code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[str] = LongformerTokenizer a__ : int = True a__ : Union[str, Any] = LongformerTokenizerFast a__ : Dict = True def _lowercase (self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase_ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase_ = {"unk_token": "<unk>"} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def _lowercase (self : Optional[int] , **__a : Optional[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def _lowercase (self : str , **__a : str ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def _lowercase (self : Dict , __a : List[Any] ): UpperCAmelCase_ = "lower newer" UpperCAmelCase_ = "lower newer" return input_text, output_text def _lowercase (self : List[str] ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ = "lower newer" UpperCAmelCase_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] UpperCAmelCase_ = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokens + [tokenizer.unk_token] UpperCAmelCase_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _lowercase (self : Dict ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode( "sequence builders" , add_special_tokens=__a , add_prefix_space=__a ) UpperCAmelCase_ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__a , add_prefix_space=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = "Encode this sequence." UpperCAmelCase_ = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens UpperCAmelCase_ = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(__a ) UpperCAmelCase_ = "Encode <mask> sequence" UpperCAmelCase_ = "Encode <mask>sequence" UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = encoded.index(__a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = encoded.index(__a ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def _lowercase (self : Tuple ): pass def _lowercase (self : List[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = "A, <mask> AllenNLP sentence." UpperCAmelCase_ = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) UpperCAmelCase_ = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def _lowercase (self : int ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCAmelCase_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , __a ) self.assertEqual(post_processor_state["add_prefix_space"] , __a ) self.assertEqual(post_processor_state["trim_offsets"] , __a ) def _lowercase (self : Tuple ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase_ = f"""{text_of_1_token} {text_of_1_token}""" UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCAmelCase_ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCAmelCase_ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCAmelCase_ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCAmelCase_ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) UpperCAmelCase_ = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCAmelCase_ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCAmelCase_ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) UpperCAmelCase_ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
1
'''simple docstring''' import math def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase_ = input("Enter message: " ) UpperCAmelCase_ = int(input(f"""Enter key [2-{len(snake_case_ ) - 1}]: """ ) ) UpperCAmelCase_ = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): UpperCAmelCase_ = encrypt_message(snake_case_ , snake_case_ ) elif mode.lower().startswith("d" ): UpperCAmelCase_ = decrypt_message(snake_case_ , snake_case_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = [""] * key for col in range(snake_case_ ): UpperCAmelCase_ = col while pointer < len(snake_case_ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = math.ceil(len(snake_case_ ) / key ) UpperCAmelCase_ = key UpperCAmelCase_ = (num_cols * num_rows) - len(snake_case_ ) UpperCAmelCase_ = [""] * num_cols UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase_ = 0 row += 1 return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCAmelCase_ = 4 UpperCAmelCase_ = 48 UpperCAmelCase_ = "pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_ = [6, 6, 6, 6] UpperCAmelCase_ = 60 UpperCAmelCase_ = [6, 6, 6, 6] UpperCAmelCase_ = "pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_ = 4 UpperCAmelCase_ = "nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 UpperCAmelCase_ = 1_26 UpperCAmelCase_ = 7 UpperCAmelCase_ = 255.0 UpperCAmelCase_ = "" return config def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Optional[Any] ) -> List[str]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: UpperCAmelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCAmelCase_ = name.replace("patch_embed.norm" , "embeddings.patch_embeddings.layernorm" ) if "layers" in name: UpperCAmelCase_ = name.replace("layers" , "encoder.stages" ) if "residual_group.blocks" in name: UpperCAmelCase_ = name.replace("residual_group.blocks" , "layers" ) if "attn.proj" in name: UpperCAmelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: UpperCAmelCase_ = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: UpperCAmelCase_ = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: UpperCAmelCase_ = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: UpperCAmelCase_ = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if "patch_embed.proj" in name: UpperCAmelCase_ = name.replace("patch_embed.proj" , "patch_embed.projection" ) if name == "norm.weight": UpperCAmelCase_ = "layernorm.weight" if name == "norm.bias": UpperCAmelCase_ = "layernorm.bias" if "conv_first" in name: UpperCAmelCase_ = name.replace("conv_first" , "first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCAmelCase_ = name.replace("conv_last" , "final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCAmelCase_ = name.replace("conv_before_upsample.0" , "conv_before_upsample" ) if "upsample.0" in name: UpperCAmelCase_ = name.replace("upsample.0" , "upsample.convolution_0" ) if "upsample.2" in name: UpperCAmelCase_ = name.replace("upsample.2" , "upsample.convolution_1" ) UpperCAmelCase_ = "upsample." + name elif config.upsampler == "pixelshuffledirect": UpperCAmelCase_ = name.replace("upsample.0.weight" , "upsample.conv.weight" ) UpperCAmelCase_ = name.replace("upsample.0.bias" , "upsample.conv.bias" ) else: pass else: UpperCAmelCase_ = "swin2sr." + name return name def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Optional[Any] ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(snake_case_ ) if "qkv" in key: UpperCAmelCase_ = key.split("." ) UpperCAmelCase_ = int(key_split[1] ) UpperCAmelCase_ = int(key_split[4] ) UpperCAmelCase_ = config.embed_dim if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] pass else: UpperCAmelCase_ = val return orig_state_dict def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Dict , snake_case_ : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = get_config(snake_case_ ) UpperCAmelCase_ = SwinaSRForImageSuperResolution(snake_case_ ) model.eval() UpperCAmelCase_ = torch.hub.load_state_dict_from_url(snake_case_ , map_location="cpu" ) UpperCAmelCase_ = convert_state_dict(snake_case_ , snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(snake_case_ , strict=snake_case_ ) if len(snake_case_ ) > 0: raise ValueError("Missing keys when converting: {}".format(snake_case_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"""Unexpected key {key} in state_dict""" ) # verify values UpperCAmelCase_ = "https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert("RGB" ) UpperCAmelCase_ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCAmelCase_ = 1_26 if "Jpeg" in checkpoint_url else 2_56 UpperCAmelCase_ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) UpperCAmelCase_ = transforms(snake_case_ ).unsqueeze(0 ) if config.num_channels == 1: UpperCAmelCase_ = pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCAmelCase_ = model(snake_case_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCAmelCase_ = torch.Size([1, 3, 5_12, 5_12] ) UpperCAmelCase_ = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_ = torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_ = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCAmelCase_ = torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_ = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_ = torch.Size([1, 3, 5_12, 5_12] ) UpperCAmelCase_ = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_ = torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_ = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case_ , atol=1E-3 ) print("Looks ok!" ) UpperCAmelCase_ = { "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } UpperCAmelCase_ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(snake_case_ ) if push_to_hub: model.push_to_hub(f"""caidas/{model_name}""" ) processor.push_to_hub(f"""caidas/{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Any =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') SCREAMING_SNAKE_CASE_: List[Any] =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
1
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_: Optional[int] =logging.getLogger() SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] , __a : str ): os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = {"source": "What is love ?", "target": "life"} UpperCAmelCase_ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase_ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__a , f"""{split}.{field}""" ) , "w" ) as f: f.write(__a ) def _lowercase (self : Optional[int] , __a : int , __a : str = "pytorch" ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = os.path.join(__a , "output" ) UpperCAmelCase_ = os.path.join(__a , "data" ) self._create_dummy_data(data_dir=__a ) UpperCAmelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__a , env=self.get_env() ) UpperCAmelCase_ = os.path.join(__a , "metrics.json" ) with open(__a ) as f: UpperCAmelCase_ = json.load(__a ) return result @require_torch_gpu def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _lowercase (self : Dict ): UpperCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _lowercase (self : Any ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
1
1
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = job["started_at"] UpperCAmelCase_ = job["completed_at"] UpperCAmelCase_ = date_parser.parse(snake_case_ ) UpperCAmelCase_ = date_parser.parse(snake_case_ ) UpperCAmelCase_ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) UpperCAmelCase_ = start UpperCAmelCase_ = end UpperCAmelCase_ = duration_in_min return job_info def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : List[str]=None ) -> int: '''simple docstring''' UpperCAmelCase_ = None if token is not None: UpperCAmelCase_ = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} UpperCAmelCase_ = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" UpperCAmelCase_ = requests.get(snake_case_ , headers=snake_case_ ).json() UpperCAmelCase_ = {} try: job_time.update({job["name"]: extract_time_from_single_job(snake_case_ ) for job in result["jobs"]} ) UpperCAmelCase_ = math.ceil((result["total_count"] - 1_00) / 1_00 ) for i in range(snake_case_ ): UpperCAmelCase_ = requests.get(url + f"""&page={i + 2}""" , headers=snake_case_ ).json() job_time.update({job["name"]: extract_time_from_single_job(snake_case_ ) for job in result["jobs"]} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Dict =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') SCREAMING_SNAKE_CASE_: List[str] =parser.parse_args() SCREAMING_SNAKE_CASE_: List[Any] =get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE_: Any =dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"{k}: {v['duration']}")
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE_: Optional[int] =Lock() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ = min(snake_case_ , snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ = max(snake_case_ , snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr for i in range(1 , len(snake_case_ ) - 1 ): UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr process_array_.append( Process( target=snake_case_ , args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case_ ) ): UpperCAmelCase_ = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*snake_case_ ) UpperCAmelCase_ = odd_even_transposition(snake_case_ ) print("Sorted List\n" ) print(*snake_case_ ) if __name__ == "__main__": main()
1
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : Optional[int] , *__a : Optional[Any] , **__a : Dict ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] UpperCAmelCase_ = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
1
1
'''simple docstring''' from copy import deepcopy class __A : def __init__(self : Dict , __a : list[int] | None = None , __a : int | None = None ): if arr is None and size is not None: UpperCAmelCase_ = size UpperCAmelCase_ = [0] * size elif arr is not None: self.init(__a ) else: raise ValueError("Either arr or size must be specified" ) def _lowercase (self : int , __a : list[int] ): UpperCAmelCase_ = len(__a ) UpperCAmelCase_ = deepcopy(__a ) for i in range(1 , self.size ): UpperCAmelCase_ = self.next_(__a ) if j < self.size: self.tree[j] += self.tree[i] def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCAmelCase_ = self.next_(__a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _lowercase (__a : int ): return index + (index & (-index)) @staticmethod def _lowercase (__a : int ): return index - (index & (-index)) def _lowercase (self : Tuple , __a : int , __a : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCAmelCase_ = self.next_(__a ) def _lowercase (self : Optional[Any] , __a : int , __a : int ): self.add(__a , value - self.get(__a ) ) def _lowercase (self : Dict , __a : int ): if right == 0: return 0 UpperCAmelCase_ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCAmelCase_ = self.prev(__a ) return result def _lowercase (self : int , __a : int , __a : int ): return self.prefix(__a ) - self.prefix(__a ) def _lowercase (self : str , __a : int ): return self.query(__a , index + 1 ) def _lowercase (self : List[str] , __a : int ): value -= self.tree[0] if value < 0: return -1 UpperCAmelCase_ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCAmelCase_ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int | None = None , snake_case_ : int | None = None ) -> None: '''simple docstring''' if start is None: UpperCAmelCase_ = 0 if end is None: UpperCAmelCase_ = len(snake_case_ ) - 1 if start >= end: return UpperCAmelCase_ = (start + end) // 2 slowsort(snake_case_ , snake_case_ , snake_case_ ) slowsort(snake_case_ , mid + 1 , snake_case_ ) if sequence[end] < sequence[mid]: UpperCAmelCase_ , UpperCAmelCase_ = sequence[mid], sequence[end] slowsort(snake_case_ , snake_case_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
1
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = FunnelTokenizer a__ : Union[str, Any] = FunnelTokenizerFast a__ : str = True a__ : Any = True def _lowercase (self : str ): super().setUp() UpperCAmelCase_ = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _lowercase (self : str , **__a : str ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **__a ) def _lowercase (self : Optional[int] , **__a : List[Any] ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def _lowercase (self : Union[str, Any] , __a : Dict ): UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = "unwanted, running" return input_text, output_text def _lowercase (self : Tuple ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [7, 4, 5, 10, 8, 9] ) def _lowercase (self : str ): UpperCAmelCase_ = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: UpperCAmelCase_ = tokenizer("UNwant\u00E9d,running" ) UpperCAmelCase_ = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) UpperCAmelCase_ = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __A ( UpperCamelCase__ ): a__ : Optional[Any] = DistilBertTokenizer a__ : Any = DistilBertTokenizerFast a__ : str = True @slow def _lowercase (self : int ): UpperCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
1
1
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : str = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def _lowercase (self : List[str] , __a : str=0 ): UpperCAmelCase_ = np.random.RandomState(__a ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase (self : Dict ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**__a ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Any ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**__a ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Tuple ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**__a ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**__a ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Tuple ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**__a ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Dict ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**__a ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Dict ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = 3 * [inputs["prompt"]] # forward UpperCAmelCase_ = pipe(**__a ) UpperCAmelCase_ = output.images[0, -3:, -3:, -1] UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ = pipe.tokenizer( __a , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=__a , return_tensors="np" , ) UpperCAmelCase_ = text_inputs["input_ids"] UpperCAmelCase_ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] UpperCAmelCase_ = prompt_embeds # forward UpperCAmelCase_ = pipe(**__a ) UpperCAmelCase_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def _lowercase (self : Any ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = 3 * ["this is a negative prompt"] UpperCAmelCase_ = negative_prompt UpperCAmelCase_ = 3 * [inputs["prompt"]] # forward UpperCAmelCase_ = pipe(**__a ) UpperCAmelCase_ = output.images[0, -3:, -3:, -1] UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ = [] for p in [prompt, negative_prompt]: UpperCAmelCase_ = pipe.tokenizer( __a , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=__a , return_tensors="np" , ) UpperCAmelCase_ = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) UpperCAmelCase_ , UpperCAmelCase_ = embeds # forward UpperCAmelCase_ = pipe(**__a ) UpperCAmelCase_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): @property def _lowercase (self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase (self : int ): UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def _lowercase (self : str ): # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" np.random.seed(0 ) UpperCAmelCase_ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowercase (self : Tuple ): UpperCAmelCase_ = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "open neural network exchange" UpperCAmelCase_ = np.random.RandomState(0 ) UpperCAmelCase_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowercase (self : List[Any] ): UpperCAmelCase_ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "open neural network exchange" UpperCAmelCase_ = np.random.RandomState(0 ) UpperCAmelCase_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowercase (self : Optional[int] ): UpperCAmelCase_ = 0 def test_callback_fn(__a : int , __a : int , __a : np.ndarray ) -> None: UpperCAmelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ = latents[0, -3:, -3:, -1] UpperCAmelCase_ = np.array( [-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ = latents[0, -3:, -3:, -1] UpperCAmelCase_ = np.array( [-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 UpperCAmelCase_ = False UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "Andromeda galaxy in a bottle" UpperCAmelCase_ = np.random.RandomState(0 ) pipe( prompt=__a , num_inference_steps=5 , guidance_scale=7.5 , generator=__a , callback=__a , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _lowercase (self : List[Any] ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(__a , __a ) assert pipe.safety_checker is None UpperCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a ) UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(__a ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE_: Tuple =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val def lowerCAmelCase_ ( snake_case_ : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ = value else: UpperCAmelCase_ = value return new_state_dict def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = "" if is_panoptic: UpperCAmelCase_ = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:2_56, :] UpperCAmelCase_ = in_proj_bias[:2_56] UpperCAmelCase_ = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ = in_proj_bias[2_56:5_12] UpperCAmelCase_ = in_proj_weight[-2_56:, :] UpperCAmelCase_ = in_proj_bias[-2_56:] def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase_ = "resnet101" if "dc5" in model_name: UpperCAmelCase_ = True UpperCAmelCase_ = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ = 2_50 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase_ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ = ConditionalDetrImageProcessor(format=snake_case_ ) # prepare image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=snake_case_ , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCAmelCase_ = torch.hub.load("DeppMeng/ConditionalDETR" , snake_case_ , pretrained=snake_case_ ).eval() UpperCAmelCase_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase_ = "conditional_detr." + src rename_key(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = ConditionalDetrForSegmentation(snake_case_ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() model.push_to_hub(repo_id=snake_case_ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase_ = conditional_detr(snake_case_ ) UpperCAmelCase_ = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[str] =argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
1
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = 5 # Realm tok UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def _lowercase (self : Optional[Any] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def _lowercase (self : Any ): shutil.rmtree(self.tmpdirname ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = RealmConfig(num_block_records=self.num_block_records ) return config def _lowercase (self : List[str] ): UpperCAmelCase_ = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def _lowercase (self : Any ): UpperCAmelCase_ = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=__a , ) return block_records def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _lowercase (self : int ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3, 5] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path UpperCAmelCase_ = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: UpperCAmelCase_ = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase_ = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : int , *__a : Dict , **__a : str ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Optional[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Dict ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE_: Tuple =[ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Tuple ) -> Dict: '''simple docstring''' for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCAmelCase_ = "lm_head" UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ) if weight_type is not None: UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(snake_case_ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" else: UpperCAmelCase_ = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : List[str]=None , snake_case_ : int=None , snake_case_ : str=True ) -> Optional[int]: '''simple docstring''' if config_path is not None: UpperCAmelCase_ = UniSpeechConfig.from_pretrained(snake_case_ ) else: UpperCAmelCase_ = UniSpeechConfig() if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load_from_json(snake_case_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(snake_case_ , "vocab.json" ) if not os.path.isdir(snake_case_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(snake_case_ ) ) return os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 42 UpperCAmelCase_ = 43 with open(snake_case_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(snake_case_ , snake_case_ ) UpperCAmelCase_ = WavaVecaPhonemeCTCTokenizer( snake_case_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=snake_case_ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=snake_case_ , tokenizer=snake_case_ ) processor.save_pretrained(snake_case_ ) UpperCAmelCase_ = UniSpeechForCTC(snake_case_ ) else: UpperCAmelCase_ = UniSpeechForPreTraining(snake_case_ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ , snake_case_ ) hf_unispeech.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Any =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
1
'''simple docstring''' from __future__ import annotations import queue class __A : def __init__(self : Optional[Any] , __a : str ): UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCAmelCase_ ( ) -> TreeNode: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) UpperCAmelCase_ = input("Enter the value of the root node: " ).strip().lower() UpperCAmelCase_ = queue.Queue() UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() UpperCAmelCase_ = f"""Enter the left node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = left_node q.put(snake_case_ ) UpperCAmelCase_ = f"""Enter the right node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = right_node q.put(snake_case_ ) raise def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = [] while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(snake_case_ ) UpperCAmelCase_ = n.left # end of while means current node doesn't have left child UpperCAmelCase_ = stack.pop() # start to traverse its right child UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: stack.append(snake_case_ ) UpperCAmelCase_ = n.left UpperCAmelCase_ = stack.pop() print(n.data , end="," ) UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def lowerCAmelCase_ ( snake_case_ : str = "" , snake_case_ : Any=50 , snake_case_ : Union[str, Any]="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char UpperCAmelCase_ , UpperCAmelCase_ = divmod(width - len(snake_case_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE_: TreeNode =build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
1
1
'''simple docstring''' import math def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase_ = input("Enter message: " ) UpperCAmelCase_ = int(input(f"""Enter key [2-{len(snake_case_ ) - 1}]: """ ) ) UpperCAmelCase_ = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): UpperCAmelCase_ = encrypt_message(snake_case_ , snake_case_ ) elif mode.lower().startswith("d" ): UpperCAmelCase_ = decrypt_message(snake_case_ , snake_case_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = [""] * key for col in range(snake_case_ ): UpperCAmelCase_ = col while pointer < len(snake_case_ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = math.ceil(len(snake_case_ ) / key ) UpperCAmelCase_ = key UpperCAmelCase_ = (num_cols * num_rows) - len(snake_case_ ) UpperCAmelCase_ = [""] * num_cols UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase_ = 0 row += 1 return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __A ( UpperCamelCase__ ): def _lowercase (self : str , __a : GenericTensor ): if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ) else: raise ValueError("Unsupported framework" ) return masked_index def _lowercase (self : Tuple , __a : GenericTensor ): UpperCAmelCase_ = self.get_masked_index(__a ) UpperCAmelCase_ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _lowercase (self : List[Any] , __a : GenericTensor ): if isinstance(__a , __a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def _lowercase (self : Tuple , __a : Dict , __a : List[str]=None , **__a : Any ): if return_tensors is None: UpperCAmelCase_ = self.framework UpperCAmelCase_ = self.tokenizer(__a , return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def _lowercase (self : str , __a : Optional[int] ): UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = model_inputs["input_ids"] return model_outputs def _lowercase (self : List[str] , __a : Tuple , __a : int=5 , __a : Dict=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase_ = target_ids.shape[0] UpperCAmelCase_ = model_outputs["input_ids"][0] UpperCAmelCase_ = model_outputs["logits"] if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase_ = outputs.numpy() UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = stable_softmax(__a , axis=-1 ) if target_ids is not None: UpperCAmelCase_ = tf.gather_nd(tf.squeeze(__a , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCAmelCase_ = tf.expand_dims(__a , 0 ) UpperCAmelCase_ = tf.math.top_k(__a , k=__a ) UpperCAmelCase_ , UpperCAmelCase_ = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase_ = probs[..., target_ids] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(__a ) UpperCAmelCase_ = [] UpperCAmelCase_ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCAmelCase_ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase_ = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase_ = target_ids[p].tolist() UpperCAmelCase_ = p # Filter padding out: UpperCAmelCase_ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase_ = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCAmelCase_ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def _lowercase (self : Dict , __a : List[Any] , __a : List[str]=None ): if isinstance(__a , __a ): UpperCAmelCase_ = [targets] try: UpperCAmelCase_ = self.tokenizer.get_vocab() except Exception: UpperCAmelCase_ = {} UpperCAmelCase_ = [] for target in targets: UpperCAmelCase_ = vocab.get(__a , __a ) if id_ is None: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , max_length=1 , truncation=__a , )["input_ids"] if len(__a ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ "We cannot replace it with anything meaningful, ignoring it" ) continue UpperCAmelCase_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) UpperCAmelCase_ = list(set(__a ) ) if len(__a ) == 0: raise ValueError("At least one target must be provided when passed." ) UpperCAmelCase_ = np.array(__a ) return target_ids def _lowercase (self : Tuple , __a : Dict=None , __a : List[str]=None ): UpperCAmelCase_ = {} if targets is not None: UpperCAmelCase_ = self.get_target_ids(__a , __a ) UpperCAmelCase_ = target_ids if top_k is not None: UpperCAmelCase_ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__(self : Union[str, Any] , __a : str , *__a : Any , **__a : Tuple ): UpperCAmelCase_ = super().__call__(__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs
1
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __A ( nn.Module ): def __init__(self : Tuple , __a : int = 16 , __a : int = 88 , __a : Optional[int] = None , __a : int = 1 , __a : float = 0.0 , __a : int = 32 , __a : Optional[int] = None , __a : bool = False , __a : Optional[int] = None , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , ): super().__init__() UpperCAmelCase_ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__a , attention_head_dim=__a , in_channels=__a , num_layers=__a , dropout=__a , norm_num_groups=__a , cross_attention_dim=__a , attention_bias=__a , sample_size=__a , num_vector_embeds=__a , activation_fn=__a , num_embeds_ada_norm=__a , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCAmelCase_ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCAmelCase_ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCAmelCase_ = [1, 0] def _lowercase (self : str , __a : Optional[int] , __a : List[Any] , __a : str=None , __a : List[str]=None , __a : Optional[Any]=None , __a : bool = True , ): UpperCAmelCase_ = hidden_states UpperCAmelCase_ = [] UpperCAmelCase_ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCAmelCase_ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCAmelCase_ = self.transformer_index_for_condition[i] UpperCAmelCase_ = self.transformers[transformer_index]( __a , encoder_hidden_states=__a , timestep=__a , cross_attention_kwargs=__a , return_dict=__a , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCAmelCase_ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCAmelCase_ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__a )
1
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__) @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : str a__ : str a__ : Optional[str] = None a__ : Optional[str] = None a__ : Optional[str] = None @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : List[int] a__ : Optional[List[int]] = None a__ : Optional[List[int]] = None a__ : Optional[Union[int, float]] = None a__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __A ( UpperCamelCase__ ): a__ : List[InputFeatures] def __init__(self : Any , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = None , __a : Dict=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = os.path.join( __a , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(__a ) , __a , ) , ) UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(__a ): if os.path.exists(__a ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase_ = torch.load(__a ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase_ = ( processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) ) logger.info("Training examples: %s" , len(__a ) ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) logger.info("Saving features into cached file %s" , __a ) torch.save(self.features , __a ) def __len__(self : List[Any] ): return len(self.features ) def __getitem__(self : Any , __a : Optional[Any] ): return self.features[i] def _lowercase (self : Union[str, Any] ): return self.label_list if is_tf_available(): import tensorflow as tf class __A : a__ : List[InputFeatures] def __init__(self : Union[str, Any] , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = 128 , __a : Any=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list UpperCAmelCase_ = processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(__a )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ = tf.data.Dataset.from_generator( __a , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _lowercase (self : int ): return self.dataset def __len__(self : Any ): return len(self.features ) def __getitem__(self : int , __a : Union[str, Any] ): return self.features[i] def _lowercase (self : int ): return self.label_list class __A ( UpperCamelCase__ ): def _lowercase (self : List[Any] , __a : Dict ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_train_set.txt" ) ) , "train" ) def _lowercase (self : Any , __a : List[Any] ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _lowercase (self : Any ): return ["contradiction", "entailment", "neutral"] def _lowercase (self : Union[str, Any] , __a : Optional[int] , __a : Union[str, Any] ): UpperCAmelCase_ = [] for i, line in enumerate(__a ): if i == 0: continue UpperCAmelCase_ = "%s-%s" % (set_type, line[0]) UpperCAmelCase_ = line[5] UpperCAmelCase_ = line[6] UpperCAmelCase_ = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCAmelCase_ = line[0] examples.append(InputExample(guid=__a , text_a=__a , text_b=__a , label=__a , pairID=__a ) ) return examples def lowerCAmelCase_ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = {label: i for i, label in enumerate(snake_case_ )} UpperCAmelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCAmelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding="max_length" , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) UpperCAmelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE_: int ={ 'hans': 3, } SCREAMING_SNAKE_CASE_: Any ={ 'hans': HansProcessor, }
