuple:
"""simple docstring"""
for resnet in self.resnets:
# pop res hidden states
A : Optional[int] = res_hidden_states_tuple[-1]
A : Optional[Any] = res_hidden_states_tuple[:-1]
A : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Optional[Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
if self.add_upsample:
A : List[str] = self.upsamplers_a(SCREAMING_SNAKE_CASE )
return hidden_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : str = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
A : List[Any] = []
for _ in range(self.num_layers ):
A : int = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : List[str] = resnets
A : List[str] = attentions
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict:
"""simple docstring"""
A : Optional[Any] = self.resnets[0](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
A : Optional[int] = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
return hidden_states
| 3 | 0 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE (A ) -> int:
"""simple docstring"""
if length <= 0 or not isinstance(snake_case__ , snake_case__ ):
raise ValueError('''Length must be a positive integer.''' )
return [n * (2 * n - 1) for n in range(snake_case__ )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 2 |
'''simple docstring'''
import os
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : List[Any] = os.path.join(os.path.dirname(snake_case__ ) , '''num.txt''' )
with open(snake_case__ ) as file_hand:
return str(sum(int(snake_case__ ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 3 | 0 |
from __future__ import annotations
import typing
from collections import Counter
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Any:
lowerCAmelCase = Counter()
for base in range(1 , max_perimeter + 1 ):
for perpendicular in range(snake_case__ , max_perimeter + 1 ):
lowerCAmelCase = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(snake_case__ ):
lowerCAmelCase = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0 ) -> List[Any]:
lowerCAmelCase = pythagorean_triple(snake_case__ )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(f'Perimeter {solution()} has maximum solutions')
| 338 |
'''simple docstring'''
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , snake_case__ )
A : Dict = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
A : Dict = dataset_size < in_memory_max_size
else:
A : Tuple = False
A : int = is_small_dataset(snake_case__ )
assert result == expected
| 3 | 0 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / """utils"""))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class A__(unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self ) -> Union[str, Any]:
a_ : Dict = mock.Mock()
a_ : str = 500
a_ : List[str] = {}
a_ : List[Any] = HTTPError
a_ : str = {}
# Download this model to make sure it's in the cache.
a_ : Tuple = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" , return_value=_lowercase ) as mock_head:
a_ : Dict = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def UpperCamelCase__ ( self ) -> Dict:
a_ : str = mock.Mock()
a_ : Optional[Any] = 500
a_ : str = {}
a_ : Tuple = HTTPError
a_ : str = {}
# Download this model to make sure it's in the cache.
a_ : str = GPTaTokenizerFast.from_pretrained("""gpt2""" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" , return_value=_lowercase ) as mock_head:
a_ : Union[str, Any] = GPTaTokenizerFast.from_pretrained("""gpt2""" )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase__ ( self ) -> Any:
try:
a_ : Dict = tempfile.mktemp()
with open(_lowercase , """wb""" ) as f:
http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , _lowercase )
a_ : List[str] = AlbertTokenizer.from_pretrained(_lowercase )
finally:
os.remove(_lowercase )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile("""tokenizer.json""" ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open("""tokenizer.json""" , """wb""" ) as f:
http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , _lowercase )
a_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1_000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove("""tokenizer.json""" )
def UpperCamelCase__ ( self ) -> Any:
a_ : int = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" )
@is_staging_test
class A__(unittest.TestCase ):
"""simple docstring"""
_A : int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
@classmethod
def UpperCamelCase__ ( cls ) -> Optional[int]:
a_ : List[str] = TOKEN
HfFolder.save_token(_lowercase )
@classmethod
def UpperCamelCase__ ( cls ) -> List[str]:
try:
delete_repo(token=cls._token , repo_id="""test-tokenizer""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" )
except HTTPError:
pass
def UpperCamelCase__ ( self ) -> List[str]:
with tempfile.TemporaryDirectory() as tmp_dir:
a_ : str = os.path.join(_lowercase , """vocab.txt""" )
with open(_lowercase , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
a_ : List[Any] = BertTokenizer(_lowercase )
tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token )
a_ : Optional[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="""test-tokenizer""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_lowercase , repo_id="""test-tokenizer""" , push_to_hub=_lowercase , use_auth_token=self._token )
a_ : int = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def UpperCamelCase__ ( self ) -> Any:
with tempfile.TemporaryDirectory() as tmp_dir:
a_ : Union[str, Any] = os.path.join(_lowercase , """vocab.txt""" )
with open(_lowercase , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
a_ : Optional[int] = BertTokenizer(_lowercase )
tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token )
a_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
_lowercase , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=_lowercase , use_auth_token=self._token )
a_ : str = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def UpperCamelCase__ ( self ) -> str:
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
a_ : List[Any] = os.path.join(_lowercase , """vocab.txt""" )
with open(_lowercase , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
a_ : Optional[int] = CustomTokenizer(_lowercase )
# No fast custom tokenizer
tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token )
a_ : Dict = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowercase )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
a_ : Optional[Any] = os.path.join(_lowercase , """vocab.txt""" )
with open(_lowercase , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
a_ : str = BertTokenizerFast.from_pretrained(_lowercase )
bert_tokenizer.save_pretrained(_lowercase )
a_ : Any = CustomTokenizerFast.from_pretrained(_lowercase )
tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token )
a_ : Union[str, Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowercase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" )
a_ : str = AutoTokenizer.from_pretrained(
F'''{USER}/test-dynamic-tokenizer''' , use_fast=_lowercase , trust_remote_code=_lowercase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" )
class A__(unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self ) -> Dict:
a_ : Optional[Any] = Trie()
trie.add("""Hello 友達""" )
self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} )
trie.add("""Hello""" )
trie.data
self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} )
def UpperCamelCase__ ( self ) -> List[str]:
a_ : List[str] = Trie()
self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] )
trie.add("""[CLS]""" )
trie.add("""extra_id_1""" )
trie.add("""extra_id_100""" )
self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] )
def UpperCamelCase__ ( self ) -> Tuple:
a_ : Dict = Trie()
trie.add("""A""" )
self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] )
self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] )
def UpperCamelCase__ ( self ) -> Dict:
a_ : List[Any] = Trie()
trie.add("""TOKEN]""" )
trie.add("""[SPECIAL_TOKEN]""" )
self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] )
def UpperCamelCase__ ( self ) -> List[str]:
a_ : str = Trie()
trie.add("""A""" )
trie.add("""P""" )
trie.add("""[SPECIAL_TOKEN]""" )
self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] )
def UpperCamelCase__ ( self ) -> Union[str, Any]:
a_ : Any = Trie()
trie.add("""AB""" )
trie.add("""B""" )
trie.add("""C""" )
self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] )
def UpperCamelCase__ ( self ) -> Any:
a_ : List[str] = Trie()
trie.add("""ABC""" )
trie.add("""B""" )
trie.add("""CD""" )
self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] )
def UpperCamelCase__ ( self ) -> Optional[int]:
a_ : Tuple = Trie()
a_ : Optional[int] = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] )
self.assertEqual(_lowercase , ["""AB""", """C"""] )
| 248 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class A ( __snake_case ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 3 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowercase : Any = {
'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'],
'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Tuple = ['VisionTextDualEncoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Any = ['FlaxVisionTextDualEncoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[Any] = ['TFVisionTextDualEncoderModel']
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 20 |
'''simple docstring'''
from scipy.stats import pearsonr
import datasets
lowercase : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
lowercase : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
lowercase : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float''' ),
'''references''': datasets.Value('''float''' ),
} ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
"""simple docstring"""
if return_pvalue:
A : Union[str, Any] = pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] )}
| 3 | 0 |
import argparse
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_SCREAMING_SNAKE_CASE = 16
_SCREAMING_SNAKE_CASE = 32
def SCREAMING_SNAKE_CASE__ ( __a , __a = 16 ):
snake_case_ : int = AutoTokenizer.from_pretrained('bert-base-cased' )
snake_case_ : Optional[Any] = load_dataset('glue' , 'mrpc' )
def tokenize_function(__a ):
# max_length=None => use the model max length (it's actually the default)
snake_case_ : Tuple = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case__ , max_length=snake_case__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
snake_case_ : Optional[int] = datasets.map(
snake_case__ , batched=snake_case__ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case_ : Dict = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(__a ):
# On TPU it's best to pad everything to the same length or training will be very slow.
snake_case_ : Tuple = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
snake_case_ : List[Any] = 16
elif accelerator.mixed_precision != "no":
snake_case_ : Dict = 8
else:
snake_case_ : Tuple = None
return tokenizer.pad(
snake_case__ , padding='longest' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='pt' , )
