code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import argparse
import struct
import unittest
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : List[str] , __a : List[Any] ):
_a = data
# Initialize hash values
_a = [
0X6A_09_E6_67,
0XBB_67_AE_85,
0X3C_6E_F3_72,
0XA5_4F_F5_3A,
0X51_0E_52_7F,
0X9B_05_68_8C,
0X1F_83_D9_AB,
0X5B_E0_CD_19,
]
# Initialize round constants
_a = [
0X42_8A_2F_98,
0X71_37_44_91,
0XB5_C0_FB_CF,
0XE9_B5_DB_A5,
0X39_56_C2_5B,
0X59_F1_11_F1,
0X92_3F_82_A4,
0XAB_1C_5E_D5,
0XD8_07_AA_98,
0X12_83_5B_01,
0X24_31_85_BE,
0X55_0C_7D_C3,
0X72_BE_5D_74,
0X80_DE_B1_FE,
0X9B_DC_06_A7,
0XC1_9B_F1_74,
0XE4_9B_69_C1,
0XEF_BE_47_86,
0X0F_C1_9D_C6,
0X24_0C_A1_CC,
0X2D_E9_2C_6F,
0X4A_74_84_AA,
0X5C_B0_A9_DC,
0X76_F9_88_DA,
0X98_3E_51_52,
0XA8_31_C6_6D,
0XB0_03_27_C8,
0XBF_59_7F_C7,
0XC6_E0_0B_F3,
0XD5_A7_91_47,
0X06_CA_63_51,
0X14_29_29_67,
0X27_B7_0A_85,
0X2E_1B_21_38,
0X4D_2C_6D_FC,
0X53_38_0D_13,
0X65_0A_73_54,
0X76_6A_0A_BB,
0X81_C2_C9_2E,
0X92_72_2C_85,
0XA2_BF_E8_A1,
0XA8_1A_66_4B,
0XC2_4B_8B_70,
0XC7_6C_51_A3,
0XD1_92_E8_19,
0XD6_99_06_24,
0XF4_0E_35_85,
0X10_6A_A0_70,
0X19_A4_C1_16,
0X1E_37_6C_08,
0X27_48_77_4C,
0X34_B0_BC_B5,
0X39_1C_0C_B3,
0X4E_D8_AA_4A,
0X5B_9C_CA_4F,
0X68_2E_6F_F3,
0X74_8F_82_EE,
0X78_A5_63_6F,
0X84_C8_78_14,
0X8C_C7_02_08,
0X90_BE_FF_FA,
0XA4_50_6C_EB,
0XBE_F9_A3_F7,
0XC6_71_78_F2,
]
_a = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCamelCase__ ( __a : Tuple ):
_a = B"\x80" + (B"\x00" * (63 - (len(_SCREAMING_SNAKE_CASE ) + 8) % 64))
_a = struct.pack(">Q" , (len(_SCREAMING_SNAKE_CASE ) * 8) )
return data + padding + big_endian_integer
def UpperCamelCase__ ( self : Optional[Any] ):
# Convert into blocks of 64 bytes
_a = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
_a = list(struct.unpack(">16L" , _SCREAMING_SNAKE_CASE ) )
# add 48 0-ed integers
words += [0] * 48
_a , _a , _a , _a , _a , _a , _a , _a = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
_a = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
_a = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
_a = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X1_00_00_00_00
# Compression
_a = self.ror(_SCREAMING_SNAKE_CASE , 6 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 11 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 25 )
_a = (e & f) ^ ((~e & 0XFF_FF_FF_FF) & g)
_a = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X1_00_00_00_00
_a = self.ror(_SCREAMING_SNAKE_CASE , 2 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 13 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 22 )
_a = (a & b) ^ (a & c) ^ (b & c)
_a = (sa + maj) % 0X1_00_00_00_00
_a , _a , _a , _a , _a , _a , _a , _a = (
g,
f,
e,
((d + tempa) % 0X1_00_00_00_00),
c,
b,
a,
((tempa + tempa) % 0X1_00_00_00_00),
)
_a = [a, b, c, d, e, f, g, h]
# Modify final values
_a = [
((element + mutated_hash_values[index]) % 0X1_00_00_00_00)
for index, element in enumerate(self.hashes )
]
_a = "".join([hex(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for value in self.hashes] )
def UpperCamelCase__ ( self : int , __a : int , __a : Dict ):
return 0XFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations)
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Dict ):
import hashlib
_a = bytes("Test String" , "utf-8" )
self.assertEqual(SHAaaa(_SCREAMING_SNAKE_CASE ).hash , hashlib.shaaaa(_SCREAMING_SNAKE_CASE ).hexdigest() )
def _lowerCamelCase ( ) -> None:
import doctest
doctest.testmod()
_a = argparse.ArgumentParser()
parser.add_argument(
"-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , )
parser.add_argument(
"-f" , "--file" , dest="input_file" , help="Hash contents of a file" )
_a = parser.parse_args()
_a = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , "rb" ) as f:
_a = f.read()
else:
_a = bytes(_A , "utf-8" )
print(SHAaaa(_A ).hash )
if __name__ == "__main__":
main()
| 355 |
'''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _lowerCamelCase ( ) -> str:
_a = HfArgumentParser(lowercase )
_a = parser.parse_args_into_dataclasses()[0]
_a = TensorFlowBenchmark(args=lowercase )
try:
_a = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
_a = "Arg --no_{0} is no longer used, please use --no-{0} instead."
_a = " ".join(str(lowercase ).split(" " )[:-1] )
_a = ""
_a = eval(str(lowercase ).split(" " )[-1] )
_a = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowercase )
if len(lowercase ) > 0:
_a = full_error_msg + begin_error_msg + str(lowercase )
raise ValueError(lowercase )
benchmark.run()
if __name__ == "__main__":
main()
| 346 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
lowerCAmelCase_ : Tuple = {
'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json',
'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json',
'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json',
'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json',
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class __SCREAMING_SNAKE_CASE (snake_case_ ):
"""simple docstring"""
__a ='mobilenet_v2'
def __init__( self : Optional[int] , __a : str=3 , __a : List[Any]=2_24 , __a : List[Any]=1.0 , __a : Optional[int]=8 , __a : Dict=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Optional[Any]=True , __a : Any=True , __a : str="relu6" , __a : Dict=True , __a : Union[str, Any]=0.8 , __a : Optional[Any]=0.02 , __a : List[str]=0.001 , __a : Tuple=2_55 , **__a : Optional[Any] , ):
super().__init__(**__a )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
_a = num_channels
_a = image_size
_a = depth_multiplier
_a = depth_divisible_by
_a = min_depth
_a = expand_ratio
_a = output_stride
_a = first_layer_is_expansion
_a = finegrained_output
_a = hidden_act
_a = tf_padding
_a = classifier_dropout_prob
_a = initializer_range
_a = layer_norm_eps
_a = semantic_loss_ignore_index
class __SCREAMING_SNAKE_CASE (snake_case_ ):
"""simple docstring"""
__a =version.parse('1.11' )
@property
def UpperCamelCase__ ( self : Optional[int] ):
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def UpperCamelCase__ ( self : str ):
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return 1e-4
| 356 |
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
lowerCAmelCase_ : Union[str, Any] = None
try:
import msvcrt
except ImportError:
lowerCAmelCase_ : Tuple = None
try:
import fcntl
except ImportError:
lowerCAmelCase_ : Optional[int] = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
lowerCAmelCase_ : Any = OSError
# Data
# ------------------------------------------------
lowerCAmelCase_ : Tuple = [
'Timeout',
'BaseFileLock',
'WindowsFileLock',
'UnixFileLock',
'SoftFileLock',
'FileLock',
]
lowerCAmelCase_ : Optional[int] = '3.0.12'
lowerCAmelCase_ : Tuple = None
def _lowerCamelCase ( ) -> Optional[int]:
global _logger
_a = _logger or logging.getLogger(__name__ )
return _logger
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Dict , __a : Optional[Any] ):
_a = lock_file
return None
def __str__( self : Any ):
_a = f'The file lock \'{self.lock_file}\' could not be acquired.'
return temp
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : List[Any] , __a : Optional[int] ):
_a = lock
return None
def __enter__( self : str ):
return self.lock
def __exit__( self : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Dict ):
self.lock.release()
return None
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int]=-1 , __a : Tuple=None ):
_a = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
_a = self.hash_filename_if_too_long(__a , __a )
# The path to the lock file.
_a = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
_a = None
# The default timeout value.
_a = timeout
# We use this lock primarily for the lock counter.
_a = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
_a = 0
return None
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return self._lock_file
@property
def UpperCamelCase__ ( self : List[Any] ):
return self._timeout
@timeout.setter
def UpperCamelCase__ ( self : int , __a : List[Any] ):
_a = float(__a )
return None
def UpperCamelCase__ ( self : Dict ):
raise NotImplementedError()
def UpperCamelCase__ ( self : str ):
raise NotImplementedError()
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return self._lock_file_fd is not None
def UpperCamelCase__ ( self : int , __a : int=None , __a : Tuple=0.05 ):
# Use the default timeout, if no timeout is provided.
if timeout is None:
_a = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
_a = id(self )
_a = self._lock_file
_a = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' )
self._acquire()
if self.is_locked:
logger().debug(f'Lock {lock_id} acquired on {lock_filename}' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' )
raise Timeout(self._lock_file )
else:
logger().debug(
f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' )
time.sleep(__a )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
_a = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def UpperCamelCase__ ( self : Union[str, Any] , __a : int=False ):
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
_a = id(self )
_a = self._lock_file
logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' )
self._release()
_a = 0
logger().debug(f'Lock {lock_id} released on {lock_filename}' )
return None
def __enter__( self : List[Any] ):
self.acquire()
return self
def __exit__( self : str , __a : str , __a : Dict , __a : Dict ):
self.release()
return None
def __del__( self : int ):
self.release(force=__a )
return None
def UpperCamelCase__ ( self : Tuple , __a : str , __a : int ):
_a = os.path.basename(__a )
if len(__a ) > max_length and max_length > 0:
_a = os.path.dirname(__a )
_a = str(hash(__a ) )
_a = filename[: max_length - len(__a ) - 8] + "..." + hashed_filename + ".lock"
return os.path.join(__a , __a )
else:
return path
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : int , __a : str , __a : List[Any]=-1 , __a : List[Any]=None ):
from .file_utils import relative_to_absolute_path
super().__init__(__a , timeout=__a , max_filename_length=__a )
_a = "\\\\?\\" + relative_to_absolute_path(self.lock_file )
def UpperCamelCase__ ( self : int ):
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
_a = os.open(self._lock_file , __a )
except OSError:
pass
else:
try:
msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(__a )
else:
_a = fd
return None
def UpperCamelCase__ ( self : Optional[Any] ):
_a = self._lock_file_fd
_a = None
msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 )
os.close(__a )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[str] , __a : Optional[Any] , __a : Union[str, Any]=-1 , __a : int=None ):
_a = os.statvfs(os.path.dirname(__a ) ).f_namemax
super().__init__(__a , timeout=__a , max_filename_length=__a )
def UpperCamelCase__ ( self : Any ):
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
_a = os.open(self._lock_file , __a )
try:
fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(__a )
else:
_a = fd
return None
def UpperCamelCase__ ( self : Tuple ):
# Do not remove the lockfile:
#
# https://github.com/benediktschmitt/py-filelock/issues/31
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
_a = self._lock_file_fd
_a = None
fcntl.flock(__a , fcntl.LOCK_UN )
os.close(__a )
return None
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
_a = os.open(self._lock_file , __a )
except OSError:
pass
else:
_a = fd
return None
def UpperCamelCase__ ( self : Union[str, Any] ):
os.close(self._lock_file_fd )
_a = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
lowerCAmelCase_ : str = None
if msvcrt:
lowerCAmelCase_ : List[str] = WindowsFileLock
elif fcntl:
lowerCAmelCase_ : List[str] = UnixFileLock
else:
lowerCAmelCase_ : int = SoftFileLock
if warnings is not None:
warnings.warn('only soft file lock is available')
| 346 | 0 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int ) -> Optional[int]:
if not isinstance(lowercase , lowercase ):
raise ValueError("multiplicative_persistence() only accepts integral values" )
if num < 0:
raise ValueError("multiplicative_persistence() does not accept negative values" )
_a = 0
_a = str(lowercase )
while len(lowercase ) != 1:
_a = [int(lowercase ) for i in num_string]
_a = 1
for i in range(0 , len(lowercase ) ):
total *= numbers[i]
_a = str(lowercase )
steps += 1
return steps
def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]:
if not isinstance(lowercase , lowercase ):
raise ValueError("additive_persistence() only accepts integral values" )
if num < 0:
raise ValueError("additive_persistence() does not accept negative values" )
_a = 0
_a = str(lowercase )
while len(lowercase ) != 1:
_a = [int(lowercase ) for i in num_string]
_a = 0
for i in range(0 , len(lowercase ) ):
total += numbers[i]
_a = str(lowercase )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42
__a =42
__a =42
__a =42
__a =42
def UpperCamelCase__ ( self : str ):
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def UpperCamelCase__ ( self : List[str] ):
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = torch.arange(self.height * self.width )
_a = torch.stack(
[
pixel_indices % self.width,
torch.div(__a , self.width , rounding_mode="trunc" ),
] , axis=1 , )
return coords
@property
def UpperCamelCase__ ( self : List[Any] ):
_a , *_a = self.shape
_a = int(np.prod(__a ) )
_a = self.get_image_coords()
_a = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
_a = self.get_camera_rays(__a )
_a = rays.view(__a , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def UpperCamelCase__ ( self : Dict , __a : torch.Tensor ):
_a , *_a , _a = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
_a = coords.view(__a , -1 , 2 )
_a = self.resolution()
_a = self.fov()
_a = (flat.float() / (res - 1)) * 2 - 1
_a = fracs * torch.tan(fov / 2 )
_a = fracs.view(__a , -1 , 2 )
_a = (
self.z.view(__a , 1 , 3 )
+ self.x.view(__a , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(__a , 1 , 3 ) * fracs[:, :, 1:]
)
_a = directions / directions.norm(dim=-1 , keepdim=__a )
_a = torch.stack(
[
torch.broadcast_to(self.origin.view(__a , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(__a , *__a , 2 , 3 )
def UpperCamelCase__ ( self : Dict , __a : int , __a : int ):
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=__a , height=__a , x_fov=self.x_fov , y_fov=self.y_fov , )
def _lowerCamelCase ( lowercase : int ) -> DifferentiableProjectiveCamera:
_a = []
_a = []
_a = []
_a = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
_a = np.array([np.sin(lowercase ), np.cos(lowercase ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
_a = -z * 4
_a = np.array([np.cos(lowercase ), -np.sin(lowercase ), 0.0] )
_a = np.cross(lowercase , lowercase )
origins.append(lowercase )
xs.append(lowercase )
ys.append(lowercase )
zs.append(lowercase )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , width=lowercase , height=lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowercase )) , )
| 346 | 0 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[Any] , *__a : List[str] , **__a : Optional[Any] ):
warnings.warn(
"The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use GLPNImageProcessor instead." , lowercase__ , )
super().__init__(*lowercase__ , **lowercase__ )
| 358 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
lowerCAmelCase_ : List[str] = TypeVar('T')
lowerCAmelCase_ : Dict = TypeVar('U')
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : T | None , __a : U | None ):
_a = key
_a = val
_a = None
_a = None
def __repr__( self : Any ):
return (
f'Node: key: {self.key}, val: {self.val}, '
f'has next: {bool(self.next )}, has prev: {bool(self.prev )}'
)
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
def __init__( self : Dict ):
_a = DoubleLinkedListNode(__a , __a )
_a = DoubleLinkedListNode(__a , __a )
_a , _a = self.rear, self.head
def __repr__( self : str ):
_a = ["DoubleLinkedList"]
_a = self.head
while node.next is not None:
rep.append(str(__a ) )
_a = node.next
rep.append(str(self.rear ) )
return ",\n ".join(__a )
def UpperCamelCase__ ( self : int , __a : DoubleLinkedListNode[T, U] ):
_a = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_a = node
_a = previous
_a = node
_a = self.rear
def UpperCamelCase__ ( self : Any , __a : DoubleLinkedListNode[T, U] ):
if node.prev is None or node.next is None:
return None
_a = node.next
_a = node.prev
_a = None
_a = None
return node
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
__a ={}
def __init__( self : Union[str, Any] , __a : int ):
_a = DoubleLinkedList()
_a = capacity
_a = 0
_a = 0
_a = 0
_a = {}
def __repr__( self : Optional[int] ):
return (
f'CacheInfo(hits={self.hits}, misses={self.miss}, '
f'capacity={self.capacity}, current size={self.num_keys})'
)
def __contains__( self : str , __a : T ):
return key in self.cache
def UpperCamelCase__ ( self : str , __a : T ):
# Note: pythonic interface would throw KeyError rather than return None
if key in self.cache:
self.hits += 1
_a = self.cache[key]
_a = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(__a )
return node.val
self.miss += 1
return None
def UpperCamelCase__ ( self : Tuple , __a : T , __a : U ):
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_a = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(__a ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_a = DoubleLinkedListNode(__a , __a )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_a = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_a = value
self.list.add(__a )
@classmethod
def UpperCamelCase__ ( cls : Tuple , __a : int = 1_28 ):
def cache_decorator_inner(__a : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*__a : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
_a = LRUCache(__a )
_a = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_a = func(*__a )
cls.decorator_function_to_instance_map[func].put(args[0] , __a )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(__a , "cache_info" , __a ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 | 0 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
lowerCAmelCase_ : Tuple = logging.get_logger(__name__)
lowerCAmelCase_ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase_ : List[Any] = {
'vocab_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json'
),
},
}
lowerCAmelCase_ : str = {
'yjernite/retribert-base-uncased': 5_12,
}
lowerCAmelCase_ : Tuple = {
'yjernite/retribert-base-uncased': {'do_lower_case': True},
}
class __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
__a =VOCAB_FILES_NAMES
__a =PRETRAINED_VOCAB_FILES_MAP
__a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a =PRETRAINED_INIT_CONFIGURATION
__a =RetriBertTokenizer
__a =['input_ids', 'attention_mask']
def __init__( self : Optional[int] , __a : Optional[int]=None , __a : List[Any]=None , __a : List[Any]=True , __a : List[str]="[UNK]" , __a : Dict="[SEP]" , __a : Optional[Any]="[PAD]" , __a : Tuple="[CLS]" , __a : str="[MASK]" , __a : int=True , __a : Tuple=None , **__a : Any , ):
super().__init__(
__a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , )
_a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __a ) != do_lower_case
or normalizer_state.get("strip_accents" , __a ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __a ) != tokenize_chinese_chars
):
_a = getattr(__a , normalizer_state.pop("type" ) )
_a = do_lower_case
_a = strip_accents
_a = tokenize_chinese_chars
_a = normalizer_class(**__a )
_a = do_lower_case
def UpperCamelCase__ ( self : Any , __a : Dict , __a : Any=None ):
_a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase__ ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ):
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ ( self : Tuple , __a : str , __a : Optional[str] = None ):
_a = self._tokenizer.model.save(__a , name=__a )
return tuple(__a )
| 359 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase_ : Optional[int] = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase_ : Tuple = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def _lowerCamelCase ( lowercase : str ) -> str:
re.sub("<n>" , "" , lowercase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(lowercase ) )
| 346 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
def _lowerCamelCase ( lowercase : int ) -> list[int]:
if num <= 0:
_a = F'{num}: Invalid input, please enter a positive integer.'
raise ValueError(a__ )
_a = [True] * (num + 1)
_a = []
_a = 2
_a = int(math.sqrt(a__ ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(a__ )
# Set multiples of start be False
for i in range(start * start , num + 1 , a__ ):
if sieve[i] is True:
_a = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(a__ )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input('Enter a positive integer: ').strip())))
| 360 |
'''simple docstring'''
import requests
lowerCAmelCase_ : List[Any] = 'YOUR API KEY'
def _lowerCamelCase ( lowercase : str , lowercase : str = giphy_api_key ) -> list:
_a = "+".join(query.split() )
_a = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'
_a = requests.get(lowercase ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 346 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
lowerCAmelCase_ : List[str] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (__lowercase ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__a : Any , **__a : Any ):
warnings.warn(
"The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use SegformerImageProcessor instead." , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
| 361 |
'''simple docstring'''
import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase_ : str = '▁'
lowerCAmelCase_ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =BertGenerationTokenizer
__a =False
__a =True
def UpperCamelCase__ ( self : Optional[Any] ):
super().setUp()
_a = BertGenerationTokenizer(__a , keep_accents=__a )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ ( self : Tuple ):
_a = "<s>"
_a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a )
def UpperCamelCase__ ( self : List[str] ):
_a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<unk>" )
self.assertEqual(vocab_keys[1] , "<s>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(__a ) , 10_02 )
def UpperCamelCase__ ( self : str ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def UpperCamelCase__ ( self : Tuple ):
_a = BertGenerationTokenizer(__a , keep_accents=__a )
_a = tokenizer.tokenize("This is a test" )
self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__a ) , [2_85, 46, 10, 1_70, 3_82] , )
_a = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
_a = tokenizer.convert_tokens_to_ids(__a )
self.assertListEqual(
__a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_a = tokenizer.convert_ids_to_tokens(__a )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
@cached_property
def UpperCamelCase__ ( self : Any ):
return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
@slow
def UpperCamelCase__ ( self : List[str] ):
_a = "Hello World!"
_a = [1_85_36, 22_60, 1_01]
self.assertListEqual(__a , self.big_tokenizer.encode(__a ) )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
_a = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"
)
_a = [
8_71,
4_19,
3_58,
9_46,
9_91,
25_21,
4_52,
3_58,
13_57,
3_87,
77_51,
35_36,
1_12,
9_85,
4_56,
1_26,
8_65,
9_38,
54_00,
57_34,
4_58,
13_68,
4_67,
7_86,
24_62,
52_46,
11_59,
6_33,
8_65,
45_19,
4_57,
5_82,
8_52,
25_57,
4_27,
9_16,
5_08,
4_05,
3_43_24,
4_97,
3_91,
4_08,
1_13_42,
12_44,
3_85,
1_00,
9_38,
9_85,
4_56,
5_74,
3_62,
1_25_97,
32_00,
31_29,
11_72,
]
self.assertListEqual(__a , self.big_tokenizer.encode(__a ) )
@require_torch
@slow
def UpperCamelCase__ ( self : Tuple ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
_a = list(self.big_tokenizer.get_vocab().keys() )[:10]
_a = " ".join(__a )
_a = self.big_tokenizer.encode_plus(__a , return_tensors="pt" , return_token_type_ids=__a )
_a = self.big_tokenizer.batch_encode_plus(
[sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__a )
_a = BertGenerationConfig()
_a = BertGenerationEncoder(__a )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**__a )
model(**__a )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
# fmt: off
_a = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__a , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
| 346 | 0 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
@staticmethod
def UpperCamelCase__ ( *__a : List[Any] , **__a : List[str] ):
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
__a =MODEL_FOR_OBJECT_DETECTION_MAPPING
def UpperCamelCase__ ( self : Any , __a : Union[str, Any] , __a : Any , __a : Tuple ):
_a = ObjectDetectionPipeline(model=_a , image_processor=_a )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def UpperCamelCase__ ( self : Union[str, Any] , __a : Optional[int] , __a : Dict ):
_a = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 )
self.assertGreater(len(_a ) , 0 )
for detected_object in outputs:
self.assertEqual(
_a , {
"score": ANY(_a ),
"label": ANY(_a ),
"box": {"xmin": ANY(_a ), "ymin": ANY(_a ), "xmax": ANY(_a ), "ymax": ANY(_a )},
} , )
import datasets
_a = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" )
_a = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
]
_a = object_detector(_a , threshold=0.0 )
self.assertEqual(len(_a ) , len(_a ) )
for outputs in batch_outputs:
self.assertGreater(len(_a ) , 0 )
for detected_object in outputs:
self.assertEqual(
_a , {
"score": ANY(_a ),
"label": ANY(_a ),
"box": {"xmin": ANY(_a ), "ymin": ANY(_a ), "xmax": ANY(_a ), "ymax": ANY(_a )},
} , )
@require_tf
@unittest.skip("Object detection not implemented in TF" )
def UpperCamelCase__ ( self : Optional[Any] ):
pass
@require_torch
def UpperCamelCase__ ( self : Dict ):
_a = """hf-internal-testing/tiny-detr-mobilenetsv3"""
_a = AutoModelForObjectDetection.from_pretrained(_a )
_a = AutoFeatureExtractor.from_pretrained(_a )
_a = ObjectDetectionPipeline(model=_a , feature_extractor=_a )
_a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
] , )
_a = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [
[
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
],
[
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
],
] , )
@require_torch
@slow
def UpperCamelCase__ ( self : int ):
_a = """facebook/detr-resnet-50"""
_a = AutoModelForObjectDetection.from_pretrained(_a )
_a = AutoFeatureExtractor.from_pretrained(_a )
_a = ObjectDetectionPipeline(model=_a , feature_extractor=_a )
_a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
_a = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
] , )
@require_torch
@slow
def UpperCamelCase__ ( self : int ):
_a = """facebook/detr-resnet-50"""
_a = pipeline("object-detection" , model=_a )
_a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
_a = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
] , )
@require_torch
@slow
def UpperCamelCase__ ( self : str ):
_a = 0.9985
_a = """facebook/detr-resnet-50"""
_a = pipeline("object-detection" , model=_a )
_a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=_a )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
@require_torch
@require_pytesseract
@slow
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = """Narsil/layoutlmv3-finetuned-funsd"""
_a = 0.9993
_a = pipeline("object-detection" , model=_a , threshold=_a )
_a = object_detector(
"https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [
{"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}},
{"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}},
] , )
| 362 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Union[str, Any]:
_enforce_args(lowercase , lowercase )
if n == 0:
return 0
_a = float("-inf" )
for i in range(1 , n + 1 ):
_a = max(
lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , lowercase ) )
return max_revue
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Tuple:
_enforce_args(lowercase , lowercase )
_a = [float("-inf" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(lowercase , lowercase , lowercase )
def _lowerCamelCase ( lowercase : int , lowercase : list , lowercase : list ) -> List[str]:
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_a = float("-inf" )
for i in range(1 , n + 1 ):
_a = max(
lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowercase , lowercase ) , )
_a = max_revenue
return max_rev[n]
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Any:
_enforce_args(lowercase , lowercase )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_a = [float("-inf" ) for _ in range(n + 1 )]
_a = 0
for i in range(1 , n + 1 ):
_a = max_rev[i]
for j in range(1 , i + 1 ):
_a = max(lowercase , prices[j - 1] + max_rev[i - j] )
_a = max_revenue_i
return max_rev[n]
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Dict:
if n < 0:
_a = F'n must be greater than or equal to 0. Got n = {n}'
raise ValueError(lowercase )
if n > len(lowercase ):
_a = (
"Each integral piece of rod must have a corresponding price. "
F'Got n = {n} but length of prices = {len(lowercase )}'
)
raise ValueError(lowercase )
def _lowerCamelCase ( ) -> Any:
_a = [6, 10, 12, 15, 20, 23]
_a = len(lowercase )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_a = 36
_a = top_down_cut_rod(lowercase , lowercase )
_a = bottom_up_cut_rod(lowercase , lowercase )
_a = naive_cut_rod_recursive(lowercase , lowercase )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 346 | 0 |
'''simple docstring'''
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : Any , __a : int = 16 , __a : int = 88 , __a : Optional[int] = None , __a : int = 1 , __a : float = 0.0 , __a : int = 32 , __a : Optional[int] = None , __a : bool = False , __a : Optional[int] = None , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , ):
super().__init__()
_a = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
_a = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
_a = [77, 2_57]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
_a = [1, 0]
def UpperCamelCase__ ( self : int , __a : List[str] , __a : int , __a : Union[str, Any]=None , __a : Any=None , __a : Optional[Any]=None , __a : bool = True , ):
_a = hidden_states
_a = []
_a = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
_a = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
_a = self.transformer_index_for_condition[i]
_a = self.transformers[transformer_index](
__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
_a = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
_a = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
| 363 |
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[Any] , *__a : Optional[int] , **__a : List[str] ):
super().__init__(*__a , **__a )
self.check_model_type(__a )
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : int=None , __a : Optional[Any]=None , **__a : List[Any] ):
_a , _a = {}, {}
if padding is not None:
_a = padding
if truncation is not None:
_a = truncation
if top_k is not None:
_a = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : Union[str, Any] , __a : Union["Image.Image", str] , __a : str = None , **__a : Any ):
if isinstance(__a , (Image.Image, str) ) and isinstance(__a , __a ):
_a = {"image": image, "question": question}
else:
_a = image
_a = super().__call__(__a , **__a )
return results
def UpperCamelCase__ ( self : Tuple , __a : Tuple , __a : Optional[Any]=False , __a : List[Any]=False ):
_a = load_image(inputs["image"] )
_a = self.tokenizer(
inputs["question"] , return_tensors=self.framework , padding=__a , truncation=__a )
_a = self.image_processor(images=__a , return_tensors=self.framework )
model_inputs.update(__a )
return model_inputs
def UpperCamelCase__ ( self : List[Any] , __a : List[str] ):
_a = self.model(**__a )
return model_outputs
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : Dict=5 ):
if top_k > self.model.config.num_labels:
_a = self.model.config.num_labels
if self.framework == "pt":
_a = model_outputs.logits.sigmoid()[0]
_a , _a = probs.topk(__a )
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
_a = scores.tolist()
_a = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
| 346 | 0 |
'''simple docstring'''
from __future__ import annotations
def _lowerCamelCase ( lowercase : List[str] , lowercase : str ) -> bool:
_a = get_failure_array(__snake_case )
# 2) Step through text searching for pattern
_a = 0, 0 # index into text, pattern
while i < len(__snake_case ):
if pattern[j] == text[i]:
if j == (len(__snake_case ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
_a = failure[j - 1]
continue
i += 1
return False
def _lowerCamelCase ( lowercase : Dict ) -> list[int]:
_a = [0]
_a = 0
_a = 1
while j < len(__snake_case ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
_a = failure[i - 1]
continue
j += 1
failure.append(__snake_case )
return failure
if __name__ == "__main__":
# Test 1)
lowerCAmelCase_ : Tuple = 'abc1abc12'
lowerCAmelCase_ : Union[str, Any] = 'alskfjaldsabc1abc1abc12k23adsfabcabc'
lowerCAmelCase_ : Dict = 'alskfjaldsk23adsfabcabc'
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
lowerCAmelCase_ : List[str] = 'ABABX'
lowerCAmelCase_ : int = 'ABABZABABYABABX'
assert kmp(pattern, text)
# Test 3)
lowerCAmelCase_ : List[Any] = 'AAAB'
lowerCAmelCase_ : Union[str, Any] = 'ABAAAAAB'
assert kmp(pattern, text)
# Test 4)
lowerCAmelCase_ : List[str] = 'abcdabcy'
lowerCAmelCase_ : str = 'abcxabcdabxabcdabcdabcy'
assert kmp(pattern, text)
# Test 5)
lowerCAmelCase_ : List[str] = 'aabaabaaa'
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 364 |
'''simple docstring'''
from random import randint, random
def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : int , lowercase : bool = False , lowercase : bool = False , lowercase : int = 5 , ) -> list:
_a = [[-1] * number_of_cells] # Create a highway without any car
_a = 0
_a = max(lowercase , 0 )
while i < number_of_cells:
_a = (
randint(0 , lowercase ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def _lowerCamelCase ( lowercase : list , lowercase : int ) -> int:
_a = 0
_a = highway_now[car_index + 1 :]
for cell in range(len(lowercase ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(lowercase , -1 )
def _lowerCamelCase ( lowercase : list , lowercase : float , lowercase : int ) -> list:
_a = len(lowercase )
# Beforce calculations, the highway is empty
_a = [-1] * number_of_cells
for car_index in range(lowercase ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
_a = min(highway_now[car_index] + 1 , lowercase )
# Number of empty cell before the next car
_a = get_distance(lowercase , lowercase ) - 1
# We can't have the car causing an accident
_a = min(next_highway[car_index] , lowercase )
if random() < probability:
# Randomly, a driver will slow down
_a = max(next_highway[car_index] - 1 , 0 )
return next_highway
def _lowerCamelCase ( lowercase : list , lowercase : int , lowercase : float , lowercase : int ) -> list:
_a = len(highway[0] )
for i in range(lowercase ):
_a = update(highway[i] , lowercase , lowercase )
_a = [-1] * number_of_cells
for car_index in range(lowercase ):
_a = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
_a = (car_index + speed) % number_of_cells
# Commit the change of position
_a = speed
highway.append(lowercase )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ : Tuple = logging.get_logger(__name__)
lowerCAmelCase_ : Tuple = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class __SCREAMING_SNAKE_CASE (__snake_case ):
"""simple docstring"""
__a ="distilbert"
__a ={
"hidden_size": "dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
}
def __init__( self : int , __a : List[str]=3_05_22 , __a : Dict=5_12 , __a : Optional[int]=False , __a : List[str]=6 , __a : int=12 , __a : Tuple=7_68 , __a : str=4 * 7_68 , __a : List[str]=0.1 , __a : str=0.1 , __a : Dict="gelu" , __a : Optional[int]=0.02 , __a : Optional[Any]=0.1 , __a : int=0.2 , __a : Optional[Any]=0 , **__a : str , ):
_a = vocab_size
_a = max_position_embeddings
_a = sinusoidal_pos_embds
_a = n_layers
_a = n_heads
_a = dim
_a = hidden_dim
_a = dropout
_a = attention_dropout
_a = activation
_a = initializer_range
_a = qa_dropout
_a = seq_classif_dropout
super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ )
class __SCREAMING_SNAKE_CASE (__snake_case ):
"""simple docstring"""
@property
def UpperCamelCase__ ( self : Any ):
if self.task == "multiple-choice":
_a = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_a = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 365 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int = 10 ) -> str:
if not isinstance(lowercase , lowercase ) or n < 0:
raise ValueError("Invalid input" )
_a = 10**n
_a = 2_8433 * (pow(2 , 783_0457 , lowercase )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(10) = }""")
| 346 | 0 |
'''simple docstring'''
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
lowerCAmelCase_ : Dict = """src/transformers"""
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase_ : Dict = direct_transformers_import(PATH_TO_TRANSFORMERS)
lowerCAmelCase_ : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
lowerCAmelCase_ : Dict = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)')
lowerCAmelCase_ : int = {
"""DecisionTransformerConfig""",
"""EncoderDecoderConfig""",
"""MusicgenConfig""",
"""RagConfig""",
"""SpeechEncoderDecoderConfig""",
"""TimmBackboneConfig""",
"""VisionEncoderDecoderConfig""",
"""VisionTextDualEncoderConfig""",
"""LlamaConfig""",
}
def _lowerCamelCase ( lowercase : List[str] ) -> List[str]:
_a = None
# source code of `config_class`
_a = inspect.getsource(SCREAMING_SNAKE_CASE_ )
_a = _re_checkpoint.findall(SCREAMING_SNAKE_CASE_ )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("/" ):
_a = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
_a = F'https://huggingface.co/{ckpt_name}'
if ckpt_link == ckpt_link_from_name:
_a = ckpt_name
break
return checkpoint
def _lowerCamelCase ( ) -> int:
_a = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
_a = get_checkpoint_from_config_class(SCREAMING_SNAKE_CASE_ )
_a = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
_a = "\n".join(sorted(SCREAMING_SNAKE_CASE_ ) )
raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 366 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int = 6008_5147_5143 ) -> int:
try:
_a = int(lowercase )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
_a = 2
_a = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
_a = i
while n % i == 0:
_a = n // i
i += 1
return int(lowercase )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 346 | 0 |
'''simple docstring'''
from __future__ import annotations
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict , __a : int = 0 ):
_a = key
def UpperCamelCase__ ( self : List[str] , __a : str , __a : int ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
_a = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_55
return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content]
def UpperCamelCase__ ( self : Union[str, Any] , __a : str , __a : int ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
_a = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_55
return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content]
def UpperCamelCase__ ( self : Any , __a : str , __a : int = 0 ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
_a = key or self.__key or 1
# make sure key can be any size
while key > 2_55:
key -= 2_55
# This will be returned
_a = ""
for ch in content:
ans += chr(ord(_UpperCAmelCase ) ^ key )
return ans
def UpperCamelCase__ ( self : Union[str, Any] , __a : str , __a : int = 0 ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
_a = key or self.__key or 1
# make sure key can be any size
while key > 2_55:
key -= 2_55
# This will be returned
_a = ""
for ch in content:
ans += chr(ord(_UpperCAmelCase ) ^ key )
return ans
def UpperCamelCase__ ( self : Any , __a : str , __a : int = 0 ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
try:
with open(_UpperCAmelCase ) as fin, open("encrypt.out" , "w+" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_UpperCAmelCase , _UpperCAmelCase ) )
except OSError:
return False
return True
def UpperCamelCase__ ( self : Tuple , __a : str , __a : int ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
try:
with open(_UpperCAmelCase ) as fin, open("decrypt.out" , "w+" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_UpperCAmelCase , _UpperCAmelCase ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 367 |
'''simple docstring'''
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=os.environ.get('LOGLEVEL', 'INFO').upper(),
stream=sys.stdout,
)
lowerCAmelCase_ : List[Any] = logging.getLogger(__name__)
lowerCAmelCase_ : List[Any] = {'facebook/bart-base': BartForConditionalGeneration}
lowerCAmelCase_ : int = {'facebook/bart-base': BartTokenizer}
def _lowerCamelCase ( ) -> Union[str, Any]:
_a = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." )
parser.add_argument(
"--validation_file" , type=lowercase , default=lowercase , help="A csv or a json file containing the validation data." )
parser.add_argument(
"--max_length" , type=lowercase , default=5 , help="The maximum total input sequence length after tokenization." , )
parser.add_argument(
"--num_beams" , type=lowercase , default=lowercase , help=(
"Number of beams to use for evaluation. This argument will be "
"passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."