1
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_: Optional[Any] ={ 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[Any] =['MobileNetV2FeatureExtractor'] SCREAMING_SNAKE_CASE_: Union[str, Any] =['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Dict =[ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys SCREAMING_SNAKE_CASE_: Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={} class __A ( UpperCamelCase__ ): a__ : int = """llama""" a__ : Any = ["""past_key_values"""] def __init__(self : List[str] , __a : List[str]=32000 , __a : Tuple=4096 , __a : List[Any]=11008 , __a : Dict=32 , __a : Tuple=32 , __a : Any=None , __a : Any="silu" , __a : List[Any]=2048 , __a : List[Any]=0.02 , __a : str=1E-6 , __a : Optional[Any]=True , __a : Union[str, Any]=0 , __a : Any=1 , __a : Dict=2 , __a : Dict=1 , __a : str=False , __a : str=None , **__a : Optional[Any] , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_key_value_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = use_cache UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def _lowercase (self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) UpperCAmelCase_ = self.rope_scaling.get("type" , __a ) UpperCAmelCase_ = self.rope_scaling.get("factor" , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
1
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer SCREAMING_SNAKE_CASE_: Union[str, Any] =['gpt2'] SCREAMING_SNAKE_CASE_: Optional[int] ='gpt2' if is_tf_available(): class __A ( tf.Module ): def __init__(self : Union[str, Any] , __a : Union[str, Any] ): super().__init__() UpperCAmelCase_ = tokenizer UpperCAmelCase_ = AutoConfig.from_pretrained(__a ) UpperCAmelCase_ = TFGPTaLMHeadModel.from_config(__a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def _lowercase (self : Tuple , __a : List[str] ): UpperCAmelCase_ = self.tokenizer(__a ) UpperCAmelCase_ = tokenized["input_ids"].to_tensor() UpperCAmelCase_ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase_ = self.model(input_ids=__a , attention_mask=__a )["logits"] return outputs @require_tf @require_keras_nlp class __A ( unittest.TestCase ): def _lowercase (self : List[Any] ): super().setUp() UpperCAmelCase_ = [GPTaTokenizer.from_pretrained(__a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase_ = [TFGPTaTokenizer.from_pretrained(__a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase_ = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCAmelCase_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowercase (self : List[str] ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase_ = tokenizer([test_inputs] , return_tensors="tf" ) UpperCAmelCase_ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase_ = python_outputs[key].numpy() UpperCAmelCase_ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__a , tf.intaa ) == tf_outputs_values ) ) @slow def _lowercase (self : Optional[Any] ): for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase_ = tf.function(__a ) for test_inputs in self.test_sentences: UpperCAmelCase_ = tf.constant(__a ) UpperCAmelCase_ = compiled_tokenizer(__a ) UpperCAmelCase_ = tf_tokenizer(__a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowercase (self : Tuple ): for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase_ = ModelToSave(tokenizer=__a ) UpperCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase_ = model.serving(__a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase_ = Path(__a ) / "saved.model" tf.saved_model.save(__a , __a , signatures={"serving_default": model.serving} ) UpperCAmelCase_ = tf.saved_model.load(__a ) UpperCAmelCase_ = loaded_model.signatures["serving_default"](__a )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _lowercase (self : Optional[int] ): for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase_ = tf_tokenizer(__a ) # Build model with some sample inputs UpperCAmelCase_ = tf_tokenizer.get_config() UpperCAmelCase_ = TFGPTaTokenizer.from_config(__a ) UpperCAmelCase_ = model_from_config(__a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _lowercase (self : Tuple ): for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase_ = 123123 for max_length in [3, 5, 1024]: UpperCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase_ = tf_tokenizer(__a , max_length=__a ) UpperCAmelCase_ = out["input_ids"].numpy().shape[1] assert out_length == max_length
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __A ( unittest.TestCase ): def _lowercase (self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase (self : str ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def _lowercase (self : int ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _lowercase (self : Any ): torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowercase (self : Optional[Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(__a ) def _lowercase (self : Any ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=__a , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase_ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Optional[int] ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowercase (self : str ): UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase_ = unet.half() UpperCAmelCase_ = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : List[Any] ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained(__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _lowercase (self : Tuple ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _lowercase (self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
1
1
'''simple docstring''' from __future__ import annotations from collections import deque class __A : def __init__(self : List[Any] , __a : list[str] ): UpperCAmelCase_ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(__a ) self.set_fail_transitions() def _lowercase (self : Union[str, Any] , __a : int , __a : str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _lowercase (self : Optional[Any] , __a : str ): UpperCAmelCase_ = 0 for character in keyword: UpperCAmelCase_ = self.find_next_state(__a , __a ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase_ = len(self.adlist ) - 1 else: UpperCAmelCase_ = next_state self.adlist[current_state]["output"].append(__a ) def _lowercase (self : int ): UpperCAmelCase_ = deque() for node in self.adlist[0]["next_states"]: q.append(__a ) UpperCAmelCase_ = 0 while q: UpperCAmelCase_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__a ) UpperCAmelCase_ = self.adlist[r]["fail_state"] while ( self.find_next_state(__a , self.adlist[child]["value"] ) is None and state != 0 ): UpperCAmelCase_ = self.adlist[state]["fail_state"] UpperCAmelCase_ = self.find_next_state( __a , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase_ = 0 UpperCAmelCase_ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _lowercase (self : Dict , __a : str ): UpperCAmelCase_ = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase_ = 0 for i in range(len(__a ) ): while ( self.find_next_state(__a , string[i] ) is None and current_state != 0 ): UpperCAmelCase_ = self.adlist[current_state]["fail_state"] UpperCAmelCase_ = self.find_next_state(__a , string[i] ) if next_state is None: UpperCAmelCase_ = 0 else: UpperCAmelCase_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase_ = [] result[key].append(i - len(__a ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
1
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __A ( UpperCamelCase__ ): def __init__(self : int , __a : Distribution , __a : Dict=None , __a : int=None , __a : Any=0 ): UpperCAmelCase_ = 1.0 if scale is None else scale UpperCAmelCase_ = 0.0 if loc is None else loc super().__init__(__a , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__a )] ) @property def _lowercase (self : Union[str, Any] ): return self.base_dist.mean * self.scale + self.loc @property def _lowercase (self : List[Any] ): return self.base_dist.variance * self.scale**2 @property def _lowercase (self : List[Any] ): return self.variance.sqrt() class __A ( nn.Module ): def __init__(self : Optional[int] , __a : int , __a : Dict[str, int] , __a : Callable[..., Tuple[torch.Tensor]] , **__a : List[str] ): super().__init__(**__a ) UpperCAmelCase_ = args_dim UpperCAmelCase_ = nn.ModuleList([nn.Linear(__a , __a ) for dim in args_dim.values()] ) UpperCAmelCase_ = domain_map def _lowercase (self : List[str] , __a : torch.Tensor ): UpperCAmelCase_ = [proj(__a ) for proj in self.proj] return self.domain_map(*__a ) class __A ( nn.Module ): def __init__(self : Union[str, Any] , __a : List[str] ): super().__init__() UpperCAmelCase_ = function def _lowercase (self : Optional[int] , __a : List[str] , *__a : Optional[int] ): return self.function(__a , *__a ) class __A : a__ : type a__ : int a__ : Dict[str, int] def __init__(self : List[Any] , __a : int = 1 ): UpperCAmelCase_ = dim UpperCAmelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def _lowercase (self : Any , __a : Any ): if self.dim == 1: return self.distribution_class(*__a ) else: return Independent(self.distribution_class(*__a ) , 1 ) def _lowercase (self : List[str] , __a : Union[str, Any] , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , ): UpperCAmelCase_ = self._base_distribution(__a ) if loc is None and scale is None: return distr else: return AffineTransformed(__a , loc=__a , scale=__a , event_dim=self.event_dim ) @property def _lowercase (self : Any ): return () if self.dim == 1 else (self.dim,) @property def _lowercase (self : Dict ): return len(self.event_shape ) @property def _lowercase (self : Tuple ): return 0.0 def _lowercase (self : List[str] , __a : int ): return ParameterProjection( in_features=__a , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _lowercase (self : Optional[int] , *__a : torch.Tensor ): raise NotImplementedError() @staticmethod def _lowercase (__a : torch.Tensor ): return (x + torch.sqrt(torch.square(__a ) + 4.0 )) / 2.0 class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} a__ : type = StudentT @classmethod def _lowercase (cls : Union[str, Any] , __a : torch.Tensor , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase_ = 2.0 + cls.squareplus(__a ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"loc": 1, "scale": 1} a__ : type = Normal @classmethod def _lowercase (cls : Tuple , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"total_count": 1, "logits": 1} a__ : type = NegativeBinomial @classmethod def _lowercase (cls : Optional[Any] , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _lowercase (self : List[str] , __a : str ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=__a , logits=__a ) else: return Independent(self.distribution_class(total_count=__a , logits=__a ) , 1 ) def _lowercase (self : Optional[Any] , __a : int , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
1
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : list ) -> bool: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(snake_case_ ) == 0: raise ValueError("Input list must be a non empty list" ) if len(snake_case_ ) == 1: return True UpperCAmelCase_ = series[1] - series[0] for index in range(len(snake_case_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowerCAmelCase_ ( snake_case_ : list ) -> float: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(snake_case_ ) == 0: raise ValueError("Input list must be a non empty list" ) UpperCAmelCase_ = 0 for val in series: answer += val return answer / len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets SCREAMING_SNAKE_CASE_: Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' SCREAMING_SNAKE_CASE_: List[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _lowercase (self : Tuple , __a : Optional[int] , __a : List[Any] ): UpperCAmelCase_ = 0.0 for i, j in zip(__a , __a ): n_correct += 1.0 if math_equivalence.is_equiv(__a , __a ) else 0.0 UpperCAmelCase_ = n_correct / len(__a ) return { "accuracy": accuracy, }
1
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__(self : Dict , __a : List[str] , __a : Dict=12 , __a : Any=7 , __a : int=True , __a : str=True , __a : List[str]=True , __a : List[Any]=99 , __a : Any=32 , __a : str=32 , __a : Union[str, Any]=2 , __a : Any=4 , __a : Optional[int]=37 , __a : List[str]=0.1 , __a : Union[str, Any]=0.1 , __a : str=512 , __a : str=0.02 , __a : Optional[int]=0 , __a : Union[str, Any]=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = projection_dim UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = bos_token_id def _lowercase (self : List[str] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase_ = input_mask.numpy() UpperCAmelCase_ , UpperCAmelCase_ = input_mask.shape UpperCAmelCase_ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__a ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = self.get_config() return config, input_ids, tf.convert_to_tensor(__a ) def _lowercase (self : List[Any] ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _lowercase (self : List[Any] , __a : Union[str, Any] , __a : str , __a : Tuple ): UpperCAmelCase_ = TFBlipTextModel(config=__a ) UpperCAmelCase_ = model(__a , attention_mask=__a , training=__a ) UpperCAmelCase_ = model(__a , training=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[Any] = (TFBlipTextModel,) if is_tf_available() else () a__ : Dict = False a__ : Optional[Any] = False a__ : Optional[int] = False def _lowercase (self : Tuple ): UpperCAmelCase_ = BlipTextModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , hidden_size=37 ) def _lowercase (self : List[Any] ): self.config_tester.run_common_tests() def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : Union[str, Any] ): pass def _lowercase (self : Optional[int] ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def _lowercase (self : int ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _lowercase (self : Optional[int] ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _lowercase (self : Tuple ): pass @slow def _lowercase (self : Optional[Any] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFBlipTextModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def _lowercase (self : str , __a : Union[str, Any]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=__a )
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] ) -> List[Any]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : str=True ) -> Optional[Any]: '''simple docstring''' model.train() UpperCAmelCase_ = model(snake_case_ ) UpperCAmelCase_ = F.mse_loss(snake_case_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Any=False ) -> Dict: '''simple docstring''' set_seed(42 ) UpperCAmelCase_ = RegressionModel() UpperCAmelCase_ = deepcopy(snake_case_ ) UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase_ = AdamW(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase_ ( snake_case_ : Any ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Optional[int]=False , snake_case_ : str=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] GradientState._reset_state() def lowerCAmelCase_ ( snake_case_ : Optional[Any]=False , snake_case_ : Tuple=False ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ , snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" UpperCAmelCase_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case_ )) if accelerator.num_processes > 1: check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ = RegressionDataset(length=96 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if iteration < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if batch_num < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(snake_case_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(snake_case_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(snake_case_ , snake_case_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Dict ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
1
1
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_: List[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Union[str, Any] ={'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_: List[str] ={ 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'AI-Sweden/gpt-sw3-126m': 20_48, 'AI-Sweden/gpt-sw3-350m': 20_48, 'AI-Sweden/gpt-sw3-1.6b': 20_48, 'AI-Sweden/gpt-sw3-6.7b': 20_48, 'AI-Sweden/gpt-sw3-20b': 20_48, } class __A ( UpperCamelCase__ ): a__ : List[str] = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__(self : Tuple , __a : Dict , __a : Union[str, Any]=False , __a : int=False , __a : Dict=False , __a : Any=None , __a : Tuple=None , __a : List[str]=None , __a : Optional[Any]=None , __a : Optional[Dict[str, Any]] = None , **__a : Optional[int] , ): UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) UpperCAmelCase_ = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCAmelCase_ = "<|endoftext|>" if eos_token is None else eos_token UpperCAmelCase_ = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCAmelCase_ = unk_token if pad_token is None else pad_token UpperCAmelCase_ = eos_token if bos_token is None else bos_token else: UpperCAmelCase_ = "<pad>" if pad_token is None else pad_token UpperCAmelCase_ = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) # Used for whitespace normalization in input texts # fmt : off UpperCAmelCase_ = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCAmelCase_ = re.compile( f"""[{"".join(map(__a , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__(self : Optional[int] ): UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__(self : Optional[Any] , __a : int ): UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _lowercase (self : int ): return len(self.sp_model ) def _lowercase (self : List[str] , __a : str ): UpperCAmelCase_ = self.non_printing_characters_re.sub("" , __a ) # Normalize whitespaces UpperCAmelCase_ = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization UpperCAmelCase_ = unicodedata.normalize("NFC" , __a ) return text def _lowercase (self : int , __a : str , **__a : str ): UpperCAmelCase_ = self.preprocess_text(__a ) return self.sp_model.encode(__a , out_type=__a ) def _lowercase (self : Union[str, Any] , __a : str ): return self.sp_model.PieceToId(__a ) def _lowercase (self : List[Any] , __a : int ): return self.sp_model.IdToPiece(__a ) @staticmethod def _lowercase (__a : str ): return out_string def _lowercase (self : Dict , __a : List[str] ): UpperCAmelCase_ = [] UpperCAmelCase_ = "" UpperCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token UpperCAmelCase_ = True UpperCAmelCase_ = [] else: current_sub_tokens.append(__a ) UpperCAmelCase_ = False out_string += self.sp_model.decode(__a ) return out_string def _lowercase (self : List[str] ): UpperCAmelCase_ = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowercase (self : Optional[Any] , __a : str , __a : Optional[str] = None ): if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def _lowercase (self : str , __a : Union[str, List[str]] , __a : Union[str, bool] = False ): if isinstance(__a , __a ): UpperCAmelCase_ = self.preprocess_text(__a ) UpperCAmelCase_ = self.sp_model.encode(__a ) else: UpperCAmelCase_ = [self.preprocess_text(__a ) for t in text] UpperCAmelCase_ = self.sp_model.encode(__a ) if return_tensors is True or return_tensors == "pt": UpperCAmelCase_ = torch.tensor(__a ) return token_ids def _lowercase (self : List[Any] , __a : Union[int, List[int]] ): return self.sp_model.decode(__a ) def _lowercase (self : int , __a : "Conversation" ): UpperCAmelCase_ = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] UpperCAmelCase_ = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__a ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__a )
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(snake_case_ , x % y ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(snake_case_ , snake_case_ ) return g if __name__ == "__main__": print(f"{solution() = }")
1
1
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
1
'''simple docstring''' import os from math import logaa def lowerCAmelCase_ ( snake_case_ : str = "base_exp.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(snake_case_ ) , snake_case_ ) ) ): UpperCAmelCase_ , UpperCAmelCase_ = list(map(snake_case_ , line.split("," ) ) ) if x * logaa(snake_case_ ) > largest: UpperCAmelCase_ = x * logaa(snake_case_ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
1
1
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__) SCREAMING_SNAKE_CASE_: str =list(MODEL_FOR_MASKED_LM_MAPPING.keys()) SCREAMING_SNAKE_CASE_: Tuple =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase__ )} , ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a__ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a__ : bool = field( default=UpperCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowercase (self : str ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class __A : a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a__ : Optional[str] = field(default=UpperCamelCase__ , metadata={"""help""": """The input training data file (a text file)."""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a__ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a__ : Optional[int] = field( default=UpperCamelCase__ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a__ : Optional[int] = field( default=UpperCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a__ : float = field( default=0.1_5 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a__ : bool = field( default=UpperCamelCase__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _lowercase (self : List[str] ): if self.train_file is not None: UpperCAmelCase_ = self.train_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: UpperCAmelCase_ = self.validation_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = [json.loads(snake_case_ ) for line in f.read().splitlines() if (len(snake_case_ ) > 0 and not line.isspace())] assert len(snake_case_ ) == len(snake_case_ ) UpperCAmelCase_ = {c: dataset[c] for c in dataset.column_names} UpperCAmelCase_ = refs return Dataset.from_dict(snake_case_ ) def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCAmelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , snake_case_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[:{data_args.validation_split_percentage}%]""" , ) UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[{data_args.validation_split_percentage}%:]""" , ) else: UpperCAmelCase_ = {} if data_args.train_file is not None: UpperCAmelCase_ = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase_ = data_args.validation_file UpperCAmelCase_ = data_args.train_file.split("." )[-1] if extension == "txt": UpperCAmelCase_ = "text" UpperCAmelCase_ = load_dataset(snake_case_ , data_files=snake_case_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.config_name , **snake_case_ ) elif model_args.model_name_or_path: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: UpperCAmelCase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) UpperCAmelCase_ = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: UpperCAmelCase_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **snake_case_ ) elif model_args.model_name_or_path: UpperCAmelCase_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) UpperCAmelCase_ = AutoModelForMaskedLM.from_config(snake_case_ ) model.resize_token_embeddings(len(snake_case_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: UpperCAmelCase_ = datasets["train"].column_names else: UpperCAmelCase_ = datasets["validation"].column_names UpperCAmelCase_ = "text" if "text" in column_names else column_names[0] UpperCAmelCase_ = "max_length" if data_args.pad_to_max_length else False def tokenize_function(snake_case_ : int ): # Remove empty lines UpperCAmelCase_ = [line for line in examples["text"] if len(snake_case_ ) > 0 and not line.isspace()] return tokenizer(examples["text"] , padding=snake_case_ , truncation=snake_case_ , max_length=data_args.max_seq_length ) UpperCAmelCase_ = datasets.map( snake_case_ , batched=snake_case_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: UpperCAmelCase_ = add_chinese_references(tokenized_datasets["train"] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: UpperCAmelCase_ = add_chinese_references( tokenized_datasets["validation"] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer UpperCAmelCase_ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: UpperCAmelCase_ = False # Data collator # This one will take care of randomly masking the tokens. UpperCAmelCase_ = DataCollatorForWholeWordMask(tokenizer=snake_case_ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=tokenized_datasets["train"] if training_args.do_train else None , eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: if last_checkpoint is not None: UpperCAmelCase_ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): UpperCAmelCase_ = model_args.model_name_or_path else: UpperCAmelCase_ = None UpperCAmelCase_ = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase_ = os.path.join(training_args.output_dir , "train_results.txt" ) if trainer.is_world_process_zero(): with open(snake_case_ , "w" ) as writer: logger.info("***** Train results *****" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # Evaluation UpperCAmelCase_ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ = trainer.evaluate() UpperCAmelCase_ = math.exp(eval_output["eval_loss"] ) UpperCAmelCase_ = perplexity UpperCAmelCase_ = os.path.join(training_args.output_dir , "eval_results_mlm_wwm.txt" ) if trainer.is_world_process_zero(): with open(snake_case_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in sorted(results.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) return results def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(snake_case_ ) UpperCAmelCase_ = 5_12 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(snake_case_ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(snake_case_ ) else: UpperCAmelCase_ = torch.load(snake_case_ , map_location=snake_case_ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(snake_case_ , image_size=snake_case_ ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(snake_case_ , snake_case_ ) UpperCAmelCase_ = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') SCREAMING_SNAKE_CASE_: str =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
1
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __A ( UpperCamelCase__ ): a__ : Any = (UniPCMultistepScheduler,) a__ : Tuple = (("""num_inference_steps""", 25),) def _lowercase (self : str , **__a : Tuple ): UpperCAmelCase_ = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__a ) return config def _lowercase (self : List[str] , __a : Dict=0 , **__a : Dict ): UpperCAmelCase_ = dict(self.forward_default_kwargs ) UpperCAmelCase_ = kwargs.pop("num_inference_steps" , __a ) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**__a ) UpperCAmelCase_ = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) UpperCAmelCase_ = scheduler_class.from_pretrained(__a ) new_scheduler.set_timesteps(__a ) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(__a , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase_ = scheduler.step(__a , __a , __a , **__a ).prev_sample UpperCAmelCase_ = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowercase (self : Any , __a : Optional[int]=0 , **__a : Dict ): UpperCAmelCase_ = dict(self.forward_default_kwargs ) UpperCAmelCase_ = kwargs.pop("num_inference_steps" , __a ) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) UpperCAmelCase_ = scheduler_class.from_pretrained(__a ) # copy over dummy past residuals new_scheduler.set_timesteps(__a ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(__a , __a , __a , **__a ).prev_sample UpperCAmelCase_ = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowercase (self : Optional[Any] , __a : Union[str, Any]=None , **__a : Optional[int] ): if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**__a ) UpperCAmelCase_ = scheduler_class(**__a ) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**__a ) UpperCAmelCase_ = scheduler_class(**__a ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ = model(__a , __a ) UpperCAmelCase_ = scheduler.step(__a , __a , __a ).prev_sample return sample def _lowercase (self : List[Any] ): UpperCAmelCase_ = dict(self.forward_default_kwargs ) UpperCAmelCase_ = kwargs.pop("num_inference_steps" , __a ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**__a ) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(__a , "set_timesteps" ): scheduler.set_timesteps(__a ) elif num_inference_steps is not None and not hasattr(__a , "set_timesteps" ): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] UpperCAmelCase_ = scheduler.timesteps[5] UpperCAmelCase_ = scheduler.timesteps[6] UpperCAmelCase_ = scheduler.step(__a , __a , __a , **__a ).prev_sample UpperCAmelCase_ = scheduler.step(__a , __a , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase (self : List[Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = UniPCMultistepScheduler(**self.get_scheduler_config() ) UpperCAmelCase_ = self.full_loop(scheduler=__a ) UpperCAmelCase_ = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase_ = self.full_loop(scheduler=__a ) UpperCAmelCase_ = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def _lowercase (self : Union[str, Any] ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__a ) def _lowercase (self : Optional[int] ): self.check_over_configs(thresholding=__a ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , solver_order=__a , solver_type=__a , ) def _lowercase (self : str ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def _lowercase (self : List[Any] ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__a , solver_type=__a , prediction_type=__a , ) UpperCAmelCase_ = self.full_loop( solver_order=__a , solver_type=__a , prediction_type=__a , ) assert not torch.isnan(__a ).any(), "Samples have nan numbers" def _lowercase (self : int ): self.check_over_configs(lower_order_final=__a ) self.check_over_configs(lower_order_final=__a ) def _lowercase (self : Any ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__a , time_step=0 ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def _lowercase (self : Tuple ): UpperCAmelCase_ = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.10_14 ) < 1E-3 def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=__a , dynamic_thresholding_ratio=0 ) UpperCAmelCase_ = scheduler_class(**__a ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ = model(__a , __a ) UpperCAmelCase_ = scheduler.step(__a , __a , __a ).prev_sample assert sample.dtype == torch.floataa def _lowercase (self : Dict , **__a : Optional[int] ): for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**__a ) UpperCAmelCase_ = scheduler_class(**__a ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A ( unittest.TestCase ): def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def _lowercase (self : Any ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase (self : Dict , __a : Any , __a : List[Any] ): UpperCAmelCase_ = FlaxViTModel(config=__a ) UpperCAmelCase_ = model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ = (self.patch_size, self.patch_size) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase (self : Tuple , __a : str , __a : Any ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = FlaxViTForImageClassification(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = FlaxViTForImageClassification(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase (self : Any ): UpperCAmelCase_ = FlaxViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : Tuple ): self.config_tester.run_common_tests() def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model_class(__a ) @jax.jit def model_jitted(__a : Tuple , **__a : List[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase (self : Tuple ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a )
1
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class __A ( UpperCamelCase__ ): a__ : Dict = ["""image_processor""", """feature_extractor"""] a__ : List[str] = """TvltImageProcessor""" a__ : Tuple = """TvltFeatureExtractor""" def __init__(self : Tuple , __a : List[str] , __a : List[Any] ): super().__init__(image_processor=__a , feature_extractor=__a ) UpperCAmelCase_ = image_processor UpperCAmelCase_ = feature_extractor def __call__(self : Dict , __a : Dict=None , __a : Union[str, Any]=None , __a : str=None , __a : List[str]=None , __a : Tuple=False , __a : Dict=False , *__a : Optional[int] , **__a : List[Any] , ): if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) UpperCAmelCase_ = None if images is not None: UpperCAmelCase_ = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: UpperCAmelCase_ = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: UpperCAmelCase_ = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) UpperCAmelCase_ = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def _lowercase (self : Any ): UpperCAmelCase_ = self.image_processor.model_input_names UpperCAmelCase_ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = 5 # Realm tok UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def _lowercase (self : Optional[Any] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def _lowercase (self : Any ): shutil.rmtree(self.tmpdirname ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = RealmConfig(num_block_records=self.num_block_records ) return config def _lowercase (self : List[str] ): UpperCAmelCase_ = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def _lowercase (self : Any ): UpperCAmelCase_ = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=__a , ) return block_records def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _lowercase (self : int ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3, 5] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path UpperCAmelCase_ = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: UpperCAmelCase_ = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase_ = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
1
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[str] = BioGptTokenizer a__ : int = False def _lowercase (self : Optional[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase_ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase_ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__a ) ) def _lowercase (self : Union[str, Any] , __a : List[Any] ): UpperCAmelCase_ = "lower newer" UpperCAmelCase_ = "lower newer" return input_text, output_text def _lowercase (self : str ): UpperCAmelCase_ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase_ = "lower" UpperCAmelCase_ = ["low", "er</w>"] UpperCAmelCase_ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokens + ["<unk>"] UpperCAmelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
1
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE_: Optional[int] =3_00 # TEMPERATURE (unit = K) def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
1
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int , snake_case_ : int = 0 , snake_case_ : int = 0 ) -> int: '''simple docstring''' UpperCAmelCase_ = right or len(snake_case_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(snake_case_ , snake_case_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
1