# Instantiate dataloaders.
snake_case_ : Optional[int] = DataLoader(
tokenized_datasets['train'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ , drop_last=snake_case__ )
snake_case_ : int = DataLoader(
tokenized_datasets['validation'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ , drop_last=(accelerator.mixed_precision == 'fp8') , )
return train_dataloader, eval_dataloader
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
snake_case_ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case_ : Optional[Any] = config['''lr''']
snake_case_ : Dict = int(config['num_epochs'] )
snake_case_ : List[str] = int(config['seed'] )
snake_case_ : Optional[int] = int(config['batch_size'] )
snake_case_ : Tuple = evaluate.load('glue' , 'mrpc' )
# If the batch size is too big we use gradient accumulation
snake_case_ : List[str] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
snake_case_ : str = batch_size // MAX_GPU_BATCH_SIZE
snake_case_ : int = MAX_GPU_BATCH_SIZE
set_seed(snake_case__ )
snake_case_ : Optional[Any] = get_dataloaders(snake_case__ , snake_case__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case_ : List[str] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=snake_case__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
snake_case_ : int = model.to(accelerator.device )
# Instantiate optimizer
snake_case_ : List[Any] = AdamW(params=model.parameters() , lr=snake_case__ )
# Instantiate scheduler
snake_case_ : Any = get_linear_schedule_with_warmup(
optimizer=snake_case__ , num_warmup_steps=1_00 , num_training_steps=(len(snake_case__ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case_ : Tuple = accelerator.prepare(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# Now we train the model
for epoch in range(snake_case__ ):
model.train()
for step, batch in enumerate(snake_case__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
snake_case_ : Optional[Any] = model(**snake_case__ )
snake_case_ : Optional[Any] = outputs.loss
snake_case_ : Dict = loss / gradient_accumulation_steps
accelerator.backward(snake_case__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
snake_case_ : str = model(**snake_case__ )
snake_case_ : str = outputs.logits.argmax(dim=-1 )
snake_case_ : List[str] = accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=snake_case__ , references=snake_case__ , )
snake_case_ : Optional[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , snake_case__ )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : str = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision' , type=snake_case__ , default=snake_case__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
snake_case_ : int = parser.parse_args()
snake_case_ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case__ , snake_case__ )
if __name__ == "__main__":
main()
| 327 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
lowercase : Dict = {
'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'],
'processing_speech_to_text': ['Speech2TextProcessor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[Any] = ['Speech2TextTokenizer']
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[str] = ['Speech2TextFeatureExtractor']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Dict = [
'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFSpeech2TextForConditionalGeneration',
'TFSpeech2TextModel',
'TFSpeech2TextPreTrainedModel',
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Any = [
'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Speech2TextForConditionalGeneration',
'Speech2TextModel',
'Speech2TextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 3 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'facebook/data2vec-vision-base-ft': (
'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json'
),
}
class UpperCamelCase ( __snake_case ):
UpperCamelCase : int = '''data2vec-vision'''
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict=768 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[Any]=3072 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : str=0.0_2 , UpperCAmelCase__ : str=1E-12 , UpperCAmelCase__ : str=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : int=False , UpperCAmelCase__ : str=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : int=[3, 5, 7, 11] , UpperCAmelCase__ : Tuple=[1, 2, 3, 6] , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Any=0.4 , UpperCAmelCase__ : List[str]=256 , UpperCAmelCase__ : Optional[int]=1 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Union[str, Any]=255 , **UpperCAmelCase__ : Union[str, Any] , ) -> Optional[int]:
super().__init__(**UpperCAmelCase__ )
_a : Tuple = hidden_size
_a : Optional[int] = num_hidden_layers
_a : Union[str, Any] = num_attention_heads
_a : Dict = intermediate_size
_a : Any = hidden_act
_a : Optional[int] = hidden_dropout_prob
_a : Optional[Any] = attention_probs_dropout_prob
_a : List[Any] = initializer_range
_a : Any = layer_norm_eps
_a : Any = image_size
_a : Union[str, Any] = patch_size
_a : Optional[Any] = num_channels
_a : Union[str, Any] = use_mask_token
_a : int = use_absolute_position_embeddings
_a : List[str] = use_relative_position_bias
_a : List[Any] = use_shared_relative_position_bias
_a : str = layer_scale_init_value
_a : int = drop_path_rate
_a : Tuple = use_mean_pooling
# decode head attributes (semantic segmentation)
_a : Tuple = out_indices
_a : Optional[int] = pool_scales
# auxiliary head attributes (semantic segmentation)
_a : int = use_auxiliary_head
_a : List[Any] = auxiliary_loss_weight
_a : str = auxiliary_channels
_a : Union[str, Any] = auxiliary_num_convs
_a : List[Any] = auxiliary_concat_input
_a : Dict = semantic_loss_ignore_index
class UpperCamelCase ( __snake_case ):
UpperCamelCase : int = version.parse('''1.11''' )
@property
def _lowercase ( self : int ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _lowercase ( self : str ) -> float:
return 1E-4
| 294 |
'''simple docstring'''
import os
import sys
import unittest
lowercase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py')
lowercase : Optional[int] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py')
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : List[Any] = {'''BertModelTest''': '''BertModelTester'''}
A : int = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : List[str] = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A : Union[str, Any] = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : int = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Dict = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A : str = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
| 3 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Optional[Any] = logging.get_logger(__name__)
_a : Dict = {
'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json',
'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json',
}
class __A ( __snake_case ):
_UpperCamelCase : Any = "luke"
def __init__( self , a__=50267 , a__=500000 , a__=768 , a__=256 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=True , a__=None , a__=1 , a__=0 , a__=2 , **a__ , ):
super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ )
_lowerCAmelCase : Union[str, Any] = vocab_size
_lowerCAmelCase : int = entity_vocab_size
_lowerCAmelCase : Optional[int] = hidden_size
_lowerCAmelCase : Union[str, Any] = entity_emb_size
_lowerCAmelCase : List[str] = num_hidden_layers
_lowerCAmelCase : Optional[Any] = num_attention_heads
_lowerCAmelCase : List[str] = hidden_act
_lowerCAmelCase : Union[str, Any] = intermediate_size
_lowerCAmelCase : Tuple = hidden_dropout_prob
_lowerCAmelCase : Tuple = attention_probs_dropout_prob
_lowerCAmelCase : Tuple = max_position_embeddings
_lowerCAmelCase : List[Any] = type_vocab_size
_lowerCAmelCase : int = initializer_range
_lowerCAmelCase : Optional[Any] = layer_norm_eps
_lowerCAmelCase : List[str] = use_entity_aware_attention
_lowerCAmelCase : List[str] = classifier_dropout
| 44 |
'''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class A ( __snake_case ):
__magic_name__ = DistilBertTokenizer
__magic_name__ = DistilBertTokenizerFast
__magic_name__ = True
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : List[Any] = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
A : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE )
A : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE )
A : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE )
A : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 3 | 0 |
from scipy.stats import pearsonr
import datasets
__UpperCamelCase : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
__UpperCamelCase : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
__UpperCamelCase : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class lowercase__ ( datasets.Metric):
def __A ( self : int ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float''' ),
'''references''': datasets.Value('''float''' ),
} ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def __A ( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=False ):
'''simple docstring'''
if return_pvalue:
SCREAMING_SNAKE_CASE : Union[str, Any] = pearsonr(UpperCamelCase__ , UpperCamelCase__ )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(UpperCamelCase__ , UpperCamelCase__ )[0] )}
| 182 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
lowercase : Optional[int] = logging.get_logger(__name__)
class A ( __snake_case ):
__magic_name__ = ['''input_features''', '''attention_mask''']
def __init__( self , SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=16000 , SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
super().__init__(feature_size=SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , padding_value=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = num_mel_bins
A : Tuple = do_ceptral_normalize
A : Dict = normalize_means
A : List[Any] = normalize_vars
A : List[str] = True
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
A : List[Any] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
A : Any = torch.from_numpy(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
A : Any = ta_kaldi.fbank(SCREAMING_SNAKE_CASE , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 0.0 , ) -> np.ndarray:
"""simple docstring"""
if normalize_means:
A : Dict = x[:input_length].mean(axis=0 )
A : Optional[Any] = np.subtract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if normalize_vars:
A : str = x[:input_length].std(axis=0 )
A : int = np.divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if input_length < x.shape[0]:
A : List[str] = padding_value
# make sure array is in float32
A : Tuple = x.astype(np.floataa )
return x
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[np.ndarray]:
"""simple docstring"""
A : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
]
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
A : List[Any] = isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
A : Tuple = is_batched_numpy or (
isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
A : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ):
A : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
A : Optional[int] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
A : Any = [raw_speech]
# extract fbank features
A : List[str] = [self._extract_fbank_features(SCREAMING_SNAKE_CASE ) for waveform in raw_speech]
# convert into correct format for padding
A : str = BatchFeature({'''input_features''': features} )
A : Union[str, Any] = self.pad(
SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
# make sure list is in array format
A : List[str] = padded_inputs.get('''input_features''' )
if isinstance(input_features[0] , SCREAMING_SNAKE_CASE ):
A : str = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features]
A : Union[str, Any] = padded_inputs.get('''attention_mask''' )
if attention_mask is not None:
A : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
A : Dict = (
np.array(SCREAMING_SNAKE_CASE , dtype=np.intaa )
if self._get_padding_strategies(SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD
else None
)
A : List[Any] = self.normalize(
padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE )
if return_tensors is not None:
A : int = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE )
return padded_inputs
| 3 | 0 |
'''simple docstring'''
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase__ ( __snake_case ):
lowerCAmelCase_ = '''new-model'''
if is_tf_available():
class lowerCAmelCase__ ( __snake_case ):
lowerCAmelCase_ = NewModelConfig
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Dict = '''bert-base-cased'''
lowercase_ : Union[str, Any] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Any = TFAutoModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Optional[int] = '''bert-base-cased'''
lowercase_ : Any = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = TFAutoModelForPreTraining.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _snake_case ( self ):
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : List[Any] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = TFAutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE )
lowercase_ : Dict = TFAutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE , output_loading_info=__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _snake_case ( self ):
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : int = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Any = TFAutoModelWithLMHead.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _snake_case ( self ):
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : Tuple = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : int = TFAutoModelForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE )
lowercase_ : str = TFAutoModelForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE , output_loading_info=__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _snake_case ( self ):
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : int = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(__SCREAMING_SNAKE_CASE , output_loading_info=__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _snake_case ( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowercase_ : List[str] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : int = TFAutoModelForSequenceClassification.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _snake_case ( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowercase_ : Tuple = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = TFAutoModelForQuestionAnswering.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
@require_tensorflow_probability
def _snake_case ( self ):
"""simple docstring"""
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
lowercase_ : Optional[int] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(__SCREAMING_SNAKE_CASE )
lowercase_ : int = TFAutoModelForTableQuestionAnswering.from_pretrained(
__SCREAMING_SNAKE_CASE , output_loading_info=__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Dict = TFAutoModelWithLMHead.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=__SCREAMING_SNAKE_CASE ) , 1_44_10 )
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=__SCREAMING_SNAKE_CASE ) , 1_44_10 )
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = copy.deepcopy(model.config )
lowercase_ : str = ['''FunnelBaseModel''']
lowercase_ : Any = TFAutoModel.from_config(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__SCREAMING_SNAKE_CASE )
lowercase_ : Dict = TFAutoModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
try:
AutoConfig.register('''new-model''' , __SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = [
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__ ):
# Wrong config class will raise an error
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
auto_class.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
auto_class.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
auto_class.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
lowercase_ : Union[str, Any] = BertModelTester(self ).get_config()
lowercase_ : List[Any] = NewModelConfig(**tiny_config.to_dict() )
lowercase_ : List[str] = auto_class.from_config(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = auto_class.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def _snake_case ( self ):
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ):
lowercase_ : Optional[int] = TFAutoModel.from_pretrained('''bert-base''' )
def _snake_case ( self ):
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
lowercase_ : List[str] = TFAutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' )
def _snake_case ( self ):
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ):
lowercase_ : Any = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' )
def _snake_case ( self ):
"""simple docstring"""
with self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''Use `from_pt=True` to load this model''' ):
lowercase_ : Dict = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
with RequestCounter() as counter:
lowercase_ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
# With a sharded checkpoint
lowercase_ : Any = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' )
with RequestCounter() as counter:
lowercase_ : List[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 93 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
lowercase : str = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
lowercase : str = get_tests_dir('fixtures/vocab.json')
lowercase : int = get_tests_dir('fixtures')
class A ( unittest.TestCase ):
__magic_name__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = 0
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : List[Any] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : Union[str, Any] = WavaVecaConfig()
A : List[str] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
# save in new folder
model_config.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) )
A : Optional[Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : Dict = WavaVecaFeatureExtractor()
A : List[str] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
A : str = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# save in new folder
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# drop `processor_class` in tokenizer
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''r''' ) as f:
A : Dict = json.load(SCREAMING_SNAKE_CASE )
config_dict.pop('''processor_class''' )
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE ) )
A : Optional[Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : List[Any] = WavaVecaFeatureExtractor()
A : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
A : str = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# save in new folder
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# drop `processor_class` in feature extractor
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''r''' ) as f:
A : str = json.load(SCREAMING_SNAKE_CASE )
config_dict.pop('''processor_class''' )
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE ) )
A : str = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A : str = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' )
model_config.save_pretrained(SCREAMING_SNAKE_CASE )
# copy relevant files
copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) )
# create emtpy sample processor
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write('''{}''' )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
with self.assertRaises(SCREAMING_SNAKE_CASE ):
A : Optional[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(SCREAMING_SNAKE_CASE ):
A : Union[str, Any] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
A : List[str] = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
A : Tuple = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
# Test we can also load the slow version
A : List[str] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
A : int = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' )
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
try:
AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE )
AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(SCREAMING_SNAKE_CASE ):
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
A : List[Any] = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
A : Tuple = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.txt''' )
with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
A : Optional[int] = CustomTokenizer(SCREAMING_SNAKE_CASE )
A : Any = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
class A ( __snake_case ):
__magic_name__ = False
class A ( __snake_case ):
__magic_name__ = False
class A ( __snake_case ):
__magic_name__ = '''AutoFeatureExtractor'''
__magic_name__ = '''AutoTokenizer'''
__magic_name__ = False
try:
AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE )
AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local classes.