) , )
parser.add_argument(
"--model_name_or_path" , type=lowercase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowercase , )
parser.add_argument(
"--config_name" , type=lowercase , default=lowercase , help="Pretrained config name or path if not the same as model_name" , )
parser.add_argument(
"--device" , type=lowercase , default="cpu" , help="Device where the model will be run" , )
parser.add_argument("--output_file_path" , type=lowercase , default=lowercase , help="Where to store the final ONNX file." )
_a = parser.parse_args()
return args
def _lowerCamelCase ( lowercase : Any , lowercase : Tuple="cpu" ) -> Optional[Any]:
_a = model_dict[model_name].from_pretrained(lowercase ).to(lowercase )
_a = tokenizer_dict[model_name].from_pretrained(lowercase )
if model_name in ["facebook/bart-base"]:
_a = 0
_a = None
_a = 0
return huggingface_model, tokenizer
def _lowerCamelCase ( lowercase : List[str] , lowercase : Tuple , lowercase : int , lowercase : Any , lowercase : Dict ) -> Any:
model.eval()
_a = None
_a = torch.jit.script(BARTBeamSearchGenerator(lowercase ) )
with torch.no_grad():
_a = "My friends are cool but they eat too many carbs."
_a = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device )
_a = model.generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=lowercase , max_length=lowercase , early_stopping=lowercase , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
lowercase , (
inputs["input_ids"],
inputs["attention_mask"],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , lowercase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={
"input_ids": {0: "batch", 1: "seq"},
"output_ids": {0: "batch", 1: "seq_out"},
} , example_outputs=lowercase , )
logger.info("Model exported to {}".format(lowercase ) )
_a = remove_dup_initializers(os.path.abspath(lowercase ) )
logger.info("Deduplicated and optimized model written to {}".format(lowercase ) )
_a = onnxruntime.InferenceSession(lowercase )
_a = ort_sess.run(
lowercase , {
"input_ids": inputs["input_ids"].cpu().numpy(),
"attention_mask": inputs["attention_mask"].cpu().numpy(),
"num_beams": np.array(lowercase ),
"max_length": np.array(lowercase ),
"decoder_start_token_id": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info("Model outputs from torch and ONNX Runtime are similar." )
logger.info("Success." )
def _lowerCamelCase ( ) -> Any:
_a = parse_args()
_a = 5
_a = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_a = torch.device(args.device )
_a , _a = load_model_tokenizer(args.model_name_or_path , lowercase )
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" )
model.to(lowercase )
if args.max_length:
_a = args.max_length
if args.num_beams:
_a = args.num_beams
if args.output_file_path:
_a = args.output_file_path
else:
_a = "BART.onnx"
logger.info("Exporting model to ONNX" )
export_and_validate_model(lowercase , lowercase , lowercase , lowercase , lowercase )
if __name__ == "__main__":
main()
| 346 | 0 |
def _lowerCamelCase ( lowercase : float , lowercase : int ) -> float:
if digit_amount > 0:
return round(number - int(lowercase ) , lowercase )
return number - int(lowercase )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 368 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
lowerCAmelCase_ : Dict = abspath(join(dirname(dirname(dirname(__file__))), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def _lowerCamelCase ( lowercase : str ) -> Optional[int]:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(lowercase )
def _lowerCamelCase ( lowercase : Dict ) -> str:
from transformers.testing_utils import pytest_terminal_summary_main
_a = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(lowercase , id=lowercase )
| 346 | 0 |
'''simple docstring'''
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
lowerCAmelCase_ : Dict = re.compile('[^A-Za-z_0-9]')
# parameters used in DuplicationIndex
lowerCAmelCase_ : Tuple = 10
lowerCAmelCase_ : Union[str, Any] = 2_56
def _lowerCamelCase ( lowercase : str ) -> Optional[MinHash]:
if len(a__ ) < MIN_NUM_TOKENS:
return None
_a = MinHash(num_perm=a__ )
for token in set(a__ ):
min_hash.update(token.encode() )
return min_hash
def _lowerCamelCase ( lowercase : List[Any] ) -> Set[str]:
return {t for t in NON_ALPHA.split(a__ ) if len(t.strip() ) > 0}
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Optional[int] , *,
__a : float = 0.85 , ):
_a = duplication_jaccard_threshold
_a = NUM_PERM
_a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
_a = defaultdict(lowercase_ )
def UpperCamelCase__ ( self : List[str] , __a : Tuple , __a : MinHash ):
_a = self._index.query(lowercase_ )
if code_key in self._index.keys:
print(f'Duplicate key {code_key}' )
return
self._index.insert(lowercase_ , lowercase_ )
if len(lowercase_ ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(lowercase_ )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(lowercase_ )
def UpperCamelCase__ ( self : List[str] ):
_a = []
for base, duplicates in self._duplicate_clusters.items():
_a = [base] + list(lowercase_ )
# reformat the cluster to be a list of dict
_a = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster]
duplicate_clusters.append(lowercase_ )
return duplicate_clusters
def UpperCamelCase__ ( self : int , __a : Optional[int] ):
_a = self.get_duplicate_clusters()
with open(lowercase_ , "w" ) as f:
json.dump(lowercase_ , lowercase_ )
def _lowerCamelCase ( lowercase : str ) -> Optional[Any]:
_a , _a = element
_a = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _lowerCamelCase ( lowercase : Tuple ) -> Optional[int]:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(a__ , max_queue_size=1_0000 ) , chunksize=100 , ):
if data is not None:
yield data
def _lowerCamelCase ( lowercase : str , lowercase : Any ) -> List[str]:
_a = DuplicationIndex(duplication_jaccard_threshold=a__ )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a__ ) ) , max_queue_size=100 ) ):
di.add(a__ , a__ )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _lowerCamelCase ( lowercase : List[Any] , lowercase : Union[str, Any] ) -> float:
_a = get_tokens(a__ )
_a = get_tokens(a__ )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
lowerCAmelCase_ : Tuple = None
def _lowerCamelCase ( lowercase : Dict , lowercase : int ) -> Optional[Any]:
_a = []
for elementa in cluster:
_a = _shared_dataset[elementa["base_index"]]["content"]
for elementa in extremes:
_a = _shared_dataset[elementa["base_index"]]["content"]
if jaccard_similarity(a__ , a__ ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
_a = 1
extremes.append(a__ )
return extremes
def _lowerCamelCase ( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Any ) -> str:
global _shared_dataset
_a = dataset
_a = []
_a = partial(_find_cluster_extremes_shared , jaccard_threshold=a__ )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
a__ , a__ , ) , total=len(a__ ) , ):
extremes_list.append(a__ )
return extremes_list
def _lowerCamelCase ( lowercase : Tuple , lowercase : Union[str, Any] = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
_a = make_duplicate_clusters(a__ , a__ )
_a = {x["base_index"] for cluster in duplicate_clusters for x in cluster}
_a = {}
_a = find_extremes(a__ , a__ , a__ )
for extremes in extremes_clusters:
for element in extremes:
_a = element
_a = duplicate_indices - set(extreme_dict.keys() )
_a = dataset.filter(lambda lowercase , lowercase : idx not in remove_indices , with_indices=a__ )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
_a = element["base_index"] in extreme_dict
if element["is_extreme"]:
_a = extreme_dict[element["base_index"]]["copies"]
print(F'Original dataset size: {len(a__ )}' )
print(F'Number of duplicate clusters: {len(a__ )}' )
print(F'Files in duplicate cluster: {len(a__ )}' )
print(F'Unique files in duplicate cluster: {len(a__ )}' )
print(F'Filtered dataset size: {len(a__ )}' )
return ds_filter, duplicate_clusters
| 369 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
@register_to_config
def __init__( self : List[Any] , __a : int , __a : int , __a : int , __a : float , __a : int , __a : int , __a : int , __a : int , __a : str , __a : bool = False , ):
super().__init__()
_a = nn.Embedding(__a , __a )
_a = nn.Embedding(__a , __a )
_a = False
_a = nn.Dropout(p=__a )
_a = TaConfig(
vocab_size=__a , d_model=__a , num_heads=__a , d_kv=__a , d_ff=__a , dropout_rate=__a , feed_forward_proj=__a , is_decoder=__a , is_encoder_decoder=__a , )
_a = nn.ModuleList()
for lyr_num in range(__a ):
_a = TaBlock(__a )
self.encoders.append(__a )
_a = TaLayerNorm(__a )
_a = nn.Dropout(p=__a )
def UpperCamelCase__ ( self : str , __a : Union[str, Any] , __a : Dict ):
_a = self.token_embedder(__a )
_a = encoder_input_tokens.shape[1]
_a = torch.arange(__a , device=encoder_input_tokens.device )
x += self.position_encoding(__a )
_a = self.dropout_pre(__a )
# inverted the attention mask
_a = encoder_input_tokens.size()
_a = self.get_extended_attention_mask(__a , __a )
for lyr in self.encoders:
_a = lyr(__a , __a )[0]
_a = self.layer_norm(__a )
return self.dropout_post(__a ), encoder_inputs_mask
| 346 | 0 |
'''simple docstring'''
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def _lowerCamelCase ( lowercase : str ) -> Optional[Any]:
_a = torch.exp(_lowerCamelCase )
_a = torch.sum(_lowerCamelCase , dim=1 ) # sum of exp(x_i)
_a = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i)
return torch.log(_lowerCamelCase ) - B / A
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , __a : str ):
super().__init__()
_a = config.output_attentions
_a = config.output_hidden_states
_a = nn.ModuleList([BertLayer(__a ) for _ in range(config.num_hidden_layers )] )
_a = nn.ModuleList([BertHighway(__a ) for _ in range(config.num_hidden_layers )] )
_a = [-1 for _ in range(config.num_hidden_layers )]
def UpperCamelCase__ ( self : str , __a : int ):
if (type(__a ) is float) or (type(__a ) is int):
for i in range(len(self.early_exit_entropy ) ):
_a = x
else:
_a = x
def UpperCamelCase__ ( self : Optional[int] , __a : Union[str, Any] ):
_a = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def UpperCamelCase__ ( self : int , __a : Any , __a : Any=None , __a : Union[str, Any]=None , __a : str=None , __a : str=None , ):
_a = ()
_a = ()
_a = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
_a = all_hidden_states + (hidden_states,)
_a = layer_module(
__a , __a , head_mask[i] , __a , __a )
_a = layer_outputs[0]
if self.output_attentions:
_a = all_attentions + (layer_outputs[1],)
_a = (hidden_states,)
if self.output_hidden_states:
_a = current_outputs + (all_hidden_states,)
if self.output_attentions:
_a = current_outputs + (all_attentions,)
_a = self.highway[i](__a )
# logits, pooled_output
if not self.training:
_a = highway_exit[0]
_a = entropy(__a )
_a = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
_a = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
_a = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(__a , i + 1 )
else:
_a = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
_a = all_hidden_states + (hidden_states,)
_a = (hidden_states,)
if self.output_hidden_states:
_a = outputs + (all_hidden_states,)
if self.output_attentions:
_a = outputs + (all_attentions,)
_a = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
'The Bert Model transformer with early exiting (DeeBERT). ' , a__ , )
class __SCREAMING_SNAKE_CASE (a__ ):
"""simple docstring"""
def __init__( self : int , __a : Dict ):
super().__init__(__a )
_a = config
_a = BertEmbeddings(__a )
_a = DeeBertEncoder(__a )
_a = BertPooler(__a )
self.init_weights()
def UpperCamelCase__ ( self : Optional[Any] ):
self.encoder.init_highway_pooler(self.pooler )
def UpperCamelCase__ ( self : List[str] ):
return self.embeddings.word_embeddings
def UpperCamelCase__ ( self : Dict , __a : Tuple ):
_a = value
def UpperCamelCase__ ( self : Union[str, Any] , __a : Any ):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(__a )
@add_start_docstrings_to_model_forward(__a )
def UpperCamelCase__ ( self : Optional[Any] , __a : Any=None , __a : Union[str, Any]=None , __a : Optional[Any]=None , __a : List[str]=None , __a : List[str]=None , __a : List[str]=None , __a : Any=None , __a : Union[str, Any]=None , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" )
elif input_ids is not None:
_a = input_ids.size()
elif inputs_embeds is not None:
_a = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds" )
_a = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_a = torch.ones(__a , device=__a )
if encoder_attention_mask is None:
_a = torch.ones(__a , device=__a )
if token_type_ids is None:
_a = torch.zeros(__a , dtype=torch.long , device=__a )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_a = self.get_extended_attention_mask(__a , __a , __a )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
_a = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
_a = encoder_attention_mask[:, None, None, :]
_a = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
_a = (1.0 - encoder_extended_attention_mask) * -1_00_00.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_a = self.get_head_mask(__a , self.config.num_hidden_layers )
_a = self.embeddings(
input_ids=__a , position_ids=__a , token_type_ids=__a , inputs_embeds=__a )
_a = self.encoder(
__a , attention_mask=__a , head_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , )
_a = encoder_outputs[0]
_a = self.pooler(__a )
_a = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class __SCREAMING_SNAKE_CASE (a__ ):
"""simple docstring"""
def __init__( self : Optional[Any] , __a : str , __a : List[str] ):
_a = message
_a = exit_layer # start from 1!
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self : str , __a : int ):
super().__init__()
_a = BertPooler(__a )
_a = nn.Dropout(config.hidden_dropout_prob )
_a = nn.Linear(config.hidden_size , config.num_labels )
def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ):
# Pooler
_a = encoder_outputs[0]
_a = self.pooler(__a )
# "return" pooler_output
# BertModel
_a = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
_a = bmodel_output[1]
_a = self.dropout(__a )
_a = self.classifier(__a )
return logits, pooled_output
@add_start_docstrings(
'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , a__ , )
class __SCREAMING_SNAKE_CASE (a__ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : Union[str, Any] ):
super().__init__(__a )
_a = config.num_labels
_a = config.num_hidden_layers
_a = DeeBertModel(__a )
_a = nn.Dropout(config.hidden_dropout_prob )
_a = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(__a )
def UpperCamelCase__ ( self : List[str] , __a : int=None , __a : Union[str, Any]=None , __a : Any=None , __a : Optional[Any]=None , __a : List[str]=None , __a : Any=None , __a : Optional[int]=None , __a : int=-1 , __a : Optional[int]=False , ):
_a = self.num_layers
try:
_a = self.bert(
__a , attention_mask=__a , token_type_ids=__a , position_ids=__a , head_mask=__a , inputs_embeds=__a , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
_a = outputs[1]
_a = self.dropout(__a )
_a = self.classifier(__a )
_a = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_a = e.message
_a = e.exit_layer
_a = outputs[0]
if not self.training:
_a = entropy(__a )
_a = []
_a = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_a = MSELoss()
_a = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_a = CrossEntropyLoss()
_a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_a = []
for highway_exit in outputs[-1]:
_a = highway_exit[0]
if not self.training:
highway_logits_all.append(__a )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_a = MSELoss()
_a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_a = CrossEntropyLoss()
_a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(__a )
if train_highway:
_a = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_a = (loss,) + outputs
if not self.training:
_a = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_a = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 370 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def _lowerCamelCase ( lowercase : Any ) -> Any:
_a = filter(lambda lowercase : p.requires_grad , model.parameters() )
_a = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase_ : List[str] = logging.getLogger(__name__)
def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict ) -> Union[str, Any]:
if metric == "rouge2":
_a = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
_a = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
_a = "{val_avg_em:.4f}-{step_count}"
elif metric == "loss":
_a = "{val_avg_loss:.4f}-{step_count}"
else:
raise NotImplementedError(
F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
" function." )
_a = ModelCheckpoint(
dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def _lowerCamelCase ( lowercase : Dict , lowercase : Dict ) -> str:
return EarlyStopping(
monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , )
class __SCREAMING_SNAKE_CASE (pl.Callback ):
"""simple docstring"""
def UpperCamelCase__ ( self : Tuple , __a : Optional[int] , __a : Any ):
_a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Tuple , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Dict=True ):
logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' )
_a = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
_a = Path(pl_module.hparams.output_dir )
if type_path == "test":
_a = od / "test_results.txt"
_a = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_a = od / f'{type_path}_results/{trainer.global_step:05d}.txt'
_a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=__a )
generations_file.parent.mkdir(exist_ok=__a )
with open(__a , "a+" ) as writer:
for key in sorted(__a ):
if key in ["log", "progress_bar", "preds"]:
continue
_a = metrics[key]
if isinstance(__a , torch.Tensor ):
_a = val.item()
_a = f'{key}: {val:.6f}\n'
writer.write(__a )
if not save_generations:
return
if "preds" in metrics:
_a = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : List[Any] , __a : Dict ):
try:
_a = pl_module.model.model.num_parameters()
except AttributeError:
_a = pl_module.model.num_parameters()
_a = count_trainable_parameters(__a )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} )
@rank_zero_only
def UpperCamelCase__ ( self : Union[str, Any] , __a : pl.Trainer , __a : pl.LightningModule ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__a , __a , "test" )
@rank_zero_only
def UpperCamelCase__ ( self : Optional[int] , __a : pl.Trainer , __a : str ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 346 | 0 |
'''simple docstring'''
from numpy import exp, pi, sqrt
def _lowerCamelCase ( lowercase : Dict , lowercase : Optional[int] = 0.0 , lowercase : Any = 1.0 ) -> List[str]:
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
lowerCAmelCase_ : str = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
lowerCAmelCase_ : Union[str, Any] = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]:
_a = (images / 2 + 0.5).clamp(0 , 1 )
_a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_a = numpy_to_pil(lowercase )
return images
def _lowerCamelCase ( lowercase : int ) -> List[Any]:
if images.ndim == 3:
_a = images[None, ...]
_a = (images * 255).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
_a = [Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
_a = [Image.fromarray(lowercase ) for image in images]
return pil_images
| 346 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
lowerCAmelCase_ : Union[str, Any] = {"tokenization_byt5": ["ByT5Tokenizer"]}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
lowerCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 350 |
'''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[int]:
_a = 10
_a = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_a = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(lowercase ) ),
} , features=lowercase , )
return dataset
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : int ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=lowercase )
return filename
# FILE_CONTENT + files
lowerCAmelCase_ : Union[str, Any] = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]:
_a = tmp_path_factory.mktemp("data" ) / "file.txt"
_a = FILE_CONTENT
with open(lowercase , "w" ) as f:
f.write(lowercase )
return filename
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> str:
import bza
_a = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_a = bytes(lowercase , "utf-8" )
with bza.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> Optional[Any]:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_a = bytes(lowercase , "utf-8" )
with gzip.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Union[str, Any]:
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_a = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_a = bytes(lowercase , "utf-8" )
with lza.frame.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Tuple ) -> Optional[Any]:
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_a = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(lowercase , "w" ) as archive:
archive.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : Optional[Any] ) -> Dict:
import tarfile
_a = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any ) -> Union[str, Any]:
import lzma
_a = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_a = bytes(lowercase , "utf-8" )
with lzma.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int , lowercase : Any ) -> Union[str, Any]:
import zipfile
_a = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict ) -> List[str]:
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_a = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_a = bytes(lowercase , "utf-8" )
with zstd.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> Union[str, Any]:
_a = tmp_path_factory.mktemp("data" ) / "file.xml"
_a = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(lowercase , "w" ) as f:
f.write(lowercase )
return filename
lowerCAmelCase_ : Optional[int] = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
lowerCAmelCase_ : List[Any] = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
lowerCAmelCase_ : Dict = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
lowerCAmelCase_ : Dict = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
lowerCAmelCase_ : List[Any] = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> List[str]:
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> str:
_a = datasets.Dataset.from_dict(lowercase )
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict ) -> Dict:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(lowercase ) ) as con:
_a = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[Any] ) -> str:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(lowercase , "w" , newline="" ) as f:
_a = csv.DictWriter(lowercase , fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(lowercase , "w" , newline="" ) as f:
_a = csv.DictWriter(lowercase , fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> int:
import bza
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(lowercase , "rb" ) as f:
_a = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Any , lowercase : Any ) -> List[str]:
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : Any , lowercase : List[Any] ) -> Dict:
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) )
f.write(lowercase , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Optional[Any] , lowercase : int ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[Any] ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_a = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(lowercase , "wb" ) as f:
_a = pq.ParquetWriter(lowercase , schema=lowercase )
_a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase ) )] for k in DATA[0]} , schema=lowercase )
writer.write_table(lowercase )
writer.close()
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_a = {"data": DATA}
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_a = {"data": DATA_DICT_OF_LISTS}
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] ) -> str:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> List[str]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[Any] ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA_312:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> int:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict ) -> Tuple:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(lowercase , "rb" ) as orig_file:
with gzip.open(lowercase , "wb" ) as zipped_file:
zipped_file.writelines(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[Any] ) -> List[Any]:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(lowercase , "rb" ) as orig_file:
with gzip.open(lowercase , "wb" ) as zipped_file:
zipped_file.writelines(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[Any] , lowercase : int ) -> str:
_a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : int , lowercase : List[Any] ) -> Optional[int]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("nested" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] , lowercase : str ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : Any , lowercase : Optional[int] ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.basename(lowercase ) )
f.add(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.join("nested" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> str:
_a = ["0", "1", "2", "3"]
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> Dict:
_a = ["0", "1", "2", "3"]
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Dict:
_a = ["0", "1", "2", "3"]
_a = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Union[str, Any] , lowercase : Any ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : List[str] , lowercase : List[str] ) -> Union[str, Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : int , lowercase : str ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename("unsupported.ext" ) )
f.write(lowercase , arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[Any] ) -> Any:
_a = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_a = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(lowercase , "w" , encoding="utf-8" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[Any]:
return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[int]:
return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> Dict:
_a = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ).replace(".jpg" , "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> str:
_a = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt" , "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt" , "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
return data_dir
| 346 | 0 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int ) -> bool:
return str(_SCREAMING_SNAKE_CASE ) == str(_SCREAMING_SNAKE_CASE )[::-1]
def _lowerCamelCase ( lowercase : int ) -> int:
return int(_SCREAMING_SNAKE_CASE ) + int(str(_SCREAMING_SNAKE_CASE )[::-1] )
def _lowerCamelCase ( lowercase : int = 1_0000 ) -> int:
_a = []
for num in range(1 , _SCREAMING_SNAKE_CASE ):
_a = 0
_a = num
while iterations < 50:
_a = sum_reverse(_SCREAMING_SNAKE_CASE )
iterations += 1
if is_palindrome(_SCREAMING_SNAKE_CASE ):
break
else:
lychrel_nums.append(_SCREAMING_SNAKE_CASE )
return len(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 351 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =['image_processor', 'tokenizer']
__a ='LayoutLMv2ImageProcessor'
__a =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast')
def __init__( self : Dict , __a : int=None , __a : List[Any]=None , **__a : str ):
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __a , )
_a = kwargs.pop("feature_extractor" )
_a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__a , __a )
def __call__( self : Optional[int] , __a : Optional[Any] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Optional[Any] , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
_a = self.image_processor(images=__a , return_tensors=__a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__a , __a ):
_a = [text] # add batch dimension (as the image processor always adds a batch dimension)
_a = features["words"]
_a = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , )
# add pixel values
_a = features.pop("pixel_values" )
if return_overflowing_tokens is True:
_a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] )
_a = images
return encoded_inputs
def UpperCamelCase__ ( self : int , __a : List[Any] , __a : int ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
_a = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__a ) != len(__a ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
f' {len(__a )} and {len(__a )}' )
return images_with_overflow
def UpperCamelCase__ ( self : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ):
return self.tokenizer.batch_decode(*__a , **__a )
def UpperCamelCase__ ( self : Union[str, Any] , *__a : Optional[int] , **__a : Optional[Any] ):
return self.tokenizer.decode(*__a , **__a )
@property
def UpperCamelCase__ ( self : int ):
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def UpperCamelCase__ ( self : List[Any] ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , )
return self.image_processor_class
@property
def UpperCamelCase__ ( self : int ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , )
return self.image_processor
| 346 | 0 |
'''simple docstring'''
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict , __a : Union[str, Any] , __a : Union[str, Any]=13 , __a : Tuple=7 , __a : List[str]=True , __a : int=True , __a : Optional[int]=False , __a : str=True , __a : List[Any]=99 , __a : Tuple=64 , __a : List[str]=5 , __a : Optional[int]=4 , __a : Optional[Any]=64 , __a : int="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : str=5_12 , __a : Dict=16 , __a : str=2 , __a : Any=0.02 , __a : Any=3 , __a : Optional[int]=4 , __a : Dict=None , ):
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_input_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = num_labels
_a = num_choices
_a = scope
def UpperCamelCase__ ( self : List[str] ):
return MPNetConfig.from_pretrained("microsoft/mpnet-base" )
def UpperCamelCase__ ( self : int ):
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = None
if self.use_input_mask:
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self : int ):
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def UpperCamelCase__ ( self : Dict , __a : Union[str, Any] , __a : Dict , __a : Union[str, Any] , __a : Tuple , __a : Dict , __a : Dict ):
_a = MPNetModel(config=__a )
model.to(__a )
model.eval()
_a = model(__a , __a )
_a = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase__ ( self : int , __a : Union[str, Any] , __a : str , __a : Tuple , __a : Tuple , __a : Union[str, Any] , __a : int ):
_a = MPNetForQuestionAnswering(config=__a )
model.to(__a )
model.eval()
_a = model(
__a , attention_mask=__a , start_positions=__a , end_positions=__a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ ( self : Dict , __a : List[str] , __a : Optional[Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Optional[Any] ):
_a = self.num_labels
_a = MPNetForSequenceClassification(__a )
model.to(__a )
model.eval()
_a = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self : Optional[Any] , __a : List[str] , __a : Optional[int] , __a : Dict , __a : Optional[Any] , __a : Optional[Any] , __a : List[str] ):
_a = self.num_choices
_a = MPNetForMultipleChoice(config=__a )
model.to(__a )
model.eval()
_a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = model(
__a , attention_mask=__a , labels=__a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : List[Any] , __a : Dict , __a : Optional[int] , __a : List[str] ):
_a = self.num_labels
_a = MPNetForTokenClassification(config=__a )
model.to(__a )
model.eval()
_a = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self : List[Any] ):
_a = self.prepare_config_and_inputs()
(_a) = config_and_inputs
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =(
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
__a =(
{
'feature-extraction': MPNetModel,
'fill-mask': MPNetForMaskedLM,
'question-answering': MPNetForQuestionAnswering,
'text-classification': MPNetForSequenceClassification,
'token-classification': MPNetForTokenClassification,
'zero-shot': MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
__a =False
__a =True
def UpperCamelCase__ ( self : List[str] ):
_a = MPNetModelTester(self )
_a = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*__a )
def UpperCamelCase__ ( self : List[Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*__a )
def UpperCamelCase__ ( self : Dict ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*__a )
def UpperCamelCase__ ( self : Tuple ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*__a )
def UpperCamelCase__ ( self : int ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*__a )
@require_torch
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCamelCase__ ( self : int ):
_a = MPNetModel.from_pretrained("microsoft/mpnet-base" )
_a = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
_a = model(__a )[0]
_a = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , __a )
_a = torch.tensor(
[[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
| 352 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
lowerCAmelCase_ : int = '▁'
lowerCAmelCase_ : Optional[Any] = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
lowerCAmelCase_ : Optional[int] = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
lowerCAmelCase_ : List[str] = {
'facebook/s2t-small-librispeech-asr': 10_24,
}
lowerCAmelCase_ : List[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
lowerCAmelCase_ : Union[str, Any] = {'mustc': MUSTC_LANGS}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =VOCAB_FILES_NAMES
__a =PRETRAINED_VOCAB_FILES_MAP
__a =MAX_MODEL_INPUT_SIZES
__a =['input_ids', 'attention_mask']
__a =[]
def __init__( self : Optional[Any] , __a : Optional[Any] , __a : Any , __a : Any="<s>" , __a : List[str]="</s>" , __a : str="<pad>" , __a : List[str]="<unk>" , __a : Union[str, Any]=False , __a : Any=False , __a : List[str]=None , __a : Optional[int]=None , __a : Optional[Dict[str, Any]] = None , **__a : int , ):
_a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , )
_a = do_upper_case
_a = do_lower_case
_a = load_json(__a )
_a = {v: k for k, v in self.encoder.items()}
_a = spm_file
_a = load_spm(__a , self.sp_model_kwargs )
if lang_codes is not None:
_a = lang_codes
_a = LANGUAGES[lang_codes]
_a = [f'<lang:{lang}>' for lang in self.langs]
_a = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs}
_a = self.lang_tokens
_a = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
_a = {}
@property
def UpperCamelCase__ ( self : str ):
return len(self.encoder )
@property
def UpperCamelCase__ ( self : str ):
return self._tgt_lang
@tgt_lang.setter
def UpperCamelCase__ ( self : Optional[int] , __a : Any ):
_a = new_tgt_lang
self.set_tgt_lang_special_tokens(__a )
def UpperCamelCase__ ( self : List[Any] , __a : str ):
_a = self.lang_code_to_id[tgt_lang]
_a = [lang_code_id]
def UpperCamelCase__ ( self : Dict , __a : str ):
return self.sp_model.encode(__a , out_type=__a )
def UpperCamelCase__ ( self : List[str] , __a : Any ):
return self.encoder.get(__a , self.encoder[self.unk_token] )
def UpperCamelCase__ ( self : str , __a : int ):
return self.decoder.get(__a , self.unk_token )
def UpperCamelCase__ ( self : str , __a : List[str] ):
_a = []
_a = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
_a = self.sp_model.decode(__a )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
_a = []
else:
current_sub_tokens.append(__a )
_a = self.sp_model.decode(__a )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def UpperCamelCase__ ( self : int , __a : Any , __a : int=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def UpperCamelCase__ ( self : Any , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a )
_a = [1] * len(self.prefix_tokens )
_a = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__a )) + suffix_ones
return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ):
_a = self.__dict__.copy()
_a = None
return state
def __setstate__( self : str , __a : Dict ):
_a = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_a = {}
_a = load_spm(self.spm_file , self.sp_model_kwargs )
def UpperCamelCase__ ( self : List[str] , __a : str , __a : Optional[str] = None ):
_a = Path(__a )
assert save_dir.is_dir(), f'{save_directory} should be a directory'
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder , __a )
if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __a )
elif not os.path.isfile(self.spm_file ):
with open(__a , "wb" ) as fi:
_a = self.sp_model.serialized_model_proto()
fi.write(__a )
return (str(__a ), str(__a ))
def _lowerCamelCase ( lowercase : str , lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
_a = sentencepiece.SentencePieceProcessor(**lowercase )
spm.Load(str(lowercase ) )
return spm
def _lowerCamelCase ( lowercase : str ) -> Union[Dict, List]:
with open(lowercase , "r" ) as f:
return json.load(lowercase )
def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> None:
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase , indent=2 )
| 346 | 0 |
'''simple docstring'''
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class __SCREAMING_SNAKE_CASE (_lowerCamelCase ):
"""simple docstring"""
__a ='facebook/bart-large-mnli'
__a =(
'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '
'should be the text to classify, and `labels`, which should be the list of labels to use for classification. '
'It returns the most likely label in the list of provided `labels` for the input text.'