'''simple docstring''' import math def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase_ = input("Enter message: " ) UpperCAmelCase_ = int(input(f"""Enter key [2-{len(snake_case_ ) - 1}]: """ ) ) UpperCAmelCase_ = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): UpperCAmelCase_ = encrypt_message(snake_case_ , snake_case_ ) elif mode.lower().startswith("d" ): UpperCAmelCase_ = decrypt_message(snake_case_ , snake_case_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = [""] * key for col in range(snake_case_ ): UpperCAmelCase_ = col while pointer < len(snake_case_ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = math.ceil(len(snake_case_ ) / key ) UpperCAmelCase_ = key UpperCAmelCase_ = (num_cols * num_rows) - len(snake_case_ ) UpperCAmelCase_ = [""] * num_cols UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase_ = 0 row += 1 return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __A : a__ : List[Any] = LEDConfig a__ : Optional[int] = {} a__ : Tuple = """gelu""" def __init__(self : List[Any] , __a : List[Any] , __a : Optional[int]=13 , __a : Optional[Any]=7 , __a : Dict=True , __a : Tuple=False , __a : Optional[Any]=99 , __a : Any=32 , __a : List[Any]=2 , __a : Optional[Any]=4 , __a : str=37 , __a : Any=0.1 , __a : Any=0.1 , __a : Dict=20 , __a : Union[str, Any]=2 , __a : Tuple=1 , __a : str=0 , __a : Tuple=4 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase_ = prepare_led_inputs_dict(__a , __a , __a ) UpperCAmelCase_ = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) UpperCAmelCase_ = global_attention_mask return config, inputs_dict def _lowercase (self : Optional[int] , __a : int , __a : int ): UpperCAmelCase_ = TFLEDModel(config=__a ).get_decoder() UpperCAmelCase_ = inputs_dict["input_ids"] UpperCAmelCase_ = input_ids[:1, :] UpperCAmelCase_ = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ = 1 # first forward pass UpperCAmelCase_ = model(__a , attention_mask=__a , use_cache=__a ) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ = model(__a , attention_mask=__a )[0] UpperCAmelCase_ = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1E-3 ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Dict , snake_case_ : int=None , snake_case_ : List[Any]=None , snake_case_ : Dict=None , snake_case_ : Union[str, Any]=None , ) -> int: '''simple docstring''' if attention_mask is None: UpperCAmelCase_ = tf.cast(tf.math.not_equal(snake_case_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () a__ : Optional[Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () a__ : Optional[Any] = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) a__ : Optional[Any] = True a__ : Optional[Any] = False a__ : Tuple = False a__ : str = False def _lowercase (self : List[Any] ): UpperCAmelCase_ = TFLEDModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a ) def _lowercase (self : str ): self.config_tester.run_common_tests() def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = tf.zeros_like(inputs_dict["attention_mask"] ) UpperCAmelCase_ = 2 UpperCAmelCase_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) UpperCAmelCase_ = True UpperCAmelCase_ = self.model_tester.seq_length UpperCAmelCase_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Union[str, Any] ): UpperCAmelCase_ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : List[str] ): UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase_ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase_ = True UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _lowercase (self : Union[str, Any] ): pass def _lowercase (self : Optional[Any] ): # TODO: Head-masking not yet implement pass def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Optional[int]: '''simple docstring''' return tf.constant(snake_case_ , dtype=tf.intaa ) SCREAMING_SNAKE_CASE_: List[str] =1E-4 @slow @require_tf class __A ( unittest.TestCase ): def _lowercase (self : str ): UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = prepare_led_inputs_dict(model.config , __a , __a ) UpperCAmelCase_ = model(**__a )[0] UpperCAmelCase_ = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here UpperCAmelCase_ = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = prepare_led_inputs_dict(model.config , __a , __a ) UpperCAmelCase_ = model(**__a )[0] UpperCAmelCase_ = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here UpperCAmelCase_ = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 , rtol=1E-3 )
1
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_: Optional[int] =logging.getLogger() SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] , __a : str ): os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = {"source": "What is love ?", "target": "life"} UpperCAmelCase_ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase_ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__a , f"""{split}.{field}""" ) , "w" ) as f: f.write(__a ) def _lowercase (self : Optional[int] , __a : int , __a : str = "pytorch" ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = os.path.join(__a , "output" ) UpperCAmelCase_ = os.path.join(__a , "data" ) self._create_dummy_data(data_dir=__a ) UpperCAmelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__a , env=self.get_env() ) UpperCAmelCase_ = os.path.join(__a , "metrics.json" ) with open(__a ) as f: UpperCAmelCase_ = json.load(__a ) return result @require_torch_gpu def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _lowercase (self : Dict ): UpperCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _lowercase (self : Any ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
1
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float: '''simple docstring''' UpperCAmelCase_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(snake_case_ )] ) UpperCAmelCase_ = np.array(snake_case_ ) UpperCAmelCase_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , snake_case_ ) ) , x.transpose() ) , snake_case_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float: '''simple docstring''' UpperCAmelCase_ = (1, 2, 1) UpperCAmelCase_ = (1, 1, 0, 7) UpperCAmelCase_ = SARIMAX( snake_case_ , exog=snake_case_ , order=snake_case_ , seasonal_order=snake_case_ ) UpperCAmelCase_ = model.fit(disp=snake_case_ , maxiter=6_00 , method="nm" ) UpperCAmelCase_ = model_fit.predict(1 , len(snake_case_ ) , exog=[test_match] ) return result[0] def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float: '''simple docstring''' UpperCAmelCase_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(snake_case_ , snake_case_ ) UpperCAmelCase_ = regressor.predict(snake_case_ ) return y_pred[0] def lowerCAmelCase_ ( snake_case_ : list ) -> float: '''simple docstring''' train_user.sort() UpperCAmelCase_ = np.percentile(snake_case_ , 25 ) UpperCAmelCase_ = np.percentile(snake_case_ , 75 ) UpperCAmelCase_ = qa - qa UpperCAmelCase_ = qa - (iqr * 0.1) return low_lim def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : float ) -> bool: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i in list_vote: if i > actual_result: UpperCAmelCase_ = not_safe + 1 else: if abs(abs(snake_case_ ) - abs(snake_case_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) SCREAMING_SNAKE_CASE_: List[Any] =[[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] SCREAMING_SNAKE_CASE_: Dict =pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) SCREAMING_SNAKE_CASE_: Any =Normalizer().fit_transform(data_input_df.values) # split data SCREAMING_SNAKE_CASE_: List[str] =normalize_df[:, 2].tolist() SCREAMING_SNAKE_CASE_: str =normalize_df[:, 0].tolist() SCREAMING_SNAKE_CASE_: str =normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) SCREAMING_SNAKE_CASE_: Dict =normalize_df[:, [1, 2]].tolist() SCREAMING_SNAKE_CASE_: Tuple =x[: len(x) - 1] SCREAMING_SNAKE_CASE_: List[Any] =x[len(x) - 1 :] # for linear regression & sarimax SCREAMING_SNAKE_CASE_: int =total_date[: len(total_date) - 1] SCREAMING_SNAKE_CASE_: Dict =total_user[: len(total_user) - 1] SCREAMING_SNAKE_CASE_: Tuple =total_match[: len(total_match) - 1] SCREAMING_SNAKE_CASE_: Optional[int] =total_date[len(total_date) - 1 :] SCREAMING_SNAKE_CASE_: str =total_user[len(total_user) - 1 :] SCREAMING_SNAKE_CASE_: int =total_match[len(total_match) - 1 :] # voting system with forecasting SCREAMING_SNAKE_CASE_: Optional[int] =[ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data SCREAMING_SNAKE_CASE_: Optional[int] ='' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE_: Optional[int] =Lock() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ = min(snake_case_ , snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ = max(snake_case_ , snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr for i in range(1 , len(snake_case_ ) - 1 ): UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr process_array_.append( Process( target=snake_case_ , args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case_ ) ): UpperCAmelCase_ = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*snake_case_ ) UpperCAmelCase_ = odd_even_transposition(snake_case_ ) print("Sorted List\n" ) print(*snake_case_ ) if __name__ == "__main__": main()
1
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : Union[tf.Tensor, np.ndarray] ) -> List[int]: '''simple docstring''' if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) UpperCAmelCase_ = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic UpperCAmelCase_ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowerCAmelCase_ ( snake_case_ : tf.Tensor , snake_case_ : Optional[int] = None , snake_case_ : Optional[str] = None ) -> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : Optional[Any]=1E-5 , snake_case_ : str=-1 ) -> int: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized UpperCAmelCase_ , UpperCAmelCase_ = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCAmelCase_ = [1] * inputs.shape.rank UpperCAmelCase_ = shape_list(snake_case_ )[axis] UpperCAmelCase_ = tf.reshape(snake_case_ , snake_case_ ) UpperCAmelCase_ = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. UpperCAmelCase_ = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Optional[Any]=0 , snake_case_ : Any=-1 ) -> List[Any]: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCAmelCase_ = tf.shape(snake_case_ ) UpperCAmelCase_ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCAmelCase_ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : tf.Tensor ) -> tf.Tensor: '''simple docstring''' if not isinstance(snake_case_ , tf.Tensor ): UpperCAmelCase_ = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCAmelCase_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCAmelCase_ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCAmelCase_ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCAmelCase_ ( snake_case_ : tf.Tensor , snake_case_ : int , snake_case_ : str = "input_ids" ) -> None: '''simple docstring''' tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCAmelCase_ = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) UpperCAmelCase_ = np.asarray(snake_case_ ) UpperCAmelCase_ = 1 UpperCAmelCase_ = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCAmelCase_ = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): UpperCAmelCase_ = chunk_data else: UpperCAmelCase_ = data def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : str ) -> Tuple: '''simple docstring''' if name in group.attrs: UpperCAmelCase_ = [n.decode("utf8" ) if hasattr(snake_case_ , "decode" ) else n for n in group.attrs[name]] else: UpperCAmelCase_ = [] UpperCAmelCase_ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(snake_case_ , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCAmelCase_ ( snake_case_ : Dict ) -> Optional[int]: '''simple docstring''' def _expand_single_ad_tensor(snake_case_ : Optional[int] ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] UpperCAmelCase_ = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
1
1
'''simple docstring''' import warnings from functools import wraps from typing import Callable def lowerCAmelCase_ ( snake_case_ : Callable ) -> Callable: '''simple docstring''' @wraps(snake_case_ ) def _inner_fn(*snake_case_ : Optional[Any] , **snake_case_ : Tuple ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , snake_case_ , ) return fn(*snake_case_ , **snake_case_ ) return _inner_fn
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int | None = None , snake_case_ : int | None = None ) -> None: '''simple docstring''' if start is None: UpperCAmelCase_ = 0 if end is None: UpperCAmelCase_ = len(snake_case_ ) - 1 if start >= end: return UpperCAmelCase_ = (start + end) // 2 slowsort(snake_case_ , snake_case_ , snake_case_ ) slowsort(snake_case_ , mid + 1 , snake_case_ ) if sequence[end] < sequence[mid]: UpperCAmelCase_ , UpperCAmelCase_ = sequence[mid], sequence[end] slowsort(snake_case_ , snake_case_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
1
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A ( unittest.TestCase ): def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def _lowercase (self : Any ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase (self : Dict , __a : Any , __a : List[Any] ): UpperCAmelCase_ = FlaxViTModel(config=__a ) UpperCAmelCase_ = model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ = (self.patch_size, self.patch_size) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase (self : Tuple , __a : str , __a : Any ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = FlaxViTForImageClassification(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = FlaxViTForImageClassification(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase (self : Any ): UpperCAmelCase_ = FlaxViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : Tuple ): self.config_tester.run_common_tests() def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model_class(__a ) @jax.jit def model_jitted(__a : Tuple , **__a : List[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase (self : Tuple ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a )
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __A ( UpperCamelCase__ ): a__ : Optional[Any] = DistilBertTokenizer a__ : Any = DistilBertTokenizerFast a__ : str = True @slow def _lowercase (self : int ): UpperCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
1
1
'''simple docstring''' import sys SCREAMING_SNAKE_CASE_: Optional[int] =( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCAmelCase_ ( snake_case_ : str ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for digit in s: product *= int(snake_case_ ) return product def lowerCAmelCase_ ( snake_case_ : str = N ) -> int: '''simple docstring''' UpperCAmelCase_ = -sys.maxsize - 1 UpperCAmelCase_ = n[:13] UpperCAmelCase_ = 13 while cur_index < len(snake_case_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): UpperCAmelCase_ = substr[1:] + n[cur_index] cur_index += 1 else: UpperCAmelCase_ = max(snake_case_ , str_eval(snake_case_ ) ) UpperCAmelCase_ = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"{solution() = }")
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE_: Tuple =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val def lowerCAmelCase_ ( snake_case_ : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ = value else: UpperCAmelCase_ = value return new_state_dict def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = "" if is_panoptic: UpperCAmelCase_ = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:2_56, :] UpperCAmelCase_ = in_proj_bias[:2_56] UpperCAmelCase_ = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ = in_proj_bias[2_56:5_12] UpperCAmelCase_ = in_proj_weight[-2_56:, :] UpperCAmelCase_ = in_proj_bias[-2_56:] def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase_ = "resnet101" if "dc5" in model_name: UpperCAmelCase_ = True UpperCAmelCase_ = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ = 2_50 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase_ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ = ConditionalDetrImageProcessor(format=snake_case_ ) # prepare image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=snake_case_ , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCAmelCase_ = torch.hub.load("DeppMeng/ConditionalDETR" , snake_case_ , pretrained=snake_case_ ).eval() UpperCAmelCase_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase_ = "conditional_detr." + src rename_key(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = ConditionalDetrForSegmentation(snake_case_ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() model.push_to_hub(repo_id=snake_case_ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase_ = conditional_detr(snake_case_ ) UpperCAmelCase_ = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[str] =argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
1
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets SCREAMING_SNAKE_CASE_: Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' SCREAMING_SNAKE_CASE_: List[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _lowercase (self : Tuple , __a : Optional[int] , __a : List[Any] ): UpperCAmelCase_ = 0.0 for i, j in zip(__a , __a ): n_correct += 1.0 if math_equivalence.is_equiv(__a , __a ) else 0.0 UpperCAmelCase_ = n_correct / len(__a ) return { "accuracy": accuracy, }
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : int , *__a : Dict , **__a : str ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
1
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __A ( unittest.TestCase ): def __init__(self : Optional[Any] , __a : List[Any] , __a : Tuple=13 , __a : Any=7 , __a : List[Any]=True , __a : List[Any]=True , __a : Dict=True , __a : List[str]=True , __a : Dict=99 , __a : List[Any]=32 , __a : List[Any]=5 , __a : Union[str, Any]=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : Union[str, Any]=0.1 , __a : List[Any]=0.1 , __a : Tuple=512 , __a : Any=16 , __a : Tuple=2 , __a : List[str]=0.02 , __a : str=4 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_attention_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_choices def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_attention_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__a , ) return config, input_ids, attention_mask def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[str] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase (self : str ): UpperCAmelCase_ = FlaxDistilBertModelTester(self ) @slow def _lowercase (self : int ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a ) @require_flax class __A ( unittest.TestCase ): @slow def _lowercase (self : Optional[int] ): UpperCAmelCase_ = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCAmelCase_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase_ = model(__a , attention_mask=__a )[0] UpperCAmelCase_ = (1, 11, 768) self.assertEqual(output.shape , __a ) UpperCAmelCase_ = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __a , atol=1E-4 ) )
1
'''simple docstring''' from __future__ import annotations import queue class __A : def __init__(self : Optional[Any] , __a : str ): UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCAmelCase_ ( ) -> TreeNode: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) UpperCAmelCase_ = input("Enter the value of the root node: " ).strip().lower() UpperCAmelCase_ = queue.Queue() UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() UpperCAmelCase_ = f"""Enter the left node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = left_node q.put(snake_case_ ) UpperCAmelCase_ = f"""Enter the right node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = right_node q.put(snake_case_ ) raise def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = [] while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(snake_case_ ) UpperCAmelCase_ = n.left # end of while means current node doesn't have left child UpperCAmelCase_ = stack.pop() # start to traverse its right child UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: stack.append(snake_case_ ) UpperCAmelCase_ = n.left UpperCAmelCase_ = stack.pop() print(n.data , end="," ) UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def lowerCAmelCase_ ( snake_case_ : str = "" , snake_case_ : Any=50 , snake_case_ : Union[str, Any]="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char UpperCAmelCase_ , UpperCAmelCase_ = divmod(width - len(snake_case_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE_: TreeNode =build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
1
1
'''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def lowerCAmelCase_ ( snake_case_ : dict , snake_case_ : Dict , snake_case_ : List[Any] ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = set() # keep track of all the paths to be checked UpperCAmelCase_ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCAmelCase_ = queue.pop(0 ) # get the last node from the path UpperCAmelCase_ = path[-1] if node not in explored: UpperCAmelCase_ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCAmelCase_ = list(snake_case_ ) new_path.append(snake_case_ ) queue.append(snake_case_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(snake_case_ ) # in case there's no path between the 2 nodes return [] def lowerCAmelCase_ ( snake_case_ : dict , snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCAmelCase_ = [start] UpperCAmelCase_ = set(snake_case_ ) # Keep tab on distances from `start` node. UpperCAmelCase_ = {start: 0, target: -1} while queue: UpperCAmelCase_ = queue.pop(0 ) if node == target: UpperCAmelCase_ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(snake_case_ ) queue.append(snake_case_ ) UpperCAmelCase_ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
1
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __A ( UpperCamelCase__ ): def _lowercase (self : str , __a : GenericTensor ): if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ) else: raise ValueError("Unsupported framework" ) return masked_index def _lowercase (self : Tuple , __a : GenericTensor ): UpperCAmelCase_ = self.get_masked_index(__a ) UpperCAmelCase_ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _lowercase (self : List[Any] , __a : GenericTensor ): if isinstance(__a , __a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def _lowercase (self : Tuple , __a : Dict , __a : List[str]=None , **__a : Any ): if return_tensors is None: UpperCAmelCase_ = self.framework UpperCAmelCase_ = self.tokenizer(__a , return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def _lowercase (self : str , __a : Optional[int] ): UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = model_inputs["input_ids"] return model_outputs def _lowercase (self : List[str] , __a : Tuple , __a : int=5 , __a : Dict=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase_ = target_ids.shape[0] UpperCAmelCase_ = model_outputs["input_ids"][0] UpperCAmelCase_ = model_outputs["logits"] if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase_ = outputs.numpy() UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = stable_softmax(__a , axis=-1 ) if target_ids is not None: UpperCAmelCase_ = tf.gather_nd(tf.squeeze(__a , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCAmelCase_ = tf.expand_dims(__a , 0 ) UpperCAmelCase_ = tf.math.top_k(__a , k=__a ) UpperCAmelCase_ , UpperCAmelCase_ = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase_ = probs[..., target_ids] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(__a ) UpperCAmelCase_ = [] UpperCAmelCase_ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCAmelCase_ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase_ = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase_ = target_ids[p].tolist() UpperCAmelCase_ = p # Filter padding out: UpperCAmelCase_ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase_ = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCAmelCase_ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def _lowercase (self : Dict , __a : List[Any] , __a : List[str]=None ): if isinstance(__a , __a ): UpperCAmelCase_ = [targets] try: UpperCAmelCase_ = self.tokenizer.get_vocab() except Exception: UpperCAmelCase_ = {} UpperCAmelCase_ = [] for target in targets: UpperCAmelCase_ = vocab.get(__a , __a ) if id_ is None: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , max_length=1 , truncation=__a , )["input_ids"] if len(__a ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ "We cannot replace it with anything meaningful, ignoring it" ) continue UpperCAmelCase_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) UpperCAmelCase_ = list(set(__a ) ) if len(__a ) == 0: raise ValueError("At least one target must be provided when passed." ) UpperCAmelCase_ = np.array(__a ) return target_ids def _lowercase (self : Tuple , __a : Dict=None , __a : List[str]=None ): UpperCAmelCase_ = {} if targets is not None: UpperCAmelCase_ = self.get_target_ids(__a , __a ) UpperCAmelCase_ = target_ids if top_k is not None: UpperCAmelCase_ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__(self : Union[str, Any] , __a : str , *__a : Any , **__a : Tuple ): UpperCAmelCase_ = super().__call__(__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs
1
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__) @dataclass class __A : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field(default=UpperCamelCase__ , metadata={"""help""": """Whether tp freeze the encoder."""} ) a__ : bool = field(default=UpperCamelCase__ , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class __A : a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) a__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) a__ : Optional[str] = field(default=UpperCamelCase__ , metadata={"""help""": """Source language id for translation."""} ) a__ : Optional[str] = field(default=UpperCamelCase__ , metadata={"""help""": """Target language id for translation."""} ) a__ : Optional[int] = field(default=UpperCamelCase__ , metadata={"""help""": """# num_beams to use for evaluation."""} ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ) -> str: '''simple docstring''' logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , f"""{split}_results.json""" ) ) def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) UpperCAmelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCAmelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCAmelCase_ = SeqaSeqDataset # Get datasets UpperCAmelCase_ = ( dataset_class( snake_case_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCAmelCase_ = ( dataset_class( snake_case_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCAmelCase_ = ( dataset_class( snake_case_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCAmelCase_ = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) UpperCAmelCase_ = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) UpperCAmelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCAmelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCAmelCase_ = train_result.metrics UpperCAmelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCAmelCase_ = data_args.n_val UpperCAmelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCAmelCase_ = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="test" ) UpperCAmelCase_ = test_output.metrics UpperCAmelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCAmelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: UpperCAmelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) UpperCAmelCase_ = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( snake_case_ : str ) -> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
1
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__) @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : str a__ : str a__ : Optional[str] = None a__ : Optional[str] = None a__ : Optional[str] = None @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : List[int] a__ : Optional[List[int]] = None a__ : Optional[List[int]] = None a__ : Optional[Union[int, float]] = None a__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __A ( UpperCamelCase__ ): a__ : List[InputFeatures] def __init__(self : Any , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = None , __a : Dict=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = os.path.join( __a , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(__a ) , __a , ) , ) UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(__a ): if os.path.exists(__a ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase_ = torch.load(__a ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase_ = ( processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) ) logger.info("Training examples: %s" , len(__a ) ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) logger.info("Saving features into cached file %s" , __a ) torch.save(self.features , __a ) def __len__(self : List[Any] ): return len(self.features ) def __getitem__(self : Any , __a : Optional[Any] ): return self.features[i] def _lowercase (self : Union[str, Any] ): return self.label_list if is_tf_available(): import tensorflow as tf class __A : a__ : List[InputFeatures] def __init__(self : Union[str, Any] , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = 128 , __a : Any=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list UpperCAmelCase_ = processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(__a )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ = tf.data.Dataset.from_generator( __a , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _lowercase (self : int ): return self.dataset def __len__(self : Any ): return len(self.features ) def __getitem__(self : int , __a : Union[str, Any] ): return self.features[i] def _lowercase (self : int ): return self.label_list class __A ( UpperCamelCase__ ): def _lowercase (self : List[Any] , __a : Dict ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_train_set.txt" ) ) , "train" ) def _lowercase (self : Any , __a : List[Any] ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _lowercase (self : Any ): return ["contradiction", "entailment", "neutral"] def _lowercase (self : Union[str, Any] , __a : Optional[int] , __a : Union[str, Any] ): UpperCAmelCase_ = [] for i, line in enumerate(__a ): if i == 0: continue UpperCAmelCase_ = "%s-%s" % (set_type, line[0]) UpperCAmelCase_ = line[5] UpperCAmelCase_ = line[6] UpperCAmelCase_ = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCAmelCase_ = line[0] examples.append(InputExample(guid=__a , text_a=__a , text_b=__a , label=__a , pairID=__a ) ) return examples def lowerCAmelCase_ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = {label: i for i, label in enumerate(snake_case_ )} UpperCAmelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCAmelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding="max_length" , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) UpperCAmelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE_: int ={ 'hans': 3, } SCREAMING_SNAKE_CASE_: Any ={ 'hans': HansProcessor, }
1
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __A ( UpperCamelCase__ ): a__ : Optional[Any] = DistilBertTokenizer a__ : Any = DistilBertTokenizerFast a__ : str = True @slow def _lowercase (self : int ): UpperCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={} class __A ( UpperCamelCase__ ): a__ : int = """llama""" a__ : Any = ["""past_key_values"""] def __init__(self : List[str] , __a : List[str]=32000 , __a : Tuple=4096 , __a : List[Any]=11008 , __a : Dict=32 , __a : Tuple=32 , __a : Any=None , __a : Any="silu" , __a : List[Any]=2048 , __a : List[Any]=0.02 , __a : str=1E-6 , __a : Optional[Any]=True , __a : Union[str, Any]=0 , __a : Any=1 , __a : Dict=2 , __a : Dict=1 , __a : str=False , __a : str=None , **__a : Optional[Any] , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_key_value_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = use_cache UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def _lowercase (self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) UpperCAmelCase_ = self.rope_scaling.get("type" , __a ) UpperCAmelCase_ = self.rope_scaling.get("factor" , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
1
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __A ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : str = StableDiffusionControlNetImgaImgPipeline a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} a__ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__ : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) a__ : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase (self : List[str] ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(__a ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase (self : List[str] , __a : Optional[Any] , __a : List[Any]=0 ): if str(__a ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(__a ) else: UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(__a ) UpperCAmelCase_ = 2 UpperCAmelCase_ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ) UpperCAmelCase_ = floats_tensor(control_image.shape , rng=random.Random(__a ) ).to(__a ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def _lowercase (self : Optional[int] ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowercase (self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _lowercase (self : Dict ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : List[str] = StableDiffusionControlNetImgaImgPipeline a__ : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} a__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__ : Optional[int] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _lowercase (self : Dict ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__a : Union[str, Any] ): if isinstance(__a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__a ) torch.manual_seed(0 ) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__a ) torch.manual_seed(0 ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(__a ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = MultiControlNetModel([controlneta, controlneta] ) UpperCAmelCase_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase (self : List[str] , __a : int , __a : str=0 ): if str(__a ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(__a ) else: UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(__a ) UpperCAmelCase_ = 2 UpperCAmelCase_ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ), ] UpperCAmelCase_ = floats_tensor(control_image[0].shape , rng=random.Random(__a ) ).to(__a ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**__a ) pipe.to(__a ) UpperCAmelCase_ = 10.0 UpperCAmelCase_ = 4 UpperCAmelCase_ = self.get_dummy_inputs(__a ) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**__a )[0] UpperCAmelCase_ = self.get_dummy_inputs(__a ) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**__a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCAmelCase_ = self.get_dummy_inputs(__a ) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**__a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCAmelCase_ = self.get_dummy_inputs(__a ) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**__a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def _lowercase (self : Any ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowercase (self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _lowercase (self : List[str] ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def _lowercase (self : str ): UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__a ) except NotImplementedError: pass @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Tuple ): UpperCAmelCase_ = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) UpperCAmelCase_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=__a , controlnet=__a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = "evil space-punk bird" UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) UpperCAmelCase_ = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) UpperCAmelCase_ = pipe( __a , __a , control_image=__a , generator=__a , output_type="np" , num_inference_steps=50 , strength=0.6 , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9E-2