A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
A : Optional[int] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
A : Tuple = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : int = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Optional[int] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' )
self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' )
@is_staging_test
class A ( unittest.TestCase ):
__magic_name__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
@classmethod
def __lowerCAmelCase ( cls ) -> Dict:
"""simple docstring"""
A : Optional[int] = TOKEN
HfFolder.save_token(SCREAMING_SNAKE_CASE )
@classmethod
def __lowerCAmelCase ( cls ) -> Any:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-processor''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' )
except HTTPError:
pass
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Union[str, Any] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(SCREAMING_SNAKE_CASE , '''test-processor''' ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token )
A : int = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Tuple = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(SCREAMING_SNAKE_CASE , '''test-processor-org''' ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token , organization='''valid_org''' , )
A : int = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
A : Any = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
A : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.txt''' )
with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
A : str = CustomTokenizer(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(F'{USER}/test-dynamic-processor' , token=self._token )
A : List[str] = Repository(SCREAMING_SNAKE_CASE , clone_from=F'{USER}/test-dynamic-processor' , token=self._token )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''',
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) ) as f:
A : Dict = json.load(SCREAMING_SNAKE_CASE )
self.assertDictEqual(
tokenizer_config['''auto_map'''] , {
'''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None],
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_feature_extraction.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_tokenization.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_processing.py''' ) ) )
repo.push_to_hub()
A : Optional[int] = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=SCREAMING_SNAKE_CASE )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
| 3 | 0 |
import math
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=[] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = size[0] - overlap_pixels * 2
SCREAMING_SNAKE_CASE__ = size[1] - overlap_pixels * 2
for letter in ["l", "r"]:
if letter in remove_borders:
size_x += overlap_pixels
for letter in ["t", "b"]:
if letter in remove_borders:
size_y += overlap_pixels
SCREAMING_SNAKE_CASE__ = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55
SCREAMING_SNAKE_CASE__ = np.pad(snake_case__ , mode="""linear_ramp""" , pad_width=snake_case__ , end_values=0 )
if "l" in remove_borders:
SCREAMING_SNAKE_CASE__ = mask[:, overlap_pixels : mask.shape[1]]
if "r" in remove_borders:
SCREAMING_SNAKE_CASE__ = mask[:, 0 : mask.shape[1] - overlap_pixels]
if "t" in remove_borders:
SCREAMING_SNAKE_CASE__ = mask[overlap_pixels : mask.shape[0], :]
if "b" in remove_borders:
SCREAMING_SNAKE_CASE__ = mask[0 : mask.shape[0] - overlap_pixels, :]
return mask
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
return max(snake_case__ , min(snake_case__ , snake_case__ ) )
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple ) -> int:
"""simple docstring"""
return (
clamp(rect[0] , min[0] , max[0] ),
clamp(rect[1] , min[1] , max[1] ),
clamp(rect[2] , min[0] , max[0] ),
clamp(rect[3] , min[1] , max[1] ),
)
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = list(snake_case__ )
rect[0] -= overlap
rect[1] -= overlap
rect[2] += overlap
rect[3] += overlap
SCREAMING_SNAKE_CASE__ = clamp_rect(snake_case__ , [0, 0] , [image_size[0], image_size[1]] )
return rect
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) )
result.paste(
original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop(
(slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , )
result.paste(snake_case__ , (original_slice, 0) )
return result
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (original_image_slice * 4, 0, tile.size[0], tile.size[1])
SCREAMING_SNAKE_CASE__ = tile.crop(snake_case__ )
return tile
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Dict ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = n % d
return n - divisor
class __snake_case ( __snake_case ):
def __init__( self : Optional[int] , _lowercase : int , _lowercase : Tuple , _lowercase : Any , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : Optional[Any] = 3_50 , ):
"""simple docstring"""
super().__init__(
vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , unet=_lowercase , low_res_scheduler=_lowercase , scheduler=_lowercase , max_noise_level=_lowercase , )
def __a ( self : List[str] , _lowercase : str , _lowercase : int , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[int] , **_lowercase : Dict ):
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = (
min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ),
min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ),
min(image.size[0] , (x + 1) * tile_size ),
min(image.size[1] , (y + 1) * tile_size ),
)
SCREAMING_SNAKE_CASE__ = add_overlap_rect(_lowercase , _lowercase , image.size )
SCREAMING_SNAKE_CASE__ = image.crop(_lowercase )
SCREAMING_SNAKE_CASE__ = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0]
SCREAMING_SNAKE_CASE__ = translated_slice_x - (original_image_slice / 2)
SCREAMING_SNAKE_CASE__ = max(0 , _lowercase )
SCREAMING_SNAKE_CASE__ = squeeze_tile(_lowercase , _lowercase , _lowercase , _lowercase )
SCREAMING_SNAKE_CASE__ = to_input.size
SCREAMING_SNAKE_CASE__ = to_input.resize((tile_size, tile_size) , Image.BICUBIC )
SCREAMING_SNAKE_CASE__ = super(_lowercase , self ).__call__(image=_lowercase , **_lowercase ).images[0]
SCREAMING_SNAKE_CASE__ = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC )
SCREAMING_SNAKE_CASE__ = unsqueeze_tile(_lowercase , _lowercase )
SCREAMING_SNAKE_CASE__ = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC )
SCREAMING_SNAKE_CASE__ = []
if x == 0:
remove_borders.append("""l""" )
elif crop_rect[2] == image.size[0]:
remove_borders.append("""r""" )
if y == 0:
remove_borders.append("""t""" )
elif crop_rect[3] == image.size[1]:
remove_borders.append("""b""" )
SCREAMING_SNAKE_CASE__ = Image.fromarray(
make_transparency_mask(
(upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=_lowercase ) , mode="""L""" , )
final_image.paste(
_lowercase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , _lowercase )
@torch.no_grad()
def __call__( self : int , _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : List[str] = 75 , _lowercase : Optional[int] = 9.0 , _lowercase : int = 50 , _lowercase : str = None , _lowercase : int = 1 , _lowercase : str = 0.0 , _lowercase : str = None , _lowercase : Union[str, Any] = None , _lowercase : List[str] = None , _lowercase : Tuple = 1 , _lowercase : Union[str, Any] = 1_28 , _lowercase : Optional[int] = 32 , _lowercase : Optional[Any] = 32 , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) )
SCREAMING_SNAKE_CASE__ = math.ceil(image.size[0] / tile_size )
SCREAMING_SNAKE_CASE__ = math.ceil(image.size[1] / tile_size )
SCREAMING_SNAKE_CASE__ = tcx * tcy
SCREAMING_SNAKE_CASE__ = 0
for y in range(_lowercase ):
for x in range(_lowercase ):
self._process_tile(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , prompt=_lowercase , num_inference_steps=_lowercase , guidance_scale=_lowercase , noise_level=_lowercase , negative_prompt=_lowercase , num_images_per_prompt=_lowercase , eta=_lowercase , generator=_lowercase , latents=_lowercase , )
current_count += 1
if callback is not None:
callback({"""progress""": current_count / total_tile_count, """image""": final_image} )
return final_image
def __SCREAMING_SNAKE_CASE ( ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''stabilityai/stable-diffusion-x4-upscaler'''
SCREAMING_SNAKE_CASE__ = StableDiffusionTiledUpscalePipeline.from_pretrained(snake_case__ , revision="""fp16""" , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE__ = pipe.to("""cuda""" )
SCREAMING_SNAKE_CASE__ = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" )
def callback(__UpperCamelCase : Union[str, Any] ):
print(f"""progress: {obj['progress']:.4f}""" )
obj["image"].save("""diffusers_library_progress.jpg""" )
SCREAMING_SNAKE_CASE__ = pipe(image=snake_case__ , prompt="""Black font, white background, vector""" , noise_level=40 , callback=snake_case__ )
final_image.save("""diffusers_library.jpg""" )
if __name__ == "__main__":
main()
| 219 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase : Optional[Any] = None
lowercase : Tuple = logging.get_logger(__name__)
lowercase : Dict = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase : Tuple = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase : List[str] = {
'google/rembert': 2_56,
}
lowercase : Dict = '▁'
class A ( __snake_case ):
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = RemBertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token
super().__init__(
SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
A : List[Any] = do_lower_case
A : str = remove_space
A : int = keep_accents
A : Union[str, Any] = vocab_file
A : List[Any] = False if not self.vocab_file else True
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
A : List[Any] = [self.sep_token_id]
A : Tuple = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
A : Tuple = [self.sep_token_id]
A : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) )
return
A : Any = os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 3 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A = logging.get_logger(__name__)
_A = {
'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json',
'BridgeTower/bridgetower-base-itm-mlm': (
'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json'
),
}
class _lowerCAmelCase ( __snake_case ):
_lowercase ='''bridgetower_vision_model'''
def __init__( self , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=3 , _UpperCamelCase=16 , _UpperCamelCase=288 , _UpperCamelCase=1 , _UpperCamelCase=1e-0_5 , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=False , **_UpperCamelCase , ) -> Optional[Any]:
super().__init__(**_UpperCamelCase )
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = image_size
lowerCAmelCase_ = initializer_factor
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = stop_gradient
lowerCAmelCase_ = share_layernorm
lowerCAmelCase_ = remove_last_layer
@classmethod
def __a ( cls , _UpperCamelCase , **_UpperCamelCase ) -> "PretrainedConfig":
lowerCAmelCase_ = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase )
if config_dict.get("model_type" ) == "bridgetower":
lowerCAmelCase_ = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCamelCase , **_UpperCamelCase )
class _lowerCAmelCase ( __snake_case ):
_lowercase ='''bridgetower_text_model'''
def __init__( self , _UpperCamelCase=50_265 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=1 , _UpperCamelCase=3_072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=514 , _UpperCamelCase=1 , _UpperCamelCase=1e-0_5 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , _UpperCamelCase="absolute" , _UpperCamelCase=True , **_UpperCamelCase , ) -> List[str]:
super().__init__(**_UpperCamelCase )
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = initializer_factor
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = type_vocab_size
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = position_embedding_type
lowerCAmelCase_ = use_cache
lowerCAmelCase_ = pad_token_id
lowerCAmelCase_ = bos_token_id
lowerCAmelCase_ = eos_token_id
@classmethod
def __a ( cls , _UpperCamelCase , **_UpperCamelCase ) -> "PretrainedConfig":
lowerCAmelCase_ = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase )
if config_dict.get("model_type" ) == "bridgetower":