)
__a ='text_classifier'
__a =AutoTokenizer
__a =AutoModelForSequenceClassification
__a =['text', ['text']]
__a =['text']
def UpperCamelCase__ ( self : Tuple ):
super().setup()
_a = self.model.config
_a = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
_a = int(__a )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def UpperCamelCase__ ( self : str , __a : Optional[int] , __a : str ):
_a = labels
return self.pre_processor(
[text] * len(__a ) , [f'This example is {label}' for label in labels] , return_tensors="pt" , padding="max_length" , )
def UpperCamelCase__ ( self : int , __a : Dict ):
_a = outputs.logits
_a = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 353 |
'''simple docstring'''
from manim import *
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def UpperCamelCase__ ( self : Dict ):
_a = Rectangle(height=0.5 , width=0.5 )
_a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_a = [mem.copy() for i in range(6 )]
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = VGroup(__a , __a ).arrange(__a , buff=0 )
_a = Text("CPU" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__a )
_a = [mem.copy() for i in range(4 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("GPU" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
gpu.move_to([-1, -1, 0] )
self.add(__a )
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("Model" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
model.move_to([3, -1.0, 0] )
self.add(__a )
_a = []
for i, rect in enumerate(__a ):
rect.set_stroke(__a )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
_a = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__a , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__a , buff=0.0 )
self.add(__a )
cpu_targs.append(__a )
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("Loaded Checkpoint" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , aligned_edge=__a , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
_a = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_a = MarkupText(
f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__a , __a )
_a = MarkupText(
f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , )
blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() )
_a = MarkupText(
f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__a ) , Write(__a ) )
self.play(Write(__a , run_time=1 ) , Create(__a , run_time=1 ) )
_a = []
_a = []
for i, rect in enumerate(__a ):
_a = fill.copy().set_fill(__a , opacity=0.7 )
target.move_to(__a )
first_animations.append(GrowFromCenter(__a , run_time=1 ) )
_a = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__a , run_time=1.5 ) )
self.play(*__a )
self.play(*__a )
self.wait()
| 346 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __SCREAMING_SNAKE_CASE (lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
__a =LEDTokenizer
__a =LEDTokenizerFast
__a =True
def UpperCamelCase__ ( self : Optional[Any] ):
super().setUp()
_a = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
_a = dict(zip(__a , range(len(__a ) ) ) )
_a = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
_a = {"unk_token": "<unk>"}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__a ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__a ) )
def UpperCamelCase__ ( self : Dict , **__a : Optional[Any] ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a )
def UpperCamelCase__ ( self : Tuple , **__a : int ):
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a )
def UpperCamelCase__ ( self : Optional[int] , __a : Optional[Any] ):
return "lower newer", "lower newer"
@cached_property
def UpperCamelCase__ ( self : List[Any] ):
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def UpperCamelCase__ ( self : int ):
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def UpperCamelCase__ ( self : Tuple ):
_a = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_a = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(__a , max_length=len(__a ) , padding=__a , return_tensors="pt" )
self.assertIsInstance(__a , __a )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
_a = batch.input_ids.tolist()[0]
self.assertListEqual(__a , __a )
@require_torch
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(__a , padding=__a , return_tensors="pt" )
self.assertIn("input_ids" , __a )
self.assertIn("attention_mask" , __a )
self.assertNotIn("labels" , __a )
self.assertNotIn("decoder_attention_mask" , __a )
@require_torch
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(text_target=__a , max_length=32 , padding="max_length" , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
@require_torch
def UpperCamelCase__ ( self : Tuple ):
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(
["I am a small frog" * 10_24, "I am a small frog"] , padding=__a , truncation=__a , return_tensors="pt" )
self.assertIsInstance(__a , __a )
self.assertEqual(batch.input_ids.shape , (2, 51_22) )
@require_torch
def UpperCamelCase__ ( self : Any ):
_a = ["A long paragraph for summarization."]
_a = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(__a , return_tensors="pt" )
_a = tokenizer(text_target=__a , return_tensors="pt" )
_a = inputs["input_ids"]
_a = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def UpperCamelCase__ ( self : Dict ):
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = ["Summary of the text.", "Another summary."]
_a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
_a = tokenizer(__a , padding=__a )
_a = [[0] * len(__a ) for x in encoded_output["input_ids"]]
_a = tokenizer.pad(__a )
self.assertSequenceEqual(outputs["global_attention_mask"] , __a )
def UpperCamelCase__ ( self : List[str] ):
pass
def UpperCamelCase__ ( self : Optional[Any] ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_a = self.rust_tokenizer_class.from_pretrained(__a , **__a )
_a = self.tokenizer_class.from_pretrained(__a , **__a )
_a = "A, <mask> AllenNLP sentence."
_a = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a )
_a = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
_a = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
_a = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
__a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
__a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 354 |
'''simple docstring'''
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
lowerCAmelCase_ : Tuple = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN'])
def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[int]:
_a = test_results.split(" " )
_a = 0
_a = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
_a = expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def _lowerCamelCase ( lowercase : str ) -> Optional[Any]:
_a = {}
_a = None
_a = False
for line in failures_short_lines.split("\n" ):
if re.search(r"_ \[doctest\]" , lowercase ):
_a = True
_a = line.split(" " )[2]
elif in_error and not line.split(" " )[0].isdigit():
_a = line
_a = False
return failures
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Tuple , __a : str , __a : Dict ):
_a = title
_a = doc_test_results["time_spent"].split("," )[0]
_a = doc_test_results["success"]
_a = doc_test_results["failures"]
_a = self.n_success + self.n_failures
# Failures and success of the modeling tests
_a = doc_test_results
@property
def UpperCamelCase__ ( self : int ):
_a = [self._time_spent]
_a = 0
for time in time_spent:
_a = time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(__a ) == 1:
_a = [0, 0, time_parts[0]]
_a , _a , _a = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
_a , _a , _a = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(__a )}h{int(__a )}m{int(__a )}s'
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def UpperCamelCase__ ( self : List[str] ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def UpperCamelCase__ ( self : str ):
_a = 40
_a = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(__a , __a )}
_a = ""
for category, failures in category_failures.items():
if len(__a ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(__a )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def UpperCamelCase__ ( self : List[str] ):
_a = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(__a )
@staticmethod
def UpperCamelCase__ ( ):
_a = [
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(__a )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=__a , )
def UpperCamelCase__ ( self : Tuple ):
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
_a = f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed."
_a = client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=__a , )
def UpperCamelCase__ ( self : Dict , __a : List[str] , __a : List[Any] , __a : Tuple , __a : int ):
_a = ""
for key, value in failures.items():
_a = value[:2_00] + " [Truncated]" if len(__a ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
_a = job_name
_a = {"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
_a = {
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def UpperCamelCase__ ( self : str ):
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
_a = self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
_a = sorted(self.doc_test_results.items() , key=lambda __a : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
_a = f'*Num failures* :{len(job_result["failed"] )} \n'
_a = job_result["failures"]
_a = self.get_reply_blocks(__a , __a , __a , text=__a )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=f'Results for {job}' , blocks=__a , thread_ts=self.thread_ts["ts"] , )
time.sleep(1 )
def _lowerCamelCase ( ) -> Any:
_a = os.environ["GITHUB_RUN_ID"]
_a = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
_a = requests.get(lowercase ).json()
_a = {}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
_a = math.ceil((result["total_count"] - 100) / 100 )
for i in range(lowercase ):
_a = requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return jobs
except Exception as e:
print("Unknown error, could not fetch links." , lowercase )
return {}
def _lowerCamelCase ( lowercase : str ) -> Dict:
_a = {}
if os.path.exists(lowercase ):
_a = os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase , lowercase ) , encoding="utf-8" ) as f:
_a = f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase , lowercase )}.' ) from e
return _artifact
def _lowerCamelCase ( ) -> str:
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict , __a : str ):
_a = name
_a = []
def __str__( self : List[str] ):
return self.name
def UpperCamelCase__ ( self : str , __a : str ):
self.paths.append({"name": self.name, "path": path} )
_a = {}
_a = filter(os.path.isdir , os.listdir() )
for directory in directories:
_a = directory
if artifact_name not in _available_artifacts:
_a = Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
lowerCAmelCase_ : List[Any] = get_job_links()
lowerCAmelCase_ : Any = retrieve_available_artifacts()
lowerCAmelCase_ : List[str] = collections.OrderedDict(
[
('*.py', 'API Examples'),
('*.md', 'MD Examples'),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
lowerCAmelCase_ : Optional[Any] = {
v: {
'failed': [],
'failures': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
lowerCAmelCase_ : int = github_actions_job_links.get('run_doctests')
lowerCAmelCase_ : Union[str, Any] = available_artifacts['doc_tests_gpu_test_reports'].paths[0]
lowerCAmelCase_ : List[str] = retrieve_artifact(artifact_path['name'])
if "stats" in artifact:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = handle_test_results(artifact['stats'])
lowerCAmelCase_ : List[str] = failed
lowerCAmelCase_ : Optional[Any] = success
lowerCAmelCase_ : Tuple = time_spent[1:-1] + ', '
lowerCAmelCase_ : List[Any] = extract_first_line_failure(artifact['failures_short'])
for line in artifact["summary_short"].split('\n'):
if re.search('FAILED', line):
lowerCAmelCase_ : int = line.replace('FAILED ', '')
lowerCAmelCase_ : Optional[int] = line.split()[0].replace('\n', '')
if "::" in line:
lowerCAmelCase_ , lowerCAmelCase_ : str = line.split('::')
else:
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
lowerCAmelCase_ : Union[str, Any] = docs[file_regex]
doc_test_results[category]["failed"].append(test)
lowerCAmelCase_ : List[str] = all_failures[test] if test in all_failures else 'N/A'
lowerCAmelCase_ : Optional[Any] = failure
break
lowerCAmelCase_ : Tuple = Message('🤗 Results of the doc tests.', doc_test_results)
message.post()
message.post_reply()
| 346 | 0 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='char'
__a ='bpe'
__a ='wp'
lowerCAmelCase_ : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =['image_processor', 'char_tokenizer']
__a ='ViTImageProcessor'
__a ='MgpstrTokenizer'
def __init__( self : Tuple , __a : int=None , __a : Dict=None , **__a : int ):
_a = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , lowerCamelCase_ , )
_a = kwargs.pop("feature_extractor" )
_a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
_a = tokenizer
_a = AutoTokenizer.from_pretrained("gpt2" )
_a = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(lowerCamelCase_ , lowerCamelCase_ )
def __call__( self : int , __a : Optional[Any]=None , __a : str=None , __a : str=None , **__a : Dict ):
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
_a = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )
if text is not None:
_a = self.char_tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )
if text is None:
return inputs
elif images is None:
return encodings
else:
_a = encodings["input_ids"]
return inputs
def UpperCamelCase__ ( self : Dict , __a : Union[str, Any] ):
_a , _a , _a = sequences
_a = char_preds.size(0 )
_a , _a = self._decode_helper(lowerCamelCase_ , "char" )
_a , _a = self._decode_helper(lowerCamelCase_ , "bpe" )
_a , _a = self._decode_helper(lowerCamelCase_ , "wp" )
_a = []
_a = []
for i in range(lowerCamelCase_ ):
_a = [char_scores[i], bpe_scores[i], wp_scores[i]]
_a = [char_strs[i], bpe_strs[i], wp_strs[i]]
_a = scores.index(max(lowerCamelCase_ ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_a = {}
_a = final_strs
_a = final_scores
_a = char_strs
_a = bpe_strs
_a = wp_strs
return out
def UpperCamelCase__ ( self : Optional[int] , __a : Any , __a : Dict ):
if format == DecodeType.CHARACTER:
_a = self.char_decode
_a = 1
_a = "[s]"
elif format == DecodeType.BPE:
_a = self.bpe_decode
_a = 2
_a = "#"
elif format == DecodeType.WORDPIECE:
_a = self.wp_decode
_a = 1_02
_a = "[SEP]"
else:
raise ValueError(f'Format {format} is not supported.' )
_a , _a = [], []
_a = pred_logits.size(0 )
_a = pred_logits.size(1 )
_a , _a = pred_logits.topk(1 , dim=-1 , largest=lowerCamelCase_ , sorted=lowerCamelCase_ )
_a = preds_index.view(-1 , lowerCamelCase_ )[:, 1:]
_a = decoder(lowerCamelCase_ )
_a , _a = torch.nn.functional.softmax(lowerCamelCase_ , dim=2 ).max(dim=2 )
_a = preds_max_prob[:, 1:]
for index in range(lowerCamelCase_ ):
_a = preds_str[index].find(lowerCamelCase_ )
_a = preds_str[index][:pred_eos]
_a = preds_index[index].cpu().tolist()
_a = pred_index.index(lowerCamelCase_ ) if eos_token in pred_index else -1
_a = preds_max_prob[index][: pred_eos_index + 1]
_a = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(lowerCamelCase_ )
conf_scores.append(lowerCamelCase_ )
return dec_strs, conf_scores
def UpperCamelCase__ ( self : List[Any] , __a : List[Any] ):
_a = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowerCamelCase_ )]
return decode_strs
def UpperCamelCase__ ( self : Optional[int] , __a : List[Any] ):
return self.bpe_tokenizer.batch_decode(lowerCamelCase_ )
def UpperCamelCase__ ( self : Union[str, Any] , __a : Tuple ):
_a = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowerCamelCase_ )]
return decode_strs
| 355 |
'''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _lowerCamelCase ( ) -> str:
_a = HfArgumentParser(lowercase )
_a = parser.parse_args_into_dataclasses()[0]
_a = TensorFlowBenchmark(args=lowercase )
try:
_a = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
_a = "Arg --no_{0} is no longer used, please use --no-{0} instead."
_a = " ".join(str(lowercase ).split(" " )[:-1] )
_a = ""
_a = eval(str(lowercase ).split(" " )[-1] )
_a = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowercase )
if len(lowercase ) > 0:
_a = full_error_msg + begin_error_msg + str(lowercase )
raise ValueError(lowercase )
benchmark.run()
if __name__ == "__main__":
main()
| 346 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
def _lowerCamelCase ( lowercase : Tuple , lowercase : Optional[int] ) -> float:
_a = u
for i in range(1 , __UpperCAmelCase ):
_a = temp * (u - i)
return temp
def _lowerCamelCase ( ) -> None:
_a = int(input("enter the numbers of values: " ) )
_a = []
for _ in range(__UpperCAmelCase ):
y.append([] )
for i in range(__UpperCAmelCase ):
for j in range(__UpperCAmelCase ):
y[i].append(__UpperCAmelCase )
_a = 0
print("enter the values of parameters in a list: " )
_a = list(map(__UpperCAmelCase , input().split() ) )
print("enter the values of corresponding parameters: " )
for i in range(__UpperCAmelCase ):
_a = float(input() )
_a = int(input("enter the value to interpolate: " ) )
_a = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , __UpperCAmelCase ):
for j in range(n - i ):
_a = y[j + 1][i - 1] - y[j][i - 1]
_a = y[0][0]
for i in range(1 , __UpperCAmelCase ):
summ += (ucal(__UpperCAmelCase , __UpperCAmelCase ) * y[0][i]) / math.factorial(__UpperCAmelCase )
print(F'the value at {value} is {summ}' )
if __name__ == "__main__":
main()
| 356 |
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
lowerCAmelCase_ : Union[str, Any] = None
try:
import msvcrt
except ImportError:
lowerCAmelCase_ : Tuple = None
try:
import fcntl
except ImportError:
lowerCAmelCase_ : Optional[int] = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
lowerCAmelCase_ : Any = OSError
# Data
# ------------------------------------------------
lowerCAmelCase_ : Tuple = [
'Timeout',
'BaseFileLock',
'WindowsFileLock',
'UnixFileLock',
'SoftFileLock',
'FileLock',
]
lowerCAmelCase_ : Optional[int] = '3.0.12'
lowerCAmelCase_ : Tuple = None
def _lowerCamelCase ( ) -> Optional[int]:
global _logger
_a = _logger or logging.getLogger(__name__ )
return _logger
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Dict , __a : Optional[Any] ):
_a = lock_file
return None
def __str__( self : Any ):
_a = f'The file lock \'{self.lock_file}\' could not be acquired.'
return temp
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : List[Any] , __a : Optional[int] ):
_a = lock
return None
def __enter__( self : str ):
return self.lock
def __exit__( self : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Dict ):
self.lock.release()
return None
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int]=-1 , __a : Tuple=None ):
_a = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
_a = self.hash_filename_if_too_long(__a , __a )
# The path to the lock file.
_a = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
_a = None
# The default timeout value.
_a = timeout
# We use this lock primarily for the lock counter.
_a = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
_a = 0
return None
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return self._lock_file
@property
def UpperCamelCase__ ( self : List[Any] ):
return self._timeout
@timeout.setter
def UpperCamelCase__ ( self : int , __a : List[Any] ):
_a = float(__a )
return None
def UpperCamelCase__ ( self : Dict ):
raise NotImplementedError()
def UpperCamelCase__ ( self : str ):
raise NotImplementedError()
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return self._lock_file_fd is not None
def UpperCamelCase__ ( self : int , __a : int=None , __a : Tuple=0.05 ):