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __A ( unittest.TestCase ): def _lowercase (self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase (self : str ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def _lowercase (self : int ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _lowercase (self : Any ): torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowercase (self : Optional[Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(__a ) def _lowercase (self : Any ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=__a , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase_ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Optional[int] ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowercase (self : str ): UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase_ = unet.half() UpperCAmelCase_ = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : List[Any] ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained(__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _lowercase (self : Tuple ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _lowercase (self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
1
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Optional[Any] ={'vocab_file': 'vocab.json'} SCREAMING_SNAKE_CASE_: int ={ 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } SCREAMING_SNAKE_CASE_: Union[str, Any] ={'mgp-str': 27} class __A ( UpperCamelCase__ ): a__ : str = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self : str , __a : Tuple , __a : str="[GO]" , __a : int="[GO]" , __a : Tuple="[s]" , __a : List[Any]="[GO]" , **__a : Any ): super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , **__a , ) with open(__a , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ = json.load(__a ) UpperCAmelCase_ = {v: k for k, v in self.vocab.items()} @property def _lowercase (self : List[Any] ): return len(self.vocab ) def _lowercase (self : Dict ): return dict(self.vocab , **self.added_tokens_encoder ) def _lowercase (self : Optional[int] , __a : Optional[Any] ): UpperCAmelCase_ = [] for s in text: char_tokens.extend(__a ) return char_tokens def _lowercase (self : str , __a : str ): return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def _lowercase (self : int , __a : str ): return self.decoder.get(__a ) def _lowercase (self : Tuple , __a : str , __a : Optional[str] = None ): if not os.path.isdir(__a ): logger.error("Vocabulary path ({}) should be a directory".format(__a ) ) return UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__a , ensure_ascii=__a ) + "\n" ) return (vocab_file,)
1
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __A ( UpperCamelCase__ ): def __init__(self : int , __a : Distribution , __a : Dict=None , __a : int=None , __a : Any=0 ): UpperCAmelCase_ = 1.0 if scale is None else scale UpperCAmelCase_ = 0.0 if loc is None else loc super().__init__(__a , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__a )] ) @property def _lowercase (self : Union[str, Any] ): return self.base_dist.mean * self.scale + self.loc @property def _lowercase (self : List[Any] ): return self.base_dist.variance * self.scale**2 @property def _lowercase (self : List[Any] ): return self.variance.sqrt() class __A ( nn.Module ): def __init__(self : Optional[int] , __a : int , __a : Dict[str, int] , __a : Callable[..., Tuple[torch.Tensor]] , **__a : List[str] ): super().__init__(**__a ) UpperCAmelCase_ = args_dim UpperCAmelCase_ = nn.ModuleList([nn.Linear(__a , __a ) for dim in args_dim.values()] ) UpperCAmelCase_ = domain_map def _lowercase (self : List[str] , __a : torch.Tensor ): UpperCAmelCase_ = [proj(__a ) for proj in self.proj] return self.domain_map(*__a ) class __A ( nn.Module ): def __init__(self : Union[str, Any] , __a : List[str] ): super().__init__() UpperCAmelCase_ = function def _lowercase (self : Optional[int] , __a : List[str] , *__a : Optional[int] ): return self.function(__a , *__a ) class __A : a__ : type a__ : int a__ : Dict[str, int] def __init__(self : List[Any] , __a : int = 1 ): UpperCAmelCase_ = dim UpperCAmelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def _lowercase (self : Any , __a : Any ): if self.dim == 1: return self.distribution_class(*__a ) else: return Independent(self.distribution_class(*__a ) , 1 ) def _lowercase (self : List[str] , __a : Union[str, Any] , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , ): UpperCAmelCase_ = self._base_distribution(__a ) if loc is None and scale is None: return distr else: return AffineTransformed(__a , loc=__a , scale=__a , event_dim=self.event_dim ) @property def _lowercase (self : Any ): return () if self.dim == 1 else (self.dim,) @property def _lowercase (self : Dict ): return len(self.event_shape ) @property def _lowercase (self : Tuple ): return 0.0 def _lowercase (self : List[str] , __a : int ): return ParameterProjection( in_features=__a , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _lowercase (self : Optional[int] , *__a : torch.Tensor ): raise NotImplementedError() @staticmethod def _lowercase (__a : torch.Tensor ): return (x + torch.sqrt(torch.square(__a ) + 4.0 )) / 2.0 class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} a__ : type = StudentT @classmethod def _lowercase (cls : Union[str, Any] , __a : torch.Tensor , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase_ = 2.0 + cls.squareplus(__a ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"loc": 1, "scale": 1} a__ : type = Normal @classmethod def _lowercase (cls : Tuple , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"total_count": 1, "logits": 1} a__ : type = NegativeBinomial @classmethod def _lowercase (cls : Optional[Any] , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _lowercase (self : List[str] , __a : str ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=__a , logits=__a ) else: return Independent(self.distribution_class(total_count=__a , logits=__a ) , 1 ) def _lowercase (self : Optional[Any] , __a : int , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
1
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def lowerCAmelCase_ ( ) -> None: '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets SCREAMING_SNAKE_CASE_: Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' SCREAMING_SNAKE_CASE_: List[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _lowercase (self : Tuple , __a : Optional[int] , __a : List[Any] ): UpperCAmelCase_ = 0.0 for i, j in zip(__a , __a ): n_correct += 1.0 if math_equivalence.is_equiv(__a , __a ) else 0.0 UpperCAmelCase_ = n_correct / len(__a ) return { "accuracy": accuracy, }
1
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : float ) -> float: '''simple docstring''' return 10 - x * x def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float ) -> float: '''simple docstring''' if equation(snake_case_ ) * equation(snake_case_ ) >= 0: raise ValueError("Wrong space!" ) UpperCAmelCase_ = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase_ = (a + b) / 2 # Check if middle point is root if equation(snake_case_ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case_ ) * equation(snake_case_ ) < 0: UpperCAmelCase_ = c else: UpperCAmelCase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] ) -> List[Any]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : str=True ) -> Optional[Any]: '''simple docstring''' model.train() UpperCAmelCase_ = model(snake_case_ ) UpperCAmelCase_ = F.mse_loss(snake_case_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Any=False ) -> Dict: '''simple docstring''' set_seed(42 ) UpperCAmelCase_ = RegressionModel() UpperCAmelCase_ = deepcopy(snake_case_ ) UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase_ = AdamW(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase_ ( snake_case_ : Any ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Optional[int]=False , snake_case_ : str=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] GradientState._reset_state() def lowerCAmelCase_ ( snake_case_ : Optional[Any]=False , snake_case_ : Tuple=False ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ , snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" UpperCAmelCase_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case_ )) if accelerator.num_processes > 1: check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ = RegressionDataset(length=96 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if iteration < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if batch_num < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(snake_case_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(snake_case_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(snake_case_ , snake_case_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Dict ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
1
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: str ={ 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class __A ( UpperCamelCase__ ): a__ : int = """swin2sr""" a__ : Optional[int] = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self : Dict , __a : Optional[Any]=64 , __a : int=1 , __a : Any=3 , __a : Optional[int]=180 , __a : Union[str, Any]=[6, 6, 6, 6, 6, 6] , __a : List[str]=[6, 6, 6, 6, 6, 6] , __a : int=8 , __a : Optional[Any]=2.0 , __a : Dict=True , __a : str=0.0 , __a : str=0.0 , __a : List[str]=0.1 , __a : Any="gelu" , __a : Any=False , __a : Any=0.02 , __a : Optional[int]=1E-5 , __a : Tuple=2 , __a : Optional[Any]=1.0 , __a : List[Any]="1conv" , __a : int="pixelshuffle" , **__a : str , ): super().__init__(**__a ) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(__a ) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range UpperCAmelCase_ = upscale UpperCAmelCase_ = img_range UpperCAmelCase_ = resi_connection UpperCAmelCase_ = upsampler
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(snake_case_ , x % y ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(snake_case_ , snake_case_ ) return g if __name__ == "__main__": print(f"{solution() = }")
1
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE_: Optional[int] =Lock() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ = min(snake_case_ , snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ = max(snake_case_ , snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr for i in range(1 , len(snake_case_ ) - 1 ): UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr process_array_.append( Process( target=snake_case_ , args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case_ ) ): UpperCAmelCase_ = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*snake_case_ ) UpperCAmelCase_ = odd_even_transposition(snake_case_ ) print("Sorted List\n" ) print(*snake_case_ ) if __name__ == "__main__": main()
1
'''simple docstring''' import os from math import logaa def lowerCAmelCase_ ( snake_case_ : str = "base_exp.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(snake_case_ ) , snake_case_ ) ) ): UpperCAmelCase_ , UpperCAmelCase_ = list(map(snake_case_ , line.split("," ) ) ) if x * logaa(snake_case_ ) > largest: UpperCAmelCase_ = x * logaa(snake_case_ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
1
1
'''simple docstring''' from collections.abc import Generator def lowerCAmelCase_ ( ) -> Generator[int, None, None]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = 0, 1 while True: UpperCAmelCase_ , UpperCAmelCase_ = b, a + b yield b def lowerCAmelCase_ ( snake_case_ : int = 10_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 UpperCAmelCase_ = fibonacci_generator() while len(str(next(snake_case_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(snake_case_ ) UpperCAmelCase_ = 5_12 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(snake_case_ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(snake_case_ ) else: UpperCAmelCase_ = torch.load(snake_case_ , map_location=snake_case_ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(snake_case_ , image_size=snake_case_ ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(snake_case_ , snake_case_ ) UpperCAmelCase_ = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') SCREAMING_SNAKE_CASE_: str =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
1
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Optional[int] =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) SCREAMING_SNAKE_CASE_: Optional[Any] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : a__ : str = field( default=UpperCamelCase__ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(UpperCamelCase__ )} ) a__ : str = field( default=UpperCamelCase__ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a__ : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : int = field( default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a__ : int = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a__ : int = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a__ : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a__ : int = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a__ : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a__ : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class __A ( UpperCamelCase__ ): a__ : str = """train""" a__ : List[Any] = """dev""" class __A ( UpperCamelCase__ ): a__ : SquadDataTrainingArguments a__ : List[SquadFeatures] a__ : Split a__ : bool def __init__(self : Optional[int] , __a : SquadDataTrainingArguments , __a : PreTrainedTokenizer , __a : Optional[int] = None , __a : Union[str, Split] = Split.train , __a : Optional[bool] = False , __a : Optional[str] = None , __a : Optional[str] = "pt" , ): UpperCAmelCase_ = args UpperCAmelCase_ = is_language_sensitive UpperCAmelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__a , __a ): try: UpperCAmelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) UpperCAmelCase_ = mode # Load data features from cache or dataset file UpperCAmelCase_ = "v2" if args.version_2_with_negative else "v1" UpperCAmelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(__a ): if os.path.exists(__a ) and not args.overwrite_cache: UpperCAmelCase_ = time.time() UpperCAmelCase_ = torch.load(__a ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. UpperCAmelCase_ = self.old_features["features"] UpperCAmelCase_ = self.old_features.get("dataset" , __a ) UpperCAmelCase_ = self.old_features.get("examples" , __a ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: UpperCAmelCase_ = self.processor.get_dev_examples(args.data_dir ) else: UpperCAmelCase_ = self.processor.get_train_examples(args.data_dir ) UpperCAmelCase_ , UpperCAmelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=__a , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__a , ) UpperCAmelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __a , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__(self : List[Any] ): return len(self.features ) def __getitem__(self : Dict , __a : Optional[int] ): # Convert to Tensors and build dataset UpperCAmelCase_ = self.features[i] UpperCAmelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) UpperCAmelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) UpperCAmelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: UpperCAmelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) UpperCAmelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A ( unittest.TestCase ): def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def _lowercase (self : Any ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase (self : Dict , __a : Any , __a : List[Any] ): UpperCAmelCase_ = FlaxViTModel(config=__a ) UpperCAmelCase_ = model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ = (self.patch_size, self.patch_size) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase (self : Tuple , __a : str , __a : Any ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = FlaxViTForImageClassification(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = FlaxViTForImageClassification(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase (self : Any ): UpperCAmelCase_ = FlaxViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : Tuple ): self.config_tester.run_common_tests() def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model_class(__a ) @jax.jit def model_jitted(__a : Tuple , **__a : List[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase (self : Tuple ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a )
1
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_: Optional[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Dict ={'vocab_file': 'spm_char.model'} SCREAMING_SNAKE_CASE_: int ={ 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } SCREAMING_SNAKE_CASE_: Any ={ 'microsoft/speecht5_asr': 10_24, 'microsoft/speecht5_tts': 10_24, 'microsoft/speecht5_vc': 10_24, } class __A ( UpperCamelCase__ ): a__ : Dict = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = ["""input_ids""", """attention_mask"""] def __init__(self : int , __a : List[str] , __a : Optional[Any]="<s>" , __a : Optional[Any]="</s>" , __a : Tuple="<unk>" , __a : Optional[Any]="<pad>" , __a : Optional[Dict[str, Any]] = None , **__a : Tuple , ): UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) @property def _lowercase (self : Dict ): return self.sp_model.get_piece_size() def _lowercase (self : Optional[int] ): UpperCAmelCase_ = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : Optional[Any] ): UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__(self : int , __a : Any ): UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase (self : Dict , __a : str ): return self.sp_model.encode(__a , out_type=__a ) def _lowercase (self : Optional[int] , __a : Union[str, Any] ): return self.sp_model.piece_to_id(__a ) def _lowercase (self : int , __a : Any ): UpperCAmelCase_ = self.sp_model.IdToPiece(__a ) return token def _lowercase (self : Any , __a : List[Any] ): UpperCAmelCase_ = [] UpperCAmelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__a ) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(__a ) out_string += self.sp_model.decode(__a ) return out_string.strip() def _lowercase (self : str , __a : Union[str, Any] , __a : List[Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowercase (self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) UpperCAmelCase_ = [1] if token_ids_a is None: return ([0] * len(__a )) + suffix_ones return ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def _lowercase (self : List[Any] , __a : str , __a : Optional[str] = None ): if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = 5 # Realm tok UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def _lowercase (self : Optional[Any] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def _lowercase (self : Any ): shutil.rmtree(self.tmpdirname ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = RealmConfig(num_block_records=self.num_block_records ) return config def _lowercase (self : List[str] ): UpperCAmelCase_ = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def _lowercase (self : Any ): UpperCAmelCase_ = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=__a , ) return block_records def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _lowercase (self : int ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3, 5] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path UpperCAmelCase_ = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: UpperCAmelCase_ = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase_ = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
1
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_: List[str] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: int ={ 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class __A ( UpperCamelCase__ ): a__ : List[Any] = """xlm""" a__ : Tuple = { """hidden_size""": """emb_dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", """n_words""": """vocab_size""", # For backward compatibility } def __init__(self : Tuple , __a : Tuple=30145 , __a : str=2048 , __a : Optional[int]=12 , __a : Tuple=16 , __a : int=0.1 , __a : Union[str, Any]=0.1 , __a : Any=True , __a : Optional[Any]=False , __a : List[str]=False , __a : Tuple=False , __a : int=1 , __a : int=True , __a : Optional[Any]=512 , __a : str=2048**-0.5 , __a : Optional[int]=1E-12 , __a : List[Any]=0.02 , __a : Any=0 , __a : str=1 , __a : Optional[Any]=2 , __a : Union[str, Any]=3 , __a : str=5 , __a : Optional[Any]=True , __a : str="first" , __a : int=True , __a : Dict=None , __a : Optional[Any]=True , __a : List[Any]=0.1 , __a : int=5 , __a : Any=5 , __a : Any=0 , __a : List[Any]=0 , __a : List[str]=2 , __a : Optional[int]=0 , **__a : List[Any] , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = emb_dim UpperCAmelCase_ = n_layers UpperCAmelCase_ = n_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = gelu_activation UpperCAmelCase_ = sinusoidal_embeddings UpperCAmelCase_ = causal UpperCAmelCase_ = asm UpperCAmelCase_ = n_langs UpperCAmelCase_ = use_lang_emb UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = bos_index UpperCAmelCase_ = eos_index UpperCAmelCase_ = pad_index UpperCAmelCase_ = unk_index UpperCAmelCase_ = mask_index UpperCAmelCase_ = is_encoder UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = embed_init_std UpperCAmelCase_ = init_std UpperCAmelCase_ = summary_type UpperCAmelCase_ = summary_use_proj UpperCAmelCase_ = summary_activation UpperCAmelCase_ = summary_proj_to_labels UpperCAmelCase_ = summary_first_dropout UpperCAmelCase_ = start_n_top UpperCAmelCase_ = end_n_top UpperCAmelCase_ = mask_token_id UpperCAmelCase_ = lang_id if "n_words" in kwargs: UpperCAmelCase_ = kwargs["n_words"] super().__init__(pad_token_id=__a , bos_token_id=__a , **__a ) class __A ( UpperCamelCase__ ): @property def _lowercase (self : int ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
1
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE_: Optional[int] =3_00 # TEMPERATURE (unit = K) def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
1
1
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[Any] = GPTSanJapaneseTokenizer a__ : Optional[Any] = False a__ : List[str] = {"""do_clean_text""": False, """add_prefix_space""": False} def _lowercase (self : Union[str, Any] ): super().setUp() # fmt: off UpperCAmelCase_ = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on UpperCAmelCase_ = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 UpperCAmelCase_ = {"unk_token": "<unk>"} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(__a ) ) def _lowercase (self : List[Any] , **__a : str ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__a ) def _lowercase (self : str , __a : Tuple ): UpperCAmelCase_ = "こんにちは、世界。 \nこんばんは、㔺界。😀" UpperCAmelCase_ = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def _lowercase (self : str , __a : List[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.get_input_output_texts(__a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) return text, ids def _lowercase (self : str ): pass # TODO add if relevant def _lowercase (self : str ): pass # TODO add if relevant def _lowercase (self : List[Any] ): pass # TODO add if relevant def _lowercase (self : Any ): UpperCAmelCase_ = self.get_tokenizer() # Testing tokenization UpperCAmelCase_ = "こんにちは、世界。 こんばんは、㔺界。" UpperCAmelCase_ = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] UpperCAmelCase_ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens UpperCAmelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens UpperCAmelCase_ = tokens + [tokenizer.unk_token] UpperCAmelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , __a ) def _lowercase (self : Tuple ): UpperCAmelCase_ = self.get_tokenizer() # Testing tokenization UpperCAmelCase_ = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" UpperCAmelCase_ = "こんにちは、、、、世界。こんばんは、、、、世界。" UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = tokenizer.decode(__a ) self.assertEqual(__a , __a ) @slow def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase_ = "こんにちは、世界。" UpperCAmelCase_ = "こんばんは、㔺界。😀" UpperCAmelCase_ = "こんにちは、世界。こんばんは、世界。😀" UpperCAmelCase_ = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase_ = tokenizer.encode("" , prefix_text=prefix_text + input_text ) UpperCAmelCase_ = tokenizer.encode(__a , prefix_text=__a ) UpperCAmelCase_ = tokenizer.decode(__a ) UpperCAmelCase_ = tokenizer.decode(__a ) UpperCAmelCase_ = tokenizer.decode(__a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) @slow def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase_ = "こんにちは、世界。" UpperCAmelCase_ = "こんばんは、㔺界。😀" UpperCAmelCase_ = len(tokenizer.encode(__a ) ) - 2 UpperCAmelCase_ = len(tokenizer.encode(__a ) ) - 2 UpperCAmelCase_ = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase_ = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase_ = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase_ = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase_ = tokenizer(__a , prefix_text=__a ).token_type_ids self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase_ = tokenizer.encode("あンいワ" ) UpperCAmelCase_ = tokenizer.encode("" , prefix_text="あンいワ" ) UpperCAmelCase_ = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(__a ) , tokenizer.decode(__a ) ) self.assertEqual(tokenizer.decode(__a ) , tokenizer.decode(__a ) ) self.assertNotEqual(__a , __a ) self.assertNotEqual(__a , __a ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _lowercase (self : int ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase_ = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] UpperCAmelCase_ = tokenizer(__a , padding=__a ) UpperCAmelCase_ = tokenizer.batch_encode_plus(__a , padding=__a ) # fmt: off UpperCAmelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] UpperCAmelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __a ) self.assertListEqual(x_token.token_type_ids , __a ) self.assertListEqual(x_token.attention_mask , __a ) self.assertListEqual(x_token_a.input_ids , __a ) self.assertListEqual(x_token_a.token_type_ids , __a ) self.assertListEqual(x_token_a.attention_mask , __a ) def _lowercase (self : List[Any] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def _lowercase (self : List[str] ): # tokenizer has no padding token pass
1
'''simple docstring''' import math def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase_ = input("Enter message: " ) UpperCAmelCase_ = int(input(f"""Enter key [2-{len(snake_case_ ) - 1}]: """ ) ) UpperCAmelCase_ = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): UpperCAmelCase_ = encrypt_message(snake_case_ , snake_case_ ) elif mode.lower().startswith("d" ): UpperCAmelCase_ = decrypt_message(snake_case_ , snake_case_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = [""] * key for col in range(snake_case_ ): UpperCAmelCase_ = col while pointer < len(snake_case_ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = math.ceil(len(snake_case_ ) / key ) UpperCAmelCase_ = key UpperCAmelCase_ = (num_cols * num_rows) - len(snake_case_ ) UpperCAmelCase_ = [""] * num_cols UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase_ = 0 row += 1 return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] UpperCAmelCase_ = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
1
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_: Optional[int] =logging.getLogger() SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] , __a : str ): os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = {"source": "What is love ?", "target": "life"} UpperCAmelCase_ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase_ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__a , f"""{split}.{field}""" ) , "w" ) as f: f.write(__a ) def _lowercase (self : Optional[int] , __a : int , __a : str = "pytorch" ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = os.path.join(__a , "output" ) UpperCAmelCase_ = os.path.join(__a , "data" ) self._create_dummy_data(data_dir=__a ) UpperCAmelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__a , env=self.get_env() ) UpperCAmelCase_ = os.path.join(__a , "metrics.json" ) with open(__a ) as f: UpperCAmelCase_ = json.load(__a ) return result @require_torch_gpu def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _lowercase (self : Dict ): UpperCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _lowercase (self : Any ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
1
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __A ( unittest.TestCase , UpperCamelCase__ ): def _lowercase (self : Any ): UpperCAmelCase_ = load_tool("text-classification" ) self.tool.setup() UpperCAmelCase_ = load_tool("text-classification" , remote=__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__a , "positive" ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__a , "positive" ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__a , "positive" ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__a , "positive" )
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE_: Optional[int] =Lock() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ = min(snake_case_ , snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ = max(snake_case_ , snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr for i in range(1 , len(snake_case_ ) - 1 ): UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr process_array_.append( Process( target=snake_case_ , args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case_ ) ): UpperCAmelCase_ = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*snake_case_ ) UpperCAmelCase_ = odd_even_transposition(snake_case_ ) print("Sorted List\n" ) print(*snake_case_ ) if __name__ == "__main__": main()
1
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} SCREAMING_SNAKE_CASE_: Tuple ={ 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } SCREAMING_SNAKE_CASE_: Tuple ={ 'allenai/longformer-base-4096': 40_96, 'allenai/longformer-large-4096': 40_96, 'allenai/longformer-large-4096-finetuned-triviaqa': 40_96, 'allenai/longformer-base-4096-extra.pos.embd.only': 40_96, 'allenai/longformer-large-4096-extra.pos.embd.only': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) UpperCAmelCase_ = bs[:] UpperCAmelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = set() UpperCAmelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ = char return pairs class __A ( UpperCamelCase__ ): a__ : Dict = VOCAB_FILES_NAMES a__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__(self : Any , __a : Optional[Any] , __a : Union[str, Any] , __a : List[str]="replace" , __a : List[str]="<s>" , __a : str="</s>" , __a : Dict="</s>" , __a : Tuple="<s>" , __a : Optional[Any]="<unk>" , __a : List[Any]="<pad>" , __a : Dict="<mask>" , __a : Any=False , **__a : int , ): UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( errors=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , **__a , ) with open(__a , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ = json.load(__a ) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = errors # how to handle errors in decoding UpperCAmelCase_ = bytes_to_unicode() UpperCAmelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(__a , encoding="utf-8" ) as merges_handle: UpperCAmelCase_ = merges_handle.read().split("\n" )[1:-1] UpperCAmelCase_ = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase_ = {} UpperCAmelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _lowercase (self : str ): return len(self.encoder ) def _lowercase (self : Dict ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase (self : Any , __a : Any ): if token in self.cache: return self.cache[token] UpperCAmelCase_ = tuple(__a ) UpperCAmelCase_ = get_pairs(__a ) if not pairs: return token while True: UpperCAmelCase_ = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ = bigram UpperCAmelCase_ = [] UpperCAmelCase_ = 0 while i < len(__a ): try: UpperCAmelCase_ = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ = tuple(__a ) UpperCAmelCase_ = new_word if len(__a ) == 1: break else: UpperCAmelCase_ = get_pairs(__a ) UpperCAmelCase_ = " ".join(__a ) UpperCAmelCase_ = word return word def _lowercase (self : Tuple , __a : Tuple ): UpperCAmelCase_ = [] for token in re.findall(self.pat , __a ): UpperCAmelCase_ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__a ).split(" " ) ) return bpe_tokens def _lowercase (self : Optional[Any] , __a : int ): return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def _lowercase (self : str , __a : Optional[Any] ): return self.decoder.get(__a ) def _lowercase (self : Dict , __a : Dict ): UpperCAmelCase_ = "".join(__a ) UpperCAmelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase (self : Union[str, Any] , __a : str , __a : Optional[str] = None ): if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + "\n" ) UpperCAmelCase_ = 0 with open(__a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase_ = token_index writer.write(" ".join(__a ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase (self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] UpperCAmelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase (self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def _lowercase (self : int , __a : List[int] , __a : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase (self : List[Any] , __a : Tuple , __a : Optional[Any]=False , **__a : Dict ): UpperCAmelCase_ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__a ) > 0 and not text[0].isspace()): UpperCAmelCase_ = " " + text return (text, kwargs)
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] UpperCAmelCase_ = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
1
1
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE_: Dict =get_tests_dir('fixtures/dummy-config.json') class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): UpperCAmelCase_ = 0 def _lowercase (self : Union[str, Any] ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase (self : int ): UpperCAmelCase_ = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__a , __a ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = AutoConfig.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = AutoConfig.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _lowercase (self : Tuple ): UpperCAmelCase_ = AutoConfig.for_model("roberta" ) self.assertIsInstance(__a , __a ) def _lowercase (self : List[str] ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. UpperCAmelCase_ = os.path.join(__a , "fake-roberta" ) os.makedirs(__a , exist_ok=__a ) with open(os.path.join(__a , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) UpperCAmelCase_ = AutoConfig.from_pretrained(__a ) self.assertEqual(type(__a ) , __a ) def _lowercase (self : str ): try: AutoConfig.register("custom" , __a ) # Wrong model type will raise an error with self.assertRaises(__a ): AutoConfig.register("model" , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoConfig.register("bert" , __a ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase_ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a ) UpperCAmelCase_ = AutoConfig.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase (self : Union[str, Any] ): with self.assertRaisesRegex( __a , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase_ = AutoConfig.from_pretrained("bert-base" ) def _lowercase (self : Optional[Any] ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase_ = AutoConfig.from_pretrained(__a , revision="aaaaaa" ) def _lowercase (self : Tuple ): with self.assertRaisesRegex( __a , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase (self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__a ) UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__a ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a ) UpperCAmelCase_ = AutoConfig.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def _lowercase (self : Tuple ): class __A ( UpperCamelCase__ ): a__ : str = """new-model""" try: AutoConfig.register("new-model" , __a ) # If remote code is not set, the default is to use local UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__a ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__a ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int | None = None , snake_case_ : int | None = None ) -> None: '''simple docstring''' if start is None: UpperCAmelCase_ = 0 if end is None: UpperCAmelCase_ = len(snake_case_ ) - 1 if start >= end: return UpperCAmelCase_ = (start + end) // 2 slowsort(snake_case_ , snake_case_ , snake_case_ ) slowsort(snake_case_ , mid + 1 , snake_case_ ) if sequence[end] < sequence[mid]: UpperCAmelCase_ , UpperCAmelCase_ = sequence[mid], sequence[end] slowsort(snake_case_ , snake_case_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