lowerCAmelCase_ = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCamelCase , **_UpperCamelCase )
class _lowerCAmelCase ( __snake_case ):
_lowercase ='''bridgetower'''
def __init__( self , _UpperCamelCase=True , _UpperCamelCase="gelu" , _UpperCamelCase=768 , _UpperCamelCase=1 , _UpperCamelCase=1e-0_5 , _UpperCamelCase=False , _UpperCamelCase="add" , _UpperCamelCase=12 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase , ) -> Tuple:
lowerCAmelCase_ = kwargs.pop("text_config_dict" , _UpperCamelCase )
lowerCAmelCase_ = kwargs.pop("vision_config_dict" , _UpperCamelCase )
super().__init__(**_UpperCamelCase )
lowerCAmelCase_ = share_cross_modal_transformer_layers
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = initializer_factor
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = share_link_tower_layers
lowerCAmelCase_ = link_tower_type
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = tie_word_embeddings
lowerCAmelCase_ = init_layernorm_from_vision_encoder
if text_config is None:
lowerCAmelCase_ = {}
logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." )
if vision_config is None:
lowerCAmelCase_ = {}
logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." )
lowerCAmelCase_ = BridgeTowerTextConfig(**_UpperCamelCase )
lowerCAmelCase_ = BridgeTowerVisionConfig(**_UpperCamelCase )
@classmethod
def __a ( cls , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> List[Any]:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCamelCase )
def __a ( self ) -> List[Any]:
lowerCAmelCase_ = copy.deepcopy(self.__dict__ )
lowerCAmelCase_ = self.text_config.to_dict()
lowerCAmelCase_ = self.vision_config.to_dict()
lowerCAmelCase_ = self.__class__.model_type
return output
| 231 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase : Optional[Any] = logging.get_logger(__name__)
class A ( __snake_case ):
__magic_name__ = ['''pixel_values''']
def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : str = size if size is not None else {'''shortest_edge''': 384}
A : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : str = do_resize
A : List[Any] = size
# Default value set here for backwards compatibility where the value in config is None
A : List[Any] = crop_pct if crop_pct is not None else 224 / 256
A : Optional[int] = resample
A : Union[str, Any] = do_rescale
A : List[str] = rescale_factor
A : Union[str, Any] = do_normalize
A : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
A : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
A : str = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
A : Any = size['''shortest_edge''']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
A : Dict = int(shortest_edge / crop_pct )
A : str = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : int = resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image:
"""simple docstring"""
A : int = do_resize if do_resize is not None else self.do_resize
A : Tuple = crop_pct if crop_pct is not None else self.crop_pct
A : Optional[Any] = resample if resample is not None else self.resample
A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
A : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
A : List[str] = image_std if image_std is not None else self.image_std
A : Union[str, Any] = size if size is not None else self.size
A : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : Any = make_list_of_images(SCREAMING_SNAKE_CASE )
if not valid_images(SCREAMING_SNAKE_CASE ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError('''crop_pct must be specified if size < 384.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
A : Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images]
if do_resize:
A : Any = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , crop_pct=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images]
if do_rescale:
A : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images]
if do_normalize:
A : Dict = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images]
A : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images]
A : Optional[int] = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
| 3 | 0 |
'''simple docstring'''
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training')
# TF training parameters
lowerCamelCase : Tuple = False
lowerCamelCase : str = False
def _SCREAMING_SNAKE_CASE (A ) -> List[Any]:
"""simple docstring"""
return TrainCommand(snake_case__ )
class __lowerCAmelCase (__snake_case ):
'''simple docstring'''
@staticmethod
def UpperCamelCase__ (UpperCamelCase : int ):
'''simple docstring'''
lowercase__ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' )
train_parser.add_argument(
'''--train_data''' , type=UpperCamelCase , required=UpperCamelCase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , )
train_parser.add_argument(
'''--column_label''' , type=UpperCamelCase , default=0 , help='''Column of the dataset csv file with example labels.''' )
train_parser.add_argument(
'''--column_text''' , type=UpperCamelCase , default=1 , help='''Column of the dataset csv file with example texts.''' )
train_parser.add_argument(
'''--column_id''' , type=UpperCamelCase , default=2 , help='''Column of the dataset csv file with example ids.''' )
train_parser.add_argument(
'''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' )
train_parser.add_argument('''--validation_data''' , type=UpperCamelCase , default='''''' , help='''path to validation dataset.''' )
train_parser.add_argument(
'''--validation_split''' , type=UpperCamelCase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , )
train_parser.add_argument('''--output''' , type=UpperCamelCase , default='''./''' , help='''path to saved the trained model.''' )
train_parser.add_argument(
'''--task''' , type=UpperCamelCase , default='''text_classification''' , help='''Task to train the model on.''' )
train_parser.add_argument(
'''--model''' , type=UpperCamelCase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' )
train_parser.add_argument('''--train_batch_size''' , type=UpperCamelCase , default=32 , help='''Batch size for training.''' )
train_parser.add_argument('''--valid_batch_size''' , type=UpperCamelCase , default=64 , help='''Batch size for validation.''' )
train_parser.add_argument('''--learning_rate''' , type=UpperCamelCase , default=3E-5 , help='''Learning rate.''' )
train_parser.add_argument('''--adam_epsilon''' , type=UpperCamelCase , default=1E-08 , help='''Epsilon for Adam optimizer.''' )
train_parser.set_defaults(func=UpperCamelCase )
def __init__(self : Optional[Any] , UpperCamelCase : int ):
'''simple docstring'''
lowercase__ = logging.get_logger('''transformers-cli/training''' )
lowercase__ = '''tf''' if is_tf_available() else '''torch'''
os.makedirs(args.output , exist_ok=UpperCamelCase )
lowercase__ = args.output
lowercase__ = args.column_label
lowercase__ = args.column_text
lowercase__ = args.column_id
self.logger.info(f"Loading {args.task} pipeline for {args.model}" )
if args.task == "text_classification":
lowercase__ = TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f"Loading dataset from {args.train_data}" )
lowercase__ = Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
lowercase__ = None
if args.validation_data:
self.logger.info(f"Loading validation dataset from {args.validation_data}" )
lowercase__ = Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
lowercase__ = args.validation_split
lowercase__ = args.train_batch_size
lowercase__ = args.valid_batch_size
lowercase__ = args.learning_rate
lowercase__ = args.adam_epsilon
def UpperCamelCase__ (self : int ):
'''simple docstring'''
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
raise NotImplementedError
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 2 |
'''simple docstring'''
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(SCREAMING_SNAKE_CASE ):
A : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[str] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(SCREAMING_SNAKE_CASE ):
A : Any = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Any = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
for model_name in ["bert-base-cased", "bert-large-uncased"]:
A : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE )
A : Optional[Any] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX )
@jax.jit
def eval(**SCREAMING_SNAKE_CASE ):
return model(**SCREAMING_SNAKE_CASE )
eval(**SCREAMING_SNAKE_CASE ).block_until_ready()
@slow
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for model_name in ["roberta-base", "roberta-large"]:
A : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE )
A : int = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX )
@jax.jit
def eval(**SCREAMING_SNAKE_CASE ):
return model(**SCREAMING_SNAKE_CASE )
eval(**SCREAMING_SNAKE_CASE ).block_until_ready()
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ):
A : List[Any] = FlaxAutoModel.from_pretrained('''bert-base''' )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
A : Optional[int] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE , revision='''aaaaaa''' )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ):
A : List[str] = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE , '''Use `from_pt=True` to load this model''' ):
A : Any = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
| 3 | 0 |
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
lowercase__ : Union[str, Any] = {'vocab_file': 'vocab.txt'}
lowercase__ : List[Any] = {
'vocab_file': {
'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt',
},
}
lowercase__ : Optional[int] = {
'openbmb/cpm-ant-10b': 1_0_2_4,
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Tuple:
lowerCAmelCase = collections.OrderedDict()
with open(snake_case__ , '''r''' , encoding='''utf-8''' ) as reader:
lowerCAmelCase = reader.readlines()
for index, token in enumerate(snake_case__ ):
lowerCAmelCase = token.rstrip('''\n''' )
lowerCAmelCase = index
return vocab
class lowercase_ ( __snake_case ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE=200 ) ->Union[str, Any]:
lowerCAmelCase = vocab
lowerCAmelCase = unk_token
lowerCAmelCase = max_input_chars_per_word
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
lowerCAmelCase = list(__SCREAMING_SNAKE_CASE )
if len(__SCREAMING_SNAKE_CASE ) > self.max_input_chars_per_word:
return [self.unk_token]
lowerCAmelCase = 0
lowerCAmelCase = []
while start < len(__SCREAMING_SNAKE_CASE ):
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = None
while start < end:
lowerCAmelCase = ''''''.join(chars[start:end] )
if substr in self.vocab:
lowerCAmelCase = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = end
return sub_tokens
class lowercase_ ( __snake_case ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = VOCAB_FILES_NAMES
UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str = ["""input_ids""", """attention_mask"""]
UpperCAmelCase_ : Any = False
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<d>" , __SCREAMING_SNAKE_CASE="</d>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="</n>" , __SCREAMING_SNAKE_CASE="</_>" , __SCREAMING_SNAKE_CASE="left" , **__SCREAMING_SNAKE_CASE , ) ->Union[str, Any]:
requires_backends(self , ['''jieba'''] )
super().__init__(
bod_token=__SCREAMING_SNAKE_CASE , eod_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , line_token=__SCREAMING_SNAKE_CASE , space_token=__SCREAMING_SNAKE_CASE , padding_side=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = bod_token
lowerCAmelCase = eod_token
lowerCAmelCase = load_vocab(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.encoder[space_token]
lowerCAmelCase = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __SCREAMING_SNAKE_CASE : x[1] ) )
lowerCAmelCase = {v: k for k, v in self.encoder.items()}
lowerCAmelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
return self.encoder[self.bod_token]
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return self.encoder[self.eod_token]
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
return self.encoder["\n"]
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return len(self.encoder )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return dict(self.encoder , **self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = []
for x in jieba.cut(__SCREAMING_SNAKE_CASE , cut_all=__SCREAMING_SNAKE_CASE ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) )
return output_tokens
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str:
lowerCAmelCase = [i for i in token_ids if i >= 0]
lowerCAmelCase = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[Any]:
return token in self.encoder
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
return "".join(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Union[str, Any]:
return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple[str]:
if os.path.isdir(__SCREAMING_SNAKE_CASE ):
lowerCAmelCase = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
lowerCAmelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
lowerCAmelCase = 0
if " " in self.encoder:
lowerCAmelCase = self.encoder[''' ''']
del self.encoder[" "]
if "\n" in self.encoder:
lowerCAmelCase = self.encoder['''\n''']
del self.encoder["\n"]
lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __SCREAMING_SNAKE_CASE : x[1] ) )
with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
''' Please check that the vocabulary is not corrupted!''' )
lowerCAmelCase = token_index
writer.write(token + '''\n''' )
index += 1
return (vocab_file,)
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]:
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) ->List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE )
if token_ids_a is not None:
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE ))
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE ))
| 338 |
'''simple docstring'''
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase : Union[str, Any] = {
'text_branch': 'text_model',
'audio_branch': 'audio_model.audio_encoder',
'attn': 'attention.self',
'self.proj': 'output.dense',
'attention.self_mask': 'attn_mask',
'mlp.fc1': 'intermediate.dense',
'mlp.fc2': 'output.dense',
'norm1': 'layernorm_before',
'norm2': 'layernorm_after',
'bn0': 'batch_norm',
}
lowercase : Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc')
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : Tuple = create_model(
'''HTSAT-tiny''' , '''roberta''' , snake_case__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=snake_case__ , fusion_type='''aff_2d''' if enable_fusion else None , )
return model, model_cfg
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = {}
A : str = R'''.*sequential.(\d+).*'''
A : Union[str, Any] = R'''.*_projection.(\d+).*'''
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
A : Any = key.replace(snake_case__ , snake_case__ )
if re.match(snake_case__ , snake_case__ ):
# replace sequential layers with list
A : Any = re.match(snake_case__ , snake_case__ ).group(1 )
A : List[str] = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case__ )//3}.linear.' )
elif re.match(snake_case__ , snake_case__ ):
A : Union[str, Any] = int(re.match(snake_case__ , snake_case__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
A : str = 1 if projecton_layer == 0 else 2
A : Optional[Any] = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' )
if "audio" and "qkv" in key:
# split qkv into query key and value
A : int = value
A : List[Any] = mixed_qkv.size(0 ) // 3
A : Union[str, Any] = mixed_qkv[:qkv_dim]
A : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2]
A : Optional[int] = mixed_qkv[qkv_dim * 2 :]
A : Tuple = query_layer
A : Union[str, Any] = key_layer
A : Optional[int] = value_layer
else:
A : Dict = value
return model_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : int = init_clap(snake_case__ , enable_fusion=snake_case__ )
clap_model.eval()
A : str = clap_model.state_dict()
A : Union[str, Any] = rename_state_dict(snake_case__ )
A : Tuple = ClapConfig()
A : str = enable_fusion
A : str = ClapModel(snake_case__ )
# ignore the spectrogram embedding layer
model.load_state_dict(snake_case__ , strict=snake_case__ )
model.save_pretrained(snake_case__ )
transformers_config.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase : List[str] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not')
lowercase : Tuple = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 3 | 0 |
import sys
def _UpperCAmelCase ( a__):
'''simple docstring'''
a_ : Union[str, Any] = len(snake_case__)
a_ : Union[str, Any] = [[0 for x in range(snake_case__)] for x in range(snake_case__)]
a_ : List[Any] = [[0 for x in range(snake_case__)] for x in range(snake_case__)]
for chain_length in range(2 , snake_case__):
for a in range(1 , n - chain_length + 1):
a_ : Any = a + chain_length - 1
a_ : str = sys.maxsize
for c in range(snake_case__ , snake_case__):
a_ : Optional[Any] = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
a_ : Optional[Any] = cost
a_ : Dict = c
return matrix, sol
def _UpperCAmelCase ( a__ , a__ , a__):
'''simple docstring'''
if i == j:
print("""A""" + str(snake_case__) , end=""" """)
else:
print("""(""" , end=""" """)
print_optiomal_solution(snake_case__ , snake_case__ , optimal_solution[i][j])
print_optiomal_solution(snake_case__ , optimal_solution[i][j] + 1 , snake_case__)
print(""")""" , end=""" """)
def _UpperCAmelCase ( ):
'''simple docstring'''
a_ : List[Any] = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5]
a_ : Tuple = len(snake_case__)
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
a_ : Dict = matrix_chain_order(snake_case__)
print("""No. of Operation required: """ + str(matrix[1][n - 1]))
print_optiomal_solution(snake_case__ , 1 , n - 1)
if __name__ == "__main__":
main()
| 248 |
'''simple docstring'''
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
lowercase : Dict = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
if not is_sharded:
A : Union[str, Any] = os.path.abspath(snake_case__ )
logger.info(F'Loading PyTorch weights from {pt_path}' )
A : Any = torch.load(snake_case__ , map_location='''cpu''' )
logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' )
A : List[str] = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
A : Any = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ )
return flax_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ):
'''simple docstring'''
def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool:
return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0
# layer norm
A : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
A : Tuple = pt_tuple_key[:-1] + ('''mean''',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
A : Dict = pt_tuple_key[:-1] + ('''var''',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# embedding
A : Any = pt_tuple_key[:-1] + ('''embedding''',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
A : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ):
A : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
A : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ):
A : str = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
A : Dict = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
A : List[Any] = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
A : Dict = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
A : List[Any] = pt_tuple_key[-2] + '''_g'''
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
A : List[str] = pt_tuple_key[-2] + '''_v'''
if name is not None:
A : int = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()}
A : int = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
A : List[str] = flax_model.params['''params''']
else:
A : Dict = flax_model.params
A : List[Any] = flatten_dict(snake_case__ )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
A : List[str] = flatten_dict(flax_model.params['''batch_stats'''] )
random_flax_state_dict.update(snake_case__ )
A : int = {}
A : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
A : int = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
A : str = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
A : Union[str, Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
A : Any = pt_tuple_key[1:]
# Correctly rename weight parameters
A, A : Dict = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
A : Any = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
A : int = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
A : Tuple = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
A : List[str] = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
# Load the index
A : Union[str, Any] = {}
for shard_file in shard_filenames:
# load using msgpack utils
A : List[str] = torch.load(snake_case__ )
A : int = {k: v.numpy() for k, v in pt_state_dict.items()}
A : Tuple = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
A : Optional[int] = flax_model.params['''params''']
A : List[Any] = flatten_dict(snake_case__ )
random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) )
else:
A : Dict = flax_model.params
A : Tuple = flatten_dict(snake_case__ )
A : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
A : List[str] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
A : int = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
A : List[str] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
A : Union[str, Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
A, A : Any = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
A : int = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
A : int = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
A : Optional[int] = jnp.asarray(snake_case__ )
continue
if "var" in flax_key[-1]:
A : Optional[int] = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
A : Optional[Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = os.path.abspath(snake_case__ )
logger.info(F'Loading Flax weights from {flax_checkpoint_path}' )
# import correct flax class
A : List[str] = getattr(snake_case__ , '''Flax''' + model.__class__.__name__ )
# load flax weight dict
with open(snake_case__ , '''rb''' ) as state_f:
try:
A : int = from_bytes(snake_case__ , state_f.read() )
except UnpicklingError:
raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' )
return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
A : List[str] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values()
if any(snake_case__ ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
A : Optional[Any] = jax.tree_util.tree_map(
lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ )
A : Union[str, Any] = flatten_dict(snake_case__ )
A : List[Any] = pt_model.state_dict()
A : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
A : Tuple = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
A : int = []
A : Any = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
A : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix
A : int = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
A : List[str] = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
A : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict:
# conv layer
A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
A : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict:
# linear layer
A : Tuple = flax_key_tuple[:-1] + ('''weight''',)
A : Tuple = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
A : Tuple = flax_key_tuple[:-1] + ('''running_mean''',)
elif "var" in flax_key_tuple[-1]:
A : Tuple = flax_key_tuple[:-1] + ('''running_var''',)
if "batch_stats" in flax_state:
A : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
A : Union[str, Any] = '''.'''.join(snake_case__ )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
A : int = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
A : Optional[int] = key.split('''.''' )
A : Dict = None
if key_components[-3::2] == ["parametrizations", "original0"]:
A : List[str] = key_components[-2] + '''_g'''
elif key_components[-3::2] == ["parametrizations", "original1"]:
A : List[Any] = key_components[-2] + '''_v'''
if name is not None:
A : str = key_components[:-3] + [name]
A : Optional[Any] = '''.'''.join(snake_case__ )
A : Optional[Any] = key
if flax_key in special_pt_names:
A : Optional[Any] = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '
F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
else:
# add weight to pytorch dict
A : Dict = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor
A : Dict = torch.from_numpy(snake_case__ )