# Use the default timeout, if no timeout is provided.
if timeout is None:
_a = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
_a = id(self )
_a = self._lock_file
_a = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' )
self._acquire()
if self.is_locked:
logger().debug(f'Lock {lock_id} acquired on {lock_filename}' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' )
raise Timeout(self._lock_file )
else:
logger().debug(
f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' )
time.sleep(__a )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
_a = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def UpperCamelCase__ ( self : Union[str, Any] , __a : int=False ):
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
_a = id(self )
_a = self._lock_file
logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' )
self._release()
_a = 0
logger().debug(f'Lock {lock_id} released on {lock_filename}' )
return None
def __enter__( self : List[Any] ):
self.acquire()
return self
def __exit__( self : str , __a : str , __a : Dict , __a : Dict ):
self.release()
return None
def __del__( self : int ):
self.release(force=__a )
return None
def UpperCamelCase__ ( self : Tuple , __a : str , __a : int ):
_a = os.path.basename(__a )
if len(__a ) > max_length and max_length > 0:
_a = os.path.dirname(__a )
_a = str(hash(__a ) )
_a = filename[: max_length - len(__a ) - 8] + "..." + hashed_filename + ".lock"
return os.path.join(__a , __a )
else:
return path
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : int , __a : str , __a : List[Any]=-1 , __a : List[Any]=None ):
from .file_utils import relative_to_absolute_path
super().__init__(__a , timeout=__a , max_filename_length=__a )
_a = "\\\\?\\" + relative_to_absolute_path(self.lock_file )
def UpperCamelCase__ ( self : int ):
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
_a = os.open(self._lock_file , __a )
except OSError:
pass
else:
try:
msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(__a )
else:
_a = fd
return None
def UpperCamelCase__ ( self : Optional[Any] ):
_a = self._lock_file_fd
_a = None
msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 )
os.close(__a )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[str] , __a : Optional[Any] , __a : Union[str, Any]=-1 , __a : int=None ):
_a = os.statvfs(os.path.dirname(__a ) ).f_namemax
super().__init__(__a , timeout=__a , max_filename_length=__a )
def UpperCamelCase__ ( self : Any ):
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
_a = os.open(self._lock_file , __a )
try:
fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(__a )
else:
_a = fd
return None
def UpperCamelCase__ ( self : Tuple ):
# Do not remove the lockfile:
#
# https://github.com/benediktschmitt/py-filelock/issues/31
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
_a = self._lock_file_fd
_a = None
fcntl.flock(__a , fcntl.LOCK_UN )
os.close(__a )
return None
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
_a = os.open(self._lock_file , __a )
except OSError:
pass
else:
_a = fd
return None
def UpperCamelCase__ ( self : Union[str, Any] ):
os.close(self._lock_file_fd )
_a = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
lowerCAmelCase_ : str = None
if msvcrt:
lowerCAmelCase_ : List[str] = WindowsFileLock
elif fcntl:
lowerCAmelCase_ : List[str] = UnixFileLock
else:
lowerCAmelCase_ : int = SoftFileLock
if warnings is not None:
warnings.warn('only soft file lock is available')
| 346 | 0 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __SCREAMING_SNAKE_CASE (A__ , unittest.TestCase ):
"""simple docstring"""
__a ='hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'
def UpperCamelCase__ ( self : Dict , __a : Union[str, Any]=0 ):
_a = np.random.RandomState(lowerCamelCase__ )
_a = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def UpperCamelCase__ ( self : Any ):
_a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = self.get_dummy_inputs()
_a = pipe(**lowerCamelCase__ ).images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
_a = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase__ ( self : List[str] ):
_a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
_a = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = self.get_dummy_inputs()
_a = pipe(**lowerCamelCase__ ).images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
_a = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase__ ( self : List[Any] ):
_a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
_a = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = self.get_dummy_inputs()
_a = pipe(**lowerCamelCase__ ).images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
_a = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase__ ( self : str ):
_a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
_a = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = self.get_dummy_inputs()
_a = pipe(**lowerCamelCase__ ).images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
_a = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase__ ( self : Optional[int] ):
_a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
_a = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = self.get_dummy_inputs()
_a = pipe(**lowerCamelCase__ ).images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
_a = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase__ ( self : Optional[Any] ):
_a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
_a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = self.get_dummy_inputs()
_a = pipe(**lowerCamelCase__ ).images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
_a = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase__ ( self : List[str] ):
_a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = self.get_dummy_inputs()
_a = 3 * [inputs["prompt"]]
# forward
_a = pipe(**lowerCamelCase__ )
_a = output.images[0, -3:, -3:, -1]
_a = self.get_dummy_inputs()
_a = 3 * [inputs.pop("prompt" )]
_a = pipe.tokenizer(
lowerCamelCase__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=lowerCamelCase__ , return_tensors="np" , )
_a = text_inputs["input_ids"]
_a = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0]
_a = prompt_embeds
# forward
_a = pipe(**lowerCamelCase__ )
_a = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
def UpperCamelCase__ ( self : int ):
_a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = self.get_dummy_inputs()
_a = 3 * ["this is a negative prompt"]
_a = negative_prompt
_a = 3 * [inputs["prompt"]]
# forward
_a = pipe(**lowerCamelCase__ )
_a = output.images[0, -3:, -3:, -1]
_a = self.get_dummy_inputs()
_a = 3 * [inputs.pop("prompt" )]
_a = []
for p in [prompt, negative_prompt]:
_a = pipe.tokenizer(
lowerCamelCase__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=lowerCamelCase__ , return_tensors="np" , )
_a = text_inputs["input_ids"]
embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] )
_a , _a = embeds
# forward
_a = pipe(**lowerCamelCase__ )
_a = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
@nightly
@require_onnxruntime
@require_torch_gpu
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
@property
def UpperCamelCase__ ( self : Union[str, Any] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCamelCase__ ( self : Optional[Any] ):
_a = ort.SessionOptions()
_a = False
return options
def UpperCamelCase__ ( self : Union[str, Any] ):
# using the PNDM scheduler by default
_a = OnnxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = "A painting of a squirrel eating a burger"
np.random.seed(0 )
_a = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCamelCase__ ( self : Tuple ):
_a = DDIMScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" )
_a = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = "open neural network exchange"
_a = np.random.RandomState(0 )
_a = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type="np" )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCamelCase__ ( self : Optional[int] ):
_a = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" )
_a = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = "open neural network exchange"
_a = np.random.RandomState(0 )
_a = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type="np" )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCamelCase__ ( self : Dict ):
_a = 0
def test_callback_fn(__a : int , __a : Any , __a : Any ) -> None:
_a = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 64, 64)
_a = latents[0, -3:, -3:, -1]
_a = np.array(
[-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
_a = latents[0, -3:, -3:, -1]
_a = np.array(
[-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3
_a = False
_a = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
_a = "Andromeda galaxy in a bottle"
_a = np.random.RandomState(0 )
pipe(
prompt=lowerCamelCase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=1 , )
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
assert isinstance(lowerCamelCase__ , lowerCamelCase__ )
assert pipe.safety_checker is None
_a = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCamelCase__ )
_a = OnnxStableDiffusionPipeline.from_pretrained(lowerCamelCase__ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
_a = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
| 357 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42
__a =42
__a =42
__a =42
__a =42
def UpperCamelCase__ ( self : str ):
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def UpperCamelCase__ ( self : List[str] ):
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = torch.arange(self.height * self.width )
_a = torch.stack(
[
pixel_indices % self.width,
torch.div(__a , self.width , rounding_mode="trunc" ),
] , axis=1 , )
return coords
@property
def UpperCamelCase__ ( self : List[Any] ):
_a , *_a = self.shape
_a = int(np.prod(__a ) )
_a = self.get_image_coords()
_a = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
_a = self.get_camera_rays(__a )
_a = rays.view(__a , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def UpperCamelCase__ ( self : Dict , __a : torch.Tensor ):
_a , *_a , _a = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
_a = coords.view(__a , -1 , 2 )
_a = self.resolution()
_a = self.fov()
_a = (flat.float() / (res - 1)) * 2 - 1
_a = fracs * torch.tan(fov / 2 )
_a = fracs.view(__a , -1 , 2 )
_a = (
self.z.view(__a , 1 , 3 )
+ self.x.view(__a , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(__a , 1 , 3 ) * fracs[:, :, 1:]
)
_a = directions / directions.norm(dim=-1 , keepdim=__a )
_a = torch.stack(
[
torch.broadcast_to(self.origin.view(__a , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(__a , *__a , 2 , 3 )
def UpperCamelCase__ ( self : Dict , __a : int , __a : int ):
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=__a , height=__a , x_fov=self.x_fov , y_fov=self.y_fov , )
def _lowerCamelCase ( lowercase : int ) -> DifferentiableProjectiveCamera:
_a = []
_a = []
_a = []
_a = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
_a = np.array([np.sin(lowercase ), np.cos(lowercase ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
_a = -z * 4
_a = np.array([np.cos(lowercase ), -np.sin(lowercase ), 0.0] )
_a = np.cross(lowercase , lowercase )
origins.append(lowercase )
xs.append(lowercase )
ys.append(lowercase )
zs.append(lowercase )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , width=lowercase , height=lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowercase )) , )
| 346 | 0 |
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
lowerCAmelCase_ : List[str] = '''src/transformers'''
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase_ : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS)
lowerCAmelCase_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
lowerCAmelCase_ : Optional[int] = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)')
lowerCAmelCase_ : List[Any] = {
'''DecisionTransformerConfig''',
'''EncoderDecoderConfig''',
'''MusicgenConfig''',
'''RagConfig''',
'''SpeechEncoderDecoderConfig''',
'''TimmBackboneConfig''',
'''VisionEncoderDecoderConfig''',
'''VisionTextDualEncoderConfig''',
'''LlamaConfig''',
}
def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[int]:
_a = None
# source code of `config_class`
_a = inspect.getsource(A_ )
_a = _re_checkpoint.findall(A_ )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("/" ):
_a = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
_a = F'https://huggingface.co/{ckpt_name}'
if ckpt_link == ckpt_link_from_name:
_a = ckpt_name
break
return checkpoint
def _lowerCamelCase ( ) -> Optional[int]:
_a = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
_a = get_checkpoint_from_config_class(A_ )
_a = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(A_ )
if len(A_ ) > 0:
_a = '''\n'''.join(sorted(A_ ) )
raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 358 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
lowerCAmelCase_ : List[str] = TypeVar('T')
lowerCAmelCase_ : Dict = TypeVar('U')
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : T | None , __a : U | None ):
_a = key
_a = val
_a = None
_a = None
def __repr__( self : Any ):
return (
f'Node: key: {self.key}, val: {self.val}, '
f'has next: {bool(self.next )}, has prev: {bool(self.prev )}'
)
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
def __init__( self : Dict ):
_a = DoubleLinkedListNode(__a , __a )
_a = DoubleLinkedListNode(__a , __a )
_a , _a = self.rear, self.head
def __repr__( self : str ):
_a = ["DoubleLinkedList"]
_a = self.head
while node.next is not None:
rep.append(str(__a ) )
_a = node.next
rep.append(str(self.rear ) )
return ",\n ".join(__a )
def UpperCamelCase__ ( self : int , __a : DoubleLinkedListNode[T, U] ):
_a = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_a = node
_a = previous
_a = node
_a = self.rear
def UpperCamelCase__ ( self : Any , __a : DoubleLinkedListNode[T, U] ):
if node.prev is None or node.next is None:
return None
_a = node.next
_a = node.prev
_a = None
_a = None
return node
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
__a ={}
def __init__( self : Union[str, Any] , __a : int ):
_a = DoubleLinkedList()
_a = capacity
_a = 0
_a = 0
_a = 0
_a = {}
def __repr__( self : Optional[int] ):
return (
f'CacheInfo(hits={self.hits}, misses={self.miss}, '
f'capacity={self.capacity}, current size={self.num_keys})'
)
def __contains__( self : str , __a : T ):
return key in self.cache
def UpperCamelCase__ ( self : str , __a : T ):
# Note: pythonic interface would throw KeyError rather than return None
if key in self.cache:
self.hits += 1
_a = self.cache[key]
_a = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(__a )
return node.val
self.miss += 1
return None
def UpperCamelCase__ ( self : Tuple , __a : T , __a : U ):
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_a = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(__a ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_a = DoubleLinkedListNode(__a , __a )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_a = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_a = value
self.list.add(__a )
@classmethod
def UpperCamelCase__ ( cls : Tuple , __a : int = 1_28 ):
def cache_decorator_inner(__a : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*__a : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
_a = LRUCache(__a )
_a = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_a = func(*__a )
cls.decorator_function_to_instance_map[func].put(args[0] , __a )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(__a , "cache_info" , __a ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
lowerCAmelCase_ : List[str] = {'tokenization_herbert': ['HerbertTokenizer']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : int = ['HerbertTokenizerFast']
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
lowerCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 359 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase_ : Optional[int] = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase_ : Tuple = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def _lowerCamelCase ( lowercase : str ) -> str:
re.sub("<n>" , "" , lowercase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(lowercase ) )
| 346 | 0 |
'''simple docstring'''
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
lowerCAmelCase_ : str = logging.get_logger(__name__)
lowerCAmelCase_ : Optional[int] = OrderedDict(
[
# Base model mapping
('albert', 'FlaxAlbertModel'),
('bart', 'FlaxBartModel'),
('beit', 'FlaxBeitModel'),
('bert', 'FlaxBertModel'),
('big_bird', 'FlaxBigBirdModel'),
('blenderbot', 'FlaxBlenderbotModel'),
('blenderbot-small', 'FlaxBlenderbotSmallModel'),
('clip', 'FlaxCLIPModel'),
('distilbert', 'FlaxDistilBertModel'),
('electra', 'FlaxElectraModel'),
('gpt-sw3', 'FlaxGPT2Model'),
('gpt2', 'FlaxGPT2Model'),
('gpt_neo', 'FlaxGPTNeoModel'),
('gptj', 'FlaxGPTJModel'),
('longt5', 'FlaxLongT5Model'),
('marian', 'FlaxMarianModel'),
('mbart', 'FlaxMBartModel'),
('mt5', 'FlaxMT5Model'),
('opt', 'FlaxOPTModel'),
('pegasus', 'FlaxPegasusModel'),
('regnet', 'FlaxRegNetModel'),
('resnet', 'FlaxResNetModel'),
('roberta', 'FlaxRobertaModel'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'),
('roformer', 'FlaxRoFormerModel'),
('t5', 'FlaxT5Model'),
('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'),
('vit', 'FlaxViTModel'),
('wav2vec2', 'FlaxWav2Vec2Model'),
('whisper', 'FlaxWhisperModel'),
('xglm', 'FlaxXGLMModel'),
('xlm-roberta', 'FlaxXLMRobertaModel'),
]
)
lowerCAmelCase_ : Union[str, Any] = OrderedDict(
[
# Model for pre-training mapping
('albert', 'FlaxAlbertForPreTraining'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForPreTraining'),
('big_bird', 'FlaxBigBirdForPreTraining'),
('electra', 'FlaxElectraForPreTraining'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('t5', 'FlaxT5ForConditionalGeneration'),
('wav2vec2', 'FlaxWav2Vec2ForPreTraining'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
lowerCAmelCase_ : Optional[Any] = OrderedDict(
[
# Model for Masked LM mapping
('albert', 'FlaxAlbertForMaskedLM'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForMaskedLM'),
('big_bird', 'FlaxBigBirdForMaskedLM'),
('distilbert', 'FlaxDistilBertForMaskedLM'),
('electra', 'FlaxElectraForMaskedLM'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
lowerCAmelCase_ : Optional[int] = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('bart', 'FlaxBartForConditionalGeneration'),
('blenderbot', 'FlaxBlenderbotForConditionalGeneration'),
('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'),
('encoder-decoder', 'FlaxEncoderDecoderModel'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('marian', 'FlaxMarianMTModel'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('pegasus', 'FlaxPegasusForConditionalGeneration'),
('t5', 'FlaxT5ForConditionalGeneration'),
]
)
lowerCAmelCase_ : Tuple = OrderedDict(
[
# Model for Image-classsification
('beit', 'FlaxBeitForImageClassification'),
('regnet', 'FlaxRegNetForImageClassification'),
('resnet', 'FlaxResNetForImageClassification'),
('vit', 'FlaxViTForImageClassification'),
]
)
lowerCAmelCase_ : str = OrderedDict(
[
('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'),
]
)
lowerCAmelCase_ : Optional[Any] = OrderedDict(
[
# Model for Causal LM mapping
('bart', 'FlaxBartForCausalLM'),
('bert', 'FlaxBertForCausalLM'),
('big_bird', 'FlaxBigBirdForCausalLM'),
('electra', 'FlaxElectraForCausalLM'),
('gpt-sw3', 'FlaxGPT2LMHeadModel'),
('gpt2', 'FlaxGPT2LMHeadModel'),
('gpt_neo', 'FlaxGPTNeoForCausalLM'),
('gptj', 'FlaxGPTJForCausalLM'),
('opt', 'FlaxOPTForCausalLM'),
('roberta', 'FlaxRobertaForCausalLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'),
('xglm', 'FlaxXGLMForCausalLM'),
('xlm-roberta', 'FlaxXLMRobertaForCausalLM'),
]
)
lowerCAmelCase_ : Tuple = OrderedDict(
[
# Model for Sequence Classification mapping
('albert', 'FlaxAlbertForSequenceClassification'),
('bart', 'FlaxBartForSequenceClassification'),
('bert', 'FlaxBertForSequenceClassification'),
('big_bird', 'FlaxBigBirdForSequenceClassification'),
('distilbert', 'FlaxDistilBertForSequenceClassification'),
('electra', 'FlaxElectraForSequenceClassification'),
('mbart', 'FlaxMBartForSequenceClassification'),
('roberta', 'FlaxRobertaForSequenceClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'),
('roformer', 'FlaxRoFormerForSequenceClassification'),
('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'),
]
)
lowerCAmelCase_ : Tuple = OrderedDict(
[
# Model for Question Answering mapping
('albert', 'FlaxAlbertForQuestionAnswering'),
('bart', 'FlaxBartForQuestionAnswering'),
('bert', 'FlaxBertForQuestionAnswering'),
('big_bird', 'FlaxBigBirdForQuestionAnswering'),
('distilbert', 'FlaxDistilBertForQuestionAnswering'),
('electra', 'FlaxElectraForQuestionAnswering'),
('mbart', 'FlaxMBartForQuestionAnswering'),
('roberta', 'FlaxRobertaForQuestionAnswering'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'),
('roformer', 'FlaxRoFormerForQuestionAnswering'),
('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'),
]
)
lowerCAmelCase_ : Any = OrderedDict(
[
# Model for Token Classification mapping
('albert', 'FlaxAlbertForTokenClassification'),
('bert', 'FlaxBertForTokenClassification'),
('big_bird', 'FlaxBigBirdForTokenClassification'),
('distilbert', 'FlaxDistilBertForTokenClassification'),
('electra', 'FlaxElectraForTokenClassification'),
('roberta', 'FlaxRobertaForTokenClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'),
('roformer', 'FlaxRoFormerForTokenClassification'),
('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'),
]
)
lowerCAmelCase_ : Any = OrderedDict(
[
# Model for Multiple Choice mapping
('albert', 'FlaxAlbertForMultipleChoice'),
('bert', 'FlaxBertForMultipleChoice'),
('big_bird', 'FlaxBigBirdForMultipleChoice'),
('distilbert', 'FlaxDistilBertForMultipleChoice'),
('electra', 'FlaxElectraForMultipleChoice'),
('roberta', 'FlaxRobertaForMultipleChoice'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'),
('roformer', 'FlaxRoFormerForMultipleChoice'),
('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'),
]
)
lowerCAmelCase_ : Optional[Any] = OrderedDict(
[
('bert', 'FlaxBertForNextSentencePrediction'),
]
)
lowerCAmelCase_ : Tuple = OrderedDict(
[
('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
]
)
lowerCAmelCase_ : Tuple = OrderedDict(
[
('whisper', 'FlaxWhisperForAudioClassification'),
]
)
lowerCAmelCase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
lowerCAmelCase_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
lowerCAmelCase_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
lowerCAmelCase_ : Dict = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
lowerCAmelCase_ : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
lowerCAmelCase_ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
lowerCAmelCase_ : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
lowerCAmelCase_ : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
lowerCAmelCase_ : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
lowerCAmelCase_ : Any = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
lowerCAmelCase_ : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
lowerCAmelCase_ : Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
lowerCAmelCase_ : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
lowerCAmelCase_ : Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_MAPPING
lowerCAmelCase_ : Optional[int] = auto_class_update(FlaxAutoModel)
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_PRETRAINING_MAPPING
lowerCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining')
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
lowerCAmelCase_ : str = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling')
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_MASKED_LM_MAPPING
lowerCAmelCase_ : Optional[int] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling')
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCAmelCase_ : List[Any] = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base'
)
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
lowerCAmelCase_ : Optional[int] = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='sequence classification'
)
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
lowerCAmelCase_ : List[Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering')
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
lowerCAmelCase_ : Tuple = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='token classification'
)
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
lowerCAmelCase_ : List[str] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice')
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
lowerCAmelCase_ : Any = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction'
)
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowerCAmelCase_ : Dict = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='image classification'
)
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase_ : Union[str, Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling')
class __SCREAMING_SNAKE_CASE (_BaseAutoModelClass ):
"""simple docstring"""
__a =FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
lowerCAmelCase_ : Union[str, Any] = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling'
)
| 360 |
'''simple docstring'''
import requests
lowerCAmelCase_ : List[Any] = 'YOUR API KEY'
def _lowerCamelCase ( lowercase : str , lowercase : str = giphy_api_key ) -> list:
_a = "+".join(query.split() )
_a = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'
_a = requests.get(lowercase ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 346 | 0 |
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowerCAmelCase_ : List[Any] = [
'kernels/rwkv/wkv_cuda.cu',
'kernels/rwkv/wkv_op.cpp',
'kernels/deformable_detr/ms_deform_attn.h',
'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh',
'models/graphormer/algos_graphormer.pyx',
]
def _lowerCamelCase ( lowercase : List[Any] ) -> Dict:
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowerCAmelCase_ : List[Any] = argparse.ArgumentParser()
parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.')
lowerCAmelCase_ : List[str] = parser.parse_args()
if args.check_lib:
lowerCAmelCase_ : int = importlib.import_module('transformers')
lowerCAmelCase_ : Tuple = Path(transformers_module.__file__).parent
else:
lowerCAmelCase_ : str = Path.cwd() / 'build/lib/transformers'
if not test_custom_files_are_present(transformers_path):
raise ValueError('The built release does not contain the custom files. Fix this before going further!')
| 361 |
'''simple docstring'''
import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase_ : str = '▁'
lowerCAmelCase_ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =BertGenerationTokenizer
__a =False
__a =True
def UpperCamelCase__ ( self : Optional[Any] ):
super().setUp()
_a = BertGenerationTokenizer(__a , keep_accents=__a )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ ( self : Tuple ):
_a = "<s>"
_a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a )
def UpperCamelCase__ ( self : List[str] ):
_a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<unk>" )
self.assertEqual(vocab_keys[1] , "<s>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(__a ) , 10_02 )
def UpperCamelCase__ ( self : str ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def UpperCamelCase__ ( self : Tuple ):
_a = BertGenerationTokenizer(__a , keep_accents=__a )
_a = tokenizer.tokenize("This is a test" )
self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__a ) , [2_85, 46, 10, 1_70, 3_82] , )
_a = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
_a = tokenizer.convert_tokens_to_ids(__a )
self.assertListEqual(
__a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_a = tokenizer.convert_ids_to_tokens(__a )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
@cached_property
def UpperCamelCase__ ( self : Any ):
return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
@slow
def UpperCamelCase__ ( self : List[str] ):
_a = "Hello World!"
_a = [1_85_36, 22_60, 1_01]
self.assertListEqual(__a , self.big_tokenizer.encode(__a ) )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
_a = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"
)
_a = [
8_71,
4_19,
3_58,
9_46,
9_91,
25_21,
4_52,
3_58,
13_57,
3_87,
77_51,
35_36,
1_12,
9_85,
4_56,
1_26,
8_65,
9_38,
54_00,
57_34,
4_58,
13_68,
4_67,
7_86,
24_62,
52_46,
11_59,
6_33,
8_65,
45_19,
4_57,
5_82,
8_52,
25_57,
4_27,
9_16,
5_08,
4_05,
3_43_24,
4_97,
3_91,
4_08,
1_13_42,
12_44,
3_85,
1_00,
9_38,
9_85,
4_56,
5_74,
3_62,
1_25_97,
32_00,
31_29,
11_72,
]
self.assertListEqual(__a , self.big_tokenizer.encode(__a ) )
@require_torch
@slow
def UpperCamelCase__ ( self : Tuple ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
_a = list(self.big_tokenizer.get_vocab().keys() )[:10]
_a = " ".join(__a )
_a = self.big_tokenizer.encode_plus(__a , return_tensors="pt" , return_token_type_ids=__a )
_a = self.big_tokenizer.batch_encode_plus(
[sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__a )
_a = BertGenerationConfig()
_a = BertGenerationEncoder(__a )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**__a )
model(**__a )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
# fmt: off
_a = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__a , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
| 346 | 0 |
'''simple docstring'''
from __future__ import annotations
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> Optional[Any]:
print(F'Vertex\tShortest Distance from vertex {src}' )
for i, d in enumerate(__lowerCAmelCase ):
print(F'{i}\t\t{d}' )
def _lowerCamelCase ( lowercase : Any , lowercase : Any , lowercase : int ) -> Dict:
for j in range(__lowerCAmelCase ):
_a = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float("inf" ) and distance[u] + w < distance[v]:
return True
return False
def _lowerCamelCase ( lowercase : Dict , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Dict ) -> list[float]:
_a = [float("inf" )] * vertex_count
_a = 0.0
for _ in range(vertex_count - 1 ):
for j in range(__lowerCAmelCase ):
_a = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float("inf" ) and distance[u] + w < distance[v]:
_a = distance[u] + w
_a = check_negative_cycle(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if negative_cycle_exists:
raise Exception("Negative cycle found" )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase_ : Any = int(input('Enter number of vertices: ').strip())
lowerCAmelCase_ : List[Any] = int(input('Enter number of edges: ').strip())
lowerCAmelCase_ : Any = [{} for _ in range(E)]
for i in range(E):
print('Edge ', i + 1)
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = (
int(x)
for x in input('Enter source, destination, weight: ').strip().split(' ')
)
lowerCAmelCase_ : Tuple = {'src': src, 'dst': dest, 'weight': weight}
lowerCAmelCase_ : Tuple = int(input('\nEnter shortest path source:').strip())
lowerCAmelCase_ : Tuple = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 362 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Union[str, Any]:
_enforce_args(lowercase , lowercase )
if n == 0:
return 0
_a = float("-inf" )
for i in range(1 , n + 1 ):
_a = max(
lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , lowercase ) )
return max_revue
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Tuple:
_enforce_args(lowercase , lowercase )
_a = [float("-inf" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(lowercase , lowercase , lowercase )
def _lowerCamelCase ( lowercase : int , lowercase : list , lowercase : list ) -> List[str]:
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_a = float("-inf" )
for i in range(1 , n + 1 ):
_a = max(
lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowercase , lowercase ) , )
_a = max_revenue
return max_rev[n]
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Any:
_enforce_args(lowercase , lowercase )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_a = [float("-inf" ) for _ in range(n + 1 )]
_a = 0
for i in range(1 , n + 1 ):
_a = max_rev[i]
for j in range(1 , i + 1 ):
_a = max(lowercase , prices[j - 1] + max_rev[i - j] )
_a = max_revenue_i
return max_rev[n]
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Dict:
if n < 0:
_a = F'n must be greater than or equal to 0. Got n = {n}'
raise ValueError(lowercase )
if n > len(lowercase ):
_a = (
"Each integral piece of rod must have a corresponding price. "
F'Got n = {n} but length of prices = {len(lowercase )}'
)
raise ValueError(lowercase )
def _lowerCamelCase ( ) -> Any:
_a = [6, 10, 12, 15, 20, 23]
_a = len(lowercase )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_a = 36
_a = top_down_cut_rod(lowercase , lowercase )
_a = bottom_up_cut_rod(lowercase , lowercase )
_a = naive_cut_rod_recursive(lowercase , lowercase )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 346 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__)
def _lowerCamelCase ( lowercase : Union[tf.Tensor, np.ndarray] ) -> List[int]:
if isinstance(_lowercase , np.ndarray ):
return list(tensor.shape )
_a = tf.shape(_lowercase )
if tensor.shape == tf.TensorShape(_lowercase ):
return dynamic
_a = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(_lowercase )]
def _lowerCamelCase ( lowercase : tf.Tensor , lowercase : Optional[int] = None , lowercase : Optional[str] = None ) -> tf.Tensor:
return tf.nn.softmax(logits=logits + 1E-9 , axis=_lowercase , name=_lowercase )
def _lowerCamelCase ( lowercase : List[Any] , lowercase : Optional[int] , lowercase : Tuple , lowercase : Any=1E-5 , lowercase : Union[str, Any]=-1 ) -> List[str]:
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowercase , _lowercase ):
raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." )
# Get mean and variance on the axis to be normalized
_a = tf.nn.moments(_lowercase , axes=[axis] , keepdims=_lowercase )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
_a = [1] * inputs.shape.rank
_a = shape_list(_lowercase )[axis]
_a = tf.reshape(_lowercase , _lowercase )
_a = tf.reshape(_lowercase , _lowercase )
# Compute layer normalization using the batch_normalization
# function.
_a = tf.nn.batch_normalization(
_lowercase , _lowercase , _lowercase , offset=_lowercase , scale=_lowercase , variance_epsilon=_lowercase , )
return outputs
def _lowerCamelCase ( lowercase : Any , lowercase : int=0 , lowercase : Optional[Any]=-1 ) -> Optional[Any]:
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
_a = tf.shape(_lowercase )
_a = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
_a = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(_lowercase , _lowercase )
def _lowerCamelCase ( lowercase : tf.Tensor ) -> tf.Tensor:
if not isinstance(_lowercase , tf.Tensor ):
_a = tf.convert_to_tensor(_lowercase ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
_a = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
_a = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
_a = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def _lowerCamelCase ( lowercase : tf.Tensor , lowercase : int , lowercase : str = "input_ids" ) -> None:
tf.debugging.assert_less(
_lowercase , tf.cast(_lowercase , dtype=tensor.dtype ) , message=(
F'The maximum value of {tensor_name} ({tf.math.reduce_max(_lowercase )}) must be smaller than the embedding '
F'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'
) , )
def _lowerCamelCase ( lowercase : int , lowercase : Dict , lowercase : str ) -> str:
_a = 6_4512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
_a = [x for x in data if len(_lowercase ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"The following attributes cannot be saved to HDF5 file because "
F'they are larger than {HDF5_OBJECT_HEADER_LIMIT} '
F'bytes: {bad_attributes}' )
_a = np.asarray(_lowercase )
_a = 1
_a = np.array_split(_lowercase , _lowercase )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
_a = np.array_split(_lowercase , _lowercase )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(_lowercase ):
_a = chunk_data
else:
_a = data
def _lowerCamelCase ( lowercase : List[Any] , lowercase : Optional[int] ) -> int:
if name in group.attrs:
_a = [n.decode("utf8" ) if hasattr(_lowercase , "decode" ) else n for n in group.attrs[name]]
else:
_a = []
_a = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode("utf8" ) if hasattr(_lowercase , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] )
chunk_id += 1
return data
def _lowerCamelCase ( lowercase : List[Any] ) -> str:
def _expand_single_ad_tensor(lowercase : Optional[Any] ):
if isinstance(_lowercase , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(_lowercase , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , _lowercase )
| 363 |
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[Any] , *__a : Optional[int] , **__a : List[str] ):
super().__init__(*__a , **__a )
self.check_model_type(__a )
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : int=None , __a : Optional[Any]=None , **__a : List[Any] ):
_a , _a = {}, {}
if padding is not None:
_a = padding
if truncation is not None:
_a = truncation
if top_k is not None:
_a = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : Union[str, Any] , __a : Union["Image.Image", str] , __a : str = None , **__a : Any ):
if isinstance(__a , (Image.Image, str) ) and isinstance(__a , __a ):
_a = {"image": image, "question": question}
else:
_a = image
_a = super().__call__(__a , **__a )
return results
def UpperCamelCase__ ( self : Tuple , __a : Tuple , __a : Optional[Any]=False , __a : List[Any]=False ):
_a = load_image(inputs["image"] )
_a = self.tokenizer(
inputs["question"] , return_tensors=self.framework , padding=__a , truncation=__a )
_a = self.image_processor(images=__a , return_tensors=self.framework )
model_inputs.update(__a )
return model_inputs
def UpperCamelCase__ ( self : List[Any] , __a : List[str] ):
_a = self.model(**__a )
return model_outputs
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : Dict=5 ):
if top_k > self.model.config.num_labels:
_a = self.model.config.num_labels
if self.framework == "pt":
_a = model_outputs.logits.sigmoid()[0]
_a , _a = probs.topk(__a )
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
_a = scores.tolist()
_a = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
| 346 | 0 |
'''simple docstring'''
import os
import sys
lowerCAmelCase_ : int = os.path.join(os.path.dirname(__file__), 'src')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCAmelCase_ : List[Any] = [
"""torch""",
"""numpy""",
"""tokenizers""",
"""filelock""",
"""requests""",
"""tqdm""",
"""regex""",
"""sentencepiece""",
"""sacremoses""",
"""importlib_metadata""",
"""huggingface_hub""",
]
@add_start_docstrings(AutoConfig.__doc__ )
def _lowerCamelCase ( *lowercase : Union[str, Any] , **lowercase : int ) -> List[Any]:
return AutoConfig.from_pretrained(*lowercase , **lowercase )
@add_start_docstrings(AutoTokenizer.__doc__ )
def _lowerCamelCase ( *lowercase : List[Any] , **lowercase : Optional[int] ) -> Tuple:
return AutoTokenizer.from_pretrained(*lowercase , **lowercase )
@add_start_docstrings(AutoModel.__doc__ )
def _lowerCamelCase ( *lowercase : List[str] , **lowercase : List[str] ) -> Union[str, Any]:
return AutoModel.from_pretrained(*lowercase , **lowercase )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def _lowerCamelCase ( *lowercase : int , **lowercase : str ) -> int:
return AutoModelForCausalLM.from_pretrained(*lowercase , **lowercase )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def _lowerCamelCase ( *lowercase : List[str] , **lowercase : Tuple ) -> Dict:
return AutoModelForMaskedLM.from_pretrained(*lowercase , **lowercase )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def _lowerCamelCase ( *lowercase : Optional[int] , **lowercase : Dict ) -> str:
return AutoModelForSequenceClassification.from_pretrained(*lowercase , **lowercase )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def _lowerCamelCase ( *lowercase : Dict , **lowercase : str ) -> int:
return AutoModelForQuestionAnswering.from_pretrained(*lowercase , **lowercase )
| 364 |
'''simple docstring'''
from random import randint, random
def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : int , lowercase : bool = False , lowercase : bool = False , lowercase : int = 5 , ) -> list:
_a = [[-1] * number_of_cells] # Create a highway without any car
_a = 0
_a = max(lowercase , 0 )
while i < number_of_cells:
_a = (
randint(0 , lowercase ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def _lowerCamelCase ( lowercase : list , lowercase : int ) -> int:
_a = 0
_a = highway_now[car_index + 1 :]
for cell in range(len(lowercase ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(lowercase , -1 )
def _lowerCamelCase ( lowercase : list , lowercase : float , lowercase : int ) -> list:
_a = len(lowercase )
# Beforce calculations, the highway is empty
_a = [-1] * number_of_cells
for car_index in range(lowercase ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
_a = min(highway_now[car_index] + 1 , lowercase )
# Number of empty cell before the next car
_a = get_distance(lowercase , lowercase ) - 1
# We can't have the car causing an accident
_a = min(next_highway[car_index] , lowercase )
if random() < probability:
# Randomly, a driver will slow down
_a = max(next_highway[car_index] - 1 , 0 )
return next_highway
def _lowerCamelCase ( lowercase : list , lowercase : int , lowercase : float , lowercase : int ) -> list:
_a = len(highway[0] )
for i in range(lowercase ):
_a = update(highway[i] , lowercase , lowercase )
_a = [-1] * number_of_cells
for car_index in range(lowercase ):
_a = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
_a = (car_index + speed) % number_of_cells
# Commit the change of position
_a = speed
highway.append(lowercase )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 | 0 |
'''simple docstring'''
from __future__ import annotations
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : Union[str, Any] ):
_a = data
_a = None
_a = None
def _lowerCamelCase ( lowercase : Node | None ) -> None: # In Order traversal of the tree
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def _lowerCamelCase ( lowercase : Node | None ) -> int:
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def _lowerCamelCase ( lowercase : Node ) -> bool:
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def _lowerCamelCase ( ) -> None: # Main function for testing.