1
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available SCREAMING_SNAKE_CASE_: int ={ 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[str] =[ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __A ( UpperCamelCase__ ): a__ : Optional[Any] = DistilBertTokenizer a__ : Any = DistilBertTokenizerFast a__ : str = True @slow def _lowercase (self : int ): UpperCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
1
1
'''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple ={'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} SCREAMING_SNAKE_CASE_: List[str] =['a', 'b', 'c', 'd', 'e'] def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Optional[Any] , snake_case_ : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = start # add current to visited visited.append(snake_case_ ) UpperCAmelCase_ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCAmelCase_ = topological_sort(snake_case_ , snake_case_ , snake_case_ ) # if all neighbors visited add current to sort sort.append(snake_case_ ) # if all vertices haven't been visited select a new one to visit if len(snake_case_ ) != len(snake_case_ ): for vertice in vertices: if vertice not in visited: UpperCAmelCase_ = topological_sort(snake_case_ , snake_case_ , snake_case_ ) # return sort return sort if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[Any] =topological_sort('a', [], []) print(sort)
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE_: Tuple =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val def lowerCAmelCase_ ( snake_case_ : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ = value else: UpperCAmelCase_ = value return new_state_dict def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = "" if is_panoptic: UpperCAmelCase_ = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:2_56, :] UpperCAmelCase_ = in_proj_bias[:2_56] UpperCAmelCase_ = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ = in_proj_bias[2_56:5_12] UpperCAmelCase_ = in_proj_weight[-2_56:, :] UpperCAmelCase_ = in_proj_bias[-2_56:] def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase_ = "resnet101" if "dc5" in model_name: UpperCAmelCase_ = True UpperCAmelCase_ = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ = 2_50 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase_ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ = ConditionalDetrImageProcessor(format=snake_case_ ) # prepare image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=snake_case_ , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCAmelCase_ = torch.hub.load("DeppMeng/ConditionalDETR" , snake_case_ , pretrained=snake_case_ ).eval() UpperCAmelCase_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase_ = "conditional_detr." + src rename_key(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = ConditionalDetrForSegmentation(snake_case_ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() model.push_to_hub(repo_id=snake_case_ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase_ = conditional_detr(snake_case_ ) UpperCAmelCase_ = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[str] =argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
1
1
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE_: Tuple =1.6_0_2_1E-1_9 # units = C def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ) -> tuple[str, float]: '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif conductivity < 0: raise ValueError("Conductivity cannot be negative" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative" ) elif mobility < 0: raise ValueError("mobility cannot be negative" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : int , *__a : Dict , **__a : str ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__) @dataclass class __A ( UpperCamelCase__ ): a__ : str = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__(self : List[str] , **__a : Tuple ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase_ = deprecated_arg[3:] setattr(self , __a , not kwargs.pop(__a ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) UpperCAmelCase_ = kwargs.pop("torchscript" , self.torchscript ) UpperCAmelCase_ = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics ) UpperCAmelCase_ = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level ) super().__init__(**__a ) a__ : bool = field(default=UpperCamelCase__ , metadata={"""help""": """Trace the models using torchscript"""} ) a__ : bool = field(default=UpperCamelCase__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) a__ : str = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def _lowercase (self : int ): requires_backends(self , ["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: UpperCAmelCase_ = torch.device("cpu" ) UpperCAmelCase_ = 0 elif is_torch_tpu_available(): UpperCAmelCase_ = xm.xla_device() UpperCAmelCase_ = 0 else: UpperCAmelCase_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) UpperCAmelCase_ = torch.cuda.device_count() return device, n_gpu @property def _lowercase (self : Tuple ): return is_torch_tpu_available() and self.tpu @property def _lowercase (self : int ): requires_backends(self , ["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _lowercase (self : List[str] ): requires_backends(self , ["torch"] ) return self._setup_devices[0] @property def _lowercase (self : Tuple ): requires_backends(self , ["torch"] ) return self._setup_devices[1] @property def _lowercase (self : Optional[Any] ): return self.n_gpu > 0
1
'''simple docstring''' from __future__ import annotations import queue class __A : def __init__(self : Optional[Any] , __a : str ): UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCAmelCase_ ( ) -> TreeNode: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) UpperCAmelCase_ = input("Enter the value of the root node: " ).strip().lower() UpperCAmelCase_ = queue.Queue() UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() UpperCAmelCase_ = f"""Enter the left node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = left_node q.put(snake_case_ ) UpperCAmelCase_ = f"""Enter the right node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = right_node q.put(snake_case_ ) raise def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = [] while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(snake_case_ ) UpperCAmelCase_ = n.left # end of while means current node doesn't have left child UpperCAmelCase_ = stack.pop() # start to traverse its right child UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: stack.append(snake_case_ ) UpperCAmelCase_ = n.left UpperCAmelCase_ = stack.pop() print(n.data , end="," ) UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def lowerCAmelCase_ ( snake_case_ : str = "" , snake_case_ : Any=50 , snake_case_ : Union[str, Any]="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char UpperCAmelCase_ , UpperCAmelCase_ = divmod(width - len(snake_case_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE_: TreeNode =build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
1
1
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase_ ( snake_case_ : str = "laptop" ) -> DataFrame: '''simple docstring''' UpperCAmelCase_ = f"""https://www.amazon.in/laptop/s?k={product}""" UpperCAmelCase_ = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } UpperCAmelCase_ = BeautifulSoup(requests.get(snake_case_ , headers=snake_case_ ).text ) # Initialize a Pandas dataframe with the column titles UpperCAmelCase_ = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: UpperCAmelCase_ = item.ha.text UpperCAmelCase_ = "https://www.amazon.in/" + item.ha.a["href"] UpperCAmelCase_ = item.find("span" , attrs={"class": "a-offscreen"} ).text try: UpperCAmelCase_ = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: UpperCAmelCase_ = "Not available" try: UpperCAmelCase_ = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: UpperCAmelCase_ = "" try: UpperCAmelCase_ = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 1_00 ) except ValueError: UpperCAmelCase_ = float("nan" ) except AttributeError: pass UpperCAmelCase_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] UpperCAmelCase_ = " " UpperCAmelCase_ = " " data_frame.index += 1 return data_frame if __name__ == "__main__": SCREAMING_SNAKE_CASE_: str ='headphones' get_amazon_product_data(product).to_csv(f"Amazon Product Data for {product}.csv")
1
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __A ( UpperCamelCase__ ): def _lowercase (self : str , __a : GenericTensor ): if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ) else: raise ValueError("Unsupported framework" ) return masked_index def _lowercase (self : Tuple , __a : GenericTensor ): UpperCAmelCase_ = self.get_masked_index(__a ) UpperCAmelCase_ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _lowercase (self : List[Any] , __a : GenericTensor ): if isinstance(__a , __a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def _lowercase (self : Tuple , __a : Dict , __a : List[str]=None , **__a : Any ): if return_tensors is None: UpperCAmelCase_ = self.framework UpperCAmelCase_ = self.tokenizer(__a , return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def _lowercase (self : str , __a : Optional[int] ): UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = model_inputs["input_ids"] return model_outputs def _lowercase (self : List[str] , __a : Tuple , __a : int=5 , __a : Dict=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase_ = target_ids.shape[0] UpperCAmelCase_ = model_outputs["input_ids"][0] UpperCAmelCase_ = model_outputs["logits"] if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase_ = outputs.numpy() UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = stable_softmax(__a , axis=-1 ) if target_ids is not None: UpperCAmelCase_ = tf.gather_nd(tf.squeeze(__a , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCAmelCase_ = tf.expand_dims(__a , 0 ) UpperCAmelCase_ = tf.math.top_k(__a , k=__a ) UpperCAmelCase_ , UpperCAmelCase_ = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase_ = probs[..., target_ids] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(__a ) UpperCAmelCase_ = [] UpperCAmelCase_ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCAmelCase_ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase_ = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase_ = target_ids[p].tolist() UpperCAmelCase_ = p # Filter padding out: UpperCAmelCase_ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase_ = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCAmelCase_ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def _lowercase (self : Dict , __a : List[Any] , __a : List[str]=None ): if isinstance(__a , __a ): UpperCAmelCase_ = [targets] try: UpperCAmelCase_ = self.tokenizer.get_vocab() except Exception: UpperCAmelCase_ = {} UpperCAmelCase_ = [] for target in targets: UpperCAmelCase_ = vocab.get(__a , __a ) if id_ is None: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , max_length=1 , truncation=__a , )["input_ids"] if len(__a ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ "We cannot replace it with anything meaningful, ignoring it" ) continue UpperCAmelCase_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) UpperCAmelCase_ = list(set(__a ) ) if len(__a ) == 0: raise ValueError("At least one target must be provided when passed." ) UpperCAmelCase_ = np.array(__a ) return target_ids def _lowercase (self : Tuple , __a : Dict=None , __a : List[str]=None ): UpperCAmelCase_ = {} if targets is not None: UpperCAmelCase_ = self.get_target_ids(__a , __a ) UpperCAmelCase_ = target_ids if top_k is not None: UpperCAmelCase_ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__(self : Union[str, Any] , __a : str , *__a : Any , **__a : Tuple ): UpperCAmelCase_ = super().__call__(__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs
1
1
'''simple docstring''' import qiskit def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase_ = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase_ = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase_ = qiskit.execute(snake_case_ , snake_case_ , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =half_adder(1, 1) print(f"Half Adder Output Qubit Counts: {counts}")
1
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__) @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : str a__ : str a__ : Optional[str] = None a__ : Optional[str] = None a__ : Optional[str] = None @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : List[int] a__ : Optional[List[int]] = None a__ : Optional[List[int]] = None a__ : Optional[Union[int, float]] = None a__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __A ( UpperCamelCase__ ): a__ : List[InputFeatures] def __init__(self : Any , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = None , __a : Dict=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = os.path.join( __a , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(__a ) , __a , ) , ) UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(__a ): if os.path.exists(__a ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase_ = torch.load(__a ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase_ = ( processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) ) logger.info("Training examples: %s" , len(__a ) ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) logger.info("Saving features into cached file %s" , __a ) torch.save(self.features , __a ) def __len__(self : List[Any] ): return len(self.features ) def __getitem__(self : Any , __a : Optional[Any] ): return self.features[i] def _lowercase (self : Union[str, Any] ): return self.label_list if is_tf_available(): import tensorflow as tf class __A : a__ : List[InputFeatures] def __init__(self : Union[str, Any] , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = 128 , __a : Any=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list UpperCAmelCase_ = processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(__a )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ = tf.data.Dataset.from_generator( __a , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _lowercase (self : int ): return self.dataset def __len__(self : Any ): return len(self.features ) def __getitem__(self : int , __a : Union[str, Any] ): return self.features[i] def _lowercase (self : int ): return self.label_list class __A ( UpperCamelCase__ ): def _lowercase (self : List[Any] , __a : Dict ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_train_set.txt" ) ) , "train" ) def _lowercase (self : Any , __a : List[Any] ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _lowercase (self : Any ): return ["contradiction", "entailment", "neutral"] def _lowercase (self : Union[str, Any] , __a : Optional[int] , __a : Union[str, Any] ): UpperCAmelCase_ = [] for i, line in enumerate(__a ): if i == 0: continue UpperCAmelCase_ = "%s-%s" % (set_type, line[0]) UpperCAmelCase_ = line[5] UpperCAmelCase_ = line[6] UpperCAmelCase_ = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCAmelCase_ = line[0] examples.append(InputExample(guid=__a , text_a=__a , text_b=__a , label=__a , pairID=__a ) ) return examples def lowerCAmelCase_ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = {label: i for i, label in enumerate(snake_case_ )} UpperCAmelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCAmelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding="max_length" , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) UpperCAmelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE_: int ={ 'hans': 3, } SCREAMING_SNAKE_CASE_: Any ={ 'hans': HansProcessor, }
1
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: SCREAMING_SNAKE_CASE_: Optional[int] =None SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: str ={'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_: List[Any] ={ 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE_: List[str] ={ 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off SCREAMING_SNAKE_CASE_: Dict =['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class __A ( UpperCamelCase__ ): a__ : Dict = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Tuple = ["""input_ids""", """attention_mask"""] a__ : Any = NllbTokenizer a__ : List[int] = [] a__ : List[int] = [] def __init__(self : Tuple , __a : Optional[int]=None , __a : Union[str, Any]=None , __a : int="<s>" , __a : Union[str, Any]="</s>" , __a : List[str]="</s>" , __a : List[str]="<s>" , __a : List[Any]="<unk>" , __a : List[Any]="<pad>" , __a : Any="<mask>" , __a : Tuple=None , __a : int=None , __a : str=None , __a : Any=False , **__a : str , ): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token UpperCAmelCase_ = legacy_behaviour super().__init__( vocab_file=__a , tokenizer_file=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , src_lang=__a , tgt_lang=__a , additional_special_tokens=__a , legacy_behaviour=__a , **__a , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True UpperCAmelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) UpperCAmelCase_ = { lang_code: self.convert_tokens_to_ids(__a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase_ = src_lang if src_lang is not None else "eng_Latn" UpperCAmelCase_ = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase (self : List[Any] ): return self._src_lang @src_lang.setter def _lowercase (self : List[Any] , __a : str ): UpperCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase (self : Union[str, Any] , __a : List[int] , __a : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase (self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase (self : Optional[int] , __a : List[Any] , __a : str , __a : Optional[str] , __a : Optional[str] , **__a : Any ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase_ = src_lang UpperCAmelCase_ = self(__a , add_special_tokens=__a , return_tensors=__a , **__a ) UpperCAmelCase_ = self.convert_tokens_to_ids(__a ) UpperCAmelCase_ = tgt_lang_id return inputs def _lowercase (self : Optional[int] , __a : List[str] , __a : str = "eng_Latn" , __a : Optional[List[str]] = None , __a : str = "fra_Latn" , **__a : Tuple , ): UpperCAmelCase_ = src_lang UpperCAmelCase_ = tgt_lang return super().prepare_seqaseq_batch(__a , __a , **__a ) def _lowercase (self : str ): return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase (self : Any ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase (self : int , __a : Optional[int] ): UpperCAmelCase_ = self.convert_tokens_to_ids(__a ) if self.legacy_behaviour: UpperCAmelCase_ = [] UpperCAmelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ = [self.cur_lang_code] UpperCAmelCase_ = [self.eos_token_id] UpperCAmelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase (self : List[str] , __a : str ): UpperCAmelCase_ = self.convert_tokens_to_ids(__a ) if self.legacy_behaviour: UpperCAmelCase_ = [] UpperCAmelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ = [self.cur_lang_code] UpperCAmelCase_ = [self.eos_token_id] UpperCAmelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase (self : Optional[int] , __a : str , __a : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={} class __A ( UpperCamelCase__ ): a__ : int = """llama""" a__ : Any = ["""past_key_values"""] def __init__(self : List[str] , __a : List[str]=32000 , __a : Tuple=4096 , __a : List[Any]=11008 , __a : Dict=32 , __a : Tuple=32 , __a : Any=None , __a : Any="silu" , __a : List[Any]=2048 , __a : List[Any]=0.02 , __a : str=1E-6 , __a : Optional[Any]=True , __a : Union[str, Any]=0 , __a : Any=1 , __a : Dict=2 , __a : Dict=1 , __a : str=False , __a : str=None , **__a : Optional[Any] , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_key_value_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = use_cache UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def _lowercase (self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) UpperCAmelCase_ = self.rope_scaling.get("type" , __a ) UpperCAmelCase_ = self.rope_scaling.get("factor" , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
1
1
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __A ( unittest.TestCase ): def _lowercase (self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase (self : str ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def _lowercase (self : int ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _lowercase (self : Any ): torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowercase (self : Optional[Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(__a ) def _lowercase (self : Any ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=__a , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase_ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Optional[int] ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowercase (self : str ): UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase_ = unet.half() UpperCAmelCase_ = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : List[Any] ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained(__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _lowercase (self : Tuple ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _lowercase (self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
1
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_: Dict ={ 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[int] =['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: str =[ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __A ( UpperCamelCase__ ): def __init__(self : int , __a : Distribution , __a : Dict=None , __a : int=None , __a : Any=0 ): UpperCAmelCase_ = 1.0 if scale is None else scale UpperCAmelCase_ = 0.0 if loc is None else loc super().__init__(__a , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__a )] ) @property def _lowercase (self : Union[str, Any] ): return self.base_dist.mean * self.scale + self.loc @property def _lowercase (self : List[Any] ): return self.base_dist.variance * self.scale**2 @property def _lowercase (self : List[Any] ): return self.variance.sqrt() class __A ( nn.Module ): def __init__(self : Optional[int] , __a : int , __a : Dict[str, int] , __a : Callable[..., Tuple[torch.Tensor]] , **__a : List[str] ): super().__init__(**__a ) UpperCAmelCase_ = args_dim UpperCAmelCase_ = nn.ModuleList([nn.Linear(__a , __a ) for dim in args_dim.values()] ) UpperCAmelCase_ = domain_map def _lowercase (self : List[str] , __a : torch.Tensor ): UpperCAmelCase_ = [proj(__a ) for proj in self.proj] return self.domain_map(*__a ) class __A ( nn.Module ): def __init__(self : Union[str, Any] , __a : List[str] ): super().__init__() UpperCAmelCase_ = function def _lowercase (self : Optional[int] , __a : List[str] , *__a : Optional[int] ): return self.function(__a , *__a ) class __A : a__ : type a__ : int a__ : Dict[str, int] def __init__(self : List[Any] , __a : int = 1 ): UpperCAmelCase_ = dim UpperCAmelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def _lowercase (self : Any , __a : Any ): if self.dim == 1: return self.distribution_class(*__a ) else: return Independent(self.distribution_class(*__a ) , 1 ) def _lowercase (self : List[str] , __a : Union[str, Any] , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , ): UpperCAmelCase_ = self._base_distribution(__a ) if loc is None and scale is None: return distr else: return AffineTransformed(__a , loc=__a , scale=__a , event_dim=self.event_dim ) @property def _lowercase (self : Any ): return () if self.dim == 1 else (self.dim,) @property def _lowercase (self : Dict ): return len(self.event_shape ) @property def _lowercase (self : Tuple ): return 0.0 def _lowercase (self : List[str] , __a : int ): return ParameterProjection( in_features=__a , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _lowercase (self : Optional[int] , *__a : torch.Tensor ): raise NotImplementedError() @staticmethod def _lowercase (__a : torch.Tensor ): return (x + torch.sqrt(torch.square(__a ) + 4.0 )) / 2.0 class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} a__ : type = StudentT @classmethod def _lowercase (cls : Union[str, Any] , __a : torch.Tensor , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase_ = 2.0 + cls.squareplus(__a ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"loc": 1, "scale": 1} a__ : type = Normal @classmethod def _lowercase (cls : Tuple , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"total_count": 1, "logits": 1} a__ : type = NegativeBinomial @classmethod def _lowercase (cls : Optional[Any] , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _lowercase (self : List[str] , __a : str ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=__a , logits=__a ) else: return Independent(self.distribution_class(total_count=__a , logits=__a ) , 1 ) def _lowercase (self : Optional[Any] , __a : int , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
1
1
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[Any]=None , snake_case_ : Any=None , snake_case_ : Optional[Any]=None , snake_case_ : Dict=None , snake_case_ : List[Any]=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: UpperCAmelCase_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: UpperCAmelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: UpperCAmelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __A : def __init__(self : Optional[int] , __a : List[str] , __a : str=13 , __a : Optional[Any]=7 , __a : Tuple=True , __a : Optional[Any]=False , __a : Any=99 , __a : int=16 , __a : Optional[Any]=2 , __a : List[Any]=4 , __a : Dict=4 , __a : List[Any]="relu" , __a : List[Any]=0.1 , __a : Any=0.1 , __a : int=0.0 , __a : Any=0.0 , __a : Optional[Any]=20 , __a : List[Any]=2 , __a : Tuple=1 , __a : Any=0 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.eos_token_id # Eos Token UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase_ = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(__a , __a , __a ) return config, inputs_dict def _lowercase (self : Optional[Any] ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase (self : str ): UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase (self : int , __a : int , __a : Union[str, Any] ): UpperCAmelCase_ = MaMaaaModel(config=__a ).get_decoder().to(__a ).eval() UpperCAmelCase_ = inputs_dict["input_ids"] UpperCAmelCase_ = inputs_dict["attention_mask"] UpperCAmelCase_ = inputs_dict["head_mask"] # first forward pass UpperCAmelCase_ = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCAmelCase_ = model(__a , attention_mask=__a )["last_hidden_state"] UpperCAmelCase_ = model(__a , attention_mask=__a , past_key_values=__a )[ "last_hidden_state" ] # select random slice UpperCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-2 ) ) def _lowercase (self : Optional[Any] , __a : Any , __a : Optional[int] ): UpperCAmelCase_ = MaMaaaModel(config=__a ).to(__a ).eval() UpperCAmelCase_ = model(**__a ) UpperCAmelCase_ = outputs.encoder_last_hidden_state UpperCAmelCase_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = model.get_encoder() encoder.save_pretrained(__a ) UpperCAmelCase_ = MaMaaaEncoder.from_pretrained(__a ).to(__a ) UpperCAmelCase_ = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = model.get_decoder() decoder.save_pretrained(__a ) UpperCAmelCase_ = MaMaaaDecoder.from_pretrained(__a ).to(__a ) UpperCAmelCase_ = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__a , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : List[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a__ : int = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a__ : Optional[int] = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a__ : Union[str, Any] = True a__ : Tuple = True a__ : List[str] = False a__ : Union[str, Any] = False def _lowercase (self : Any , __a : Optional[Any] , __a : Dict , __a : int , __a : str , __a : str ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase (self : Dict ): UpperCAmelCase_ = MaMaaaModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a ) def _lowercase (self : int ): self.config_tester.run_common_tests() def _lowercase (self : List[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) UpperCAmelCase_ , UpperCAmelCase_ = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__a ) def _lowercase (self : Dict ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) def _lowercase (self : List[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCAmelCase_ = model_class(__a ) model.to(__a ) model.eval() UpperCAmelCase_ = copy.deepcopy(self._prepare_for_class(__a , __a ) ) if not self.is_encoder_decoder: UpperCAmelCase_ = inputs["input_ids"] del inputs["input_ids"] else: UpperCAmelCase_ = inputs["input_ids"] UpperCAmelCase_ = inputs.get("decoder_input_ids" , __a ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __a ) UpperCAmelCase_ = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCAmelCase_ = wte(__a ) else: UpperCAmelCase_ = wte(__a ) UpperCAmelCase_ = wte(__a ) with torch.no_grad(): model(**__a )[0] def _lowercase (self : int ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = input_dict["input_ids"] UpperCAmelCase_ = input_ids.ne(1 ).to(__a ) UpperCAmelCase_ = MaMaaaForConditionalGeneration(__a ).eval().to(__a ) if torch_device == "cuda": model.half() model.generate(__a , attention_mask=__a ) model.generate(num_beams=4 , do_sample=__a , early_stopping=__a , num_return_sequences=3 ) def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Union[str, Any]: '''simple docstring''' return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) SCREAMING_SNAKE_CASE_: Any =1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __A ( unittest.TestCase ): @cached_property def _lowercase (self : Optional[int] ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__a ) UpperCAmelCase_ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) UpperCAmelCase_ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(model.config , __a , __a ) with torch.no_grad(): UpperCAmelCase_ = model(**__a )[0] UpperCAmelCase_ = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , __a ) # change to expected output here UpperCAmelCase_ = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=__a ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=__a ) ) def _lowercase (self : str ): UpperCAmelCase_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__a ) # change to intended input UpperCAmelCase_ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) UpperCAmelCase_ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(model.config , __a , __a ) with torch.no_grad(): UpperCAmelCase_ = model(**__a )[0] UpperCAmelCase_ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __a ) # change to expected output here UpperCAmelCase_ = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=__a ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=__a ) ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__a ) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) UpperCAmelCase_ = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCAmelCase_ = tokenizer(__a , padding=__a , return_tensors="pt" ) UpperCAmelCase_ = model.generate( input_ids=dct["input_ids"].to(__a ) , attention_mask=dct["attention_mask"].to(__a ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) UpperCAmelCase_ = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] UpperCAmelCase_ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__a , skip_special_tokens=__a ) assert generated == expected_en
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets SCREAMING_SNAKE_CASE_: Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' SCREAMING_SNAKE_CASE_: List[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _lowercase (self : Tuple , __a : Optional[int] , __a : List[Any] ): UpperCAmelCase_ = 0.0 for i, j in zip(__a , __a ): n_correct += 1.0 if math_equivalence.is_equiv(__a , __a ) else 0.0 UpperCAmelCase_ = n_correct / len(__a ) return { "accuracy": accuracy, }
1
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A ( unittest.TestCase ): @property def _lowercase (self : Tuple ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.dummy_uncond_unet UpperCAmelCase_ = ScoreSdeVeScheduler() UpperCAmelCase_ = ScoreSdeVePipeline(unet=__a , scheduler=__a ) sde_ve.to(__a ) sde_ve.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=__a ).images UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=__a , return_dict=__a )[ 0 ] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __A ( unittest.TestCase ): def _lowercase (self : Tuple ): UpperCAmelCase_ = "google/ncsnpp-church-256" UpperCAmelCase_ = UNetaDModel.from_pretrained(__a ) UpperCAmelCase_ = ScoreSdeVeScheduler.from_pretrained(__a ) UpperCAmelCase_ = ScoreSdeVePipeline(unet=__a , scheduler=__a ) sde_ve.to(__a ) sde_ve.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=__a ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] ) -> List[Any]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : str=True ) -> Optional[Any]: '''simple docstring''' model.train() UpperCAmelCase_ = model(snake_case_ ) UpperCAmelCase_ = F.mse_loss(snake_case_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Any=False ) -> Dict: '''simple docstring''' set_seed(42 ) UpperCAmelCase_ = RegressionModel() UpperCAmelCase_ = deepcopy(snake_case_ ) UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase_ = AdamW(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase_ ( snake_case_ : Any ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Optional[int]=False , snake_case_ : str=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] GradientState._reset_state() def lowerCAmelCase_ ( snake_case_ : Optional[Any]=False , snake_case_ : Tuple=False ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ , snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" UpperCAmelCase_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case_ )) if accelerator.num_processes > 1: check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ = RegressionDataset(length=96 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if iteration < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if batch_num < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(snake_case_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(snake_case_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(snake_case_ , snake_case_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Dict ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