# remove from missing keys
missing_keys.remove(snake_case__ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(snake_case__ )
pt_model.load_state_dict(snake_case__ )
# re-transform missing_keys to list
A : List[Any] = list(snake_case__ )
if len(snake_case__ ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'
F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
else:
logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' )
if len(snake_case__ ) > 0:
logger.warning(
F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'
F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'
''' use it for predictions and inference.''' )
else:
logger.warning(
F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n'
'''If your task is similar to the task the model of the checkpoint was trained on, '''
F'you can already use {pt_model.__class__.__name__} for predictions without further training.' )
return pt_model
| 3 | 0 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 |
'''simple docstring'''
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
lowercase : Optional[int] = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
lowercase : Optional[Any] = {
'169M': 7_68,
'430M': 10_24,
'1B5': 20_48,
'3B': 25_60,
'7B': 40_96,
'14B': 51_20,
}
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[Any] = list(state_dict.keys() )
for name in state_dict_keys:
A : str = state_dict.pop(snake_case__ )
# emb -> embedding
if name.startswith('''emb.''' ):
A : Optional[Any] = name.replace('''emb.''' , '''embeddings.''' )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('''blocks.0.ln0''' ):
A : Union[str, Any] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' )
# att -> attention
A : int = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , snake_case__ )
# ffn -> feed_forward
A : List[Any] = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , snake_case__ )
# time_mix_k -> time_mix_key and reshape
if name.endswith('''.time_mix_k''' ):
A : List[str] = name.replace('''.time_mix_k''' , '''.time_mix_key''' )
# time_mix_v -> time_mix_value and reshape
if name.endswith('''.time_mix_v''' ):
A : Union[str, Any] = name.replace('''.time_mix_v''' , '''.time_mix_value''' )
# time_mix_r -> time_mix_key and reshape
if name.endswith('''.time_mix_r''' ):
A : Union[str, Any] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' )
if name != "head.weight":
A : List[Any] = '''rwkv.''' + name
A : Dict = weight
return state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=None ):
'''simple docstring'''
if tokenizer_file is None:
print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' )
A : int = 5_0277
A : Optional[int] = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' )
else:
A : str = PreTrainedTokenizerFast(tokenizer_file=snake_case__ )
A : Any = len(snake_case__ )
tokenizer.save_pretrained(snake_case__ )
# 2. Build the config
A : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
A : List[str] = candidate
break
if size is None:
raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' )
if size not in possible_sizes:
raise ValueError(F'`size` should be one of {possible_sizes}, got {size}.' )
A : Any = RwkvConfig(
vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(snake_case__ )
# 3. Download model file then convert state_dict
A : Union[str, Any] = hf_hub_download(snake_case__ , snake_case__ )
A : Tuple = torch.load(snake_case__ , map_location='''cpu''' )
A : List[Any] = convert_state_dict(snake_case__ )
# 4. Split in shards and save
A, A : List[str] = shard_checkpoint(snake_case__ )
for shard_file, shard in shards.items():
torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
if index is not None:
A : Dict = os.path.join(snake_case__ , snake_case__ )
# Save the index as well
with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f:
A : List[Any] = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n'''
f.write(snake_case__ )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' )
A : List[Any] = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
A : Union[str, Any] = torch.load(os.path.join(snake_case__ , snake_case__ ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' )
A : int = AutoModelForCausalLM.from_pretrained(snake_case__ )
model.push_to_hub(snake_case__ , max_shard_size='''2GB''' )
tokenizer.push_to_hub(snake_case__ )
if __name__ == "__main__":
lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
lowercase : Union[str, Any] = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 3 | 0 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def UpperCAmelCase_ ( self : int ) -> List[str]:
"""simple docstring"""
snake_case_ : Optional[int] = 0
def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : int = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' )
self.assertIsInstance(_A , _A )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : Dict = Path(_A ) / '''preprocessor_config.json'''
snake_case_ : Optional[Any] = Path(_A ) / '''config.json'''
json.dump(
{'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w' ) , )
json.dump({'model_type': 'clip'} , open(_A , 'w' ) )
snake_case_ : Optional[Any] = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
def UpperCAmelCase_ ( self : Optional[int] ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : int = Path(_A ) / '''preprocessor_config.json'''
snake_case_ : Tuple = Path(_A ) / '''config.json'''
json.dump(
{'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w' ) , )
json.dump({'model_type': 'clip'} , open(_A , 'w' ) )
snake_case_ : List[str] = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : List[Any] = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case_ : Any = Path(_A ) / '''preprocessor_config.json'''
snake_case_ : List[Any] = Path(_A ) / '''config.json'''
json.dump(
{'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w' ) , )
json.dump({'model_type': 'clip'} , open(_A , 'w' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case_ : List[str] = AutoImageProcessor.from_pretrained(_A ).to_dict()
config_dict.pop('image_processor_type' )
snake_case_ : List[str] = CLIPImageProcessor(**_A )
# save in new folder
model_config.save_pretrained(_A )
config.save_pretrained(_A )
snake_case_ : Optional[int] = AutoImageProcessor.from_pretrained(_A )
# make sure private variable is not incorrectly saved
snake_case_ : int = json.loads(config.to_json_string() )
self.assertTrue('_processor_class' not in dict_as_saved )
self.assertIsInstance(_A , _A )
def UpperCAmelCase_ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : Optional[Any] = Path(_A ) / '''preprocessor_config.json'''
json.dump(
{'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w' ) , )
snake_case_ : Tuple = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
def UpperCAmelCase_ ( self : Any ) -> Tuple:
"""simple docstring"""
with self.assertRaisesRegex(
_A , 'clip-base is not a local folder and is not a valid model identifier' ):
snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained('clip-base' )
def UpperCAmelCase_ ( self : str ) -> Any:
"""simple docstring"""
with self.assertRaisesRegex(
_A , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ):
snake_case_ : str = AutoImageProcessor.from_pretrained(_A , revision='aaaaaa' )
def UpperCAmelCase_ ( self : List[str] ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
_A , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ):
snake_case_ : Tuple = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' )
def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaises(_A ):
snake_case_ : Dict = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_A ):
snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A )
snake_case_ : List[Any] = AutoImageProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A )
self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_A )
snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A )
self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' )
def UpperCAmelCase_ ( self : List[str] ) -> Tuple:
"""simple docstring"""
try:
AutoConfig.register('custom' , _A )
AutoImageProcessor.register(_A , _A )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_A ):
AutoImageProcessor.register(_A , _A )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : Any = Path(_A ) / '''preprocessor_config.json'''
snake_case_ : Any = Path(_A ) / '''config.json'''
json.dump(
{'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w' ) , )
json.dump({'model_type': 'clip'} , open(_A , 'w' ) )
snake_case_ : Any = CustomImageProcessor.from_pretrained(_A )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_A )
snake_case_ : List[str] = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCAmelCase_ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
class SCREAMING_SNAKE_CASE_ ( __snake_case ):
__magic_name__: Optional[int] = True
try:
AutoConfig.register('custom' , _A )
AutoImageProcessor.register(_A , _A )
# If remote code is not set, the default is to use local
snake_case_ : List[Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' )
self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A )
self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case_ : int = AutoImageProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A )
self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' )
self.assertTrue(not hasattr(_A , 'is_local' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 327 |
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(__snake_case )
class A ( __snake_case ):
def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
self.check_model_type(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A, A : Dict = {}, {}
if padding is not None:
A : List[str] = padding
if truncation is not None:
A : Dict = truncation
if top_k is not None:
A : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = {'''image''': image, '''question''': question}
else:
A : Any = image
A : Any = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
return results
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
A : Union[str, Any] = load_image(inputs['''image'''] )
A : Optional[Any] = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE )
A : Dict = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(SCREAMING_SNAKE_CASE )
return model_inputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : List[Any] = self.model(**SCREAMING_SNAKE_CASE )
return model_outputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> int:
"""simple docstring"""
if top_k > self.model.config.num_labels:
A : Dict = self.model.config.num_labels
if self.framework == "pt":
A : Optional[int] = model_outputs.logits.sigmoid()[0]
A, A : int = probs.topk(SCREAMING_SNAKE_CASE )
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
A : int = scores.tolist()
A : List[str] = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
| 3 | 0 |
"""simple docstring"""
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
_snake_case = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase__ ( ):
'''simple docstring'''
_a : Tuple = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_a : str = parser.parse_args()
return args.f
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__="eval" ):
'''simple docstring'''
_a : str = os.path.join(snake_case__ , F"""{split}_results.json""" )
if os.path.exists(snake_case__ ):
with open(snake_case__ , """r""" ) as f:
return json.load(snake_case__ )
raise ValueError(F"""can\'t find {path}""" )
_snake_case = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class UpperCamelCase ( __snake_case ):
def _lowercase ( self : List[str] ) -> Optional[Any]:
_a : List[Any] = self.get_auto_remove_tmp_dir()
_a : int = f"""\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n """.split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_flax_glue.main()
_a : Any = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 )
@slow
def _lowercase ( self : int ) -> Union[str, Any]:
_a : str = self.get_auto_remove_tmp_dir()
_a : Dict = f"""\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n """.split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_clm_flax.main()
_a : Optional[Any] = get_results(UpperCAmelCase__ )
self.assertLess(result["""eval_perplexity"""] , 100 )
@slow
def _lowercase ( self : Dict ) -> Any:
_a : int = self.get_auto_remove_tmp_dir()
_a : Optional[Any] = f"""\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n """.split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_summarization_flax.main()
_a : Any = get_results(UpperCAmelCase__ , split="""test""" )
self.assertGreaterEqual(result["""test_rouge1"""] , 10 )
self.assertGreaterEqual(result["""test_rouge2"""] , 2 )
self.assertGreaterEqual(result["""test_rougeL"""] , 7 )
self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 )
@slow
def _lowercase ( self : str ) -> Union[str, Any]:
_a : int = self.get_auto_remove_tmp_dir()
_a : Optional[int] = f"""\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n """.split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_mlm_flax.main()
_a : str = get_results(UpperCAmelCase__ )
self.assertLess(result["""eval_perplexity"""] , 42 )
@slow
def _lowercase ( self : Optional[int] ) -> Optional[Any]:
_a : Optional[Any] = self.get_auto_remove_tmp_dir()
_a : List[Any] = f"""\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n """.split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_ta_mlm_flax.main()
_a : Optional[Any] = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.4_2 )
@slow
def _lowercase ( self : str ) -> str:
_a : List[str] = 7 if get_gpu_count() > 1 else 2
_a : Optional[int] = self.get_auto_remove_tmp_dir()
_a : Tuple = f"""\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n """.split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_flax_ner.main()
_a : str = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 )
self.assertGreaterEqual(result["""eval_f1"""] , 0.3 )
@slow
def _lowercase ( self : int ) -> Dict:
_a : Any = self.get_auto_remove_tmp_dir()
_a : List[str] = f"""\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n """.split()
with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ):
run_qa.main()
_a : List[Any] = get_results(UpperCAmelCase__ )
self.assertGreaterEqual(result["""eval_f1"""] , 30 )
self.assertGreaterEqual(result["""eval_exact"""] , 30 )
| 294 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase : Union[str, Any] = logging.get_logger(__name__)
lowercase : str = {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json',
'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json',
'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json',
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json',
'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json',
'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json',
'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json',
'cl-tohoku/bert-base-japanese-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'
),
'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class A ( __snake_case ):
__magic_name__ = '''bert'''
def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]:
"""simple docstring"""
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = vocab_size
A : Optional[Any] = hidden_size
A : List[Any] = num_hidden_layers
A : List[str] = num_attention_heads
A : Dict = hidden_act
A : Optional[Any] = intermediate_size
A : List[Any] = hidden_dropout_prob
A : List[Any] = attention_probs_dropout_prob
A : Optional[Any] = max_position_embeddings
A : List[str] = type_vocab_size
A : Dict = initializer_range
A : str = layer_norm_eps
A : int = position_embedding_type
A : Dict = use_cache
A : str = classifier_dropout
class A ( __snake_case ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A : Optional[int] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 3 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_a : Any = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Any = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Optional[Any] = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_a : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 44 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : str = BeautifulSoup(requests.get(snake_case__ , params=snake_case__ ).content , '''html.parser''' )
A : Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A : Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
lowercase : str = {
'title': (
'Precisely geometry controlled microsupercapacitors for ultrahigh areal '
'capacitance, volumetric capacitance, and energy density'
),
'journal': 'Chem. Mater.',
'volume': 30,
'pages': '3979-3990',
'year': 20_18,
'hl': 'en',
}
print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
| 3 | 0 |
from __future__ import annotations
from typing import Any
class lowercase__ ( __snake_case):
pass
class lowercase__ :
def __init__( self : str , UpperCamelCase__ : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = data
SCREAMING_SNAKE_CASE : Node | None = None
def __iter__( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self
SCREAMING_SNAKE_CASE : Union[str, Any] = []
while node:
if node in visited:
raise ContainsLoopError
visited.append(UpperCamelCase__ )
yield node.data
SCREAMING_SNAKE_CASE : Optional[int] = node.next_node
@property
def __A ( self : List[str] ):
'''simple docstring'''
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
__UpperCamelCase : int = Node(1)
__UpperCamelCase : Union[str, Any] = Node(2)
__UpperCamelCase : List[str] = Node(3)
__UpperCamelCase : Any = Node(4)
print(root_node.has_loop) # False
__UpperCamelCase : List[Any] = root_node.next_node
print(root_node.has_loop) # True
__UpperCamelCase : Optional[Any] = Node(5)
__UpperCamelCase : Dict = Node(6)
__UpperCamelCase : List[Any] = Node(5)
__UpperCamelCase : List[str] = Node(6)
print(root_node.has_loop) # False
__UpperCamelCase : Tuple = Node(1)
print(root_node.has_loop) # False
| 182 |
'''simple docstring'''
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Any = None
A : Optional[Any] = None
A : Tuple = graph
self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Dict = len(SCREAMING_SNAKE_CASE )
A : Optional[Any] = None
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if sources is int:
A : Dict = [sources]
if sinks is int:
A : str = [sinks]
if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0:
return
A : Optional[int] = sources[0]
A : Union[str, Any] = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1:
A : Optional[int] = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
A : Dict = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
A : Dict = max_input_flow
A : Tuple = 0
A : Tuple = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
A : Optional[Any] = max_input_flow
A : Optional[Any] = size - 1
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
if self.maximum_flow_algorithm is None:
raise Exception('''You need to set maximum flow algorithm before.''' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : List[Any] = algorithm(self )
class A :
def __init__( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = flow_network
A : Optional[Any] = flow_network.verticesCount
A : Tuple = flow_network.sourceIndex
A : Dict = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
A : str = flow_network.graph
A : Optional[Any] = False
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
if not self.executed:
self._algorithm()
A : Optional[int] = True
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
pass
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__(SCREAMING_SNAKE_CASE )
# use this to save your result
A : List[str] = -1
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
if not self.executed:
raise Exception('''You should execute algorithm before using its result!''' )
return self.maximum_flow
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
super().__init__(SCREAMING_SNAKE_CASE )
A : Optional[Any] = [[0] * self.verticies_count for i in range(self.verticies_count )]
A : Union[str, Any] = [0] * self.verticies_count
A : List[Any] = [0] * self.verticies_count
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
A : Optional[Any] = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
A : Union[str, Any] = 0
while i < len(SCREAMING_SNAKE_CASE ):
A : str = vertices_list[i]
A : List[str] = self.heights[vertex_index]
self.process_vertex(SCREAMING_SNAKE_CASE )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) )
A : int = 0
else:
i += 1
A : Optional[Any] = sum(self.preflow[self.source_index] )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.relabel(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Dict = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Dict = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
A : Dict = self.heights[to_index]
if min_height is not None:
A : Dict = min_height + 1
if __name__ == "__main__":
lowercase : Optional[int] = [0]
lowercase : List[Any] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
lowercase : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
lowercase : List[str] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
lowercase : List[str] = flow_network.find_maximum_flow()
print(f'''maximum flow is {maximum_flow}''')
| 3 | 0 |
'''simple docstring'''
def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' )
for i in range(snake_case__ ):
for j in range(snake_case__ ):
if dist[i][j] != float('''inf''' ):
print(int(dist[i][j] ) , end='''\t''' )
else:
print('''INF''' , end='''\t''' )
print()
def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] ):
"""simple docstring"""
lowercase_ : Optional[Any] = [[float('''inf''' ) for _ in range(snake_case__ )] for _ in range(snake_case__ )]
for i in range(snake_case__ ):
for j in range(snake_case__ ):
lowercase_ : List[Any] = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(snake_case__ ):
# looping through rows of graph array
for i in range(snake_case__ ):
# looping through columns of graph array
for j in range(snake_case__ ):
if (
dist[i][k] != float('''inf''' )
and dist[k][j] != float('''inf''' )
and dist[i][k] + dist[k][j] < dist[i][j]
):
lowercase_ : List[str] = dist[i][k] + dist[k][j]
_print_dist(snake_case__ , snake_case__ )
return dist, v
if __name__ == "__main__":
_lowercase : Dict = int(input("Enter number of vertices: "))
_lowercase : Union[str, Any] = int(input("Enter number of edges: "))
_lowercase : int = [[float("inf") for i in range(v)] for j in range(v)]
for i in range(v):
_lowercase : Any = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print("\nEdge ", i + 1)
_lowercase : Union[str, Any] = int(input("Enter source:"))
_lowercase : Optional[int] = int(input("Enter destination:"))
_lowercase : Tuple = float(input("Enter weight:"))
_lowercase : List[str] = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 93 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ = 10 ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ) or n < 0:
raise ValueError('''Invalid input''' )
A : List[str] = 10**n
A : Tuple = 2_8433 * (pow(2 , 783_0457 , snake_case__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f'''{solution(10) = }''')
| 3 | 0 |
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__lowerCamelCase : Optional[int] = logging.get_logger(__name__)
class __snake_case ( __snake_case ):
lowerCAmelCase_ = ["input_features", "attention_mask"]
def __init__( self : Tuple , _lowercase : List[Any]=80 , _lowercase : str=1_60_00 , _lowercase : str=80 , _lowercase : Union[str, Any]=0.0 , _lowercase : Any=True , _lowercase : str=True , _lowercase : Optional[Any]=True , **_lowercase : str , ):
"""simple docstring"""
super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase )
SCREAMING_SNAKE_CASE__ = num_mel_bins
SCREAMING_SNAKE_CASE__ = do_ceptral_normalize
SCREAMING_SNAKE_CASE__ = normalize_means
SCREAMING_SNAKE_CASE__ = normalize_vars
SCREAMING_SNAKE_CASE__ = True
def __a ( self : int , _lowercase : Optional[Any] , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
SCREAMING_SNAKE_CASE__ = torch.from_numpy(_lowercase ).unsqueeze(0 )
SCREAMING_SNAKE_CASE__ = ta_kaldi.fbank(_lowercase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def __a ( _lowercase : Any , _lowercase : List[str] , _lowercase : List[str] = True , _lowercase : Tuple = True , _lowercase : Optional[Any] = 0.0 , ):
"""simple docstring"""
if normalize_means:
SCREAMING_SNAKE_CASE__ = x[:input_length].mean(axis=0 )
SCREAMING_SNAKE_CASE__ = np.subtract(_lowercase , _lowercase )
if normalize_vars:
SCREAMING_SNAKE_CASE__ = x[:input_length].std(axis=0 )
SCREAMING_SNAKE_CASE__ = np.divide(_lowercase , _lowercase )
if input_length < x.shape[0]:
SCREAMING_SNAKE_CASE__ = padding_value
# make sure array is in float32
SCREAMING_SNAKE_CASE__ = x.astype(np.floataa )
return x
def __a ( self : Tuple , _lowercase : Any , _lowercase : List[Any] = None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(_lowercase , _lowercase , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(_lowercase , _lowercase )
]
def __call__( self : Optional[Any] , _lowercase : List[Any] , _lowercase : List[Any] = False , _lowercase : str = None , _lowercase : Union[str, Any] = False , _lowercase : Any = None , _lowercase : Tuple = None , _lowercase : Optional[Any] = None , _lowercase : Union[str, Any] = None , **_lowercase : Optional[int] , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"""
f""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
SCREAMING_SNAKE_CASE__ = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
SCREAMING_SNAKE_CASE__ = is_batched_numpy or (
isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_lowercase , np.ndarray ):
SCREAMING_SNAKE_CASE__ = np.asarray(_lowercase , dtype=np.floataa )
elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE__ = [raw_speech]
# extract fbank features
SCREAMING_SNAKE_CASE__ = [self._extract_fbank_features(_lowercase ) for waveform in raw_speech]
# convert into correct format for padding
SCREAMING_SNAKE_CASE__ = BatchFeature({"""input_features""": features} )
SCREAMING_SNAKE_CASE__ = self.pad(
_lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , **_lowercase , )
# make sure list is in array format
SCREAMING_SNAKE_CASE__ = padded_inputs.get("""input_features""" )
if isinstance(input_features[0] , _lowercase ):
SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_features]
SCREAMING_SNAKE_CASE__ = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
SCREAMING_SNAKE_CASE__ = (
np.array(_lowercase , dtype=np.intaa )
if self._get_padding_strategies(_lowercase , max_length=_lowercase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
SCREAMING_SNAKE_CASE__ = self.normalize(
padded_inputs["""input_features"""] , attention_mask=_lowercase )
if return_tensors is not None:
SCREAMING_SNAKE_CASE__ = padded_inputs.convert_to_tensors(_lowercase )
return padded_inputs
| 219 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
lowercase : List[str] = logging.get_logger(__name__)
lowercase : str = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class A ( __snake_case ):
__magic_name__ = '''gpt_neo'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self , SCREAMING_SNAKE_CASE=50257 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=24 , SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=50256 , SCREAMING_SNAKE_CASE=50256 , **SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
A : Union[str, Any] = vocab_size
A : Optional[Any] = max_position_embeddings
A : Dict = hidden_size
A : Optional[Any] = num_layers
A : Tuple = num_heads
A : int = intermediate_size
A : Optional[Any] = window_size
A : List[Any] = activation_function
A : Union[str, Any] = resid_dropout
A : Any = embed_dropout
A : List[Any] = attention_dropout
A : str = classifier_dropout
A : List[Any] = layer_norm_epsilon
A : str = initializer_range
A : List[str] = use_cache
A : Optional[int] = bos_token_id
A : List[Any] = eos_token_id
A : int = attention_types
A : int = self.expand_attention_types_params(SCREAMING_SNAKE_CASE )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.attention_layers)` == `config.num_layers` '''
F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, '
F'`config.num_layers = {self.num_layers}`. '
'''`config.attention_layers` is prepared using `config.attention_types`. '''
'''Please verify the value of `config.attention_types` argument.''' )
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
@staticmethod
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : List[str] = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
A : Tuple = input.size()
A : Union[str, Any] = len(snake_case__ )
A : List[str] = shape[dimension]
A : Union[str, Any] = torch.arange(0 , snake_case__ , snake_case__ )
A : List[str] = torch.div(sizedim - size , snake_case__ , rounding_mode='''floor''' ) + 1
A : Optional[int] = torch.arange(snake_case__ ) + low_indices[:min_length][:, None]
A : str = [slice(snake_case__ )] * rank
A : List[Any] = indices
A : Union[str, Any] = input[s]
A : List[str] = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
import torch
A : List[str] = torch.arange(1 , snake_case__ )
A : Optional[int] = torch.remainder(snake_case__ , snake_case__ )
A : Optional[int] = remainders == 0
A : Optional[Any] = candidates[divisor_indices]
A : Optional[int] = torch.max(snake_case__ )
return largest_divisor, torch.div(snake_case__ , snake_case__ , rounding_mode='''floor''' )
class A ( __snake_case ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
A : Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction='''inputs''' )
A : Optional[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
A : Dict = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return self._config.num_heads
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]:
"""simple docstring"""
A : List[str] = super(SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs(
SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
A : Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
A, A : Dict = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
A : str = seqlen + 2
A : List[Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
A : Any = [
(torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
A : str = common_inputs['''attention_mask''']
if self.use_past:
A : Optional[int] = ordered_inputs['''attention_mask'''].dtype
A : List[str] = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 )
return ordered_inputs
@property
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return 13
| 3 | 0 |
import functools
from typing import Any
def lowerCamelCase__ ( __lowerCAmelCase : Any , __lowerCAmelCase : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or len(snake_case__ ) == 0:
raise ValueError("the string should be not empty string" )
if not isinstance(snake_case__ , snake_case__ ) or not all(
isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0 for item in words ):
raise ValueError("the words should be a list of non-empty strings" )
# Build trie
lowerCAmelCase_ = {}
lowerCAmelCase_ = '''WORD_KEEPER'''
for word in words:
lowerCAmelCase_ = trie
for c in word:
if c not in trie_node:
lowerCAmelCase_ = {}
lowerCAmelCase_ = trie_node[c]
lowerCAmelCase_ = True
lowerCAmelCase_ = len(snake_case__ )
# Dynamic programming method
@functools.cache
def is_breakable(__lowerCAmelCase : Dict ) -> bool:
if index == len_string:
return True
lowerCAmelCase_ = trie
for i in range(snake_case__ , snake_case__ ):
lowerCAmelCase_ = trie_node.get(string[i] , snake_case__ )
if trie_node is None:
return False
if trie_node.get(snake_case__ , snake_case__ ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 231 |
'''simple docstring'''
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = []
A : Union[str, Any] = []
for i in range(self.num_layers ):
A : Any = self.in_channels if i == 0 else self.out_channels
A : Optional[Any] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : Optional[int] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = resnets
A : Union[str, Any] = attentions
if self.add_downsample:
A : int = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[Any] = ()
for resnet, attn in zip(self.resnets , self.attentions ):
A : int = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Dict = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
A : Optional[Any] = self.downsamplers_a(SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[Any] = []
for i in range(self.num_layers ):
A : Optional[Any] = self.in_channels if i == 0 else self.out_channels
A : List[str] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : Dict = resnets
if self.add_downsample:
A : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
"""simple docstring"""
A : str = ()
for resnet in self.resnets:
A : Optional[int] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
A : Optional[int] = self.downsamplers_a(SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = []
A : Optional[int] = []
for i in range(self.num_layers ):
A : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : Dict = self.prev_output_channel if i == 0 else self.out_channels
A : List[str] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : int = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Dict = resnets
A : Optional[Any] = attentions
if self.add_upsample:
A : Optional[int] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Optional[int]:
"""simple docstring"""
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
A : List[str] = res_hidden_states_tuple[-1]
A : int = res_hidden_states_tuple[:-1]
A : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Tuple = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
if self.add_upsample:
A : Dict = self.upsamplers_a(SCREAMING_SNAKE_CASE )
return hidden_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = True
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : int = []
for i in range(self.num_layers ):
A : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : List[str] = self.prev_output_channel if i == 0 else self.out_channels
A : str = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : List[Any] = resnets
if self.add_upsample:
A : Optional[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Tuple:
"""simple docstring"""
for resnet in self.resnets:
# pop res hidden states
A : Optional[int] = res_hidden_states_tuple[-1]
A : Optional[Any] = res_hidden_states_tuple[:-1]
A : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Optional[Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
if self.add_upsample:
A : List[str] = self.upsamplers_a(SCREAMING_SNAKE_CASE )
return hidden_states
class A ( nn.Module ):
__magic_name__ = 42
__magic_name__ = 0.0
__magic_name__ = 1
__magic_name__ = 1
__magic_name__ = False
__magic_name__ = False
__magic_name__ = jnp.floataa
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : str = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
A : List[Any] = []
for _ in range(self.num_layers ):
A : int = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE )
A : List[str] = resnets
A : List[str] = attentions
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict:
"""simple docstring"""
A : Optional[Any] = self.resnets[0](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
A : Optional[int] = attn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , deterministic=SCREAMING_SNAKE_CASE )
return hidden_states
| 3 | 0 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]:
"""simple docstring"""
return int((input_a, input_a).count(0 ) == 0 )
def _SCREAMING_SNAKE_CASE () -> Dict:
"""simple docstring"""
assert and_gate(0 , 0 ) == 0
assert and_gate(0 , 1 ) == 0
assert and_gate(1 , 0 ) == 0
assert and_gate(1 , 1 ) == 1
if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1))
| 2 |
'''simple docstring'''
import os
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : List[Any] = os.path.join(os.path.dirname(snake_case__ ) , '''num.txt''' )
with open(snake_case__ ) as file_hand:
return str(sum(int(snake_case__ ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 3 | 0 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[Any]:
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
lowerCAmelCase = 1
lowerCAmelCase = 1
while repunit:
lowerCAmelCase = (1_0 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0_0_0_0 ) -> int:
lowerCAmelCase = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(snake_case__ ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(f'{solution() = }')
| 338 |
'''simple docstring'''
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , snake_case__ )
A : Dict = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
A : Dict = dataset_size < in_memory_max_size
else:
A : Tuple = False
A : int = is_small_dataset(snake_case__ )
assert result == expected
| 3 | 0 |