_a = Node(1 )
_a = Node(2 )
_a = Node(3 )
_a = Node(4 )
_a = Node(5 )
_a = Node(6 )
_a = Node(7 )
_a = Node(8 )
_a = Node(9 )
print(is_full_binary_tree(snake_case__ ) )
print(depth_of_tree(snake_case__ ) )
print("Tree is: " )
display(snake_case__ )
if __name__ == "__main__":
main()
| 365 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int = 10 ) -> str:
if not isinstance(lowercase , lowercase ) or n < 0:
raise ValueError("Invalid input" )
_a = 10**n
_a = 2_8433 * (pow(2 , 783_0457 , lowercase )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(10) = }""")
| 346 | 0 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase_ : List[Any] = logging.get_logger(__name__)
lowerCAmelCase_ : Dict = {
'post_extract_proj': 'feature_projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.upsample.0': 'encoder.upsample.projection',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'layer_norm',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
def _lowerCamelCase ( lowercase : List[str] , lowercase : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> Dict:
for attribute in key.split("." ):
_a = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
_a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
_a = hf_pointer.shape
assert hf_shape == value.shape, (
F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
F' {value.shape} for {full_name}'
)
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
else:
_a = value
logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def _lowerCamelCase ( lowercase : str , lowercase : Any , lowercase : Optional[Any] ) -> Optional[int]:
_a = []
_a = fairseq_model.state_dict()
_a = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
_a = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , )
_a = True
else:
for key, mapped_key in MAPPING.items():
_a = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
_a = True
if "*" in mapped_key:
_a = name.split(lowerCAmelCase__ )[0].split("." )[-2]
_a = mapped_key.replace("*" , lowerCAmelCase__ )
if "weight_g" in name:
_a = """weight_g"""
elif "weight_v" in name:
_a = """weight_v"""
elif "weight" in name:
_a = """weight"""
elif "bias" in name:
_a = """bias"""
else:
_a = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(F'Unused weights: {unused_weights}' )
def _lowerCamelCase ( lowercase : int , lowercase : Tuple , lowercase : str , lowercase : Tuple , lowercase : Any ) -> Optional[Any]:
_a = full_name.split("conv_layers." )[-1]
_a = name.split("." )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
_a = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
_a = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
_a = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
_a = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowerCAmelCase__ )
def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict ) -> int:
_a = SEWConfig()
if is_finetuned:
_a = model.wav_encoder.wav_model.cfg
else:
_a = model.cfg
_a = fs_config.conv_bias
_a = eval(fs_config.conv_feature_layers )
_a = [x[0] for x in conv_layers]
_a = [x[1] for x in conv_layers]
_a = [x[2] for x in conv_layers]
_a = """gelu"""
_a = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
_a = 0.0
_a = fs_config.activation_fn.name
_a = fs_config.encoder_embed_dim
_a = 0.02
_a = fs_config.encoder_ffn_embed_dim
_a = 1E-5
_a = fs_config.encoder_layerdrop
_a = fs_config.encoder_attention_heads
_a = fs_config.conv_pos_groups
_a = fs_config.conv_pos
_a = len(lowerCAmelCase__ )
_a = fs_config.encoder_layers
_a = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
_a = model.cfg
_a = fs_config.final_dropout
_a = fs_config.layerdrop
_a = fs_config.activation_dropout
_a = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
_a = fs_config.attention_dropout
_a = fs_config.dropout_input
_a = fs_config.dropout
_a = fs_config.mask_channel_length
_a = fs_config.mask_channel_prob
_a = fs_config.mask_length
_a = fs_config.mask_prob
_a = """Wav2Vec2FeatureExtractor"""
_a = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict , lowercase : Optional[int]=None , lowercase : List[str]=None , lowercase : List[Any]=True ) -> Optional[int]:
if is_finetuned:
_a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
_a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
_a = SEWConfig.from_pretrained(lowerCAmelCase__ )
else:
_a = convert_config(model[0] , lowerCAmelCase__ )
_a = model[0].eval()
_a = True if config.feat_extract_norm == """layer""" else False
_a = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
if is_finetuned:
if dict_path:
_a = Dictionary.load(lowerCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_a = target_dict.pad_index
_a = target_dict.bos_index
_a = target_dict.pad_index
_a = target_dict.bos_index
_a = target_dict.eos_index
_a = len(target_dict.symbols )
_a = os.path.join(lowerCAmelCase__ , "vocab.json" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(target_dict.indices , lowerCAmelCase__ )
_a = WavaVecaCTCTokenizer(
lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , )
_a = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
_a = SEWForCTC(lowerCAmelCase__ )
else:
_a = SEWModel(lowerCAmelCase__ )
feature_extractor.save_pretrained(lowerCAmelCase__ )
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
hf_model.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCAmelCase_ : Tuple = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
lowerCAmelCase_ : str = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 366 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int = 6008_5147_5143 ) -> int:
try:
_a = int(lowercase )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
_a = 2
_a = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
_a = i
while n % i == 0:
_a = n // i
i += 1
return int(lowercase )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 346 | 0 |
'''simple docstring'''
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase_ : int = logging.get_logger(__name__)
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : str ) -> List[Any]:
_a = RobertaPreLayerNormConfig.from_pretrained(
SCREAMING_SNAKE_CASE__ , architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
_a = torch.load(hf_hub_download(repo_id=SCREAMING_SNAKE_CASE__ , filename="pytorch_model.bin" ) )
_a = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
_a = '''roberta_prelayernorm.''' + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
_a = tensor_value
_a = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ , state_dict=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
# convert tokenizer
_a = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
lowerCAmelCase_ : Union[str, Any] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 367 |
'''simple docstring'''
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=os.environ.get('LOGLEVEL', 'INFO').upper(),
stream=sys.stdout,
)
lowerCAmelCase_ : List[Any] = logging.getLogger(__name__)
lowerCAmelCase_ : List[Any] = {'facebook/bart-base': BartForConditionalGeneration}
lowerCAmelCase_ : int = {'facebook/bart-base': BartTokenizer}
def _lowerCamelCase ( ) -> Union[str, Any]:
_a = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." )
parser.add_argument(
"--validation_file" , type=lowercase , default=lowercase , help="A csv or a json file containing the validation data." )
parser.add_argument(
"--max_length" , type=lowercase , default=5 , help="The maximum total input sequence length after tokenization." , )
parser.add_argument(
"--num_beams" , type=lowercase , default=lowercase , help=(
"Number of beams to use for evaluation. This argument will be "
"passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."
) , )
parser.add_argument(
"--model_name_or_path" , type=lowercase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowercase , )
parser.add_argument(
"--config_name" , type=lowercase , default=lowercase , help="Pretrained config name or path if not the same as model_name" , )
parser.add_argument(
"--device" , type=lowercase , default="cpu" , help="Device where the model will be run" , )
parser.add_argument("--output_file_path" , type=lowercase , default=lowercase , help="Where to store the final ONNX file." )
_a = parser.parse_args()
return args
def _lowerCamelCase ( lowercase : Any , lowercase : Tuple="cpu" ) -> Optional[Any]:
_a = model_dict[model_name].from_pretrained(lowercase ).to(lowercase )
_a = tokenizer_dict[model_name].from_pretrained(lowercase )
if model_name in ["facebook/bart-base"]:
_a = 0
_a = None
_a = 0
return huggingface_model, tokenizer
def _lowerCamelCase ( lowercase : List[str] , lowercase : Tuple , lowercase : int , lowercase : Any , lowercase : Dict ) -> Any:
model.eval()
_a = None
_a = torch.jit.script(BARTBeamSearchGenerator(lowercase ) )
with torch.no_grad():
_a = "My friends are cool but they eat too many carbs."
_a = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device )
_a = model.generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=lowercase , max_length=lowercase , early_stopping=lowercase , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
lowercase , (
inputs["input_ids"],
inputs["attention_mask"],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , lowercase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={
"input_ids": {0: "batch", 1: "seq"},
"output_ids": {0: "batch", 1: "seq_out"},
} , example_outputs=lowercase , )
logger.info("Model exported to {}".format(lowercase ) )
_a = remove_dup_initializers(os.path.abspath(lowercase ) )
logger.info("Deduplicated and optimized model written to {}".format(lowercase ) )
_a = onnxruntime.InferenceSession(lowercase )
_a = ort_sess.run(
lowercase , {
"input_ids": inputs["input_ids"].cpu().numpy(),
"attention_mask": inputs["attention_mask"].cpu().numpy(),
"num_beams": np.array(lowercase ),
"max_length": np.array(lowercase ),
"decoder_start_token_id": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info("Model outputs from torch and ONNX Runtime are similar." )
logger.info("Success." )
def _lowerCamelCase ( ) -> Any:
_a = parse_args()
_a = 5
_a = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_a = torch.device(args.device )
_a , _a = load_model_tokenizer(args.model_name_or_path , lowercase )
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" )
model.to(lowercase )
if args.max_length:
_a = args.max_length
if args.num_beams:
_a = args.num_beams
if args.output_file_path:
_a = args.output_file_path
else:
_a = "BART.onnx"
logger.info("Exporting model to ONNX" )
export_and_validate_model(lowercase , lowercase , lowercase , lowercase , lowercase )
if __name__ == "__main__":
main()
| 346 | 0 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase_ : int = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class __SCREAMING_SNAKE_CASE (_a , unittest.TestCase ):
"""simple docstring"""
__a =PegasusTokenizer
__a =PegasusTokenizerFast
__a =True
__a =True
def UpperCamelCase__ ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
_a = PegasusTokenizer(__a )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCamelCase__ ( self : str ):
return PegasusTokenizer.from_pretrained("google/pegasus-large" )
def UpperCamelCase__ ( self : Optional[Any] , **__a : Dict ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **__a )
def UpperCamelCase__ ( self : List[Any] , __a : int ):
return ("This is a test", "This is a test")
def UpperCamelCase__ ( self : Any ):
_a = '</s>'
_a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a )
def UpperCamelCase__ ( self : List[Any] ):
_a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<pad>" )
self.assertEqual(vocab_keys[1] , "</s>" )
self.assertEqual(vocab_keys[-1] , "v" )
self.assertEqual(len(__a ) , 11_03 )
def UpperCamelCase__ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 11_03 )
def UpperCamelCase__ ( self : str ):
_a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
_a = self.tokenizer_class.from_pretrained(self.tmpdirname )
_a = (
'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'
' </s> <pad> <pad> <pad>'
)
_a = rust_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0]
_a = py_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0]
self.assertListEqual(__a , __a )
def UpperCamelCase__ ( self : List[Any] ):
_a = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
_a = '<mask_1> To ensure a <mask_2> flow of bank resolutions.'
_a = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
_a = tokenizer([raw_input_str] , return_tensors=__a ).input_ids[0]
self.assertListEqual(__a , __a )
def UpperCamelCase__ ( self : Any ):
_a = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_61_03
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_03
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 10_24
_a = 'To ensure a smooth flow of bank resolutions.'
_a = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
_a = tokenizer([raw_input_str] , return_tensors=__a ).input_ids[0]
self.assertListEqual(__a , __a )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCamelCase__ ( self : Dict ):
_a = ['This is going to be way too long.' * 1_50, 'short example']
_a = ['not super long but more than 5 tokens', 'tiny']
_a = self._large_tokenizer(__a , padding=__a , truncation=__a , return_tensors="pt" )
_a = self._large_tokenizer(
text_target=__a , max_length=5 , padding=__a , truncation=__a , return_tensors="pt" )
assert batch.input_ids.shape == (2, 10_24)
assert batch.attention_mask.shape == (2, 10_24)
assert targets["input_ids"].shape == (2, 5)
assert len(__a ) == 2 # input_ids, attention_mask.
@slow
def UpperCamelCase__ ( self : List[Any] ):
_a = {'input_ids': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__a , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , )
@require_sentencepiece
@require_tokenizers
class __SCREAMING_SNAKE_CASE (_a , unittest.TestCase ):
"""simple docstring"""
__a =PegasusTokenizer
__a =PegasusTokenizerFast
__a =True
__a =True
def UpperCamelCase__ ( self : Union[str, Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
_a = PegasusTokenizer(__a , offset=0 , mask_token_sent=__a , mask_token="[MASK]" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCamelCase__ ( self : Tuple ):
return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" )
def UpperCamelCase__ ( self : Dict , **__a : List[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **__a )
def UpperCamelCase__ ( self : List[str] , __a : Tuple ):
return ("This is a test", "This is a test")
def UpperCamelCase__ ( self : List[Any] ):
_a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
_a = self.tokenizer_class.from_pretrained(self.tmpdirname )
_a = (
'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'
' <pad> <pad> <pad>'
)
_a = rust_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0]
_a = py_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0]
self.assertListEqual(__a , __a )
@require_torch
def UpperCamelCase__ ( self : Tuple ):
_a = ['This is going to be way too long.' * 10_00, 'short example']
_a = ['not super long but more than 5 tokens', 'tiny']
_a = self._large_tokenizer(__a , padding=__a , truncation=__a , return_tensors="pt" )
_a = self._large_tokenizer(
text_target=__a , max_length=5 , padding=__a , truncation=__a , return_tensors="pt" )
assert batch.input_ids.shape == (2, 40_96)
assert batch.attention_mask.shape == (2, 40_96)
assert targets["input_ids"].shape == (2, 5)
assert len(__a ) == 2 # input_ids, attention_mask.
def UpperCamelCase__ ( self : Tuple ):
_a = (
'This is an example string that is used to test the original TF implementation against the HF'
' implementation'
)
_a = self._large_tokenizer(__a ).input_ids
self.assertListEqual(
__a , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
| 368 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
lowerCAmelCase_ : Dict = abspath(join(dirname(dirname(dirname(__file__))), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def _lowerCamelCase ( lowercase : str ) -> Optional[int]:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(lowercase )
def _lowerCamelCase ( lowercase : Dict ) -> str:
from transformers.testing_utils import pytest_terminal_summary_main
_a = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(lowercase , id=lowercase )
| 346 | 0 |
'''simple docstring'''
import os
lowerCAmelCase_ : Any = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 1_00, 'D': 5_00, 'M': 10_00}
def _lowerCamelCase ( lowercase : str ) -> int:
_a = 0
_a = 0
while index < len(__UpperCamelCase ) - 1:
_a = SYMBOLS[numerals[index]]
_a = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def _lowerCamelCase ( lowercase : int ) -> Tuple:
_a = ""
_a = num // 1000
numerals += m_count * "M"
num %= 1000
_a = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
_a = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def _lowerCamelCase ( lowercase : str = "/p089_roman.txt" ) -> Tuple:
_a = 0
with open(os.path.dirname(__UpperCamelCase ) + roman_numerals_filename ) as filea:
_a = filea.readlines()
for line in lines:
_a = line.strip()
_a = parse_roman_numerals(__UpperCamelCase )
_a = generate_roman_numerals(__UpperCamelCase )
savings += len(__UpperCamelCase ) - len(__UpperCamelCase )
return savings
if __name__ == "__main__":
print(f"""{solution() = }""")
| 369 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
@register_to_config
def __init__( self : List[Any] , __a : int , __a : int , __a : int , __a : float , __a : int , __a : int , __a : int , __a : int , __a : str , __a : bool = False , ):
super().__init__()
_a = nn.Embedding(__a , __a )
_a = nn.Embedding(__a , __a )
_a = False
_a = nn.Dropout(p=__a )
_a = TaConfig(
vocab_size=__a , d_model=__a , num_heads=__a , d_kv=__a , d_ff=__a , dropout_rate=__a , feed_forward_proj=__a , is_decoder=__a , is_encoder_decoder=__a , )
_a = nn.ModuleList()
for lyr_num in range(__a ):
_a = TaBlock(__a )
self.encoders.append(__a )
_a = TaLayerNorm(__a )
_a = nn.Dropout(p=__a )
def UpperCamelCase__ ( self : str , __a : Union[str, Any] , __a : Dict ):
_a = self.token_embedder(__a )
_a = encoder_input_tokens.shape[1]
_a = torch.arange(__a , device=encoder_input_tokens.device )
x += self.position_encoding(__a )
_a = self.dropout_pre(__a )
# inverted the attention mask
_a = encoder_input_tokens.size()
_a = self.get_extended_attention_mask(__a , __a )
for lyr in self.encoders:
_a = lyr(__a , __a )[0]
_a = self.layer_norm(__a )
return self.dropout_post(__a ), encoder_inputs_mask
| 346 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
lowerCAmelCase_ : str = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __SCREAMING_SNAKE_CASE (_lowerCAmelCase ):
"""simple docstring"""
__a =["pixel_values"]
def __init__( self : Tuple , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 2_55 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : int , ):
super().__init__(**_lowercase )
_a = size if size is not None else {"shortest_edge": 2_24}
_a = get_size_dict(_lowercase , default_to_square=_lowercase )
_a = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24}
_a = get_size_dict(_lowercase , default_to_square=_lowercase , param_name="crop_size" )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def UpperCamelCase__ ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ):
_a = get_size_dict(_lowercase , default_to_square=_lowercase )
if "shortest_edge" not in size:
raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(_lowercase , size=size["shortest_edge"] , default_to_square=_lowercase )
return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase )
def UpperCamelCase__ ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : str , ):
_a = get_size_dict(_lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(_lowercase , size=(size["height"], size["width"]) , data_format=_lowercase , **_lowercase )
def UpperCamelCase__ ( self : Optional[Any] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ):
return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase )
def UpperCamelCase__ ( self : Any , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ):
return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase )
def UpperCamelCase__ ( self : Dict , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : Any , ):
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(_lowercase , param_name="size" , default_to_square=_lowercase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(_lowercase , param_name="crop_size" , default_to_square=_lowercase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(_lowercase )
if not valid_images(_lowercase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(_lowercase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(_lowercase ) for image in images]
if do_resize:
_a = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images]
if do_rescale:
_a = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images]
if do_normalize:
_a = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images]
_a = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images]
_a = {"pixel_values": images}
return BatchFeature(data=_lowercase , tensor_type=_lowercase )
| 370 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def _lowerCamelCase ( lowercase : Any ) -> Any:
_a = filter(lambda lowercase : p.requires_grad , model.parameters() )
_a = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase_ : List[str] = logging.getLogger(__name__)
def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict ) -> Union[str, Any]:
if metric == "rouge2":
_a = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
_a = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
_a = "{val_avg_em:.4f}-{step_count}"
elif metric == "loss":
_a = "{val_avg_loss:.4f}-{step_count}"
else:
raise NotImplementedError(
F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
" function." )
_a = ModelCheckpoint(
dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def _lowerCamelCase ( lowercase : Dict , lowercase : Dict ) -> str:
return EarlyStopping(
monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , )
class __SCREAMING_SNAKE_CASE (pl.Callback ):
"""simple docstring"""
def UpperCamelCase__ ( self : Tuple , __a : Optional[int] , __a : Any ):
_a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Tuple , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Dict=True ):
logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' )
_a = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
_a = Path(pl_module.hparams.output_dir )
if type_path == "test":
_a = od / "test_results.txt"
_a = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_a = od / f'{type_path}_results/{trainer.global_step:05d}.txt'
_a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=__a )
generations_file.parent.mkdir(exist_ok=__a )
with open(__a , "a+" ) as writer:
for key in sorted(__a ):
if key in ["log", "progress_bar", "preds"]:
continue
_a = metrics[key]
if isinstance(__a , torch.Tensor ):
_a = val.item()
_a = f'{key}: {val:.6f}\n'
writer.write(__a )
if not save_generations:
return
if "preds" in metrics:
_a = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : List[Any] , __a : Dict ):
try:
_a = pl_module.model.model.num_parameters()
except AttributeError:
_a = pl_module.model.num_parameters()
_a = count_trainable_parameters(__a )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} )
@rank_zero_only
def UpperCamelCase__ ( self : Union[str, Any] , __a : pl.Trainer , __a : pl.LightningModule ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__a , __a , "test" )
@rank_zero_only
def UpperCamelCase__ ( self : Optional[int] , __a : pl.Trainer , __a : str ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 346 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCamelCase__ ( self : List[Any] ):
_a = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" )
_a = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" )
model.to(__lowerCAmelCase )
from datasets import load_dataset
_a = load_dataset("nielsr/rvlcdip-demo" )
_a = dataset["train"][0]["image"].convert("RGB" )
_a = image_processor(__lowerCAmelCase , return_tensors="pt" ).to(__lowerCAmelCase )
# forward pass
with torch.no_grad():
_a = model(**__lowerCAmelCase )
_a = outputs.logits
_a = torch.Size((1, 16) )
self.assertEqual(logits.shape , __lowerCAmelCase )
_a = torch.tensor(
[-0.4158, -0.4092, -0.4347] , device=__lowerCAmelCase , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) )
| 371 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
lowerCAmelCase_ : str = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
lowerCAmelCase_ : Union[str, Any] = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]:
_a = (images / 2 + 0.5).clamp(0 , 1 )
_a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_a = numpy_to_pil(lowercase )
return images
def _lowerCamelCase ( lowercase : int ) -> List[Any]:
if images.ndim == 3:
_a = images[None, ...]
_a = (images * 255).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
_a = [Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
_a = [Image.fromarray(lowercase ) for image in images]
return pil_images
| 346 | 0 |
'''simple docstring'''
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class __SCREAMING_SNAKE_CASE (snake_case_ ):
"""simple docstring"""
__a =""
__a ="hf-legacy" # "hf://"" is reserved for hffs
def __init__( self : str , __a : Optional[DatasetInfo] = None , __a : Optional[str] = None , **__a : Optional[Any] , ):
super().__init__(self , **_A )
_a = repo_info
_a = token
_a = None
def UpperCamelCase__ ( self : List[str] ):
if self.dir_cache is None:
_a = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
_a = {
'name': hf_file.rfilename,
'size': None,
'type': 'file',
}
self.dir_cache.update(
{
str(_A ): {"name": str(_A ), "size": None, "type": "directory"}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def UpperCamelCase__ ( self : Union[str, Any] , __a : str , __a : str = "rb" , **__a : Tuple , ):
if not isinstance(self.repo_info , _A ):
raise NotImplementedError(f'Open is only implemented for dataset repositories, but got {self.repo_info}' )
_a = hf_hub_url(self.repo_info.id , _A , revision=self.repo_info.sha )
return fsspec.open(
_A , mode=_A , headers=get_authentication_headers_for_url(_A , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open()
def UpperCamelCase__ ( self : int , __a : Tuple , **__a : str ):
self._get_dirs()
_a = self._strip_protocol(_A )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_A )
def UpperCamelCase__ ( self : Dict , __a : List[str] , __a : Union[str, Any]=False , **__a : Any ):
self._get_dirs()
_a = PurePosixPath(path.strip("/" ) )
_a = {}
for p, f in self.dir_cache.items():
_a = PurePosixPath(p.strip("/" ) )
_a = p.parent
if root == path:
_a = f
_a = list(paths.values() )
if detail:
return out
else:
return sorted(f["name"] for f in out )
| 350 |
'''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[int]:
_a = 10
_a = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_a = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(lowercase ) ),
} , features=lowercase , )
return dataset
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : int ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=lowercase )
return filename
# FILE_CONTENT + files
lowerCAmelCase_ : Union[str, Any] = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]:
_a = tmp_path_factory.mktemp("data" ) / "file.txt"
_a = FILE_CONTENT
with open(lowercase , "w" ) as f:
f.write(lowercase )
return filename
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> str:
import bza
_a = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_a = bytes(lowercase , "utf-8" )
with bza.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> Optional[Any]:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_a = bytes(lowercase , "utf-8" )
with gzip.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Union[str, Any]:
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_a = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_a = bytes(lowercase , "utf-8" )
with lza.frame.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Tuple ) -> Optional[Any]:
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_a = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(lowercase , "w" ) as archive:
archive.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : Optional[Any] ) -> Dict:
import tarfile
_a = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any ) -> Union[str, Any]:
import lzma
_a = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_a = bytes(lowercase , "utf-8" )
with lzma.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int , lowercase : Any ) -> Union[str, Any]:
import zipfile
_a = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict ) -> List[str]:
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_a = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_a = bytes(lowercase , "utf-8" )
with zstd.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> Union[str, Any]:
_a = tmp_path_factory.mktemp("data" ) / "file.xml"
_a = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(lowercase , "w" ) as f:
f.write(lowercase )
return filename
lowerCAmelCase_ : Optional[int] = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
lowerCAmelCase_ : List[Any] = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
lowerCAmelCase_ : Dict = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
lowerCAmelCase_ : Dict = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
lowerCAmelCase_ : List[Any] = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> List[str]:
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> str:
_a = datasets.Dataset.from_dict(lowercase )
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict ) -> Dict:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(lowercase ) ) as con:
_a = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[Any] ) -> str:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(lowercase , "w" , newline="" ) as f:
_a = csv.DictWriter(lowercase , fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(lowercase , "w" , newline="" ) as f:
_a = csv.DictWriter(lowercase , fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> int:
import bza
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(lowercase , "rb" ) as f:
_a = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Any , lowercase : Any ) -> List[str]:
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : Any , lowercase : List[Any] ) -> Dict:
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) )
f.write(lowercase , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Optional[Any] , lowercase : int ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[Any] ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_a = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(lowercase , "wb" ) as f:
_a = pq.ParquetWriter(lowercase , schema=lowercase )
_a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase ) )] for k in DATA[0]} , schema=lowercase )
writer.write_table(lowercase )
writer.close()
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_a = {"data": DATA}
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_a = {"data": DATA_DICT_OF_LISTS}
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] ) -> str:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> List[str]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[Any] ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA_312:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> int:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict ) -> Tuple:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(lowercase , "rb" ) as orig_file:
with gzip.open(lowercase , "wb" ) as zipped_file:
zipped_file.writelines(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[Any] ) -> List[Any]:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(lowercase , "rb" ) as orig_file:
with gzip.open(lowercase , "wb" ) as zipped_file:
zipped_file.writelines(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[Any] , lowercase : int ) -> str:
_a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : int , lowercase : List[Any] ) -> Optional[int]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("nested" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] , lowercase : str ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : Any , lowercase : Optional[int] ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.basename(lowercase ) )
f.add(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.join("nested" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> str:
_a = ["0", "1", "2", "3"]
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> Dict:
_a = ["0", "1", "2", "3"]
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Dict:
_a = ["0", "1", "2", "3"]
_a = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Union[str, Any] , lowercase : Any ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : List[str] , lowercase : List[str] ) -> Union[str, Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : int , lowercase : str ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename("unsupported.ext" ) )
f.write(lowercase , arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[Any] ) -> Any:
_a = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_a = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(lowercase , "w" , encoding="utf-8" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[Any]:
return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[int]:
return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> Dict:
_a = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ).replace(".jpg" , "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> str:
_a = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt" , "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt" , "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
return data_dir
| 346 | 0 |
'''simple docstring'''
import string
def _lowerCamelCase ( lowercase : str ) -> Union[str, Any]:
for key in range(len(string.ascii_uppercase ) ):
_a = """"""
for symbol in message:
if symbol in string.ascii_uppercase:
_a = string.ascii_uppercase.find(A__ )
_a = num - key
if num < 0:
_a = num + len(string.ascii_uppercase )
_a = translated + string.ascii_uppercase[num]
else:
_a = translated + symbol
print(F'Decryption using Key #{key}: {translated}' )
def _lowerCamelCase ( ) -> str:
_a = input("Encrypted message: " )
_a = message.upper()
decrypt(A__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 351 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =['image_processor', 'tokenizer']
__a ='LayoutLMv2ImageProcessor'
__a =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast')
def __init__( self : Dict , __a : int=None , __a : List[Any]=None , **__a : str ):
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __a , )
_a = kwargs.pop("feature_extractor" )
_a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__a , __a )
def __call__( self : Optional[int] , __a : Optional[Any] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Optional[Any] , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
_a = self.image_processor(images=__a , return_tensors=__a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__a , __a ):
_a = [text] # add batch dimension (as the image processor always adds a batch dimension)
_a = features["words"]
_a = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , )
# add pixel values
_a = features.pop("pixel_values" )
if return_overflowing_tokens is True:
_a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] )
_a = images
return encoded_inputs
def UpperCamelCase__ ( self : int , __a : List[Any] , __a : int ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
_a = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__a ) != len(__a ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
f' {len(__a )} and {len(__a )}' )
return images_with_overflow
def UpperCamelCase__ ( self : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ):
return self.tokenizer.batch_decode(*__a , **__a )
def UpperCamelCase__ ( self : Union[str, Any] , *__a : Optional[int] , **__a : Optional[Any] ):
return self.tokenizer.decode(*__a , **__a )
@property
def UpperCamelCase__ ( self : int ):
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def UpperCamelCase__ ( self : List[Any] ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , )
return self.image_processor_class
@property
def UpperCamelCase__ ( self : int ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , )
return self.image_processor
| 346 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42
__a =42
__a =42
__a =42
__a =42
def UpperCamelCase__ ( self : Optional[Any] ):
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def UpperCamelCase__ ( self : List[Any] ):
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : List[Any] ):
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Any ):
_a = torch.arange(self.height * self.width )
_a = torch.stack(
[
pixel_indices % self.width,
torch.div(snake_case_ , self.width , rounding_mode="trunc" ),
] , axis=1 , )
return coords
@property
def UpperCamelCase__ ( self : List[str] ):
_a = self.shape
_a = int(np.prod(snake_case_ ) )
_a = self.get_image_coords()
_a = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
_a = self.get_camera_rays(snake_case_ )
_a = rays.view(snake_case_ , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def UpperCamelCase__ ( self : Union[str, Any] , __a : torch.Tensor ):
_a = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
_a = coords.view(snake_case_ , -1 , 2 )
_a = self.resolution()
_a = self.fov()
_a = (flat.float() / (res - 1)) * 2 - 1
_a = fracs * torch.tan(fov / 2 )
_a = fracs.view(snake_case_ , -1 , 2 )
_a = (
self.z.view(snake_case_ , 1 , 3 )
+ self.x.view(snake_case_ , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(snake_case_ , 1 , 3 ) * fracs[:, :, 1:]
)
_a = directions / directions.norm(dim=-1 , keepdim=snake_case_ )
_a = torch.stack(
[
torch.broadcast_to(self.origin.view(snake_case_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(snake_case_ , *snake_case_ , 2 , 3 )
def UpperCamelCase__ ( self : List[str] , __a : int , __a : int ):
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=snake_case_ , height=snake_case_ , x_fov=self.x_fov , y_fov=self.y_fov , )
def _lowerCamelCase ( lowercase : int ) -> Any:
_a = []
_a = []
_a = []
_a = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
_a = np.array([np.sin(lowerCAmelCase__ ), np.cos(lowerCAmelCase__ ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
_a = -z * 4
_a = np.array([np.cos(lowerCAmelCase__ ), -np.sin(lowerCAmelCase__ ), 0.0] )
_a = np.cross(lowerCAmelCase__ , lowerCAmelCase__ )
origins.append(lowerCAmelCase__ )
xs.append(lowerCAmelCase__ )
ys.append(lowerCAmelCase__ )
zs.append(lowerCAmelCase__ )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , width=lowerCAmelCase__ , height=lowerCAmelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCAmelCase__ )) , )
| 352 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
lowerCAmelCase_ : int = '▁'
lowerCAmelCase_ : Optional[Any] = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
lowerCAmelCase_ : Optional[int] = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
lowerCAmelCase_ : List[str] = {
'facebook/s2t-small-librispeech-asr': 10_24,
}
lowerCAmelCase_ : List[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
lowerCAmelCase_ : Union[str, Any] = {'mustc': MUSTC_LANGS}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =VOCAB_FILES_NAMES
__a =PRETRAINED_VOCAB_FILES_MAP
__a =MAX_MODEL_INPUT_SIZES
__a =['input_ids', 'attention_mask']
__a =[]
def __init__( self : Optional[Any] , __a : Optional[Any] , __a : Any , __a : Any="<s>" , __a : List[str]="</s>" , __a : str="<pad>" , __a : List[str]="<unk>" , __a : Union[str, Any]=False , __a : Any=False , __a : List[str]=None , __a : Optional[int]=None , __a : Optional[Dict[str, Any]] = None , **__a : int , ):
_a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , )
_a = do_upper_case
_a = do_lower_case
_a = load_json(__a )
_a = {v: k for k, v in self.encoder.items()}
_a = spm_file
_a = load_spm(__a , self.sp_model_kwargs )
if lang_codes is not None:
_a = lang_codes
_a = LANGUAGES[lang_codes]
_a = [f'<lang:{lang}>' for lang in self.langs]
_a = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs}
_a = self.lang_tokens
_a = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
_a = {}
@property
def UpperCamelCase__ ( self : str ):
return len(self.encoder )
@property
def UpperCamelCase__ ( self : str ):
return self._tgt_lang
@tgt_lang.setter
def UpperCamelCase__ ( self : Optional[int] , __a : Any ):
_a = new_tgt_lang
self.set_tgt_lang_special_tokens(__a )
def UpperCamelCase__ ( self : List[Any] , __a : str ):
_a = self.lang_code_to_id[tgt_lang]
_a = [lang_code_id]
def UpperCamelCase__ ( self : Dict , __a : str ):
return self.sp_model.encode(__a , out_type=__a )
def UpperCamelCase__ ( self : List[str] , __a : Any ):
return self.encoder.get(__a , self.encoder[self.unk_token] )
def UpperCamelCase__ ( self : str , __a : int ):