1
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCAmelCase__ = "." if __name__ == "__main__": UpperCAmelCase__ = os.path.join(REPO_PATH, "utils/documentation_tests.txt") UpperCAmelCase__ = [] UpperCAmelCase__ = [] with open(doctest_file_path) as fp: for line in fp: UpperCAmelCase__ = line.strip() UpperCAmelCase__ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCAmelCase__ = "\n".join(non_existent_paths) raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(snake_case_ , x % y ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(snake_case_ , snake_case_ ) return g if __name__ == "__main__": print(f"{solution() = }")
1
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Tuple=13 , UpperCamelCase : Dict=30 , UpperCamelCase : int=2 , UpperCamelCase : Any=3 , UpperCamelCase : List[Any]=True , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : str=4 , UpperCamelCase : Any=37 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : str=10 , UpperCamelCase : Any=0.02 , UpperCamelCase : str=3 , UpperCamelCase : Optional[int]=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self : Tuple ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = TFViTModel(config=UpperCamelCase ) lowercase__ = model(UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowercase__ = self.image_size // 2 lowercase__ = pixel_values[:, :, :image_size, :image_size] lowercase__ = model(UpperCamelCase , interpolate_pos_encoding=UpperCamelCase , training=UpperCamelCase ) lowercase__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCamelCase__ (self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = self.type_sequence_label_size lowercase__ = TFViTForImageClassification(UpperCamelCase ) lowercase__ = model(UpperCamelCase , labels=UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowercase__ = self.image_size // 2 lowercase__ = pixel_values[:, :, :image_size, :image_size] lowercase__ = model(UpperCamelCase , interpolate_pos_encoding=UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTForImageClassification(UpperCamelCase ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase (lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCAmelCase__ : Tuple = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : Any = False lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = TFViTModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCamelCase__ (self : str ): '''simple docstring''' pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' pass def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ ,lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , tf.keras.layers.Layer ) ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ ,lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase ) def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self : str ): '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase , return_tensors='''tf''' ) # forward pass lowercase__ = model(**UpperCamelCase ) # verify the logits lowercase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowercase__ = tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4 )
2
'''simple docstring''' import os from math import logaa def lowerCAmelCase_ ( snake_case_ : str = "base_exp.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(snake_case_ ) , snake_case_ ) ) ): UpperCAmelCase_ , UpperCAmelCase_ = list(map(snake_case_ , line.split("," ) ) ) if x * logaa(snake_case_ ) > largest: UpperCAmelCase_ = x * logaa(snake_case_ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
1
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase : str = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=18 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=400 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" A : Any = size if size is not None else {'''height''': 20, '''width''': 20} A : List[Any] = parent A : Dict = batch_size A : Optional[Any] = num_channels A : str = image_size A : List[Any] = min_resolution A : Optional[int] = max_resolution A : Union[str, Any] = size A : Tuple = do_normalize A : Tuple = do_convert_rgb A : Union[str, Any] = [512, 1024, 2048, 4096] A : Optional[int] = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def __lowerCAmelCase ( self ) -> str: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : str = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' A : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A ( __snake_case , unittest.TestCase ): __magic_name__ = PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Optional[int] = PixaStructImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.image_processor_tester.prepare_dummy_image() A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) A : int = 2048 A : Tuple = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_606 ) , atol=1e-3 , rtol=1e-3 ) ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Union[str, Any] = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : List[Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 A : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE ): A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches A : Any = '''Hello''' A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Optional[int] = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) A : Tuple = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : List[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : str = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input A : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Dict = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A ( __snake_case , unittest.TestCase ): __magic_name__ = PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Union[str, Any] = PixaStructImageProcessingTester(self , num_channels=4 ) A : Optional[Any] = 3 @property def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : int = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
3
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(snake_case_ ) UpperCAmelCase_ = 5_12 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(snake_case_ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(snake_case_ ) else: UpperCAmelCase_ = torch.load(snake_case_ , map_location=snake_case_ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(snake_case_ , image_size=snake_case_ ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(snake_case_ , snake_case_ ) UpperCAmelCase_ = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') SCREAMING_SNAKE_CASE_: str =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
1
0
'''simple docstring''' import pprint import requests __snake_case ="""https://zenquotes.io/api""" def a_ ( ): return requests.get(API_ENDPOINT_URL + '/today' ).json() def a_ ( ): return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": __snake_case =random_quotes() pprint.pprint(response)
4
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A ( unittest.TestCase ): def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def _lowercase (self : Any ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase (self : Dict , __a : Any , __a : List[Any] ): UpperCAmelCase_ = FlaxViTModel(config=__a ) UpperCAmelCase_ = model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ = (self.patch_size, self.patch_size) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase (self : Tuple , __a : str , __a : Any ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = FlaxViTForImageClassification(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = FlaxViTForImageClassification(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase (self : Any ): UpperCAmelCase_ = FlaxViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : Tuple ): self.config_tester.run_common_tests() def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model_class(__a ) @jax.jit def model_jitted(__a : Tuple , **__a : List[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase (self : Tuple ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a )
1
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = 5 # Realm tok UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def _lowercase (self : Optional[Any] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def _lowercase (self : Any ): shutil.rmtree(self.tmpdirname ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = RealmConfig(num_block_records=self.num_block_records ) return config def _lowercase (self : List[str] ): UpperCAmelCase_ = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def _lowercase (self : Any ): UpperCAmelCase_ = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=__a , ) return block_records def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _lowercase (self : int ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3, 5] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path UpperCAmelCase_ = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: UpperCAmelCase_ = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase_ = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
1
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : List[Any] = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __A( a ): snake_case_ = '''poolformer''' def __init__( self , _snake_case=3 , _snake_case=16 , _snake_case=16 , _snake_case=3 , _snake_case=4.0 , _snake_case=[2, 2, 6, 2] , _snake_case=[64, 128, 320, 512] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[2, 1, 1, 1] , _snake_case=4 , _snake_case=0.0 , _snake_case="gelu" , _snake_case=True , _snake_case=1E-5 , _snake_case=0.02 , **_snake_case , ) -> str: '''simple docstring''' __a = num_channels __a = patch_size __a = stride __a = padding __a = pool_size __a = hidden_sizes __a = mlp_ratio __a = depths __a = patch_sizes __a = strides __a = num_encoder_blocks __a = drop_path_rate __a = hidden_act __a = use_layer_scale __a = layer_scale_init_value __a = initializer_range super().__init__(**_snake_case ) class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 2E-3
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE_: Optional[int] =3_00 # TEMPERATURE (unit = K) def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
1
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if "img_encoder.pos_embed" in name: A__ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: A__ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: A__ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: A__ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: A__ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: A__ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: A__ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: A__ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: A__ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: A__ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: A__ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: A__ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: A__ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: A__ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: A__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: A__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: A__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: A__ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: A__ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: A__ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: A__ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: A__ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: A__ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: A__ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: '''simple docstring''' for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A__ = key.split('.' ) A__ , A__ = int(key_split[2] ), int(key_split[4] ) A__ = config.vision_config.hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A__ = key.split('.' ) A__ = int(key_split[3] ) A__ = config.text_config.hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[ dim : dim * 2, : ] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = rename_key(SCREAMING_SNAKE_CASE__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): A__ = val.squeeze_() else: A__ = val return orig_state_dict def _snake_case( ) -> Optional[int]: '''simple docstring''' A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE__ : List[Any]=False ) -> Dict: '''simple docstring''' A__ = GroupViTConfig() A__ = GroupViTModel(SCREAMING_SNAKE_CASE__ ).eval() A__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['model'] A__ = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ , A__ = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE__ ) == 0) # verify result A__ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) A__ = prepare_img() A__ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) with torch.no_grad(): A__ = model(**SCREAMING_SNAKE_CASE__ ) if model_name == "groupvit-gcc-yfcc": A__ = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": A__ = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Successfully saved processor and model to' , SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ , organization='nielsr' ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization='nielsr' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) lowercase_ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
7
'''simple docstring''' import math def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase_ = input("Enter message: " ) UpperCAmelCase_ = int(input(f"""Enter key [2-{len(snake_case_ ) - 1}]: """ ) ) UpperCAmelCase_ = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): UpperCAmelCase_ = encrypt_message(snake_case_ , snake_case_ ) elif mode.lower().startswith("d" ): UpperCAmelCase_ = decrypt_message(snake_case_ , snake_case_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = [""] * key for col in range(snake_case_ ): UpperCAmelCase_ = col while pointer < len(snake_case_ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = math.ceil(len(snake_case_ ) / key ) UpperCAmelCase_ = key UpperCAmelCase_ = (num_cols * num_rows) - len(snake_case_ ) UpperCAmelCase_ = [""] * num_cols UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase_ = 0 row += 1 return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
0
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 200 ): snake_case_ = [1, 2, 5, 10, 20, 50, 100, 200] snake_case_ = [0] * (pence + 1) snake_case_ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(SCREAMING_SNAKE_CASE__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
8
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_: Optional[int] =logging.getLogger() SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] , __a : str ): os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = {"source": "What is love ?", "target": "life"} UpperCAmelCase_ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase_ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__a , f"""{split}.{field}""" ) , "w" ) as f: f.write(__a ) def _lowercase (self : Optional[int] , __a : int , __a : str = "pytorch" ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = os.path.join(__a , "output" ) UpperCAmelCase_ = os.path.join(__a , "data" ) self._create_dummy_data(data_dir=__a ) UpperCAmelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__a , env=self.get_env() ) UpperCAmelCase_ = os.path.join(__a , "metrics.json" ) with open(__a ) as f: UpperCAmelCase_ = json.load(__a ) return result @require_torch_gpu def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _lowercase (self : Dict ): UpperCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _lowercase (self : Any ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
1
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
9
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE_: Optional[int] =Lock() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ = min(snake_case_ , snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ = max(snake_case_ , snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr for i in range(1 , len(snake_case_ ) - 1 ): UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr process_array_.append( Process( target=snake_case_ , args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case_ ) ): UpperCAmelCase_ = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*snake_case_ ) UpperCAmelCase_ = odd_even_transposition(snake_case_ ) print("Sorted List\n" ) print(*snake_case_ ) if __name__ == "__main__": main()
1
0
from PIL import Image def lowerCAmelCase_ ( __a ) -> Image: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: Tuple =image.size lowerCamelCase__: Optional[Any] =0 lowerCamelCase__: List[str] =image.load() for i in range(__a ): for j in range(__a ): lowerCamelCase__: Optional[Any] =pixels[j, i] mean += pixel mean //= width * height for j in range(__a ): for i in range(__a ): lowerCamelCase__: int =255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __A = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
10
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] UpperCAmelCase_ = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
1
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowerCAmelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowerCAmelCase__ = '</w>' lowerCAmelCase__ = '@@ ' def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): _A : Optional[int] = set() _A : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : List[Any] = char return pairs # Speech2Text2 has no max input length lowerCAmelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 10_24} class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase=False , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) _A : Dict = do_lower_case with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : Optional[int] = json.load(__lowerCamelCase) _A : Optional[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.") _A : Optional[Any] = None _A : Tuple = None else: with open(__lowerCamelCase , encoding="utf-8") as merges_handle: _A : Optional[int] = merges_handle.read().split("\n")[:-1] _A : Union[str, Any] = [tuple(merge.split()[:2]) for merge in merges] _A : Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : List[Any] = {} @property def _lowerCamelCase ( self) -> int: return len(self.decoder) def _lowerCamelCase ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Tuple = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A : int = get_pairs(__lowerCamelCase) if not pairs: return token while True: _A : Any = min(__lowerCamelCase , key=lambda __lowerCamelCase: self.bpe_ranks.get(__lowerCamelCase , float("inf"))) if bigram not in self.bpe_ranks: break _A , _A : Optional[int] = bigram _A : int = [] _A : str = 0 while i < len(__lowerCamelCase): try: _A : str = word.index(__lowerCamelCase , __lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _A : str = j if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _A : List[str] = tuple(__lowerCamelCase) _A : List[str] = new_word if len(__lowerCamelCase) == 1: break else: _A : List[Any] = get_pairs(__lowerCamelCase) _A : Tuple = " ".join(__lowerCamelCase) if word == "\n " + BPE_TOKEN_MERGES: _A : List[str] = "\n" + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase): _A : int = word.replace(__lowerCamelCase , "") _A : int = word.replace(" " , __lowerCamelCase) _A : Union[str, Any] = word return word def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding.") if self.do_lower_case: _A : List[Any] = text.lower() _A : Optional[int] = text.split() _A : List[str] = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase).split(" "))) return split_tokens def _lowerCamelCase ( self , __lowerCamelCase) -> int: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : List[str] = self.decoder.get(__lowerCamelCase , self.unk_token) return result def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : str = " ".join(__lowerCamelCase) # make sure @@ tokens are concatenated _A : int = "".join(string.split(__lowerCamelCase)) return string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n") _A : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _A : Optional[int] = token_index writer.write(" ".join(__lowerCamelCase) + "\n") index += 1 return (vocab_file, merges_file)
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int | None = None , snake_case_ : int | None = None ) -> None: '''simple docstring''' if start is None: UpperCAmelCase_ = 0 if end is None: UpperCAmelCase_ = len(snake_case_ ) - 1 if start >= end: return UpperCAmelCase_ = (start + end) // 2 slowsort(snake_case_ , snake_case_ , snake_case_ ) slowsort(snake_case_ , mid + 1 , snake_case_ ) if sequence[end] < sequence[mid]: UpperCAmelCase_ , UpperCAmelCase_ = sequence[mid], sequence[end] slowsort(snake_case_ , snake_case_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
1
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '▁' UpperCAmelCase_ = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} UpperCAmelCase_ = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } UpperCAmelCase_ = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } UpperCAmelCase_ = { 'ernie-m-base': 514, 'ernie-m-large': 514, } UpperCAmelCase_ = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[str] = ["input_ids"] UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = RESOURCE_FILES_NAMES def __init__( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: str=False , UpperCamelCase_: Union[str, Any]="utf8" , UpperCamelCase_: int="[UNK]" , UpperCamelCase_: Union[str, Any]="[SEP]" , UpperCamelCase_: Optional[Any]="[PAD]" , UpperCamelCase_: Dict="[CLS]" , UpperCamelCase_: Any="[MASK]" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: Union[str, Any] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , vocab_file=UpperCamelCase_ , encoding=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __lowerCamelCase = do_lower_case __lowerCamelCase = sentencepiece_model_ckpt __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __lowerCamelCase = self.load_vocab(filepath=UpperCamelCase_ ) else: __lowerCamelCase = {self.sp_model.id_to_piece(UpperCamelCase_ ): id for id in range(self.sp_model.get_piece_size() )} __lowerCamelCase = {v: k for k, v in self.vocab.items()} def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] ): if text is None: return None __lowerCamelCase = self.tokenize(UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = """""", [] for i, ch in enumerate(UpperCamelCase_ ): if ch in self.SP_CHAR_MAPPING: __lowerCamelCase = self.SP_CHAR_MAPPING.get(UpperCamelCase_ ) else: __lowerCamelCase = unicodedata.normalize("""NFKC""" , UpperCamelCase_ ) if self.is_whitespace(UpperCamelCase_ ): continue normalized_text += ch char_mapping.extend([i] * len(UpperCamelCase_ ) ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = normalized_text, [], 0 if self.do_lower_case: __lowerCamelCase = text.lower() for token in split_tokens: if token[:1] == "▁": __lowerCamelCase = token[1:] __lowerCamelCase = text[offset:].index(UpperCamelCase_ ) + offset __lowerCamelCase = start + len(UpperCamelCase_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __lowerCamelCase = end return token_mapping @property def lowerCAmelCase__ ( self: Optional[int] ): return len(self.vocab ) def lowerCAmelCase__ ( self: List[str] ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self: List[Any] ): __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self: str , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[Any] ): return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase_ , UpperCamelCase_ ) for c in text) ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Any=False , UpperCamelCase_: Union[str, Any]=64 , UpperCamelCase_: Union[str, Any]=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __lowerCamelCase = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __lowerCamelCase = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __lowerCamelCase = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __lowerCamelCase = self.sp_model.EncodeAsPieces(UpperCamelCase_ ) else: __lowerCamelCase = self.sp_model.SampleEncodeAsPieces(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = [] for pi, piece in enumerate(UpperCamelCase_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCamelCase_ ) and pi != 0: new_pieces.append(UpperCamelCase_ ) continue else: continue __lowerCamelCase = 0 for i, chunk in enumerate(UpperCamelCase_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCamelCase_ ) or self.is_punct(UpperCamelCase_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(UpperCamelCase_ ) __lowerCamelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __lowerCamelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __lowerCamelCase = i if len(UpperCamelCase_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = """""".join(UpperCamelCase_ ).replace(UpperCamelCase_ , """ """ ).strip() return out_string def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.convert_ids_to_tokens(UpperCamelCase_ ) __lowerCamelCase = """""".join(UpperCamelCase_ ).replace(UpperCamelCase_ , """ """ ).strip() return out_string def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ): return self.vocab.get(UpperCamelCase_ , self.vocab.get(self.unk_token ) ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str ): return self.reverse_vocab.get(UpperCamelCase_ , self.unk_token ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: str=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def lowerCAmelCase__ ( self: Any , UpperCamelCase_: int , UpperCamelCase_: List[str]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple=None , UpperCamelCase_: List[str]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCamelCase_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCamelCase_ ) + 1) + [1] * (len(UpperCamelCase_ ) + 3) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[str] ): if "\u4e00" <= char <= "\u9fff": return True return False def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[str] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Union[str, Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCamelCase_ ) == 1: __lowerCamelCase = unicodedata.category(UpperCamelCase_ ) if cat == "Zs": return True return False def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int ): __lowerCamelCase = {} with io.open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(UpperCamelCase_ ): __lowerCamelCase = line.rstrip("""\n""" ) __lowerCamelCase = int(UpperCamelCase_ ) return token_to_idx def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): __lowerCamelCase = 0 if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __lowerCamelCase = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) __lowerCamelCase = token_index writer.write(token + """\n""" ) index += 1 __lowerCamelCase = os.path.join(UpperCamelCase_ , """sentencepiece.bpe.model""" ) with open(UpperCamelCase_ , """wb""" ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (vocab_file,)
12
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __A ( UpperCamelCase__ ): a__ : Optional[Any] = DistilBertTokenizer a__ : Any = DistilBertTokenizerFast a__ : str = True @slow def _lowercase (self : int ): UpperCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
1
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE_: Tuple =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val def lowerCAmelCase_ ( snake_case_ : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ = value else: UpperCAmelCase_ = value return new_state_dict def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = "" if is_panoptic: UpperCAmelCase_ = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:2_56, :] UpperCAmelCase_ = in_proj_bias[:2_56] UpperCAmelCase_ = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ = in_proj_bias[2_56:5_12] UpperCAmelCase_ = in_proj_weight[-2_56:, :] UpperCAmelCase_ = in_proj_bias[-2_56:] def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase_ = "resnet101" if "dc5" in model_name: UpperCAmelCase_ = True UpperCAmelCase_ = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ = 2_50 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase_ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ = ConditionalDetrImageProcessor(format=snake_case_ ) # prepare image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=snake_case_ , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCAmelCase_ = torch.hub.load("DeppMeng/ConditionalDETR" , snake_case_ , pretrained=snake_case_ ).eval() UpperCAmelCase_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase_ = "conditional_detr." + src rename_key(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = ConditionalDetrForSegmentation(snake_case_ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() model.push_to_hub(repo_id=snake_case_ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase_ = conditional_detr(snake_case_ ) UpperCAmelCase_ = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[str] =argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
1
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
14
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : int , *__a : Dict , **__a : str ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : int ): __A = logging.get_logger() # the current default level is logging.WARNING __A = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() ) # restore to the original level logging.set_verbosity(A ) def UpperCamelCase_ ( self : Dict ): __A = logging.get_verbosity() __A = logging.get_logger("transformers.models.bart.tokenization_bart" ) __A = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out ,msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out ,"" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out ,msg + "\n" ) # restore to the original level logging.set_verbosity(A ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def UpperCamelCase_ ( self : Optional[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __A = logging.get_logger("transformers.models.bart.tokenization_bart" ) __A = os.getenv("TRANSFORMERS_VERBOSITY" ,A ) __A = logging.log_levels[env_level_str] __A = logging.get_verbosity() self.assertEqual( A ,A ,f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' ,) # restore to the original level __A = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def UpperCamelCase_ ( self : Tuple ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __A = logging.logging.getLogger() with CaptureLogger(A ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" ,cl.out ) # no need to restore as nothing was changed def UpperCamelCase_ ( self : int ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __A = logging.get_logger("transformers.models.bart.tokenization_bart" ) __A = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(A ) as cl: logger.warning_advice(A ) self.assertEqual(cl.out ,"" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(A ) as cl: logger.warning_advice(A ) self.assertEqual(cl.out ,msg + "\n" ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
15
'''simple docstring''' from __future__ import annotations import queue class __A : def __init__(self : Optional[Any] , __a : str ): UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCAmelCase_ ( ) -> TreeNode: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) UpperCAmelCase_ = input("Enter the value of the root node: " ).strip().lower() UpperCAmelCase_ = queue.Queue() UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() UpperCAmelCase_ = f"""Enter the left node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = left_node q.put(snake_case_ ) UpperCAmelCase_ = f"""Enter the right node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = right_node q.put(snake_case_ ) raise def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = [] while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(snake_case_ ) UpperCAmelCase_ = n.left # end of while means current node doesn't have left child UpperCAmelCase_ = stack.pop() # start to traverse its right child UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: stack.append(snake_case_ ) UpperCAmelCase_ = n.left UpperCAmelCase_ = stack.pop() print(n.data , end="," ) UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def lowerCAmelCase_ ( snake_case_ : str = "" , snake_case_ : Any=50 , snake_case_ : Union[str, Any]="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char UpperCAmelCase_ , UpperCAmelCase_ = divmod(width - len(snake_case_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE_: TreeNode =build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
1
0
"""simple docstring""" import os def __UpperCAmelCase ( __lowerCamelCase = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(__lowerCamelCase ) , __lowerCamelCase ) ) as input_file: lowercase__ : Union[str, Any] = [ [int(__lowerCamelCase ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase__ : Any = len(__lowerCamelCase ) lowercase__ : Optional[Any] = len(matrix[0] ) lowercase__ : int = [[-1 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): lowercase__ : int = matrix[i][0] for j in range(1 , __lowerCamelCase ): for i in range(__lowerCamelCase ): lowercase__ : List[str] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __lowerCamelCase ): lowercase__ : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase__ : Union[str, Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
16
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __A ( UpperCamelCase__ ): def _lowercase (self : str , __a : GenericTensor ): if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ) else: raise ValueError("Unsupported framework" ) return masked_index def _lowercase (self : Tuple , __a : GenericTensor ): UpperCAmelCase_ = self.get_masked_index(__a ) UpperCAmelCase_ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _lowercase (self : List[Any] , __a : GenericTensor ): if isinstance(__a , __a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def _lowercase (self : Tuple , __a : Dict , __a : List[str]=None , **__a : Any ): if return_tensors is None: UpperCAmelCase_ = self.framework UpperCAmelCase_ = self.tokenizer(__a , return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def _lowercase (self : str , __a : Optional[int] ): UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = model_inputs["input_ids"] return model_outputs def _lowercase (self : List[str] , __a : Tuple , __a : int=5 , __a : Dict=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase_ = target_ids.shape[0] UpperCAmelCase_ = model_outputs["input_ids"][0] UpperCAmelCase_ = model_outputs["logits"] if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase_ = outputs.numpy() UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = stable_softmax(__a , axis=-1 ) if target_ids is not None: UpperCAmelCase_ = tf.gather_nd(tf.squeeze(__a , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCAmelCase_ = tf.expand_dims(__a , 0 ) UpperCAmelCase_ = tf.math.top_k(__a , k=__a ) UpperCAmelCase_ , UpperCAmelCase_ = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase_ = probs[..., target_ids] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(__a ) UpperCAmelCase_ = [] UpperCAmelCase_ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCAmelCase_ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase_ = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase_ = target_ids[p].tolist() UpperCAmelCase_ = p # Filter padding out: UpperCAmelCase_ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase_ = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCAmelCase_ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def _lowercase (self : Dict , __a : List[Any] , __a : List[str]=None ): if isinstance(__a , __a ): UpperCAmelCase_ = [targets] try: UpperCAmelCase_ = self.tokenizer.get_vocab() except Exception: UpperCAmelCase_ = {} UpperCAmelCase_ = [] for target in targets: UpperCAmelCase_ = vocab.get(__a , __a ) if id_ is None: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , max_length=1 , truncation=__a , )["input_ids"] if len(__a ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ "We cannot replace it with anything meaningful, ignoring it" ) continue UpperCAmelCase_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) UpperCAmelCase_ = list(set(__a ) ) if len(__a ) == 0: raise ValueError("At least one target must be provided when passed." ) UpperCAmelCase_ = np.array(__a ) return target_ids def _lowercase (self : Tuple , __a : Dict=None , __a : List[str]=None ): UpperCAmelCase_ = {} if targets is not None: UpperCAmelCase_ = self.get_target_ids(__a , __a ) UpperCAmelCase_ = target_ids if top_k is not None: UpperCAmelCase_ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__(self : Union[str, Any] , __a : str , *__a : Any , **__a : Tuple ): UpperCAmelCase_ = super().__call__(__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs
1
0
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _A ( ) -> Dict: '''simple docstring''' __lowercase = HfArgumentParser(UpperCamelCase_) __lowercase = parser.parse_args_into_dataclasses()[0] __lowercase = TensorFlowBenchmark(args=UpperCamelCase_) try: __lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowercase = "Arg --no_{0} is no longer used, please use --no-{0} instead." __lowercase = " ".join(str(UpperCamelCase_).split(" ")[:-1]) __lowercase = "" __lowercase = eval(str(UpperCamelCase_).split(" ")[-1]) __lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(UpperCamelCase_) if len(UpperCamelCase_) > 0: __lowercase = full_error_msg + begin_error_msg + str(UpperCamelCase_) raise ValueError(UpperCamelCase_) benchmark.run() if __name__ == "__main__": main()
17
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__) @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : str a__ : str a__ : Optional[str] = None a__ : Optional[str] = None a__ : Optional[str] = None @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : List[int] a__ : Optional[List[int]] = None a__ : Optional[List[int]] = None a__ : Optional[Union[int, float]] = None a__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __A ( UpperCamelCase__ ): a__ : List[InputFeatures] def __init__(self : Any , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = None , __a : Dict=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = os.path.join( __a , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(__a ) , __a , ) , ) UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(__a ): if os.path.exists(__a ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase_ = torch.load(__a ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase_ = ( processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) ) logger.info("Training examples: %s" , len(__a ) ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) logger.info("Saving features into cached file %s" , __a ) torch.save(self.features , __a ) def __len__(self : List[Any] ): return len(self.features ) def __getitem__(self : Any , __a : Optional[Any] ): return self.features[i] def _lowercase (self : Union[str, Any] ): return self.label_list if is_tf_available(): import tensorflow as tf class __A : a__ : List[InputFeatures] def __init__(self : Union[str, Any] , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = 128 , __a : Any=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list UpperCAmelCase_ = processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(__a )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ = tf.data.Dataset.from_generator( __a , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _lowercase (self : int ): return self.dataset def __len__(self : Any ): return len(self.features ) def __getitem__(self : int , __a : Union[str, Any] ): return self.features[i] def _lowercase (self : int ): return self.label_list class __A ( UpperCamelCase__ ): def _lowercase (self : List[Any] , __a : Dict ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_train_set.txt" ) ) , "train" ) def _lowercase (self : Any , __a : List[Any] ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _lowercase (self : Any ): return ["contradiction", "entailment", "neutral"] def _lowercase (self : Union[str, Any] , __a : Optional[int] , __a : Union[str, Any] ): UpperCAmelCase_ = [] for i, line in enumerate(__a ): if i == 0: continue UpperCAmelCase_ = "%s-%s" % (set_type, line[0]) UpperCAmelCase_ = line[5] UpperCAmelCase_ = line[6] UpperCAmelCase_ = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCAmelCase_ = line[0] examples.append(InputExample(guid=__a , text_a=__a , text_b=__a , label=__a , pairID=__a ) ) return examples def lowerCAmelCase_ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = {label: i for i, label in enumerate(snake_case_ )} UpperCAmelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCAmelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding="max_length" , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) UpperCAmelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE_: int ={ 'hans': 3, } SCREAMING_SNAKE_CASE_: Any ={ 'hans': HansProcessor, }
1
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer("Hello there",return_tensors="np" ).input_ids SCREAMING_SNAKE_CASE_ : str = tokenizer("Hi I am",return_tensors="np" ).input_ids SCREAMING_SNAKE_CASE_ : List[str] = shift_tokens_right(_A,model.config.pad_token_id,model.config.decoder_start_token_id ) SCREAMING_SNAKE_CASE_ : str = model(_A,decoder_input_ids=_A ).logits SCREAMING_SNAKE_CASE_ : Dict = optax.softmax_cross_entropy(_A,onehot(_A,logits.shape[-1] ) ).mean() SCREAMING_SNAKE_CASE_ : Any = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE_ : List[str] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={} class __A ( UpperCamelCase__ ): a__ : int = """llama""" a__ : Any = ["""past_key_values"""] def __init__(self : List[str] , __a : List[str]=32000 , __a : Tuple=4096 , __a : List[Any]=11008 , __a : Dict=32 , __a : Tuple=32 , __a : Any=None , __a : Any="silu" , __a : List[Any]=2048 , __a : List[Any]=0.02 , __a : str=1E-6 , __a : Optional[Any]=True , __a : Union[str, Any]=0 , __a : Any=1 , __a : Dict=2 , __a : Dict=1 , __a : str=False , __a : str=None , **__a : Optional[Any] , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_key_value_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = use_cache UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def _lowercase (self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) UpperCAmelCase_ = self.rope_scaling.get("type" , __a ) UpperCAmelCase_ = self.rope_scaling.get("factor" , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
1
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __A =logging.get_logger(__name__) # General docstring __A ='''MobileNetV1Config''' # Base docstring __A ='''google/mobilenet_v1_1.0_224''' __A =[1, 1_0_2_4, 7, 7] # Image classification docstring __A ='''google/mobilenet_v1_1.0_224''' __A ='''tabby, tabby cat''' __A =[ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): lowerCamelCase_ = {} if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = model.mobilenet_va else: lowerCamelCase_ = model lowerCamelCase_ = "MobilenetV1/Conv2d_0/" lowerCamelCase_ = backbone.conv_stem.convolution.weight lowerCamelCase_ = backbone.conv_stem.normalization.bias lowerCamelCase_ = backbone.conv_stem.normalization.weight lowerCamelCase_ = backbone.conv_stem.normalization.running_mean lowerCamelCase_ = backbone.conv_stem.normalization.running_var for i in range(1_3 ): lowerCamelCase_ = i + 1 lowerCamelCase_ = i * 2 lowerCamelCase_ = backbone.layer[pt_index] lowerCamelCase_ = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' lowerCamelCase_ = pointer.convolution.weight lowerCamelCase_ = pointer.normalization.bias lowerCamelCase_ = pointer.normalization.weight lowerCamelCase_ = pointer.normalization.running_mean lowerCamelCase_ = pointer.normalization.running_var lowerCamelCase_ = backbone.layer[pt_index + 1] lowerCamelCase_ = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' lowerCamelCase_ = pointer.convolution.weight lowerCamelCase_ = pointer.normalization.bias lowerCamelCase_ = pointer.normalization.weight lowerCamelCase_ = pointer.normalization.running_mean lowerCamelCase_ = pointer.normalization.running_var if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = "MobilenetV1/Logits/Conv2d_1c_1x1/" lowerCamelCase_ = model.classifier.weight lowerCamelCase_ = model.classifier.bias return tf_to_pt_map def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model lowerCamelCase_ = tf.train.list_variables(lowerCamelCase__ ) lowerCamelCase_ = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) lowerCamelCase_ = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = array # Build TF to PyTorch weights loading map lowerCamelCase_ = _build_tf_to_pytorch_map(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue lowerCamelCase_ = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) lowerCamelCase_ = np.transpose(lowerCamelCase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer lowerCamelCase_ = array.squeeze().transpose() else: lowerCamelCase_ = np.transpose(lowerCamelCase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) lowerCamelCase_ = torch.from_numpy(lowerCamelCase__ ) tf_weights.pop(lowerCamelCase__ , lowerCamelCase__ ) tf_weights.pop(name + "/RMSProp" , lowerCamelCase__ ) tf_weights.pop(name + "/RMSProp_1" , lowerCamelCase__ ) tf_weights.pop(name + "/ExponentialMovingAverage" , lowerCamelCase__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ , lowerCamelCase_ = features.shape[-2:] lowerCamelCase_ , lowerCamelCase_ = conv_layer.stride lowerCamelCase_ , lowerCamelCase_ = conv_layer.kernel_size if in_height % stride_height == 0: lowerCamelCase_ = max(kernel_height - stride_height , 0 ) else: lowerCamelCase_ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowerCamelCase_ = max(kernel_width - stride_width , 0 ) else: lowerCamelCase_ = max(kernel_width - (in_width % stride_width) , 0 ) lowerCamelCase_ = pad_along_width // 2 lowerCamelCase_ = pad_along_width - pad_left lowerCamelCase_ = pad_along_height // 2 lowerCamelCase_ = pad_along_height - pad_top lowerCamelCase_ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCamelCase__ , lowerCamelCase__ , "constant" , 0.0 ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase = 1 , lowercase = 1 , lowercase = False , lowercase = True , lowercase = True , ) -> None: super().__init__() lowerCamelCase_ = config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) lowerCamelCase_ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCamelCase_ = nn.Convad( in_channels=lowercase , out_channels=lowercase , kernel_size=lowercase , stride=lowercase , padding=lowercase , groups=lowercase , bias=lowercase , padding_mode="zeros" , ) if use_normalization: lowerCamelCase_ = nn.BatchNormad( num_features=lowercase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=lowercase , track_running_stats=lowercase , ) else: lowerCamelCase_ = None if use_activation: if isinstance(lowercase , lowercase ): lowerCamelCase_ = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowercase ): lowerCamelCase_ = ACTaFN[config.hidden_act] else: lowerCamelCase_ = config.hidden_act else: lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self , lowercase ) -> torch.Tensor: if self.config.tf_padding: lowerCamelCase_ = apply_tf_padding(lowercase , self.convolution ) lowerCamelCase_ = self.convolution(lowercase ) if self.normalization is not None: lowerCamelCase_ = self.normalization(lowercase ) if self.activation is not None: lowerCamelCase_ = self.activation(lowercase ) return features class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = MobileNetVaConfig lowerCAmelCase__ = load_tf_weights_in_mobilenet_va lowerCAmelCase__ = 'mobilenet_v1' lowerCAmelCase__ = 'pixel_values' lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: if isinstance(lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowercase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __A =R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __A =R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , snake_case_ , ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase = True ) -> Optional[Any]: super().__init__(lowercase ) lowerCamelCase_ = config lowerCamelCase_ = 32 lowerCamelCase_ = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowerCamelCase_ = MobileNetVaConvLayer( lowercase , in_channels=config.num_channels , out_channels=lowercase , kernel_size=3 , stride=2 , ) lowerCamelCase_ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCamelCase_ = nn.ModuleList() for i in range(13 ): lowerCamelCase_ = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCamelCase_ = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowercase , in_channels=lowercase , out_channels=lowercase , kernel_size=3 , stride=strides[i] , groups=lowercase , ) ) self.layer.append( MobileNetVaConvLayer( lowercase , in_channels=lowercase , out_channels=lowercase , kernel_size=1 , ) ) lowerCamelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[int]: raise NotImplementedError @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase = None , lowercase = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: lowerCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) lowerCamelCase_ = self.conv_stem(lowercase ) lowerCamelCase_ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCamelCase_ = layer_module(lowercase ) if output_hidden_states: lowerCamelCase_ = all_hidden_states + (hidden_states,) lowerCamelCase_ = hidden_states if self.pooler is not None: lowerCamelCase_ = torch.flatten(self.pooler(lowercase ) , start_dim=1 ) else: lowerCamelCase_ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=lowercase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , snake_case_ , ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase ) -> None: super().__init__(lowercase ) lowerCamelCase_ = config.num_labels lowerCamelCase_ = MobileNetVaModel(lowercase ) lowerCamelCase_ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCamelCase_ = nn.Dropout(config.classifier_dropout_prob , inplace=lowercase ) lowerCamelCase_ = nn.Linear(lowercase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = self.mobilenet_va(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) lowerCamelCase_ = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase_ = self.classifier(self.dropout(lowercase ) ) lowerCamelCase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase_ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase_ = "single_label_classification" else: lowerCamelCase_ = "multi_label_classification" if self.config.problem_type == "regression": lowerCamelCase_ = MSELoss() if self.num_labels == 1: lowerCamelCase_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase_ = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": lowerCamelCase_ = CrossEntropyLoss() lowerCamelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase_ = BCEWithLogitsLoss() lowerCamelCase_ = loss_fct(lowercase , lowercase ) if not return_dict: lowerCamelCase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states , )
19
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __A ( unittest.TestCase ): def _lowercase (self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase (self : str ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def _lowercase (self : int ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _lowercase (self : Any ): torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowercase (self : Optional[Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(__a ) def _lowercase (self : Any ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=__a , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase_ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Optional[int] ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowercase (self : str ): UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase_ = unet.half() UpperCAmelCase_ = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : List[Any] ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained(__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _lowercase (self : Tuple ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _lowercase (self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
1
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : int = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __snake_case ( lowerCAmelCase ): _a : List[Any]= "deit" def __init__( self ,snake_case=768 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=224 ,snake_case=16 ,snake_case=3 ,snake_case=True ,snake_case=16 ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) lowercase : List[Any] = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : Union[str, Any] = intermediate_size lowercase : int = hidden_act lowercase : Any = hidden_dropout_prob lowercase : List[str] = attention_probs_dropout_prob lowercase : List[str] = initializer_range lowercase : List[Any] = layer_norm_eps lowercase : Union[str, Any] = image_size lowercase : Any = patch_size lowercase : Union[str, Any] = num_channels lowercase : List[Any] = qkv_bias lowercase : Optional[int] = encoder_stride class __snake_case ( lowerCAmelCase ): _a : List[Any]= version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 1e-4
20
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __A ( UpperCamelCase__ ): def __init__(self : int , __a : Distribution , __a : Dict=None , __a : int=None , __a : Any=0 ): UpperCAmelCase_ = 1.0 if scale is None else scale UpperCAmelCase_ = 0.0 if loc is None else loc super().__init__(__a , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__a )] ) @property def _lowercase (self : Union[str, Any] ): return self.base_dist.mean * self.scale + self.loc @property def _lowercase (self : List[Any] ): return self.base_dist.variance * self.scale**2 @property def _lowercase (self : List[Any] ): return self.variance.sqrt() class __A ( nn.Module ): def __init__(self : Optional[int] , __a : int , __a : Dict[str, int] , __a : Callable[..., Tuple[torch.Tensor]] , **__a : List[str] ): super().__init__(**__a ) UpperCAmelCase_ = args_dim UpperCAmelCase_ = nn.ModuleList([nn.Linear(__a , __a ) for dim in args_dim.values()] ) UpperCAmelCase_ = domain_map def _lowercase (self : List[str] , __a : torch.Tensor ): UpperCAmelCase_ = [proj(__a ) for proj in self.proj] return self.domain_map(*__a ) class __A ( nn.Module ): def __init__(self : Union[str, Any] , __a : List[str] ): super().__init__() UpperCAmelCase_ = function def _lowercase (self : Optional[int] , __a : List[str] , *__a : Optional[int] ): return self.function(__a , *__a ) class __A : a__ : type a__ : int a__ : Dict[str, int] def __init__(self : List[Any] , __a : int = 1 ): UpperCAmelCase_ = dim UpperCAmelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def _lowercase (self : Any , __a : Any ): if self.dim == 1: return self.distribution_class(*__a ) else: return Independent(self.distribution_class(*__a ) , 1 ) def _lowercase (self : List[str] , __a : Union[str, Any] , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , ): UpperCAmelCase_ = self._base_distribution(__a ) if loc is None and scale is None: return distr else: return AffineTransformed(__a , loc=__a , scale=__a , event_dim=self.event_dim ) @property def _lowercase (self : Any ): return () if self.dim == 1 else (self.dim,) @property def _lowercase (self : Dict ): return len(self.event_shape ) @property def _lowercase (self : Tuple ): return 0.0 def _lowercase (self : List[str] , __a : int ): return ParameterProjection( in_features=__a , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _lowercase (self : Optional[int] , *__a : torch.Tensor ): raise NotImplementedError() @staticmethod def _lowercase (__a : torch.Tensor ): return (x + torch.sqrt(torch.square(__a ) + 4.0 )) / 2.0 class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} a__ : type = StudentT @classmethod def _lowercase (cls : Union[str, Any] , __a : torch.Tensor , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase_ = 2.0 + cls.squareplus(__a ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"loc": 1, "scale": 1} a__ : type = Normal @classmethod def _lowercase (cls : Tuple , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"total_count": 1, "logits": 1} a__ : type = NegativeBinomial @classmethod def _lowercase (cls : Optional[Any] , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _lowercase (self : List[str] , __a : str ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=__a , logits=__a ) else: return Independent(self.distribution_class(total_count=__a , logits=__a ) , 1 ) def _lowercase (self : Optional[Any] , __a : int , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
1
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class _lowerCamelCase( _a ): lowercase_ : int = """encodec""" def __init__( self, lowerCamelCase=[1.5, 3.0, 6.0, 1_2.0, 2_4.0], lowerCamelCase=2_40_00, lowerCamelCase=1, lowerCamelCase=False, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=1_28, lowerCamelCase=32, lowerCamelCase=1, lowerCamelCase=[8, 5, 4, 2], lowerCamelCase="weight_norm", lowerCamelCase=7, lowerCamelCase=7, lowerCamelCase=3, lowerCamelCase=2, lowerCamelCase=True, lowerCamelCase="reflect", lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=1.0, lowerCamelCase=10_24, lowerCamelCase=None, lowerCamelCase=True, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = target_bandwidths _lowercase : Dict = sampling_rate _lowercase : List[Any] = audio_channels _lowercase : Any = normalize _lowercase : str = chunk_length_s _lowercase : Tuple = overlap _lowercase : str = hidden_size _lowercase : List[Any] = num_filters _lowercase : Tuple = num_residual_layers _lowercase : Union[str, Any] = upsampling_ratios _lowercase : Union[str, Any] = norm_type _lowercase : Optional[int] = kernel_size _lowercase : List[str] = last_kernel_size _lowercase : Optional[Any] = residual_kernel_size _lowercase : Union[str, Any] = dilation_growth_rate _lowercase : Tuple = use_causal_conv _lowercase : Tuple = pad_mode _lowercase : str = compress _lowercase : List[str] = num_lstm_layers _lowercase : Optional[Any] = trim_right_ratio _lowercase : List[Any] = codebook_size _lowercase : Dict = codebook_dim if codebook_dim is not None else hidden_size _lowercase : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''') super().__init__(**lowerCamelCase) @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1, int((1.0 - self.overlap) * self.chunk_length)) @property def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[int] = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def UpperCamelCase ( self) -> int: """simple docstring""" return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10))
21
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets SCREAMING_SNAKE_CASE_: Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' SCREAMING_SNAKE_CASE_: List[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _lowercase (self : Tuple , __a : Optional[int] , __a : List[Any] ): UpperCAmelCase_ = 0.0 for i, j in zip(__a , __a ): n_correct += 1.0 if math_equivalence.is_equiv(__a , __a ) else 0.0 UpperCAmelCase_ = n_correct / len(__a ) return { "accuracy": accuracy, }
1
0
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class A_ : def lowercase ( self : str , snake_case_ : int ): raise NotImplementedError() def lowercase ( self : Any ): raise NotImplementedError() class A_ ( lowerCAmelCase_ ): def __init__( self : str , snake_case_ : "AutoTokenizer" , snake_case_ : bool = False , **snake_case_ : Tuple ): _UpperCAmelCase = tokenizer _UpperCAmelCase = skip_prompt _UpperCAmelCase = decode_kwargs # variables used in the streaming process _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = True def lowercase ( self : Tuple , snake_case_ : List[str] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: _UpperCAmelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _UpperCAmelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): _UpperCAmelCase = text[self.print_len :] _UpperCAmelCase = [] _UpperCAmelCase = 0 # If the last token is a CJK character, we print the characters. elif len(snake_case_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _UpperCAmelCase = text[self.print_len :] self.print_len += len(snake_case_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _UpperCAmelCase = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(snake_case_ ) self.on_finalized_text(snake_case_ ) def lowercase ( self : Optional[int] ): # Flush the cache, if it exists if len(self.token_cache ) > 0: _UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _UpperCAmelCase = text[self.print_len :] _UpperCAmelCase = [] _UpperCAmelCase = 0 else: _UpperCAmelCase = "" _UpperCAmelCase = True self.on_finalized_text(snake_case_ , stream_end=snake_case_ ) def lowercase ( self : Any , snake_case_ : str , snake_case_ : bool = False ): print(snake_case_ , flush=snake_case_ , end="" if not stream_end else None ) def lowercase ( self : Optional[Any] , snake_case_ : Tuple ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e_00 and cp <= 0X9f_ff) or (cp >= 0X34_00 and cp <= 0X4d_bf) # or (cp >= 0X2_00_00 and cp <= 0X2_a6_df) # or (cp >= 0X2_a7_00 and cp <= 0X2_b7_3f) # or (cp >= 0X2_b7_40 and cp <= 0X2_b8_1f) # or (cp >= 0X2_b8_20 and cp <= 0X2_ce_af) # or (cp >= 0Xf9_00 and cp <= 0Xfa_ff) or (cp >= 0X2_f8_00 and cp <= 0X2_fa_1f) # ): # return True return False class A_ ( lowerCAmelCase_ ): def __init__( self : List[Any] , snake_case_ : "AutoTokenizer" , snake_case_ : bool = False , snake_case_ : Optional[float] = None , **snake_case_ : Union[str, Any] ): super().__init__(snake_case_ , snake_case_ , **snake_case_ ) _UpperCAmelCase = Queue() _UpperCAmelCase = None _UpperCAmelCase = timeout def lowercase ( self : Tuple , snake_case_ : str , snake_case_ : bool = False ): self.text_queue.put(snake_case_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : str ): return self def lowercase ( self : Any ): _UpperCAmelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
22
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] ) -> List[Any]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : str=True ) -> Optional[Any]: '''simple docstring''' model.train() UpperCAmelCase_ = model(snake_case_ ) UpperCAmelCase_ = F.mse_loss(snake_case_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Any=False ) -> Dict: '''simple docstring''' set_seed(42 ) UpperCAmelCase_ = RegressionModel() UpperCAmelCase_ = deepcopy(snake_case_ ) UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase_ = AdamW(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase_ ( snake_case_ : Any ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Optional[int]=False , snake_case_ : str=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] GradientState._reset_state() def lowerCAmelCase_ ( snake_case_ : Optional[Any]=False , snake_case_ : Tuple=False ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ , snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" UpperCAmelCase_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case_ )) if accelerator.num_processes > 1: check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ = RegressionDataset(length=96 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if iteration < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if batch_num < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(snake_case_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(snake_case_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(snake_case_ , snake_case_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Dict ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
1
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: def wrapper(*_lowerCAmelCase : str , **_lowerCAmelCase : Tuple ): UpperCAmelCase : int = timeit.default_timer() UpperCAmelCase : int = func(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase : Dict = timeit.default_timer() - starttime return delta UpperCAmelCase : List[str] = func.__name__ return wrapper def snake_case_ ( _lowerCAmelCase : dict , _lowerCAmelCase : Any=100 , _lowerCAmelCase : Optional[int]=None ) -> Optional[int]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[Any] = seq_shapes or {} for i in range(_lowerCAmelCase ): UpperCAmelCase : List[str] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_lowerCAmelCase , _ArrayXD ): UpperCAmelCase : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_lowerCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase : Any = '''The small grey turtle was surprisingly fast when challenged.''' else: UpperCAmelCase : List[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_lowerCAmelCase , datasets.Sequence ): while isinstance(_lowerCAmelCase , datasets.Sequence ): UpperCAmelCase : Union[str, Any] = v.feature UpperCAmelCase : Union[str, Any] = seq_shapes[k] UpperCAmelCase : List[str] = np.random.rand(*_lowerCAmelCase ).astype(v.dtype ) UpperCAmelCase : List[Any] = data dummy_data.append((i, example) ) return dummy_data def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any]=100 , _lowerCAmelCase : Dict=None ) -> Union[str, Any]: UpperCAmelCase : List[str] = generate_examples(_lowerCAmelCase , num_examples=_lowerCAmelCase , seq_shapes=_lowerCAmelCase ) with ArrowWriter(features=_lowerCAmelCase , path=_lowerCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase : Union[str, Any] = features.encode_example(_lowerCAmelCase ) writer.write(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : int = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) UpperCAmelCase : List[str] = datasets.Dataset.from_file(filename=_lowerCAmelCase , info=datasets.DatasetInfo(features=_lowerCAmelCase ) ) return dataset
23
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(snake_case_ , x % y ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(snake_case_ , snake_case_ ) return g if __name__ == "__main__": print(f"{solution() = }")
1
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = LongformerTokenizer A_ : Any = True A_ : Tuple = LongformerTokenizerFast A_ : Dict = True def a (self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a__ ) ) def a (self : Dict , **a__ : Optional[int] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def a (self : Any , **a__ : Optional[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def a (self : Optional[int] , a__ : Dict ): """simple docstring""" __snake_case = '''lower newer''' __snake_case = '''lower newer''' return input_text, output_text def a (self : Optional[int] ): """simple docstring""" __snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case = '''lower newer''' __snake_case = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __snake_case = tokenizer.tokenize(a__ ) # , add_prefix_space=True) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=a__ ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=a__ ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def a (self : Any ): """simple docstring""" __snake_case = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __snake_case = tokenizer.encode('''sequence builders''' , add_special_tokens=a__ ) __snake_case = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a__ ) __snake_case = tokenizer.encode( '''sequence builders''' , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def a (self : Dict ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = '''Encode this sequence.''' __snake_case = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __snake_case = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a__ , a__ ) __snake_case = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a__ , a__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __snake_case = tokenizer.encode(a__ , add_special_tokens=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a__ , a__ ) # Testing spaces after special tokens __snake_case = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(a__ , lstrip=a__ , rstrip=a__ )} ) # mask token has a left space __snake_case = tokenizer.convert_tokens_to_ids(a__ ) __snake_case = '''Encode <mask> sequence''' __snake_case = '''Encode <mask>sequence''' __snake_case = tokenizer.encode(a__ ) __snake_case = encoded.index(a__ ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a__ , a__ ) __snake_case = tokenizer.encode(a__ ) __snake_case = encoded.index(a__ ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a__ , a__ ) def a (self : Tuple ): """simple docstring""" pass def a (self : str ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) __snake_case = self.tokenizer_class.from_pretrained(a__ , **a__ ) __snake_case = '''A, <mask> AllenNLP sentence.''' __snake_case = tokenizer_r.encode_plus(a__ , add_special_tokens=a__ , return_token_type_ids=a__ ) __snake_case = tokenizer_p.encode_plus(a__ , add_special_tokens=a__ , return_token_type_ids=a__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( a__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( a__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def a (self : str ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , a__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , a__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , a__ ) def a (self : Optional[int] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __snake_case = f"""{text_of_1_token} {text_of_1_token}""" __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ) + 1, len(a__ ) + 1 + len(a__ )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ) + 1, len(a__ ) + 1 + len(a__ )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ), len(a__ ) + 1 + len(a__ )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ), len(a__ ) + 1 + len(a__ )) , ) __snake_case = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a__ ) + 1, 1 + len(a__ ) + 1 + len(a__ )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a__ ), 1 + len(a__ ) + 1 + len(a__ )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a__ ), 1 + len(a__ ) + 1 + len(a__ )) , )
24
'''simple docstring''' import os from math import logaa def lowerCAmelCase_ ( snake_case_ : str = "base_exp.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(snake_case_ ) , snake_case_ ) ) ): UpperCAmelCase_ , UpperCAmelCase_ = list(map(snake_case_ , line.split("," ) ) ) if x * logaa(snake_case_ ) > largest: UpperCAmelCase_ = x * logaa(snake_case_ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
1
0
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase__ : str = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase__ : str = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase__ : Optional[int] = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ (datasets.Metric ): """simple docstring""" def __magic_name__ (self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=False ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = compute_bleu( reference_corpus=SCREAMING_SNAKE_CASE__ , translation_corpus=SCREAMING_SNAKE_CASE__ , max_order=SCREAMING_SNAKE_CASE__ , smooth=SCREAMING_SNAKE_CASE__ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Union[str, Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