return self.decoder.get(__a , self.unk_token )
def UpperCamelCase__ ( self : str , __a : List[str] ):
_a = []
_a = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
_a = self.sp_model.decode(__a )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
_a = []
else:
current_sub_tokens.append(__a )
_a = self.sp_model.decode(__a )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def UpperCamelCase__ ( self : int , __a : Any , __a : int=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def UpperCamelCase__ ( self : Any , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a )
_a = [1] * len(self.prefix_tokens )
_a = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__a )) + suffix_ones
return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ):
_a = self.__dict__.copy()
_a = None
return state
def __setstate__( self : str , __a : Dict ):
_a = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_a = {}
_a = load_spm(self.spm_file , self.sp_model_kwargs )
def UpperCamelCase__ ( self : List[str] , __a : str , __a : Optional[str] = None ):
_a = Path(__a )
assert save_dir.is_dir(), f'{save_directory} should be a directory'
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder , __a )
if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __a )
elif not os.path.isfile(self.spm_file ):
with open(__a , "wb" ) as fi:
_a = self.sp_model.serialized_model_proto()
fi.write(__a )
return (str(__a ), str(__a ))
def _lowerCamelCase ( lowercase : str , lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
_a = sentencepiece.SentencePieceProcessor(**lowercase )
spm.Load(str(lowercase ) )
return spm
def _lowerCamelCase ( lowercase : str ) -> Union[Dict, List]:
with open(lowercase , "r" ) as f:
return json.load(lowercase )
def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> None:
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase , indent=2 )
| 346 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict , __a : str , __a : Dict=3 , __a : str=32 , __a : Tuple=3 , __a : List[str]=10 , __a : str=[8, 16, 32, 64] , __a : Any=[1, 1, 2, 1] , __a : Tuple=True , __a : Optional[int]=True , __a : Any="relu" , __a : List[str]=3 , __a : int=None , __a : Dict=["stage2", "stage3", "stage4"] , __a : int=[2, 3, 4] , __a : int=1 , ):
_a = parent
_a = batch_size
_a = image_size
_a = num_channels
_a = embeddings_size
_a = hidden_sizes
_a = depths
_a = is_training
_a = use_labels
_a = hidden_act
_a = num_labels
_a = scope
_a = len(__a )
_a = out_features
_a = out_indices
_a = num_groups
def UpperCamelCase__ ( self : str ):
_a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.num_labels )
_a = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self : Optional[Any] ):
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def UpperCamelCase__ ( self : str , __a : Tuple , __a : Tuple , __a : List[Any] ):
_a = BitModel(config=__a )
model.to(__a )
model.eval()
_a = model(__a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCamelCase__ ( self : Tuple , __a : int , __a : Optional[Any] , __a : Tuple ):
_a = self.num_labels
_a = BitForImageClassification(__a )
model.to(__a )
model.eval()
_a = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self : List[Any] , __a : Dict , __a : Dict , __a : Optional[int] ):
_a = BitBackbone(config=__a )
model.to(__a )
model.eval()
_a = model(__a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_a = None
_a = BitBackbone(config=__a )
model.to(__a )
model.eval()
_a = model(__a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def UpperCamelCase__ ( self : Dict ):
_a = self.prepare_config_and_inputs()
_a , _a , _a = config_and_inputs
_a = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =(BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__a =(
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
__a =False
__a =False
__a =False
__a =False
__a =False
def UpperCamelCase__ ( self : Tuple ):
_a = BitModelTester(self )
_a = ConfigTester(self , config_class=__a , has_text_modality=__a )
def UpperCamelCase__ ( self : str ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ ( self : Any ):
return
@unittest.skip(reason="Bit does not output attentions" )
def UpperCamelCase__ ( self : Tuple ):
pass
@unittest.skip(reason="Bit does not use inputs_embeds" )
def UpperCamelCase__ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="Bit does not support input and output embeddings" )
def UpperCamelCase__ ( self : Union[str, Any] ):
pass
def UpperCamelCase__ ( self : Dict ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(__a )
_a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a = [*signature.parameters.keys()]
_a = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ ( self : Dict ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ ( self : List[Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__a )
def UpperCamelCase__ ( self : Tuple ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(config=__a )
for name, module in model.named_modules():
if isinstance(__a , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
def UpperCamelCase__ ( self : List[Any] ):
def check_hidden_states_output(__a : List[Any] , __a : Any , __a : Optional[Any] ):
_a = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
_a = model(**self._prepare_for_class(__a , __a ) )
_a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_a = self.model_tester.num_stages
self.assertEqual(len(__a ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
_a = ["preactivation", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
_a = layer_type
_a = True
check_hidden_states_output(__a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_a = True
check_hidden_states_output(__a , __a , __a )
@unittest.skip(reason="Bit does not use feedforward chunking" )
def UpperCamelCase__ ( self : Dict ):
pass
def UpperCamelCase__ ( self : Any ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ ( self : Dict ):
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = BitModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def _lowerCamelCase ( ) -> str:
_a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
@cached_property
def UpperCamelCase__ ( self : int ):
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def UpperCamelCase__ ( self : List[Any] ):
_a = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__a )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=__a , return_tensors="pt" ).to(__a )
# forward pass
with torch.no_grad():
_a = model(**__a )
# verify the logits
_a = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __a )
_a = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
@require_torch
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =(BitBackbone,) if is_torch_available() else ()
__a =BitConfig
__a =False
def UpperCamelCase__ ( self : List[str] ):
_a = BitModelTester(self )
| 353 |
'''simple docstring'''
from manim import *
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def UpperCamelCase__ ( self : Dict ):
_a = Rectangle(height=0.5 , width=0.5 )
_a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_a = [mem.copy() for i in range(6 )]
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = VGroup(__a , __a ).arrange(__a , buff=0 )
_a = Text("CPU" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__a )
_a = [mem.copy() for i in range(4 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("GPU" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
gpu.move_to([-1, -1, 0] )
self.add(__a )
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("Model" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
model.move_to([3, -1.0, 0] )
self.add(__a )
_a = []
for i, rect in enumerate(__a ):
rect.set_stroke(__a )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
_a = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__a , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__a , buff=0.0 )
self.add(__a )
cpu_targs.append(__a )
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("Loaded Checkpoint" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , aligned_edge=__a , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
_a = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_a = MarkupText(
f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__a , __a )
_a = MarkupText(
f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , )
blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() )
_a = MarkupText(
f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__a ) , Write(__a ) )
self.play(Write(__a , run_time=1 ) , Create(__a , run_time=1 ) )
_a = []
_a = []
for i, rect in enumerate(__a ):
_a = fill.copy().set_fill(__a , opacity=0.7 )
target.move_to(__a )
first_animations.append(GrowFromCenter(__a , run_time=1 ) )
_a = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__a , run_time=1.5 ) )
self.play(*__a )
self.play(*__a )
self.wait()
| 346 | 0 |
'''simple docstring'''
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
lowerCAmelCase_ : Dict = {"vocab_file": "vocab.txt"}
lowerCAmelCase_ : Tuple = {
"vocab_file": {
"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt",
},
}
lowerCAmelCase_ : Union[str, Any] = {
"openbmb/cpm-ant-10b": 10_24,
}
def _lowerCamelCase ( lowercase : Optional[int] ) -> Tuple:
_a = collections.OrderedDict()
with open(lowercase , "r" , encoding="utf-8" ) as reader:
_a = reader.readlines()
for index, token in enumerate(lowercase ):
_a = token.rstrip("\n" )
_a = index
return vocab
class __SCREAMING_SNAKE_CASE (lowercase_ ):
"""simple docstring"""
def __init__( self : Optional[int] , __a : Optional[int] , __a : Dict="<unk>" , __a : str=2_00 ):
_a = vocab
_a = unk_token
_a = max_input_chars_per_word
def UpperCamelCase__ ( self : Optional[int] , __a : List[str] ):
_a = list(a__ )
if len(a__ ) > self.max_input_chars_per_word:
return [self.unk_token]
_a = 0
_a = []
while start < len(a__ ):
_a = len(a__ )
_a = None
while start < end:
_a = "".join(chars[start:end] )
if substr in self.vocab:
_a = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(a__ )
_a = end
return sub_tokens
class __SCREAMING_SNAKE_CASE (lowercase_ ):
"""simple docstring"""
__a =VOCAB_FILES_NAMES
__a =PRETRAINED_VOCAB_FILES_MAP
__a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a =["input_ids", "attention_mask"]
__a =False
def __init__( self : Optional[Any] , __a : str , __a : Optional[int]="<d>" , __a : List[str]="</d>" , __a : Dict="<s>" , __a : int="</s>" , __a : Tuple="<pad>" , __a : Optional[Any]="<unk>" , __a : Dict="</n>" , __a : Optional[int]="</_>" , __a : List[str]="left" , **__a : Optional[int] , ):
requires_backends(self , ["jieba"] )
super().__init__(
bod_token=a__ , eod_token=a__ , bos_token=a__ , eos_token=a__ , pad_token=a__ , unk_token=a__ , line_token=a__ , space_token=a__ , padding_side=a__ , **a__ , )
_a = bod_token
_a = eod_token
_a = load_vocab(a__ )
_a = self.encoder[space_token]
_a = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
_a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __a : x[1] ) )
_a = {v: k for k, v in self.encoder.items()}
_a = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def UpperCamelCase__ ( self : Tuple ):
return self.encoder[self.bod_token]
@property
def UpperCamelCase__ ( self : Union[str, Any] ):
return self.encoder[self.eod_token]
@property
def UpperCamelCase__ ( self : int ):
return self.encoder["\n"]
@property
def UpperCamelCase__ ( self : List[str] ):
return len(self.encoder )
def UpperCamelCase__ ( self : List[str] ):
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCamelCase__ ( self : int , __a : Optional[Any] ):
_a = []
for x in jieba.cut(a__ , cut_all=a__ ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(a__ ) )
return output_tokens
def UpperCamelCase__ ( self : Optional[int] , __a : Optional[int] , **__a : int ):
_a = [i for i in token_ids if i >= 0]
_a = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(a__ , **a__ )
def UpperCamelCase__ ( self : Any , __a : Any ):
return token in self.encoder
def UpperCamelCase__ ( self : Tuple , __a : List[str] ):
return "".join(a__ )
def UpperCamelCase__ ( self : str , __a : int ):
return self.encoder.get(a__ , self.encoder.get(self.unk_token ) )
def UpperCamelCase__ ( self : List[str] , __a : Union[str, Any] ):
return self.decoder.get(a__ , self.unk_token )
def UpperCamelCase__ ( self : Tuple , __a : int , __a : Tuple = None ):
if os.path.isdir(a__ ):
_a = os.path.join(
a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
else:
_a = (filename_prefix + "-" if filename_prefix else "") + save_directory
_a = 0
if " " in self.encoder:
_a = self.encoder[" "]
del self.encoder[" "]
if "\n" in self.encoder:
_a = self.encoder["\n"]
del self.encoder["\n"]
_a = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __a : x[1] ) )
with open(a__ , "w" , encoding="utf-8" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
" Please check that the vocabulary is not corrupted!" )
_a = token_index
writer.write(token + "\n" )
index += 1
return (vocab_file,)
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : List[Any] = None ):
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def UpperCamelCase__ ( self : str , __a : str , __a : List[str] = None , __a : Any = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ )
if token_ids_a is not None:
return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ ))
return [1] + ([0] * len(a__ ))
| 354 |
'''simple docstring'''
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
lowerCAmelCase_ : Tuple = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN'])
def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[int]:
_a = test_results.split(" " )
_a = 0
_a = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
_a = expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def _lowerCamelCase ( lowercase : str ) -> Optional[Any]:
_a = {}
_a = None
_a = False
for line in failures_short_lines.split("\n" ):
if re.search(r"_ \[doctest\]" , lowercase ):
_a = True
_a = line.split(" " )[2]
elif in_error and not line.split(" " )[0].isdigit():
_a = line
_a = False
return failures
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Tuple , __a : str , __a : Dict ):
_a = title
_a = doc_test_results["time_spent"].split("," )[0]
_a = doc_test_results["success"]
_a = doc_test_results["failures"]
_a = self.n_success + self.n_failures
# Failures and success of the modeling tests
_a = doc_test_results
@property
def UpperCamelCase__ ( self : int ):
_a = [self._time_spent]
_a = 0
for time in time_spent:
_a = time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(__a ) == 1:
_a = [0, 0, time_parts[0]]
_a , _a , _a = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
_a , _a , _a = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(__a )}h{int(__a )}m{int(__a )}s'
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def UpperCamelCase__ ( self : List[str] ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def UpperCamelCase__ ( self : str ):
_a = 40
_a = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(__a , __a )}
_a = ""
for category, failures in category_failures.items():
if len(__a ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(__a )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def UpperCamelCase__ ( self : List[str] ):
_a = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(__a )
@staticmethod
def UpperCamelCase__ ( ):
_a = [
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(__a )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=__a , )
def UpperCamelCase__ ( self : Tuple ):
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
_a = f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed."
_a = client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=__a , )
def UpperCamelCase__ ( self : Dict , __a : List[str] , __a : List[Any] , __a : Tuple , __a : int ):
_a = ""
for key, value in failures.items():
_a = value[:2_00] + " [Truncated]" if len(__a ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
_a = job_name
_a = {"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
_a = {
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def UpperCamelCase__ ( self : str ):
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
_a = self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
_a = sorted(self.doc_test_results.items() , key=lambda __a : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
_a = f'*Num failures* :{len(job_result["failed"] )} \n'
_a = job_result["failures"]
_a = self.get_reply_blocks(__a , __a , __a , text=__a )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=f'Results for {job}' , blocks=__a , thread_ts=self.thread_ts["ts"] , )
time.sleep(1 )
def _lowerCamelCase ( ) -> Any:
_a = os.environ["GITHUB_RUN_ID"]
_a = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
_a = requests.get(lowercase ).json()
_a = {}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
_a = math.ceil((result["total_count"] - 100) / 100 )
for i in range(lowercase ):
_a = requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return jobs
except Exception as e:
print("Unknown error, could not fetch links." , lowercase )
return {}
def _lowerCamelCase ( lowercase : str ) -> Dict:
_a = {}
if os.path.exists(lowercase ):
_a = os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase , lowercase ) , encoding="utf-8" ) as f:
_a = f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase , lowercase )}.' ) from e
return _artifact
def _lowerCamelCase ( ) -> str:
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict , __a : str ):
_a = name
_a = []
def __str__( self : List[str] ):
return self.name
def UpperCamelCase__ ( self : str , __a : str ):
self.paths.append({"name": self.name, "path": path} )
_a = {}
_a = filter(os.path.isdir , os.listdir() )
for directory in directories:
_a = directory
if artifact_name not in _available_artifacts:
_a = Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
lowerCAmelCase_ : List[Any] = get_job_links()
lowerCAmelCase_ : Any = retrieve_available_artifacts()
lowerCAmelCase_ : List[str] = collections.OrderedDict(
[
('*.py', 'API Examples'),
('*.md', 'MD Examples'),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
lowerCAmelCase_ : Optional[Any] = {
v: {
'failed': [],
'failures': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
lowerCAmelCase_ : int = github_actions_job_links.get('run_doctests')
lowerCAmelCase_ : Union[str, Any] = available_artifacts['doc_tests_gpu_test_reports'].paths[0]
lowerCAmelCase_ : List[str] = retrieve_artifact(artifact_path['name'])
if "stats" in artifact:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = handle_test_results(artifact['stats'])
lowerCAmelCase_ : List[str] = failed
lowerCAmelCase_ : Optional[Any] = success
lowerCAmelCase_ : Tuple = time_spent[1:-1] + ', '
lowerCAmelCase_ : List[Any] = extract_first_line_failure(artifact['failures_short'])
for line in artifact["summary_short"].split('\n'):
if re.search('FAILED', line):
lowerCAmelCase_ : int = line.replace('FAILED ', '')
lowerCAmelCase_ : Optional[int] = line.split()[0].replace('\n', '')
if "::" in line:
lowerCAmelCase_ , lowerCAmelCase_ : str = line.split('::')
else:
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
lowerCAmelCase_ : Union[str, Any] = docs[file_regex]
doc_test_results[category]["failed"].append(test)
lowerCAmelCase_ : List[str] = all_failures[test] if test in all_failures else 'N/A'
lowerCAmelCase_ : Optional[Any] = failure
break
lowerCAmelCase_ : Tuple = Message('🤗 Results of the doc tests.', doc_test_results)
message.post()
message.post_reply()
| 346 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
lowerCAmelCase_ : Dict = {'tokenization_bertweet': ['BertweetTokenizer']}
if TYPE_CHECKING:
from .tokenization_bertweet import BertweetTokenizer
else:
import sys
lowerCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 355 |
'''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _lowerCamelCase ( ) -> str:
_a = HfArgumentParser(lowercase )
_a = parser.parse_args_into_dataclasses()[0]
_a = TensorFlowBenchmark(args=lowercase )
try:
_a = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
_a = "Arg --no_{0} is no longer used, please use --no-{0} instead."
_a = " ".join(str(lowercase ).split(" " )[:-1] )
_a = ""
_a = eval(str(lowercase ).split(" " )[-1] )
_a = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowercase )
if len(lowercase ) > 0:
_a = full_error_msg + begin_error_msg + str(lowercase )
raise ValueError(lowercase )
benchmark.run()
if __name__ == "__main__":
main()
| 346 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __SCREAMING_SNAKE_CASE (lowerCamelCase__ ):
"""simple docstring"""
__a =['image_processor', 'tokenizer']
__a ='Pix2StructImageProcessor'
__a =('T5Tokenizer', 'T5TokenizerFast')
def __init__( self : int , __a : Optional[Any] , __a : Tuple ):
_a = False
super().__init__(__lowerCamelCase , __lowerCamelCase )
def __call__( self : Optional[Any] , __a : Optional[Any]=None , __a : List[Any] = None , __a : Optional[int] = True , __a : Optional[int] = False , __a : Any = None , __a : Any = None , __a : List[str] = 20_48 , __a : Tuple = 0 , __a : Dict = None , __a : Optional[int] = None , __a : int = False , __a : int = False , __a : Optional[Any] = False , __a : Tuple = False , __a : Optional[Any] = False , __a : Union[str, Any] = True , __a : List[str] = None , **__a : int , ):
if images is None and text is None:
raise ValueError("You have to specify either images or text." )
# Get only text
if images is None and not self.image_processor.is_vqa:
_a = self.tokenizer
_a = self.tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
_a = self.image_processor(
__lowerCamelCase , return_tensors=__lowerCamelCase , max_patches=__lowerCamelCase , **__lowerCamelCase )
else:
# add pixel_values and bbox
_a = self.image_processor(
__lowerCamelCase , return_tensors=__lowerCamelCase , max_patches=__lowerCamelCase , header_text=__lowerCamelCase , **__lowerCamelCase )
if text is not None and not self.image_processor.is_vqa:
_a = self.tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
if "attention_mask" in text_encoding:
_a = text_encoding.pop("attention_mask" )
if "input_ids" in text_encoding:
_a = text_encoding.pop("input_ids" )
else:
_a = None
if text_encoding is not None:
encoding_image_processor.update(__lowerCamelCase )
return encoding_image_processor
def UpperCamelCase__ ( self : Any , *__a : Union[str, Any] , **__a : List[str] ):
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def UpperCamelCase__ ( self : Optional[Any] , *__a : Optional[Any] , **__a : Union[str, Any] ):
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
def UpperCamelCase__ ( self : Dict ):
_a = self.tokenizer.model_input_names
_a = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 356 |
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
lowerCAmelCase_ : Union[str, Any] = None
try:
import msvcrt
except ImportError:
lowerCAmelCase_ : Tuple = None
try:
import fcntl
except ImportError:
lowerCAmelCase_ : Optional[int] = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
lowerCAmelCase_ : Any = OSError
# Data
# ------------------------------------------------
lowerCAmelCase_ : Tuple = [
'Timeout',
'BaseFileLock',
'WindowsFileLock',
'UnixFileLock',
'SoftFileLock',
'FileLock',
]
lowerCAmelCase_ : Optional[int] = '3.0.12'
lowerCAmelCase_ : Tuple = None
def _lowerCamelCase ( ) -> Optional[int]:
global _logger
_a = _logger or logging.getLogger(__name__ )
return _logger
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Dict , __a : Optional[Any] ):
_a = lock_file
return None
def __str__( self : Any ):
_a = f'The file lock \'{self.lock_file}\' could not be acquired.'
return temp
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : List[Any] , __a : Optional[int] ):
_a = lock
return None
def __enter__( self : str ):
return self.lock
def __exit__( self : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Dict ):
self.lock.release()
return None
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int]=-1 , __a : Tuple=None ):
_a = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
_a = self.hash_filename_if_too_long(__a , __a )
# The path to the lock file.
_a = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
_a = None
# The default timeout value.
_a = timeout
# We use this lock primarily for the lock counter.
_a = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
_a = 0
return None
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return self._lock_file
@property
def UpperCamelCase__ ( self : List[Any] ):
return self._timeout
@timeout.setter
def UpperCamelCase__ ( self : int , __a : List[Any] ):
_a = float(__a )
return None
def UpperCamelCase__ ( self : Dict ):
raise NotImplementedError()
def UpperCamelCase__ ( self : str ):
raise NotImplementedError()
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return self._lock_file_fd is not None
def UpperCamelCase__ ( self : int , __a : int=None , __a : Tuple=0.05 ):
# Use the default timeout, if no timeout is provided.
if timeout is None:
_a = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
_a = id(self )
_a = self._lock_file
_a = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' )
self._acquire()
if self.is_locked:
logger().debug(f'Lock {lock_id} acquired on {lock_filename}' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' )
raise Timeout(self._lock_file )
else:
logger().debug(
f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' )
time.sleep(__a )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
_a = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def UpperCamelCase__ ( self : Union[str, Any] , __a : int=False ):
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
_a = id(self )
_a = self._lock_file
logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' )
self._release()
_a = 0
logger().debug(f'Lock {lock_id} released on {lock_filename}' )
return None
def __enter__( self : List[Any] ):
self.acquire()
return self
def __exit__( self : str , __a : str , __a : Dict , __a : Dict ):
self.release()
return None
def __del__( self : int ):
self.release(force=__a )
return None
def UpperCamelCase__ ( self : Tuple , __a : str , __a : int ):
_a = os.path.basename(__a )
if len(__a ) > max_length and max_length > 0:
_a = os.path.dirname(__a )
_a = str(hash(__a ) )
_a = filename[: max_length - len(__a ) - 8] + "..." + hashed_filename + ".lock"
return os.path.join(__a , __a )
else:
return path
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : int , __a : str , __a : List[Any]=-1 , __a : List[Any]=None ):
from .file_utils import relative_to_absolute_path
super().__init__(__a , timeout=__a , max_filename_length=__a )
_a = "\\\\?\\" + relative_to_absolute_path(self.lock_file )
def UpperCamelCase__ ( self : int ):
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
_a = os.open(self._lock_file , __a )
except OSError:
pass
else:
try:
msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(__a )
else:
_a = fd
return None
def UpperCamelCase__ ( self : Optional[Any] ):
_a = self._lock_file_fd
_a = None
msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 )
os.close(__a )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[str] , __a : Optional[Any] , __a : Union[str, Any]=-1 , __a : int=None ):
_a = os.statvfs(os.path.dirname(__a ) ).f_namemax
super().__init__(__a , timeout=__a , max_filename_length=__a )
def UpperCamelCase__ ( self : Any ):
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
_a = os.open(self._lock_file , __a )
try:
fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(__a )
else:
_a = fd
return None
def UpperCamelCase__ ( self : Tuple ):
# Do not remove the lockfile:
#
# https://github.com/benediktschmitt/py-filelock/issues/31
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
_a = self._lock_file_fd
_a = None
fcntl.flock(__a , fcntl.LOCK_UN )
os.close(__a )
return None
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
_a = os.open(self._lock_file , __a )
except OSError:
pass
else:
_a = fd
return None
def UpperCamelCase__ ( self : Union[str, Any] ):
os.close(self._lock_file_fd )
_a = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
lowerCAmelCase_ : str = None
if msvcrt:
lowerCAmelCase_ : List[str] = WindowsFileLock
elif fcntl:
lowerCAmelCase_ : List[str] = UnixFileLock
else:
lowerCAmelCase_ : int = SoftFileLock
if warnings is not None:
warnings.warn('only soft file lock is available')
| 346 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : List[str] , __a : Any , ):
_a = parent
_a = 13
_a = 7
_a = True
_a = True
_a = False
_a = True
_a = 99
_a = 32
_a = 2
_a = 4
_a = 37
_a = 'gelu'
_a = 0.1
_a = 0.1
_a = 5_12
_a = 16
_a = 2
_a = 0.02
_a = 3
_a = 4
_a = None
def UpperCamelCase__ ( self : int ):
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = None
if self.use_input_mask:
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self : List[Any] , __a : Tuple , __a : int , __a : Any , __a : int , __a : List[str] , __a : str ):
_a = TFDistilBertModel(config=_A )
_a = {'input_ids': input_ids, 'attention_mask': input_mask}
_a = model(_A )
_a = [input_ids, input_mask]
_a = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self : List[str] , __a : List[Any] , __a : Dict , __a : str , __a : List[Any] , __a : List[str] , __a : Optional[int] ):
_a = TFDistilBertForMaskedLM(config=_A )
_a = {'input_ids': input_ids, 'attention_mask': input_mask}
_a = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self : str , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : Optional[int] , __a : List[Any] ):
_a = TFDistilBertForQuestionAnswering(config=_A )
_a = {
'input_ids': input_ids,
'attention_mask': input_mask,
}
_a = model(_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ ( self : List[Any] , __a : Any , __a : Tuple , __a : Dict , __a : Union[str, Any] , __a : Any , __a : List[str] ):
_a = self.num_labels
_a = TFDistilBertForSequenceClassification(_A )
_a = {'input_ids': input_ids, 'attention_mask': input_mask}
_a = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self : Optional[int] , __a : List[Any] , __a : List[str] , __a : int , __a : Optional[Any] , __a : Optional[Any] , __a : int ):
_a = self.num_choices
_a = TFDistilBertForMultipleChoice(_A )
_a = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
_a = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
_a = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
}
_a = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ ( self : List[Any] , __a : str , __a : Any , __a : Optional[int] , __a : Tuple , __a : Dict , __a : Union[str, Any] ):
_a = self.num_labels
_a = TFDistilBertForTokenClassification(_A )
_a = {'input_ids': input_ids, 'attention_mask': input_mask}
_a = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self : Tuple ):
_a = self.prepare_config_and_inputs()
(_a) = config_and_inputs
_a = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =(
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
__a =(
{
"""feature-extraction""": TFDistilBertModel,
"""fill-mask""": TFDistilBertForMaskedLM,
"""question-answering""": TFDistilBertForQuestionAnswering,
"""text-classification""": TFDistilBertForSequenceClassification,
"""token-classification""": TFDistilBertForTokenClassification,
"""zero-shot""": TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__a =False
__a =False
def UpperCamelCase__ ( self : Optional[int] ):
_a = TFDistilBertModelTester(self )
_a = ConfigTester(self , config_class=_A , dim=37 )
def UpperCamelCase__ ( self : Tuple ):
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self : Optional[int] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*_A )
def UpperCamelCase__ ( self : List[str] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*_A )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*_A )
def UpperCamelCase__ ( self : List[str] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*_A )
def UpperCamelCase__ ( self : Dict ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*_A )
def UpperCamelCase__ ( self : Dict ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*_A )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
_a = TFDistilBertModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_tf
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCamelCase__ ( self : Optional[Any] ):
_a = TFDistilBertModel.from_pretrained("distilbert-base-uncased" )
_a = tf.constant([[0, 1, 2, 3, 4, 5]] )
_a = model(_A )[0]
_a = [1, 6, 7_68]
self.assertEqual(output.shape , _A )
_a = tf.constant(
[
[
[0.19261885, -0.13732955, 0.4119799],
[0.22150156, -0.07422661, 0.39037204],
[0.22756018, -0.0896414, 0.3701467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1e-4 )
| 357 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42
__a =42
__a =42
__a =42
__a =42
def UpperCamelCase__ ( self : str ):
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def UpperCamelCase__ ( self : List[str] ):
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = torch.arange(self.height * self.width )
_a = torch.stack(
[
pixel_indices % self.width,
torch.div(__a , self.width , rounding_mode="trunc" ),
] , axis=1 , )
return coords
@property
def UpperCamelCase__ ( self : List[Any] ):
_a , *_a = self.shape
_a = int(np.prod(__a ) )
_a = self.get_image_coords()
_a = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
_a = self.get_camera_rays(__a )
_a = rays.view(__a , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def UpperCamelCase__ ( self : Dict , __a : torch.Tensor ):
_a , *_a , _a = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
_a = coords.view(__a , -1 , 2 )
_a = self.resolution()
_a = self.fov()
_a = (flat.float() / (res - 1)) * 2 - 1
_a = fracs * torch.tan(fov / 2 )
_a = fracs.view(__a , -1 , 2 )
_a = (
self.z.view(__a , 1 , 3 )
+ self.x.view(__a , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(__a , 1 , 3 ) * fracs[:, :, 1:]
)
_a = directions / directions.norm(dim=-1 , keepdim=__a )
_a = torch.stack(
[
torch.broadcast_to(self.origin.view(__a , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(__a , *__a , 2 , 3 )
def UpperCamelCase__ ( self : Dict , __a : int , __a : int ):
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=__a , height=__a , x_fov=self.x_fov , y_fov=self.y_fov , )
def _lowerCamelCase ( lowercase : int ) -> DifferentiableProjectiveCamera:
_a = []
_a = []
_a = []
_a = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
_a = np.array([np.sin(lowercase ), np.cos(lowercase ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
_a = -z * 4
_a = np.array([np.cos(lowercase ), -np.sin(lowercase ), 0.0] )
_a = np.cross(lowercase , lowercase )
origins.append(lowercase )
xs.append(lowercase )
ys.append(lowercase )
zs.append(lowercase )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , width=lowercase , height=lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowercase )) , )
| 346 | 0 |
import unittest
from transformers import MobileBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertModel,
)
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Tuple , __a : Dict , __a : List[Any]=13 , __a : List[Any]=7 , __a : Tuple=True , __a : Optional[Any]=True , __a : int=True , __a : Union[str, Any]=True , __a : str=99 , __a : Optional[int]=64 , __a : Any=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Optional[int]="gelu" , __a : Optional[Any]=0.1 , __a : List[str]=0.1 , __a : Any=5_12 , __a : Dict=16 , __a : List[str]=2 , __a : Optional[int]=0.02 , __a : int=3 , __a : int=4 , __a : Optional[Any]=None , ):
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_input_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = embedding_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = num_labels
_a = num_choices
_a = scope
def UpperCamelCase__ ( self : Any ):
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = None
if self.use_input_mask:
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self : str ):
return MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , )
def UpperCamelCase__ ( self : Tuple , __a : List[Any] , __a : Optional[int] , __a : Optional[int] , __a : Union[str, Any] , __a : List[str] , __a : str , __a : int ):
_a = MobileBertModel(config=__snake_case )
model.to(__snake_case )
model.eval()
_a = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )
_a = model(__snake_case , token_type_ids=__snake_case )
_a = model(__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase__ ( self : Dict , __a : str , __a : str , __a : Any , __a : str , __a : str , __a : Optional[int] , __a : Tuple ):
_a = MobileBertForMaskedLM(config=__snake_case )
model.to(__snake_case )
model.eval()
_a = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self : List[str] , __a : Union[str, Any] , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[int] , __a : List[str] , __a : List[Any] ):
_a = MobileBertForNextSentencePrediction(config=__snake_case )
model.to(__snake_case )
model.eval()
_a = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def UpperCamelCase__ ( self : str , __a : Any , __a : Union[str, Any] , __a : int , __a : List[Any] , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] ):
_a = MobileBertForPreTraining(config=__snake_case )
model.to(__snake_case )
model.eval()
_a = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def UpperCamelCase__ ( self : Optional[Any] , __a : Tuple , __a : int , __a : Any , __a : List[str] , __a : Dict , __a : Dict , __a : Tuple ):
_a = MobileBertForQuestionAnswering(config=__snake_case )
model.to(__snake_case )
model.eval()
_a = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : Optional[int] , __a : Union[str, Any] , __a : List[str] , __a : Optional[int] , __a : List[str] , __a : str ):
_a = self.num_labels
_a = MobileBertForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
_a = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self : List[str] , __a : Dict , __a : Tuple , __a : Optional[Any] , __a : List[str] , __a : Tuple , __a : str , __a : Any ):
_a = self.num_labels
_a = MobileBertForTokenClassification(config=__snake_case )
model.to(__snake_case )
model.eval()
_a = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self : Optional[Any] , __a : List[str] , __a : int , __a : List[Any] , __a : Optional[int] , __a : List[Any] , __a : Union[str, Any] , __a : Dict ):
_a = self.num_choices
_a = MobileBertForMultipleChoice(config=__snake_case )
model.to(__snake_case )
model.eval()
_a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.prepare_config_and_inputs()
(
_a
) = config_and_inputs
_a = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
__a =(
(
MobileBertModel,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
)
if is_torch_available()
else ()
)
__a =(
{
'feature-extraction': MobileBertModel,
'fill-mask': MobileBertForMaskedLM,
'question-answering': MobileBertForQuestionAnswering,
'text-classification': MobileBertForSequenceClassification,
'token-classification': MobileBertForTokenClassification,
'zero-shot': MobileBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__a =True
def UpperCamelCase__ ( self : List[Any] , __a : Tuple , __a : Tuple , __a : Dict=False ):
_a = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
if return_labels:
if model_class in get_values(__snake_case ):
_a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case )
_a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__snake_case )
return inputs_dict
def UpperCamelCase__ ( self : Optional[Any] ):
_a = MobileBertModelTester(self )
_a = ConfigTester(self , config_class=__snake_case , hidden_size=37 )
def UpperCamelCase__ ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self : List[Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*__snake_case )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*__snake_case )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__snake_case )
def UpperCamelCase__ ( self : Any ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__snake_case )
def UpperCamelCase__ ( self : List[Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*__snake_case )
def UpperCamelCase__ ( self : int ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*__snake_case )
def UpperCamelCase__ ( self : str ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__snake_case )
def UpperCamelCase__ ( self : List[Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*__snake_case )
def _lowerCamelCase ( lowercase : Any ) -> Union[str, Any]:
return torch.tensor(
_A , dtype=torch.long , device=_A , )
lowerCAmelCase_ : Tuple = 1e-3
@require_torch
@require_sentencepiece
@require_tokenizers
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCamelCase__ ( self : Any ):
_a = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(__snake_case )
_a = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] )
with torch.no_grad():
_a = model(__snake_case )[0]
_a = torch.Size((1, 9, 5_12) )
self.assertEqual(output.shape , __snake_case )
_a = torch.tensor(
[
[
[-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5],
[-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0],
[2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1],
]
] , device=__snake_case , )
# MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
# ~1 difference, it's therefore not a good idea to measure using addition.
# Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
# result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
_a = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE )
_a = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE )
self.assertTrue(lower_bound and upper_bound )
| 358 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
lowerCAmelCase_ : List[str] = TypeVar('T')
lowerCAmelCase_ : Dict = TypeVar('U')
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : T | None , __a : U | None ):
_a = key
_a = val
_a = None
_a = None
def __repr__( self : Any ):
return (
f'Node: key: {self.key}, val: {self.val}, '
f'has next: {bool(self.next )}, has prev: {bool(self.prev )}'
)
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
def __init__( self : Dict ):
_a = DoubleLinkedListNode(__a , __a )
_a = DoubleLinkedListNode(__a , __a )
_a , _a = self.rear, self.head
def __repr__( self : str ):
_a = ["DoubleLinkedList"]
_a = self.head
while node.next is not None:
rep.append(str(__a ) )
_a = node.next
rep.append(str(self.rear ) )
return ",\n ".join(__a )
def UpperCamelCase__ ( self : int , __a : DoubleLinkedListNode[T, U] ):
_a = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_a = node
_a = previous
_a = node
_a = self.rear
def UpperCamelCase__ ( self : Any , __a : DoubleLinkedListNode[T, U] ):
if node.prev is None or node.next is None:
return None
_a = node.next
_a = node.prev
_a = None
_a = None
return node
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
__a ={}
def __init__( self : Union[str, Any] , __a : int ):
_a = DoubleLinkedList()
_a = capacity
_a = 0
_a = 0
_a = 0
_a = {}
def __repr__( self : Optional[int] ):
return (
f'CacheInfo(hits={self.hits}, misses={self.miss}, '
f'capacity={self.capacity}, current size={self.num_keys})'
)
def __contains__( self : str , __a : T ):
return key in self.cache
def UpperCamelCase__ ( self : str , __a : T ):
# Note: pythonic interface would throw KeyError rather than return None
if key in self.cache:
self.hits += 1
_a = self.cache[key]
_a = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(__a )
return node.val
self.miss += 1
return None
def UpperCamelCase__ ( self : Tuple , __a : T , __a : U ):
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_a = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(__a ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_a = DoubleLinkedListNode(__a , __a )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_a = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_a = value
self.list.add(__a )
@classmethod
def UpperCamelCase__ ( cls : Tuple , __a : int = 1_28 ):
def cache_decorator_inner(__a : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*__a : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
_a = LRUCache(__a )
_a = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_a = func(*__a )
cls.decorator_function_to_instance_map[func].put(args[0] , __a )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(__a , "cache_info" , __a ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 | 0 |
'''simple docstring'''
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
def __init__( self : int , __a : Union[str, Any] , __a : Any , __a : Union[str, Any] , __a : Union[str, Any] , __a : Tuple , __a : Any , __a : Tuple , __a : Any , __a : Tuple , ):
super().__init__()
if safety_checker is None:
logger.warning(
f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
self.register_modules(
speech_model=A__ , speech_processor=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , unet=A__ , scheduler=A__ , feature_extractor=A__ , )
def UpperCamelCase__ ( self : Union[str, Any] , __a : Any = "auto" ):
if slice_size == "auto":
_a = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(A__ )
def UpperCamelCase__ ( self : List[Any] ):
self.enable_attention_slicing(A__ )
@torch.no_grad()
def __call__( self : Dict , __a : int , __a : Any=1_60_00 , __a : Tuple = 5_12 , __a : Tuple = 5_12 , __a : str = 50 , __a : Union[str, Any] = 7.5 , __a : Tuple = None , __a : Tuple = 1 , __a : Tuple = 0.0 , __a : List[Any] = None , __a : List[str] = None , __a : Tuple = "pil" , __a : Tuple = True , __a : Optional[Any] = None , __a : Optional[Any] = 1 , **__a : List[Any] , ):
_a = self.speech_processor.feature_extractor(
A__ , return_tensors="pt" , sampling_rate=A__ ).input_features.to(self.device )
_a = self.speech_model.generate(A__ , max_length=48_00_00 )
_a = self.speech_processor.tokenizer.batch_decode(A__ , skip_special_tokens=A__ , normalize=A__ )[
0
]
if isinstance(A__ , A__ ):
_a = 1
elif isinstance(A__ , A__ ):
_a = len(A__ )
else:
raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(A__ )}' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A__ , A__ ) or callback_steps <= 0)
):
raise ValueError(
f'`callback_steps` has to be a positive integer but is {callback_steps} of type'
f' {type(A__ )}.' )
# get prompt text embeddings
_a = self.tokenizer(
A__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , )
_a = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
_a = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f' {self.tokenizer.model_max_length} tokens: {removed_text}' )
_a = text_input_ids[:, : self.tokenizer.model_max_length]
_a = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
_a , _a , _a = text_embeddings.shape
_a = text_embeddings.repeat(1 , A__ , 1 )
_a = text_embeddings.view(bs_embed * num_images_per_prompt , A__ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_a = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_a = 42
if negative_prompt is None:
_a = [""] * batch_size
elif type(A__ ) is not type(A__ ):
raise TypeError(
f'`negative_prompt` should be the same type to `prompt`, but got {type(A__ )} !='
f' {type(A__ )}.' )
elif isinstance(A__ , A__ ):
_a = [negative_prompt]
elif batch_size != len(A__ ):
raise ValueError(
f'`negative_prompt`: {negative_prompt} has batch size {len(A__ )}, but `prompt`:'
f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'
" the batch size of `prompt`." )
else:
_a = negative_prompt
_a = text_input_ids.shape[-1]
_a = self.tokenizer(
A__ , padding="max_length" , max_length=A__ , truncation=A__ , return_tensors="pt" , )
_a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
_a = uncond_embeddings.shape[1]
_a = uncond_embeddings.repeat(1 , A__ , 1 )
_a = uncond_embeddings.view(batch_size * num_images_per_prompt , A__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_a = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_a = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
_a = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
_a = torch.randn(A__ , generator=A__ , device="cpu" , dtype=A__ ).to(
self.device )
else:
_a = torch.randn(A__ , generator=A__ , device=self.device , dtype=A__ )
else:
if latents.shape != latents_shape:
raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' )
_a = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(A__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
_a = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_a = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_a = {}
if accepts_eta:
_a = eta
for i, t in enumerate(self.progress_bar(A__ ) ):
# expand the latents if we are doing classifier free guidance
_a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_a = self.scheduler.scale_model_input(A__ , A__ )
# predict the noise residual
_a = self.unet(A__ , A__ , encoder_hidden_states=A__ ).sample
# perform guidance
if do_classifier_free_guidance:
_a , _a = noise_pred.chunk(2 )
_a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A__ , A__ , A__ )
_a = 1 / 0.18215 * latents
_a = self.vae.decode(A__ ).sample
_a = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
_a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
_a = self.numpy_to_pil(A__ )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=A__ , nsfw_content_detected=A__ )
| 359 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase_ : Optional[int] = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase_ : Tuple = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def _lowerCamelCase ( lowercase : str ) -> str:
re.sub("<n>" , "" , lowercase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(lowercase ) )
| 346 | 0 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Optional[int] ) -> int:
return abs(lowercase ) if a == 0 else greatest_common_divisor(b % a , lowercase )
def _lowerCamelCase ( lowercase : Dict , lowercase : Dict ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
_a , _a = y, x % y
return abs(lowercase )
def _lowerCamelCase ( ) -> int:
try:
_a = input("Enter two integers separated by comma (,): " ).split("," )
_a = int(nums[0] )
_a = int(nums[1] )
print(
F'greatest_common_divisor({num_a}, {num_a}) = '
F'{greatest_common_divisor(lowercase , lowercase )}' )
print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowercase , lowercase )}' )
except (IndexError, UnboundLocalError, ValueError):
print("Wrong input" )
if __name__ == "__main__":
main()
| 360 |
'''simple docstring'''
import requests
lowerCAmelCase_ : List[Any] = 'YOUR API KEY'
def _lowerCamelCase ( lowercase : str , lowercase : str = giphy_api_key ) -> list:
_a = "+".join(query.split() )
_a = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'
_a = requests.get(lowercase ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 346 | 0 |
'''simple docstring'''
from collections import Counter
from timeit import timeit
def _lowerCamelCase ( lowercase : str = "" , ) -> bool:
return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2
def _lowerCamelCase ( lowercase : str = "" ) -> bool:
if len(lowercase ) == 0:
return True
_a = input_str.replace(" " , "" ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
_a = {}
for character in lower_case_input_str:
_a = character_freq_dict.get(lowercase , 0 ) + 1
_a = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def _lowerCamelCase ( lowercase : str = "" ) -> None:
print("\nFor string = " , lowercase , ":" )
print(
"> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , "\ttime =" , timeit(
"z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , )
print(
"> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(lowercase ) , "\ttime =" , timeit(
"z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , )
if __name__ == "__main__":
lowerCAmelCase_ : Union[str, Any] = input(
'Enter string to determine if it can be rearranged as a palindrome or not: '
).strip()
benchmark(check_str)
lowerCAmelCase_ : Any = can_string_be_rearranged_as_palindrome_counter(check_str)
print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
| 361 |
'''simple docstring'''
import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase_ : str = '▁'
lowerCAmelCase_ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =BertGenerationTokenizer
__a =False
__a =True
def UpperCamelCase__ ( self : Optional[Any] ):
super().setUp()
_a = BertGenerationTokenizer(__a , keep_accents=__a )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ ( self : Tuple ):
_a = "<s>"
_a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a )
def UpperCamelCase__ ( self : List[str] ):
_a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<unk>" )
self.assertEqual(vocab_keys[1] , "<s>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(__a ) , 10_02 )
def UpperCamelCase__ ( self : str ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def UpperCamelCase__ ( self : Tuple ):
_a = BertGenerationTokenizer(__a , keep_accents=__a )
_a = tokenizer.tokenize("This is a test" )
self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__a ) , [2_85, 46, 10, 1_70, 3_82] , )
_a = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
_a = tokenizer.convert_tokens_to_ids(__a )
self.assertListEqual(
__a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_a = tokenizer.convert_ids_to_tokens(__a )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
@cached_property
def UpperCamelCase__ ( self : Any ):
return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
@slow
def UpperCamelCase__ ( self : List[str] ):
_a = "Hello World!"
_a = [1_85_36, 22_60, 1_01]
self.assertListEqual(__a , self.big_tokenizer.encode(__a ) )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
_a = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"
)
_a = [
8_71,
4_19,
3_58,
9_46,
9_91,
25_21,
4_52,
3_58,
13_57,
3_87,
77_51,
35_36,
1_12,
9_85,
4_56,
1_26,
8_65,
9_38,
54_00,
57_34,
4_58,
13_68,
4_67,
7_86,
24_62,
52_46,
11_59,
6_33,
8_65,
45_19,
4_57,
5_82,
8_52,
25_57,
4_27,
9_16,
5_08,
4_05,
3_43_24,
4_97,
3_91,
4_08,
1_13_42,
12_44,
3_85,
1_00,
9_38,
9_85,
4_56,
5_74,
3_62,
1_25_97,
32_00,
31_29,
11_72,
]
self.assertListEqual(__a , self.big_tokenizer.encode(__a ) )
@require_torch
@slow
def UpperCamelCase__ ( self : Tuple ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
_a = list(self.big_tokenizer.get_vocab().keys() )[:10]
_a = " ".join(__a )
_a = self.big_tokenizer.encode_plus(__a , return_tensors="pt" , return_token_type_ids=__a )
_a = self.big_tokenizer.batch_encode_plus(
[sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__a )
_a = BertGenerationConfig()
_a = BertGenerationEncoder(__a )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**__a )
model(**__a )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
# fmt: off
_a = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__a , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
| 346 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ : str = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : str = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 362 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Union[str, Any]:
_enforce_args(lowercase , lowercase )
if n == 0:
return 0
_a = float("-inf" )
for i in range(1 , n + 1 ):
_a = max(
lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , lowercase ) )
return max_revue
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Tuple:
_enforce_args(lowercase , lowercase )
_a = [float("-inf" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(lowercase , lowercase , lowercase )
def _lowerCamelCase ( lowercase : int , lowercase : list , lowercase : list ) -> List[str]:
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_a = float("-inf" )
for i in range(1 , n + 1 ):
_a = max(
lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowercase , lowercase ) , )
_a = max_revenue
return max_rev[n]
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Any:
_enforce_args(lowercase , lowercase )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_a = [float("-inf" ) for _ in range(n + 1 )]
_a = 0
for i in range(1 , n + 1 ):
_a = max_rev[i]
for j in range(1 , i + 1 ):
_a = max(lowercase , prices[j - 1] + max_rev[i - j] )
_a = max_revenue_i
return max_rev[n]
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Dict:
if n < 0:
_a = F'n must be greater than or equal to 0. Got n = {n}'
raise ValueError(lowercase )
if n > len(lowercase ):
_a = (
"Each integral piece of rod must have a corresponding price. "
F'Got n = {n} but length of prices = {len(lowercase )}'
)
raise ValueError(lowercase )
def _lowerCamelCase ( ) -> Any:
_a = [6, 10, 12, 15, 20, 23]
_a = len(lowercase )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_a = 36
_a = top_down_cut_rod(lowercase , lowercase )
_a = bottom_up_cut_rod(lowercase , lowercase )
_a = naive_cut_rod_recursive(lowercase , lowercase )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 346 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __SCREAMING_SNAKE_CASE (_snake_case ):
"""simple docstring"""
__a =['pixel_values']
def __init__( self : str , __a : List[str] = True , __a : int = None , __a : str = PILImageResampling.BICUBIC , __a : Optional[Any] = True , __a : Union[str, Any] = None , __a : int = True , __a : Tuple = 1 / 2_55 , __a : int = True , __a : Dict = None , __a : List[str] = None , __a : Optional[int] = True , **__a : List[Any] , ):
super().__init__(**UpperCamelCase__ )
_a = size if size is not None else {"shortest_edge": 2_24}
_a = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ )
_a = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24}
_a = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ , param_name="crop_size" )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def UpperCamelCase__ ( self : List[Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] = PILImageResampling.BICUBIC , __a : Optional[Any] = None , **__a : Optional[int] , ):
_a = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ )
if "shortest_edge" not in size:
raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(UpperCamelCase__ , size=size["shortest_edge"] , default_to_square=UpperCamelCase__ )
return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[Any] , __a : List[str] , __a : Union[str, Any] = None , **__a : Any , ):
_a = get_size_dict(UpperCamelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(UpperCamelCase__ , size=(size["height"], size["width"]) , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def UpperCamelCase__ ( self : Any , __a : Tuple , __a : Optional[Any] , __a : Tuple = None , **__a : Optional[Any] , ):
return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def UpperCamelCase__ ( self : int , __a : Optional[Any] , __a : Tuple , __a : Union[str, Any] , __a : int = None , **__a : Optional[Any] , ):
return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] = None , __a : Dict = None , __a : Optional[int] = None , __a : str = None , __a : str = None , __a : Optional[Any] = None , __a : List[Any] = None , __a : List[str] = None , __a : List[str] = None , __a : Optional[Any] = None , __a : List[str] = None , __a : str = None , __a : Any = ChannelDimension.FIRST , **__a : Optional[Any] , ):
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(UpperCamelCase__ , param_name="size" , default_to_square=UpperCamelCase__ )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(UpperCamelCase__ , param_name="crop_size" , default_to_square=UpperCamelCase__ )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(UpperCamelCase__ )
if not valid_images(UpperCamelCase__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(UpperCamelCase__ ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(UpperCamelCase__ ) for image in images]
if do_resize:
_a = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images]
if do_rescale:
_a = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images]
if do_normalize:
_a = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images]
_a = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images]
_a = {"pixel_values": images}
return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
| 363 |
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[Any] , *__a : Optional[int] , **__a : List[str] ):
super().__init__(*__a , **__a )
self.check_model_type(__a )
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : int=None , __a : Optional[Any]=None , **__a : List[Any] ):
_a , _a = {}, {}
if padding is not None:
_a = padding
if truncation is not None:
_a = truncation
if top_k is not None:
_a = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : Union[str, Any] , __a : Union["Image.Image", str] , __a : str = None , **__a : Any ):
if isinstance(__a , (Image.Image, str) ) and isinstance(__a , __a ):
_a = {"image": image, "question": question}
else:
_a = image
_a = super().__call__(__a , **__a )
return results
def UpperCamelCase__ ( self : Tuple , __a : Tuple , __a : Optional[Any]=False , __a : List[Any]=False ):
_a = load_image(inputs["image"] )
_a = self.tokenizer(
inputs["question"] , return_tensors=self.framework , padding=__a , truncation=__a )
_a = self.image_processor(images=__a , return_tensors=self.framework )
model_inputs.update(__a )
return model_inputs
def UpperCamelCase__ ( self : List[Any] , __a : List[str] ):
_a = self.model(**__a )
return model_outputs
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : Dict=5 ):
if top_k > self.model.config.num_labels:
_a = self.model.config.num_labels
if self.framework == "pt":
_a = model_outputs.logits.sigmoid()[0]
_a , _a = probs.topk(__a )
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
_a = scores.tolist()
_a = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
| 346 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__)
lowerCAmelCase_ : Any = {'vocab_file': 'sentencepiece.bpe.model'}
lowerCAmelCase_ : str = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
lowerCAmelCase_ : Optional[Any] = {
'camembert-base': 5_12,
}
lowerCAmelCase_ : Any = '▁'
class __SCREAMING_SNAKE_CASE (snake_case__ ):
"""simple docstring"""
__a =VOCAB_FILES_NAMES
__a =PRETRAINED_VOCAB_FILES_MAP
__a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a =["""input_ids""", """attention_mask"""]
def __init__( self : Any , __a : Any , __a : Dict="<s>" , __a : Tuple="</s>" , __a : int="</s>" , __a : List[str]="<s>" , __a : Dict="<unk>" , __a : Any="<pad>" , __a : List[Any]="<mask>" , __a : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , __a : List[str] = None , **__a : Optional[int] , ):
_a = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token
_a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , )
_a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_A ) )
_a = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
_a = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
_a = len(self.fairseq_tokens_to_ids )
_a = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
_a = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCamelCase__ ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a = [self.cls_token_id]
_a = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase__ ( self : List[Any] , __a : List[str] , __a : Optional[int] = None , __a : str = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A )
if token_ids_a is None:
return [1] + ([0] * len(_A )) + [1]
return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1]
def UpperCamelCase__ ( self : Optional[int] , __a : Any , __a : List[Any] = None ):
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCamelCase__ ( self : Any ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase__ ( self : List[str] , __a : Dict ):
return self.sp_model.encode(_A , out_type=_A )
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(_A ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(_A )
def UpperCamelCase__ ( self : str , __a : str ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ):
_a = []
_a = ""
_a = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_A ) + token
_a = True
_a = []
else:
current_sub_tokens.append(_A )
_a = False
out_string += self.sp_model.decode(_A )
return out_string.strip()
def __getstate__( self : int ):
_a = self.__dict__.copy()
_a = None
return state
def __setstate__( self : str , __a : Optional[int] ):
_a = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_a = {}
_a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase__ ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] = None ):
if not os.path.isdir(_A ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
_a = os.path.join(
_A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _A )
elif not os.path.isfile(self.vocab_file ):
with open(_A , "wb" ) as fi:
_a = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
| 364 |
'''simple docstring'''
from random import randint, random
def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : int , lowercase : bool = False , lowercase : bool = False , lowercase : int = 5 , ) -> list:
_a = [[-1] * number_of_cells] # Create a highway without any car
_a = 0
_a = max(lowercase , 0 )
while i < number_of_cells:
_a = (
randint(0 , lowercase ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def _lowerCamelCase ( lowercase : list , lowercase : int ) -> int:
_a = 0
_a = highway_now[car_index + 1 :]
for cell in range(len(lowercase ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(lowercase , -1 )
def _lowerCamelCase ( lowercase : list , lowercase : float , lowercase : int ) -> list:
_a = len(lowercase )
# Beforce calculations, the highway is empty
_a = [-1] * number_of_cells
for car_index in range(lowercase ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
_a = min(highway_now[car_index] + 1 , lowercase )
# Number of empty cell before the next car
_a = get_distance(lowercase , lowercase ) - 1
# We can't have the car causing an accident
_a = min(next_highway[car_index] , lowercase )
if random() < probability:
# Randomly, a driver will slow down
_a = max(next_highway[car_index] - 1 , 0 )
return next_highway
def _lowerCamelCase ( lowercase : list , lowercase : int , lowercase : float , lowercase : int ) -> list:
_a = len(highway[0] )
for i in range(lowercase ):
_a = update(highway[i] , lowercase , lowercase )
_a = [-1] * number_of_cells
for car_index in range(lowercase ):
_a = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
_a = (car_index + speed) % number_of_cells
# Commit the change of position
_a = speed
highway.append(lowercase )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 | 0 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def _lowerCamelCase ( lowercase : Tuple ) -> str:
_a = image.size
_a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
_a = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] )
_a = np.array(snake_case__ ).astype(np.floataa ) / 2_55.0
_a = image[None].transpose(0 , 3 , 1 , 2 )
_a = torch.from_numpy(snake_case__ )
return 2.0 * image - 1.0
class __SCREAMING_SNAKE_CASE (a__ ):
"""simple docstring"""
def __init__( self : Optional[int] , __a : Tuple , __a : Tuple , __a : Optional[Any] , ):
super().__init__()
self.register_modules(vqvae=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def __call__( self : Tuple , __a : List[Any] = None , __a : List[str] = 1 , __a : Any = 1_00 , __a : Optional[Any] = 0.0 , __a : List[Any] = None , __a : Union[str, Any] = "pil" , __a : Dict = True , ):
if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ):
_a = 1
elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ):
_a = image.shape[0]
else:
raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE_ )}' )
if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ):
_a = preprocess(SCREAMING_SNAKE_CASE_ )
_a = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
_a = (batch_size, self.unet.config.in_channels // 2, height, width)
_a = next(self.unet.parameters() ).dtype
_a = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
_a = image.to(device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=self.device )
_a = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
_a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_a = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_a = {}
if accepts_eta:
_a = eta
for t in self.progress_bar(SCREAMING_SNAKE_CASE_ ):
# concat latents and low resolution image in the channel dimension.
_a = torch.cat([latents, image] , dim=1 )
_a = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# predict the noise residual
_a = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample
# decode the image latents with the VQVAE
_a = self.vqvae.decode(SCREAMING_SNAKE_CASE_ ).sample
_a = torch.clamp(SCREAMING_SNAKE_CASE_ , -1.0 , 1.0 )
_a = image / 2 + 0.5
_a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_a = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
| 365 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int = 10 ) -> str:
if not isinstance(lowercase , lowercase ) or n < 0:
raise ValueError("Invalid input" )
_a = 10**n
_a = 2_8433 * (pow(2 , 783_0457 , lowercase )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(10) = }""")
| 346 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , __a : int , __a : Tuple=7 , __a : List[str]=3 , __a : Union[str, Any]=18 , __a : Union[str, Any]=30 , __a : int=4_00 , __a : List[str]=True , __a : int=None , __a : Dict=True , ):
_a = size if size is not None else {"height": 18, "width": 18}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = apply_ocr
def UpperCamelCase__ ( self : Union[str, Any] ):
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class __SCREAMING_SNAKE_CASE (_SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
__a =LayoutLMvaImageProcessor if is_pytesseract_available() else None
def UpperCamelCase__ ( self : Tuple ):
_a = LayoutLMvaImageProcessingTester(self )
@property
def UpperCamelCase__ ( self : Optional[int] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ ( self : Dict ):
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__a , "do_resize" ) )
self.assertTrue(hasattr(__a , "size" ) )
self.assertTrue(hasattr(__a , "apply_ocr" ) )
def UpperCamelCase__ ( self : List[str] ):
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 18, "width": 18} )
_a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"height": 42, "width": 42} )
def UpperCamelCase__ ( self : Any ):
pass
def UpperCamelCase__ ( self : Optional[int] ):
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a )
for image in image_inputs:
self.assertIsInstance(__a , Image.Image )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors="pt" )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
self.assertIsInstance(encoding.words , __a )
self.assertIsInstance(encoding.boxes , __a )
# Test batched
_a = image_processing(__a , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
def UpperCamelCase__ ( self : Optional[int] ):
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a )
for image in image_inputs:
self.assertIsInstance(__a , np.ndarray )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
_a = image_processing(__a , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
def UpperCamelCase__ ( self : List[str] ):
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a )
for image in image_inputs:
self.assertIsInstance(__a , torch.Tensor )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
_a = image_processing(__a , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
def UpperCamelCase__ ( self : List[str] ):
# with apply_OCR = True
_a = LayoutLMvaImageProcessor()
from datasets import load_dataset
_a = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" )
_a = Image.open(ds[0]["file"] ).convert("RGB" )
_a = image_processing(__a , return_tensors="pt" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
_a = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231
_a = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , __a )
self.assertListEqual(encoding.boxes , __a )
# with apply_OCR = False
_a = LayoutLMvaImageProcessor(apply_ocr=__a )
_a = image_processing(__a , return_tensors="pt" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 366 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int = 6008_5147_5143 ) -> int:
try:
_a = int(lowercase )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
_a = 2
_a = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
_a = i
while n % i == 0:
_a = n // i
i += 1
return int(lowercase )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 346 | 0 |
'''simple docstring'''
from math import factorial
lowerCAmelCase_ : Any = {str(d): factorial(d) for d in range(10)}
def _lowerCamelCase ( lowercase : List[str] ) -> Dict:
return sum(DIGIT_FACTORIAL[d] for d in str(lowercase ) )
def _lowerCamelCase ( ) -> Optional[int]:
_a = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , lowercase ) if sum_of_digit_factorial(lowercase ) == i )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 367 |
'''simple docstring'''
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=os.environ.get('LOGLEVEL', 'INFO').upper(),
stream=sys.stdout,
)
lowerCAmelCase_ : List[Any] = logging.getLogger(__name__)
lowerCAmelCase_ : List[Any] = {'facebook/bart-base': BartForConditionalGeneration}
lowerCAmelCase_ : int = {'facebook/bart-base': BartTokenizer}
def _lowerCamelCase ( ) -> Union[str, Any]:
_a = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." )
parser.add_argument(
"--validation_file" , type=lowercase , default=lowercase , help="A csv or a json file containing the validation data." )
parser.add_argument(
"--max_length" , type=lowercase , default=5 , help="The maximum total input sequence length after tokenization." , )
parser.add_argument(
"--num_beams" , type=lowercase , default=lowercase , help=(
"Number of beams to use for evaluation. This argument will be "
"passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."
) , )
parser.add_argument(
"--model_name_or_path" , type=lowercase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowercase , )
parser.add_argument(
"--config_name" , type=lowercase , default=lowercase , help="Pretrained config name or path if not the same as model_name" , )
parser.add_argument(
"--device" , type=lowercase , default="cpu" , help="Device where the model will be run" , )
parser.add_argument("--output_file_path" , type=lowercase , default=lowercase , help="Where to store the final ONNX file." )
_a = parser.parse_args()
return args
def _lowerCamelCase ( lowercase : Any , lowercase : Tuple="cpu" ) -> Optional[Any]:
_a = model_dict[model_name].from_pretrained(lowercase ).to(lowercase )
_a = tokenizer_dict[model_name].from_pretrained(lowercase )
if model_name in ["facebook/bart-base"]:
_a = 0
_a = None
_a = 0
return huggingface_model, tokenizer
def _lowerCamelCase ( lowercase : List[str] , lowercase : Tuple , lowercase : int , lowercase : Any , lowercase : Dict ) -> Any:
model.eval()
_a = None
_a = torch.jit.script(BARTBeamSearchGenerator(lowercase ) )
with torch.no_grad():
_a = "My friends are cool but they eat too many carbs."