25
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(snake_case_ ) UpperCAmelCase_ = 5_12 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(snake_case_ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(snake_case_ ) else: UpperCAmelCase_ = torch.load(snake_case_ , map_location=snake_case_ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(snake_case_ , image_size=snake_case_ ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(snake_case_ , snake_case_ ) UpperCAmelCase_ = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') SCREAMING_SNAKE_CASE_: str =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
1
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = ShapEImgaImgPipeline _a = ["image"] _a = ["image"] _a = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> Optional[int]: return 32 @property def a__ ( self ) -> Tuple: return 32 @property def a__ ( self ) -> Optional[Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> Optional[int]: return 8 @property def a__ ( self ) -> List[Any]: torch.manual_seed(0 ) _A : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _A : List[Any] = CLIPVisionModel(_a ) return model @property def a__ ( self ) -> Dict: _A : int = CLIPImageProcessor( crop_size=224 , do_center_crop=_a , do_normalize=_a , do_resize=_a , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def a__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _A : str = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _A : Optional[int] = PriorTransformer(**_a ) return model @property def a__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _A : List[str] = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _A : int = ShapERenderer(**_a ) return model def a__ ( self ) -> int: _A : Optional[Any] = self.dummy_prior _A : Tuple = self.dummy_image_encoder _A : str = self.dummy_image_processor _A : Any = self.dummy_renderer _A : str = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_a , clip_sample=_a , clip_sample_range=1.0 , ) _A : Union[str, Any] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def a__ ( self , _a , _a=0 ) -> int: _A : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): _A : List[Any] = torch.manual_seed(_a ) else: _A : Tuple = torch.Generator(device=_a ).manual_seed(_a ) _A : List[Any] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def a__ ( self ) -> Tuple: _A : List[Any] = """cpu""" _A : List[str] = self.get_dummy_components() _A : str = self.pipeline_class(**_a ) _A : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Tuple = pipe(**self.get_dummy_inputs(_a ) ) _A : Tuple = output.images[0] _A : Dict = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _A : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> Tuple: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__ ( self ) -> Tuple: _A : List[str] = torch_device == """cpu""" _A : Union[str, Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_a , relax_max_difference=_a , ) def a__ ( self ) -> Tuple: _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : int = 1 _A : List[str] = 2 _A : str = self.get_dummy_inputs(_a ) for key in inputs.keys(): if key in self.batch_params: _A : str = batch_size * [inputs[key]] _A : Union[str, Any] = pipe(**_a , num_images_per_prompt=_a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> Dict: _A : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) _A : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) _A : List[Any] = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) _A : Union[str, Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device=_a ).manual_seed(0 ) _A : Optional[Any] = pipe( _a , generator=_a , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_a , _a )
26
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A ( unittest.TestCase ): def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def _lowercase (self : Any ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase (self : Dict , __a : Any , __a : List[Any] ): UpperCAmelCase_ = FlaxViTModel(config=__a ) UpperCAmelCase_ = model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ = (self.patch_size, self.patch_size) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase (self : Tuple , __a : str , __a : Any ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = FlaxViTForImageClassification(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = FlaxViTForImageClassification(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase (self : Any ): UpperCAmelCase_ = FlaxViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : Tuple ): self.config_tester.run_common_tests() def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model_class(__a ) @jax.jit def model_jitted(__a : Tuple , **__a : List[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase (self : Tuple ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a )
1
0
'''simple docstring''' import math class __UpperCamelCase : def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' __a : Dict = 0.0 __a : Optional[int] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self , __a , __a , __a , __a ): '''simple docstring''' for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCamelCase (): # Training Examples ( m, n ) __a : int = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __a : Optional[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __a : Optional[Any] = SelfOrganizingMap() __a : Any = 3 __a : Tuple = 0.5 for _ in range(_SCREAMING_SNAKE_CASE ): for j in range(len(_SCREAMING_SNAKE_CASE ) ): # training sample __a : List[str] = training_samples[j] # Compute the winning vector __a : Union[str, Any] = self_organizing_map.get_winner(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Update the winning vector __a : int = self_organizing_map.update(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # classify test sample __a : Union[str, Any] = [0, 0, 0, 1] __a : Optional[int] = self_organizing_map.get_winner(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
27
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = 5 # Realm tok UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def _lowercase (self : Optional[Any] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def _lowercase (self : Any ): shutil.rmtree(self.tmpdirname ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = RealmConfig(num_block_records=self.num_block_records ) return config def _lowercase (self : List[str] ): UpperCAmelCase_ = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def _lowercase (self : Any ): UpperCAmelCase_ = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=__a , ) return block_records def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _lowercase (self : int ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3, 5] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path UpperCAmelCase_ = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: UpperCAmelCase_ = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase_ = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
1
0
'''simple docstring''' from math import factorial, pi def __lowerCamelCase ( A__ , A__ = 30 ) -> float: """simple docstring""" if not isinstance(A__ , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(A__ , A__ ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) UpperCamelCase = float(A__ ) UpperCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(A__ ) ) def __lowerCamelCase ( A__ , A__ = 30 ) -> float: """simple docstring""" if not isinstance(A__ , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(A__ , A__ ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) UpperCamelCase = float(A__ ) UpperCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE_: Optional[int] =3_00 # TEMPERATURE (unit = K) def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
1
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : str = '''time_series_transformer''' _snake_case : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = "student_t" , _UpperCamelCase = "nll" , _UpperCamelCase = 1 , _UpperCamelCase = [1, 2, 3, 4, 5, 6, 7] , _UpperCamelCase = "mean" , _UpperCamelCase = 0 , _UpperCamelCase = 0 , _UpperCamelCase = 0 , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 3_2 , _UpperCamelCase = 3_2 , _UpperCamelCase = 2 , _UpperCamelCase = 2 , _UpperCamelCase = 2 , _UpperCamelCase = 2 , _UpperCamelCase = True , _UpperCamelCase = "gelu" , _UpperCamelCase = 6_4 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 1_0_0 , _UpperCamelCase = 0.02 , _UpperCamelCase=True , **_UpperCamelCase , ) -> Optional[int]: # time series specific configuration UpperCAmelCase_ : Any = prediction_length UpperCAmelCase_ : int = context_length or prediction_length UpperCAmelCase_ : Tuple = distribution_output UpperCAmelCase_ : Optional[int] = loss UpperCAmelCase_ : Optional[Any] = input_size UpperCAmelCase_ : List[Any] = num_time_features UpperCAmelCase_ : str = lags_sequence UpperCAmelCase_ : Union[str, Any] = scaling UpperCAmelCase_ : List[Any] = num_dynamic_real_features UpperCAmelCase_ : Tuple = num_static_real_features UpperCAmelCase_ : Tuple = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase_ : str = cardinality else: UpperCAmelCase_ : List[str] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase_ : Any = embedding_dimension else: UpperCAmelCase_ : str = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase_ : int = num_parallel_samples # Transformer architecture configuration UpperCAmelCase_ : str = input_size * len(_UpperCamelCase ) + self._number_of_features UpperCAmelCase_ : Optional[Any] = d_model UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : List[Any] = decoder_attention_heads UpperCAmelCase_ : int = encoder_ffn_dim UpperCAmelCase_ : Any = decoder_ffn_dim UpperCAmelCase_ : Dict = encoder_layers UpperCAmelCase_ : Tuple = decoder_layers UpperCAmelCase_ : Union[str, Any] = dropout UpperCAmelCase_ : Optional[Any] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : List[str] = encoder_layerdrop UpperCAmelCase_ : List[str] = decoder_layerdrop UpperCAmelCase_ : int = activation_function UpperCAmelCase_ : List[Any] = init_std UpperCAmelCase_ : Optional[Any] = use_cache super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
29
'''simple docstring''' import math def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase_ = input("Enter message: " ) UpperCAmelCase_ = int(input(f"""Enter key [2-{len(snake_case_ ) - 1}]: """ ) ) UpperCAmelCase_ = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): UpperCAmelCase_ = encrypt_message(snake_case_ , snake_case_ ) elif mode.lower().startswith("d" ): UpperCAmelCase_ = decrypt_message(snake_case_ , snake_case_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = [""] * key for col in range(snake_case_ ): UpperCAmelCase_ = col while pointer < len(snake_case_ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = math.ceil(len(snake_case_ ) / key ) UpperCAmelCase_ = key UpperCAmelCase_ = (num_cols * num_rows) - len(snake_case_ ) UpperCAmelCase_ = [""] * num_cols UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase_ = 0 row += 1 return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
0
def a ( snake_case__: str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_: Optional[int] =logging.getLogger() SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] , __a : str ): os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = {"source": "What is love ?", "target": "life"} UpperCAmelCase_ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase_ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__a , f"""{split}.{field}""" ) , "w" ) as f: f.write(__a ) def _lowercase (self : Optional[int] , __a : int , __a : str = "pytorch" ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = os.path.join(__a , "output" ) UpperCAmelCase_ = os.path.join(__a , "data" ) self._create_dummy_data(data_dir=__a ) UpperCAmelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__a , env=self.get_env() ) UpperCAmelCase_ = os.path.join(__a , "metrics.json" ) with open(__a ) as f: UpperCAmelCase_ = json.load(__a ) return result @require_torch_gpu def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _lowercase (self : Dict ): UpperCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _lowercase (self : Any ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
1
0
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE_: Optional[int] =Lock() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ = min(snake_case_ , snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ = max(snake_case_ , snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr for i in range(1 , len(snake_case_ ) - 1 ): UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr process_array_.append( Process( target=snake_case_ , args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case_ ) ): UpperCAmelCase_ = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*snake_case_ ) UpperCAmelCase_ = odd_even_transposition(snake_case_ ) print("Sorted List\n" ) print(*snake_case_ ) if __name__ == "__main__": main()
1
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : Any , __A : int , __A : Optional[int] ) -> Tuple: """simple docstring""" a_ : Tuple = os.path.abspath(__A ) logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model a_ : List[str] = tf.train.list_variables(__A ) a_ : Dict = [] a_ : str = [] a_ : List[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") a_ : Union[str, Any] = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(F"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' a_ : Dict = name[1:] # figure out how many levels deep the name is a_ : str = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(__A ) # read data a_ : Any = tf.train.load_variable(__A , __A ) names.append('/'.join(__A ) ) arrays.append(__A ) logger.info(F"""Read a total of {len(__A ):,} layers""" ) # Sanity check if len(set(__A ) ) != 1: raise ValueError(F"""Found layer names with different depths (layer depth {list(set(__A ) )})""" ) a_ : Union[str, Any] = list(set(__A ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(__A , __A ): a_ : List[str] = full_name.split('/' ) a_ : List[str] = model a_ : int = [] for i, m_name in enumerate(__A ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): a_ : Optional[Any] = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) a_ : List[str] = getattr(__A , 'embeddings' ) a_ : Any = getattr(__A , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) a_ : Optional[int] = getattr(__A , 'encoder' ) a_ : Union[str, Any] = getattr(__A , 'layer' ) a_ : List[str] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) a_ : str = getattr(__A , 'pooler' ) a_ : List[Any] = getattr(__A , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) a_ : Optional[int] = getattr(__A , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) a_ : int = getattr(__A , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) a_ : List[str] = getattr(__A , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) a_ : str = getattr(__A , 'token_type_embeddings' ) else: raise ValueError(F"""Unknown embedding layer with name {full_name}""" ) trace.append('weight' ) a_ : Any = getattr(__A , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) a_ : Dict = getattr(__A , 'attention' ) a_ : Optional[int] = getattr(__A , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) a_ : Optional[int] = getattr(__A , 'attention' ) a_ : Dict = getattr(__A , 'output' ) a_ : Any = getattr(__A , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) a_ : Optional[int] = getattr(__A , 'attention' ) a_ : int = getattr(__A , 'output' ) a_ : List[Any] = getattr(__A , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) a_ : Any = getattr(__A , 'output' ) a_ : Any = getattr(__A , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) a_ : Tuple = getattr(__A , 'output' ) a_ : Any = getattr(__A , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) a_ : Optional[int] = getattr(__A , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) a_ : Tuple = getattr(__A , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) a_ : Any = getattr(__A , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) a_ : Any = getattr(__A , 'intermediate' ) a_ : Optional[int] = getattr(__A , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) a_ : Optional[int] = getattr(__A , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) a_ : Any = getattr(__A , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) a_ : str = getattr(__A , 'weight' ) else: logger.warning(F"""Ignored {m_name}""" ) # for certain layers reshape is necessary a_ : Union[str, Any] = '.'.join(__A ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , __A ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , __A ): a_ : Dict = array.reshape(pointer.data.shape ) if "kernel" in full_name: a_ : Optional[Any] = array.transpose() if pointer.shape == array.shape: a_ : Tuple = torch.from_numpy(__A ) else: raise ValueError( F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" F""" {array.shape}""" ) logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Optional[int] , __A : List[str] ) -> List[Any]: """simple docstring""" logger.info(F"""Loading model based on config from {config_path}...""" ) a_ : str = BertConfig.from_json_file(__A ) a_ : Optional[Any] = BertModel(__A ) # Load weights from checkpoint logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(__A , __A , __A ) # Save pytorch-model logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
32
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] UpperCAmelCase_ = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
1
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : Union[str, Any] = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = "vit_mae" def __init__( self : Dict , A : List[str]=7_68 , A : Any=12 , A : Union[str, Any]=12 , A : Tuple=30_72 , A : Any="gelu" , A : Tuple=0.0 , A : List[str]=0.0 , A : Tuple=0.02 , A : Tuple=1e-12 , A : int=2_24 , A : Dict=16 , A : int=3 , A : Tuple=True , A : Tuple=16 , A : Optional[Any]=5_12 , A : Union[str, Any]=8 , A : List[Any]=20_48 , A : Dict=0.75 , A : Any=False , **A : Optional[int] , ) -> Union[str, Any]: super().__init__(**A ) lowercase_ : List[Any] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : int = initializer_range lowercase_ : Dict = layer_norm_eps lowercase_ : Optional[Any] = image_size lowercase_ : str = patch_size lowercase_ : Dict = num_channels lowercase_ : Any = qkv_bias lowercase_ : Union[str, Any] = decoder_num_attention_heads lowercase_ : Optional[Any] = decoder_hidden_size lowercase_ : List[str] = decoder_num_hidden_layers lowercase_ : List[Any] = decoder_intermediate_size lowercase_ : Optional[Any] = mask_ratio lowercase_ : Optional[Any] = norm_pix_loss
33
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int | None = None , snake_case_ : int | None = None ) -> None: '''simple docstring''' if start is None: UpperCAmelCase_ = 0 if end is None: UpperCAmelCase_ = len(snake_case_ ) - 1 if start >= end: return UpperCAmelCase_ = (start + end) // 2 slowsort(snake_case_ , snake_case_ , snake_case_ ) slowsort(snake_case_ , mid + 1 , snake_case_ ) if sequence[end] < sequence[mid]: UpperCAmelCase_ , UpperCAmelCase_ = sequence[mid], sequence[end] slowsort(snake_case_ , snake_case_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
1
0
'''simple docstring''' from torch import nn def snake_case_ (_a : List[Any] ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"Unsupported activation function: {act_fn}" )
34
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __A ( UpperCamelCase__ ): a__ : Optional[Any] = DistilBertTokenizer a__ : Any = DistilBertTokenizerFast a__ : str = True @slow def _lowercase (self : int ): UpperCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
1
0
'''simple docstring''' import numpy as np def __snake_case( _lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def __snake_case( _lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE_: Tuple =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val def lowerCAmelCase_ ( snake_case_ : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ = value else: UpperCAmelCase_ = value return new_state_dict def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = "" if is_panoptic: UpperCAmelCase_ = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:2_56, :] UpperCAmelCase_ = in_proj_bias[:2_56] UpperCAmelCase_ = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ = in_proj_bias[2_56:5_12] UpperCAmelCase_ = in_proj_weight[-2_56:, :] UpperCAmelCase_ = in_proj_bias[-2_56:] def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase_ = "resnet101" if "dc5" in model_name: UpperCAmelCase_ = True UpperCAmelCase_ = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ = 2_50 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase_ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ = ConditionalDetrImageProcessor(format=snake_case_ ) # prepare image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=snake_case_ , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCAmelCase_ = torch.hub.load("DeppMeng/ConditionalDETR" , snake_case_ , pretrained=snake_case_ ).eval() UpperCAmelCase_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase_ = "conditional_detr." + src rename_key(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = ConditionalDetrForSegmentation(snake_case_ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() model.push_to_hub(repo_id=snake_case_ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase_ = conditional_detr(snake_case_ ) UpperCAmelCase_ = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[str] =argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
1
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } _snake_case = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _snake_case = "▁" class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = AlbertTokenizer def __init__( self, __a=None, __a=None, __a=True, __a=True, __a=False, __a="[CLS]", __a="[SEP]", __a="<unk>", __a="[SEP]", __a="<pad>", __a="[CLS]", __a="[MASK]", **__a, ): '''simple docstring''' _lowerCAmelCase : List[str] = ( AddedToken(__a, lstrip=__a, rstrip=__a, normalized=__a) if isinstance(__a, __a) else mask_token ) super().__init__( __a, tokenizer_file=__a, do_lower_case=__a, remove_space=__a, keep_accents=__a, bos_token=__a, eos_token=__a, unk_token=__a, sep_token=__a, pad_token=__a, cls_token=__a, mask_token=__a, **__a, ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : Tuple = remove_space _lowerCAmelCase : Optional[Any] = keep_accents _lowerCAmelCase : Dict = vocab_file _lowerCAmelCase : Tuple = False if not self.vocab_file else True def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Tuple = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Dict = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : Tuple = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file, __a) return (out_vocab_file,)
36
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : int , *__a : Dict , **__a : str ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase = {'''configuration_glpn''': ['''GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GLPNConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''GLPNFeatureExtractor'''] _lowerCAmelCase = ['''GLPNImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''GLPN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GLPNForDepthEstimation''', '''GLPNLayer''', '''GLPNModel''', '''GLPNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
37
'''simple docstring''' from __future__ import annotations import queue class __A : def __init__(self : Optional[Any] , __a : str ): UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCAmelCase_ ( ) -> TreeNode: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) UpperCAmelCase_ = input("Enter the value of the root node: " ).strip().lower() UpperCAmelCase_ = queue.Queue() UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() UpperCAmelCase_ = f"""Enter the left node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = left_node q.put(snake_case_ ) UpperCAmelCase_ = f"""Enter the right node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = right_node q.put(snake_case_ ) raise def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = [] while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(snake_case_ ) UpperCAmelCase_ = n.left # end of while means current node doesn't have left child UpperCAmelCase_ = stack.pop() # start to traverse its right child UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: stack.append(snake_case_ ) UpperCAmelCase_ = n.left UpperCAmelCase_ = stack.pop() print(n.data , end="," ) UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def lowerCAmelCase_ ( snake_case_ : str = "" , snake_case_ : Any=50 , snake_case_ : Union[str, Any]="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char UpperCAmelCase_ , UpperCAmelCase_ = divmod(width - len(snake_case_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE_: TreeNode =build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
1
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase_ : Any = '''Create a default config file for Accelerate with only a few flags set.''' def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int]="no" , __magic_name__ : str = default_json_config_file , __magic_name__ : bool = False ) -> str: """simple docstring""" UpperCamelCase :Any = Path(__magic_name__ ) path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCamelCase :Dict = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCamelCase :Optional[Any] = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): UpperCamelCase :Union[str, Any] = torch.cuda.device_count() UpperCamelCase :List[Any] = num_gpus UpperCamelCase :Dict = False if num_gpus > 1: UpperCamelCase :Any = """MULTI_GPU""" else: UpperCamelCase :Any = """NO""" elif is_xpu_available() and use_xpu: UpperCamelCase :Optional[Any] = torch.xpu.device_count() UpperCamelCase :Optional[int] = num_xpus UpperCamelCase :int = False if num_xpus > 1: UpperCamelCase :Union[str, Any] = """MULTI_XPU""" else: UpperCamelCase :Union[str, Any] = """NO""" elif is_npu_available(): UpperCamelCase :List[Any] = torch.npu.device_count() UpperCamelCase :Optional[Any] = num_npus UpperCamelCase :Tuple = False if num_npus > 1: UpperCamelCase :Optional[Any] = """MULTI_NPU""" else: UpperCamelCase :List[Any] = """NO""" else: UpperCamelCase :Any = 0 UpperCamelCase :Optional[Any] = True UpperCamelCase :Optional[Any] = 1 UpperCamelCase :List[str] = """NO""" UpperCamelCase :int = ClusterConfig(**__magic_name__ ) config.to_json_file(__magic_name__ ) return path def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase :Dict = parser.add_parser("""default""" , parents=__magic_name__ , help=__magic_name__ , formatter_class=__magic_name__ ) parser.add_argument( """--config_file""" , default=__magic_name__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=__magic_name__ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=__magic_name__ ) return parser def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" UpperCamelCase :Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
38
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __A ( UpperCamelCase__ ): def _lowercase (self : str , __a : GenericTensor ): if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ) else: raise ValueError("Unsupported framework" ) return masked_index def _lowercase (self : Tuple , __a : GenericTensor ): UpperCAmelCase_ = self.get_masked_index(__a ) UpperCAmelCase_ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _lowercase (self : List[Any] , __a : GenericTensor ): if isinstance(__a , __a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def _lowercase (self : Tuple , __a : Dict , __a : List[str]=None , **__a : Any ): if return_tensors is None: UpperCAmelCase_ = self.framework UpperCAmelCase_ = self.tokenizer(__a , return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def _lowercase (self : str , __a : Optional[int] ): UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = model_inputs["input_ids"] return model_outputs def _lowercase (self : List[str] , __a : Tuple , __a : int=5 , __a : Dict=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase_ = target_ids.shape[0] UpperCAmelCase_ = model_outputs["input_ids"][0] UpperCAmelCase_ = model_outputs["logits"] if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase_ = outputs.numpy() UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = stable_softmax(__a , axis=-1 ) if target_ids is not None: UpperCAmelCase_ = tf.gather_nd(tf.squeeze(__a , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCAmelCase_ = tf.expand_dims(__a , 0 ) UpperCAmelCase_ = tf.math.top_k(__a , k=__a ) UpperCAmelCase_ , UpperCAmelCase_ = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase_ = probs[..., target_ids] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(__a ) UpperCAmelCase_ = [] UpperCAmelCase_ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCAmelCase_ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase_ = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase_ = target_ids[p].tolist() UpperCAmelCase_ = p # Filter padding out: UpperCAmelCase_ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase_ = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCAmelCase_ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def _lowercase (self : Dict , __a : List[Any] , __a : List[str]=None ): if isinstance(__a , __a ): UpperCAmelCase_ = [targets] try: UpperCAmelCase_ = self.tokenizer.get_vocab() except Exception: UpperCAmelCase_ = {} UpperCAmelCase_ = [] for target in targets: UpperCAmelCase_ = vocab.get(__a , __a ) if id_ is None: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , max_length=1 , truncation=__a , )["input_ids"] if len(__a ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ "We cannot replace it with anything meaningful, ignoring it" ) continue UpperCAmelCase_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) UpperCAmelCase_ = list(set(__a ) ) if len(__a ) == 0: raise ValueError("At least one target must be provided when passed." ) UpperCAmelCase_ = np.array(__a ) return target_ids def _lowercase (self : Tuple , __a : Dict=None , __a : List[str]=None ): UpperCAmelCase_ = {} if targets is not None: UpperCAmelCase_ = self.get_target_ids(__a , __a ) UpperCAmelCase_ = target_ids if top_k is not None: UpperCAmelCase_ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__(self : Union[str, Any] , __a : str , *__a : Any , **__a : Tuple ): UpperCAmelCase_ = super().__call__(__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs
1
0
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _a = logging.getLogger(__name__) if __name__ == "__main__": _a = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) _a = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: _a = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') _a = Counter() for tk_ids in data: counter.update(tk_ids) _a = [0] * args.vocab_size for k, v in counter.items(): _a = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
39
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__) @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : str a__ : str a__ : Optional[str] = None a__ : Optional[str] = None a__ : Optional[str] = None @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : List[int] a__ : Optional[List[int]] = None a__ : Optional[List[int]] = None a__ : Optional[Union[int, float]] = None a__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __A ( UpperCamelCase__ ): a__ : List[InputFeatures] def __init__(self : Any , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = None , __a : Dict=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = os.path.join( __a , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(__a ) , __a , ) , ) UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(__a ): if os.path.exists(__a ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase_ = torch.load(__a ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase_ = ( processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) ) logger.info("Training examples: %s" , len(__a ) ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) logger.info("Saving features into cached file %s" , __a ) torch.save(self.features , __a ) def __len__(self : List[Any] ): return len(self.features ) def __getitem__(self : Any , __a : Optional[Any] ): return self.features[i] def _lowercase (self : Union[str, Any] ): return self.label_list if is_tf_available(): import tensorflow as tf class __A : a__ : List[InputFeatures] def __init__(self : Union[str, Any] , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = 128 , __a : Any=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list UpperCAmelCase_ = processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(__a )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ = tf.data.Dataset.from_generator( __a , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _lowercase (self : int ): return self.dataset def __len__(self : Any ): return len(self.features ) def __getitem__(self : int , __a : Union[str, Any] ): return self.features[i] def _lowercase (self : int ): return self.label_list class __A ( UpperCamelCase__ ): def _lowercase (self : List[Any] , __a : Dict ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_train_set.txt" ) ) , "train" ) def _lowercase (self : Any , __a : List[Any] ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _lowercase (self : Any ): return ["contradiction", "entailment", "neutral"] def _lowercase (self : Union[str, Any] , __a : Optional[int] , __a : Union[str, Any] ): UpperCAmelCase_ = [] for i, line in enumerate(__a ): if i == 0: continue UpperCAmelCase_ = "%s-%s" % (set_type, line[0]) UpperCAmelCase_ = line[5] UpperCAmelCase_ = line[6] UpperCAmelCase_ = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCAmelCase_ = line[0] examples.append(InputExample(guid=__a , text_a=__a , text_b=__a , label=__a , pairID=__a ) ) return examples def lowerCAmelCase_ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = {label: i for i, label in enumerate(snake_case_ )} UpperCAmelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCAmelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding="max_length" , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) UpperCAmelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE_: int ={ 'hans': 3, } SCREAMING_SNAKE_CASE_: Any ={ 'hans': HansProcessor, }
1
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowercase = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={} class __A ( UpperCamelCase__ ): a__ : int = """llama""" a__ : Any = ["""past_key_values"""] def __init__(self : List[str] , __a : List[str]=32000 , __a : Tuple=4096 , __a : List[Any]=11008 , __a : Dict=32 , __a : Tuple=32 , __a : Any=None , __a : Any="silu" , __a : List[Any]=2048 , __a : List[Any]=0.02 , __a : str=1E-6 , __a : Optional[Any]=True , __a : Union[str, Any]=0 , __a : Any=1 , __a : Dict=2 , __a : Dict=1 , __a : str=False , __a : str=None , **__a : Optional[Any] , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_key_value_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = use_cache UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def _lowercase (self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) UpperCAmelCase_ = self.rope_scaling.get("type" , __a ) UpperCAmelCase_ = self.rope_scaling.get("factor" , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
1
0