_a = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device )
_a = model.generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=lowercase , max_length=lowercase , early_stopping=lowercase , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
lowercase , (
inputs["input_ids"],
inputs["attention_mask"],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , lowercase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={
"input_ids": {0: "batch", 1: "seq"},
"output_ids": {0: "batch", 1: "seq_out"},
} , example_outputs=lowercase , )
logger.info("Model exported to {}".format(lowercase ) )
_a = remove_dup_initializers(os.path.abspath(lowercase ) )
logger.info("Deduplicated and optimized model written to {}".format(lowercase ) )
_a = onnxruntime.InferenceSession(lowercase )
_a = ort_sess.run(
lowercase , {
"input_ids": inputs["input_ids"].cpu().numpy(),
"attention_mask": inputs["attention_mask"].cpu().numpy(),
"num_beams": np.array(lowercase ),
"max_length": np.array(lowercase ),
"decoder_start_token_id": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info("Model outputs from torch and ONNX Runtime are similar." )
logger.info("Success." )
def _lowerCamelCase ( ) -> Any:
_a = parse_args()
_a = 5
_a = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_a = torch.device(args.device )
_a , _a = load_model_tokenizer(args.model_name_or_path , lowercase )
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" )
model.to(lowercase )
if args.max_length:
_a = args.max_length
if args.num_beams:
_a = args.num_beams
if args.output_file_path:
_a = args.output_file_path
else:
_a = "BART.onnx"
logger.info("Exporting model to ONNX" )
export_and_validate_model(lowercase , lowercase , lowercase , lowercase , lowercase )
if __name__ == "__main__":
main()
| 346 | 0 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
lowerCAmelCase_ : List[str] = {
'n_samples': 64,
'horizon': 32,
'num_inference_steps': 20,
'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network
'scale_grad_by_std': True,
'scale': 0.1,
'eta': 0.0,
't_grad_cutoff': 2,
'device': 'cpu',
}
if __name__ == "__main__":
lowerCAmelCase_ : Any = 'hopper-medium-v2'
lowerCAmelCase_ : Optional[int] = gym.make(env_name)
lowerCAmelCase_ : Tuple = ValueGuidedRLPipeline.from_pretrained(
'bglick13/hopper-medium-v2-value-function-hor32',
env=env,
)
env.seed(0)
lowerCAmelCase_ : Optional[Any] = env.reset()
lowerCAmelCase_ : List[str] = 0
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : Any = 10_00
lowerCAmelCase_ : Optional[int] = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
lowerCAmelCase_ : Any = pipeline(obs, planning_horizon=32)
# execute action in environment
lowerCAmelCase_ : Union[str, Any] = env.step(denorm_actions)
lowerCAmelCase_ : Optional[int] = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"""
f""" {total_score}"""
)
# save observations for rendering
rollout.append(next_observation.copy())
lowerCAmelCase_ : Dict = next_observation
except KeyboardInterrupt:
pass
print(f"""Total reward: {total_reward}""")
| 368 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
lowerCAmelCase_ : Dict = abspath(join(dirname(dirname(dirname(__file__))), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def _lowerCamelCase ( lowercase : str ) -> Optional[int]:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(lowercase )
def _lowerCamelCase ( lowercase : Dict ) -> str:
from transformers.testing_utils import pytest_terminal_summary_main
_a = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(lowercase , id=lowercase )
| 346 | 0 |
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
lowerCAmelCase_ : List[str] = 'CompVis/stable-diffusion-v1-1'
lowerCAmelCase_ : Any = 'CompVis/stable-diffusion-v1-2'
lowerCAmelCase_ : Tuple = 'CompVis/stable-diffusion-v1-3'
lowerCAmelCase_ : Union[str, Any] = 'CompVis/stable-diffusion-v1-4'
class __SCREAMING_SNAKE_CASE (_UpperCamelCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , __a : bool = True , ):
super()._init_()
_a = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase )
_a = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase )
_a = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase )
_a = StableDiffusionPipeline(
vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , requires_safety_checker=_UpperCAmelCase , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCamelCase__ ( self : Optional[int] ):
return {k: getattr(self , _UpperCAmelCase ) for k in self.config.keys() if not k.startswith("_" )}
def UpperCamelCase__ ( self : str , __a : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_a = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_UpperCAmelCase )
def UpperCamelCase__ ( self : str ):
self.enable_attention_slicing(_UpperCAmelCase )
@torch.no_grad()
def UpperCamelCase__ ( self : Any , __a : Union[str, List[str]] , __a : int = 5_12 , __a : int = 5_12 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : List[str] , ):
return self.pipea(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
@torch.no_grad()
def UpperCamelCase__ ( self : str , __a : Union[str, List[str]] , __a : int = 5_12 , __a : int = 5_12 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Any , ):
return self.pipea(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
@torch.no_grad()
def UpperCamelCase__ ( self : Dict , __a : Union[str, List[str]] , __a : int = 5_12 , __a : int = 5_12 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Union[str, Any] , ):
return self.pipea(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
@torch.no_grad()
def UpperCamelCase__ ( self : Dict , __a : Union[str, List[str]] , __a : int = 5_12 , __a : int = 5_12 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : int , ):
return self.pipea(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
@torch.no_grad()
def UpperCamelCase__ ( self : Union[str, Any] , __a : Union[str, List[str]] , __a : int = 5_12 , __a : int = 5_12 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Union[str, Any] , ):
_a = 'cuda' if torch.cuda.is_available() else 'cpu'
self.to(_UpperCAmelCase )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'`height` and `width` must be divisible by 8 but are {height} and {width}.' )
# Get first result from Stable Diffusion Checkpoint v1.1
_a = self.textaimg_sda_a(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.2
_a = self.textaimg_sda_a(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.3
_a = self.textaimg_sda_a(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.4
_a = self.textaimg_sda_a(
prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 369 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
@register_to_config
def __init__( self : List[Any] , __a : int , __a : int , __a : int , __a : float , __a : int , __a : int , __a : int , __a : int , __a : str , __a : bool = False , ):
super().__init__()
_a = nn.Embedding(__a , __a )
_a = nn.Embedding(__a , __a )
_a = False
_a = nn.Dropout(p=__a )
_a = TaConfig(
vocab_size=__a , d_model=__a , num_heads=__a , d_kv=__a , d_ff=__a , dropout_rate=__a , feed_forward_proj=__a , is_decoder=__a , is_encoder_decoder=__a , )
_a = nn.ModuleList()
for lyr_num in range(__a ):
_a = TaBlock(__a )
self.encoders.append(__a )
_a = TaLayerNorm(__a )
_a = nn.Dropout(p=__a )
def UpperCamelCase__ ( self : str , __a : Union[str, Any] , __a : Dict ):
_a = self.token_embedder(__a )
_a = encoder_input_tokens.shape[1]
_a = torch.arange(__a , device=encoder_input_tokens.device )
x += self.position_encoding(__a )
_a = self.dropout_pre(__a )
# inverted the attention mask
_a = encoder_input_tokens.size()
_a = self.get_extended_attention_mask(__a , __a )
for lyr in self.encoders:
_a = lyr(__a , __a )[0]
_a = self.layer_norm(__a )
return self.dropout_post(__a ), encoder_inputs_mask
| 346 | 0 |
'''simple docstring'''
from __future__ import annotations
lowerCAmelCase_ : Dict = '#'
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Any ):
_a = {}
def UpperCamelCase__ ( self : int , __a : str ):
_a = self._trie
for char in text:
if char not in trie:
_a = {}
_a = trie[char]
_a = True
def UpperCamelCase__ ( self : List[str] , __a : str ):
_a = self._trie
for char in prefix:
if char in trie:
_a = trie[char]
else:
return []
return self._elements(UpperCamelCase__ )
def UpperCamelCase__ ( self : Any , __a : dict ):
_a = []
for c, v in d.items():
_a = [" "] if c == END else [(c + s) for s in self._elements(UpperCamelCase__ )]
result.extend(UpperCamelCase__ )
return tuple(UpperCamelCase__ )
lowerCAmelCase_ : Optional[int] = Trie()
lowerCAmelCase_ : Optional[Any] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal')
for word in words:
trie.insert_word(word)
def _lowerCamelCase ( lowercase : List[Any] ) -> tuple:
_a = trie.find_word(__SCREAMING_SNAKE_CASE )
return tuple(string + word for word in suffixes )
def _lowerCamelCase ( ) -> None:
print(autocomplete_using_trie("de" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 370 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def _lowerCamelCase ( lowercase : Any ) -> Any:
_a = filter(lambda lowercase : p.requires_grad , model.parameters() )
_a = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase_ : List[str] = logging.getLogger(__name__)
def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict ) -> Union[str, Any]:
if metric == "rouge2":
_a = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
_a = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
_a = "{val_avg_em:.4f}-{step_count}"
elif metric == "loss":
_a = "{val_avg_loss:.4f}-{step_count}"
else:
raise NotImplementedError(
F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
" function." )
_a = ModelCheckpoint(
dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def _lowerCamelCase ( lowercase : Dict , lowercase : Dict ) -> str:
return EarlyStopping(
monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , )
class __SCREAMING_SNAKE_CASE (pl.Callback ):
"""simple docstring"""
def UpperCamelCase__ ( self : Tuple , __a : Optional[int] , __a : Any ):
_a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Tuple , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Dict=True ):
logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' )
_a = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
_a = Path(pl_module.hparams.output_dir )
if type_path == "test":
_a = od / "test_results.txt"
_a = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_a = od / f'{type_path}_results/{trainer.global_step:05d}.txt'
_a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=__a )
generations_file.parent.mkdir(exist_ok=__a )
with open(__a , "a+" ) as writer:
for key in sorted(__a ):
if key in ["log", "progress_bar", "preds"]:
continue
_a = metrics[key]
if isinstance(__a , torch.Tensor ):
_a = val.item()
_a = f'{key}: {val:.6f}\n'
writer.write(__a )
if not save_generations:
return
if "preds" in metrics:
_a = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : List[Any] , __a : Dict ):
try:
_a = pl_module.model.model.num_parameters()
except AttributeError:
_a = pl_module.model.num_parameters()
_a = count_trainable_parameters(__a )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} )
@rank_zero_only
def UpperCamelCase__ ( self : Union[str, Any] , __a : pl.Trainer , __a : pl.LightningModule ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__a , __a , "test" )
@rank_zero_only
def UpperCamelCase__ ( self : Optional[int] , __a : pl.Trainer , __a : str ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 346 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ : Dict = {
'''configuration_distilbert''': [
'''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''DistilBertConfig''',
'''DistilBertOnnxConfig''',
],
'''tokenization_distilbert''': ['''DistilBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : List[str] = ['''DistilBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : List[Any] = [
'''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DistilBertForMaskedLM''',
'''DistilBertForMultipleChoice''',
'''DistilBertForQuestionAnswering''',
'''DistilBertForSequenceClassification''',
'''DistilBertForTokenClassification''',
'''DistilBertModel''',
'''DistilBertPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Optional[Any] = [
'''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFDistilBertForMaskedLM''',
'''TFDistilBertForMultipleChoice''',
'''TFDistilBertForQuestionAnswering''',
'''TFDistilBertForSequenceClassification''',
'''TFDistilBertForTokenClassification''',
'''TFDistilBertMainLayer''',
'''TFDistilBertModel''',
'''TFDistilBertPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Optional[Any] = [
'''FlaxDistilBertForMaskedLM''',
'''FlaxDistilBertForMultipleChoice''',
'''FlaxDistilBertForQuestionAnswering''',
'''FlaxDistilBertForSequenceClassification''',
'''FlaxDistilBertForTokenClassification''',
'''FlaxDistilBertModel''',
'''FlaxDistilBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 371 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
lowerCAmelCase_ : str = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
lowerCAmelCase_ : Union[str, Any] = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]:
_a = (images / 2 + 0.5).clamp(0 , 1 )
_a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_a = numpy_to_pil(lowercase )
return images
def _lowerCamelCase ( lowercase : int ) -> List[Any]:
if images.ndim == 3:
_a = images[None, ...]
_a = (images * 255).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
_a = [Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
_a = [Image.fromarray(lowercase ) for image in images]
return pil_images
| 346 | 0 |
'''simple docstring'''
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =(DPMSolverSDEScheduler,)
__a =10
def UpperCamelCase__ ( self : Tuple , **__a : Any ):
_a = {
"num_train_timesteps": 11_00,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"noise_sampler_seed": 0,
}
config.update(**__a )
return config
def UpperCamelCase__ ( self : Dict ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__a )
def UpperCamelCase__ ( self : str ):
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=__a , beta_end=__a )
def UpperCamelCase__ ( self : Dict ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=__a )
def UpperCamelCase__ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
scheduler.set_timesteps(self.num_inference_steps )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
_a = sample.to(__a )
for i, t in enumerate(scheduler.timesteps ):
_a = scheduler.scale_model_input(__a , __a )
_a = model(__a , __a )
_a = scheduler.step(__a , __a , __a )
_a = output.prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2
assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2
assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def UpperCamelCase__ ( self : Any ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(prediction_type="v_prediction" )
_a = scheduler_class(**__a )
scheduler.set_timesteps(self.num_inference_steps )
_a = self.dummy_model()
_a = self.dummy_sample_deter * scheduler.init_noise_sigma
_a = sample.to(__a )
for i, t in enumerate(scheduler.timesteps ):
_a = scheduler.scale_model_input(__a , __a )
_a = model(__a , __a )
_a = scheduler.step(__a , __a , __a )
_a = output.prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2
assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2
assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3
else:
assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2
assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a )
scheduler.set_timesteps(self.num_inference_steps , device=__a )
_a = self.dummy_model()
_a = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_a = scheduler.scale_model_input(__a , __a )
_a = model(__a , __a )
_a = scheduler.step(__a , __a , __a )
_a = output.prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2
assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2
assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def UpperCamelCase__ ( self : Optional[Any] ):
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**__a , use_karras_sigmas=__a )
scheduler.set_timesteps(self.num_inference_steps , device=__a )
_a = self.dummy_model()
_a = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma
_a = sample.to(__a )
for t in scheduler.timesteps:
_a = scheduler.scale_model_input(__a , __a )
_a = model(__a , __a )
_a = scheduler.step(__a , __a , __a )
_a = output.prev_sample
_a = torch.sum(torch.abs(__a ) )
_a = torch.mean(torch.abs(__a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
else:
assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
| 350 |
'''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[int]:
_a = 10
_a = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_a = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(lowercase ) ),
} , features=lowercase , )
return dataset
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : int ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=lowercase )
return filename
# FILE_CONTENT + files
lowerCAmelCase_ : Union[str, Any] = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]:
_a = tmp_path_factory.mktemp("data" ) / "file.txt"
_a = FILE_CONTENT
with open(lowercase , "w" ) as f:
f.write(lowercase )
return filename
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> str:
import bza
_a = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_a = bytes(lowercase , "utf-8" )
with bza.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> Optional[Any]:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_a = bytes(lowercase , "utf-8" )
with gzip.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Union[str, Any]:
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_a = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_a = bytes(lowercase , "utf-8" )
with lza.frame.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Tuple ) -> Optional[Any]:
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_a = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(lowercase , "w" ) as archive:
archive.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : Optional[Any] ) -> Dict:
import tarfile
_a = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any ) -> Union[str, Any]:
import lzma
_a = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_a = bytes(lowercase , "utf-8" )
with lzma.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int , lowercase : Any ) -> Union[str, Any]:
import zipfile
_a = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict ) -> List[str]:
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_a = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_a = bytes(lowercase , "utf-8" )
with zstd.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> Union[str, Any]:
_a = tmp_path_factory.mktemp("data" ) / "file.xml"
_a = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(lowercase , "w" ) as f:
f.write(lowercase )
return filename
lowerCAmelCase_ : Optional[int] = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
lowerCAmelCase_ : List[Any] = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
lowerCAmelCase_ : Dict = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
lowerCAmelCase_ : Dict = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
lowerCAmelCase_ : List[Any] = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> List[str]:
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> str:
_a = datasets.Dataset.from_dict(lowercase )
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict ) -> Dict:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(lowercase ) ) as con:
_a = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[Any] ) -> str:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(lowercase , "w" , newline="" ) as f:
_a = csv.DictWriter(lowercase , fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(lowercase , "w" , newline="" ) as f:
_a = csv.DictWriter(lowercase , fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> int:
import bza
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(lowercase , "rb" ) as f:
_a = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Any , lowercase : Any ) -> List[str]:
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : Any , lowercase : List[Any] ) -> Dict:
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) )
f.write(lowercase , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Optional[Any] , lowercase : int ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[Any] ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_a = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(lowercase , "wb" ) as f:
_a = pq.ParquetWriter(lowercase , schema=lowercase )
_a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase ) )] for k in DATA[0]} , schema=lowercase )
writer.write_table(lowercase )
writer.close()
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_a = {"data": DATA}
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_a = {"data": DATA_DICT_OF_LISTS}
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] ) -> str:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> List[str]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[Any] ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA_312:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> int:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict ) -> Tuple:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(lowercase , "rb" ) as orig_file:
with gzip.open(lowercase , "wb" ) as zipped_file:
zipped_file.writelines(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[Any] ) -> List[Any]:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(lowercase , "rb" ) as orig_file:
with gzip.open(lowercase , "wb" ) as zipped_file:
zipped_file.writelines(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[Any] , lowercase : int ) -> str:
_a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : int , lowercase : List[Any] ) -> Optional[int]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("nested" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] , lowercase : str ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : Any , lowercase : Optional[int] ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.basename(lowercase ) )
f.add(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.join("nested" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> str:
_a = ["0", "1", "2", "3"]
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> Dict:
_a = ["0", "1", "2", "3"]
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Dict:
_a = ["0", "1", "2", "3"]
_a = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Union[str, Any] , lowercase : Any ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : List[str] , lowercase : List[str] ) -> Union[str, Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : int , lowercase : str ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename("unsupported.ext" ) )
f.write(lowercase , arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[Any] ) -> Any:
_a = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_a = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(lowercase , "w" , encoding="utf-8" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[Any]:
return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[int]:
return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> Dict:
_a = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ).replace(".jpg" , "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> str:
_a = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt" , "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt" , "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
return data_dir
| 346 | 0 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : Dict ) -> List[str]:
if not head:
return True
# split the list to two parts
_a , _a = head.next, head
while fast and fast.next:
_a = fast.next.next
_a = slow.next
_a = slow.next
_a = None # Don't forget here! But forget still works!
# reverse the second part
_a = None
while second:
_a = second.next
_a = node
_a = second
_a = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
_a = node.next
_a = head.next
return True
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Optional[Any]:
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
_a = _a = _a = head
while fast and fast.next:
_a , _a = fast.next.next, slow.next
# 2. Push the second half into the stack
_a = [slow.val]
while slow.next:
_a = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
_a = cur.next
return True
def _lowerCamelCase ( lowercase : Optional[int] ) -> Any:
if not head or not head.next:
return True
_a = {}
_a = 0
while head:
if head.val in d:
d[head.val].append(lowercase )
else:
_a = [pos]
_a = head.next
pos += 1
_a = pos - 1
_a = 0
for v in d.values():
if len(lowercase ) % 2 != 0:
middle += 1
else:
_a = 0
for i in range(0 , len(lowercase ) ):
if v[i] + v[len(lowercase ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 351 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =['image_processor', 'tokenizer']
__a ='LayoutLMv2ImageProcessor'
__a =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast')
def __init__( self : Dict , __a : int=None , __a : List[Any]=None , **__a : str ):
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __a , )
_a = kwargs.pop("feature_extractor" )
_a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__a , __a )
def __call__( self : Optional[int] , __a : Optional[Any] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Optional[Any] , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
_a = self.image_processor(images=__a , return_tensors=__a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__a , __a ):
_a = [text] # add batch dimension (as the image processor always adds a batch dimension)
_a = features["words"]
_a = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , )
# add pixel values
_a = features.pop("pixel_values" )
if return_overflowing_tokens is True:
_a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] )
_a = images
return encoded_inputs
def UpperCamelCase__ ( self : int , __a : List[Any] , __a : int ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
_a = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__a ) != len(__a ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
f' {len(__a )} and {len(__a )}' )
return images_with_overflow
def UpperCamelCase__ ( self : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ):
return self.tokenizer.batch_decode(*__a , **__a )
def UpperCamelCase__ ( self : Union[str, Any] , *__a : Optional[int] , **__a : Optional[Any] ):
return self.tokenizer.decode(*__a , **__a )
@property
def UpperCamelCase__ ( self : int ):
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def UpperCamelCase__ ( self : List[Any] ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , )
return self.image_processor_class
@property
def UpperCamelCase__ ( self : int ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , )
return self.image_processor
| 346 | 0 |
'''simple docstring'''
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowerCAmelCase_ : Dict = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =PegasusConfig
__a ={}
__a ='gelu'
def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=13 , __a : List[Any]=7 , __a : int=True , __a : List[Any]=False , __a : Optional[int]=99 , __a : Optional[Any]=32 , __a : Optional[Any]=5 , __a : Union[str, Any]=4 , __a : Dict=37 , __a : Optional[Any]=0.1 , __a : List[str]=0.1 , __a : Union[str, Any]=20 , __a : List[Any]=2 , __a : Optional[Any]=1 , __a : List[Any]=0 , ):
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = eos_token_id
_a = pad_token_id
_a = bos_token_id
def UpperCamelCase__ ( self : Optional[Any] ):
_a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
_a = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
_a = np.concatenate([input_ids, eos_tensor] , axis=1 )
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_a = prepare_pegasus_inputs_dict(__a , __a , __a )
return config, inputs_dict
def UpperCamelCase__ ( self : Optional[int] , __a : int , __a : str , __a : Tuple ):
_a = 20
_a = model_class_name(__a )
_a = model.encode(inputs_dict["input_ids"] )
_a , _a = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
_a = model.init_cache(decoder_input_ids.shape[0] , __a , __a )
_a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
_a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a = model.decode(
decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , )
_a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
_a = model.decode(
decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , )
_a = model.decode(__a , __a )
_a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' )
def UpperCamelCase__ ( self : List[str] , __a : int , __a : Optional[Any] , __a : Any ):
_a = 20
_a = model_class_name(__a )
_a = model.encode(inputs_dict["input_ids"] )
_a , _a = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
_a = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_a = model.init_cache(decoder_input_ids.shape[0] , __a , __a )
_a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a = model.decode(
decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , )
_a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
_a = model.decode(
decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , )
_a = model.decode(__a , __a , decoder_attention_mask=__a )
_a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' )
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Tuple=None , lowercase : List[str]=None , ) -> Dict:
if attention_mask is None:
_a = np.not_equal(lowercase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
_a = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =(
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__a =(FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__a =True
__a =False
__a =False
__a =False
def UpperCamelCase__ ( self : Tuple ):
_a = FlaxPegasusModelTester(self )
_a = ConfigTester(self , config_class=__a )
def UpperCamelCase__ ( self : Tuple ):
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self : Dict ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__a , __a , __a )
def UpperCamelCase__ ( self : int ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a )
def UpperCamelCase__ ( self : str ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a = self._prepare_for_class(__a , __a )
_a = model_class(__a )
@jax.jit
def encode_jitted(__a : Union[str, Any] , __a : Any=None , **__a : Any ):
return model.encode(input_ids=__a , attention_mask=__a )
with self.subTest("JIT Enabled" ):
_a = encode_jitted(**__a ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_a = encode_jitted(**__a ).to_tuple()
self.assertEqual(len(__a ) , len(__a ) )
for jitted_output, output in zip(__a , __a ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a = model_class(__a )
_a = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
_a = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(__a : Union[str, Any] , __a : List[Any] , __a : str ):
return model.decode(
decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , )
with self.subTest("JIT Enabled" ):
_a = decode_jitted(**__a ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_a = decode_jitted(**__a ).to_tuple()
self.assertEqual(len(__a ) , len(__a ) )
for jitted_output, output in zip(__a , __a ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
for model_class_name in self.all_model_classes:
_a = model_class_name.from_pretrained("google/pegasus-large" , from_pt=__a )
_a = np.ones((1, 1) )
_a = model(__a )
self.assertIsNotNone(__a )
@slow
def UpperCamelCase__ ( self : Optional[Any] ):
_a = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" )
_a = PegasusTokenizer.from_pretrained("google/pegasus-xsum" )
_a = [
" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ",
]
_a = [
"California's largest electricity provider has turned off power to hundreds of thousands of customers.",
"Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.",
]
_a = tokenizer(__a , return_tensors="np" , truncation=__a , max_length=5_12 , padding=__a )
_a = model.generate(**__a , num_beams=2 ).sequences
_a = tokenizer.batch_decode(__a , skip_special_tokens=__a )
assert tgt_text == decoded
| 352 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
lowerCAmelCase_ : int = '▁'
lowerCAmelCase_ : Optional[Any] = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
lowerCAmelCase_ : Optional[int] = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
lowerCAmelCase_ : List[str] = {
'facebook/s2t-small-librispeech-asr': 10_24,
}
lowerCAmelCase_ : List[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
lowerCAmelCase_ : Union[str, Any] = {'mustc': MUSTC_LANGS}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =VOCAB_FILES_NAMES
__a =PRETRAINED_VOCAB_FILES_MAP
__a =MAX_MODEL_INPUT_SIZES
__a =['input_ids', 'attention_mask']
__a =[]
def __init__( self : Optional[Any] , __a : Optional[Any] , __a : Any , __a : Any="<s>" , __a : List[str]="</s>" , __a : str="<pad>" , __a : List[str]="<unk>" , __a : Union[str, Any]=False , __a : Any=False , __a : List[str]=None , __a : Optional[int]=None , __a : Optional[Dict[str, Any]] = None , **__a : int , ):
_a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , )
_a = do_upper_case
_a = do_lower_case
_a = load_json(__a )
_a = {v: k for k, v in self.encoder.items()}
_a = spm_file
_a = load_spm(__a , self.sp_model_kwargs )
if lang_codes is not None:
_a = lang_codes
_a = LANGUAGES[lang_codes]
_a = [f'<lang:{lang}>' for lang in self.langs]
_a = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs}
_a = self.lang_tokens
_a = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
_a = {}
@property
def UpperCamelCase__ ( self : str ):
return len(self.encoder )
@property
def UpperCamelCase__ ( self : str ):
return self._tgt_lang
@tgt_lang.setter
def UpperCamelCase__ ( self : Optional[int] , __a : Any ):
_a = new_tgt_lang
self.set_tgt_lang_special_tokens(__a )
def UpperCamelCase__ ( self : List[Any] , __a : str ):
_a = self.lang_code_to_id[tgt_lang]
_a = [lang_code_id]
def UpperCamelCase__ ( self : Dict , __a : str ):
return self.sp_model.encode(__a , out_type=__a )
def UpperCamelCase__ ( self : List[str] , __a : Any ):
return self.encoder.get(__a , self.encoder[self.unk_token] )
def UpperCamelCase__ ( self : str , __a : int ):
return self.decoder.get(__a , self.unk_token )
def UpperCamelCase__ ( self : str , __a : List[str] ):
_a = []
_a = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
_a = self.sp_model.decode(__a )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
_a = []
else:
current_sub_tokens.append(__a )
_a = self.sp_model.decode(__a )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def UpperCamelCase__ ( self : int , __a : Any , __a : int=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def UpperCamelCase__ ( self : Any , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a )
_a = [1] * len(self.prefix_tokens )
_a = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__a )) + suffix_ones
return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ):
_a = self.__dict__.copy()
_a = None
return state
def __setstate__( self : str , __a : Dict ):
_a = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_a = {}
_a = load_spm(self.spm_file , self.sp_model_kwargs )
def UpperCamelCase__ ( self : List[str] , __a : str , __a : Optional[str] = None ):
_a = Path(__a )
assert save_dir.is_dir(), f'{save_directory} should be a directory'
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder , __a )
if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __a )
elif not os.path.isfile(self.spm_file ):
with open(__a , "wb" ) as fi:
_a = self.sp_model.serialized_model_proto()
fi.write(__a )
return (str(__a ), str(__a ))
def _lowerCamelCase ( lowercase : str , lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
_a = sentencepiece.SentencePieceProcessor(**lowercase )
spm.Load(str(lowercase ) )
return spm
def _lowerCamelCase ( lowercase : str ) -> Union[Dict, List]:
with open(lowercase , "r" ) as f:
return json.load(lowercase )
def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> None:
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase , indent=2 )
| 346 | 0 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
lowerCAmelCase_ : Union[str, Any] = logging.getLogger()
@unittest.skip('Temporarily disable the doc tests.' )
@require_torch
@require_tf
@slow
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Union[str, Any] , __a : Path , __a : Union[str, None] = None , __a : Union[List[str], None] = None , __a : Union[str, List[str], None] = None , __a : bool = True , ):
_a = [file for file in os.listdir(__a ) if os.path.isfile(os.path.join(__a , __a ) )]
if identifier is not None:
_a = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(__a , __a ):
for n_ in n_identifier:
_a = [file for file in files if n_ not in file]
else:
_a = [file for file in files if n_identifier not in file]
_a = ignore_files or []
ignore_files.append("__init__.py" )
_a = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("Testing" , __a )
if only_modules:
_a = file.split("." )[0]
try:
_a = getattr(__a , __a )
_a = doctest.DocTestSuite(__a )
_a = unittest.TextTestRunner().run(__a )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'{module_identifier} is not a module.' )
else:
_a = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def UpperCamelCase__ ( self : Optional[Any] ):
_a = Path("src/transformers" )
_a = "modeling"
_a = [
"modeling_ctrl.py",
"modeling_tf_ctrl.py",
]
self.analyze_directory(__a , identifier=__a , ignore_files=__a )
def UpperCamelCase__ ( self : str ):
_a = Path("src/transformers" )
_a = "tokenization"
self.analyze_directory(__a , identifier=__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = Path("src/transformers" )
_a = "configuration"
self.analyze_directory(__a , identifier=__a )
def UpperCamelCase__ ( self : Optional[Any] ):
_a = Path("src/transformers" )
_a = ["configuration", "modeling", "tokenization"]
self.analyze_directory(__a , n_identifier=__a )
def UpperCamelCase__ ( self : List[Any] ):
_a = Path("docs/source" )
_a = ["favicon.ico"]
self.analyze_directory(__a , ignore_files=__a , only_modules=__a )
| 353 |
'''simple docstring'''
from manim import *
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def UpperCamelCase__ ( self : Dict ):
_a = Rectangle(height=0.5 , width=0.5 )
_a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_a = [mem.copy() for i in range(6 )]
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = VGroup(__a , __a ).arrange(__a , buff=0 )
_a = Text("CPU" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__a )
_a = [mem.copy() for i in range(4 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("GPU" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
gpu.move_to([-1, -1, 0] )
self.add(__a )
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("Model" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
model.move_to([3, -1.0, 0] )
self.add(__a )
_a = []
for i, rect in enumerate(__a ):
rect.set_stroke(__a )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
_a = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__a , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__a , buff=0.0 )
self.add(__a )
cpu_targs.append(__a )
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("Loaded Checkpoint" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , aligned_edge=__a , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
_a = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_a = MarkupText(
f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__a , __a )
_a = MarkupText(
f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , )
blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() )
_a = MarkupText(
f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__a ) , Write(__a ) )
self.play(Write(__a , run_time=1 ) , Create(__a , run_time=1 ) )
_a = []
_a = []
for i, rect in enumerate(__a ):
_a = fill.copy().set_fill(__a , opacity=0.7 )
target.move_to(__a )
first_animations.append(GrowFromCenter(__a , run_time=1 ) )
_a = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__a , run_time=1.5 ) )
self.play(*__a )
self.play(*__a )
self.wait()
| 346 | 0 |
'''simple docstring'''
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (enum.Enum ):
"""simple docstring"""
__a =0
__a =1
@add_end_docstrings(lowerCamelCase_ )
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='generated'
def __init__( self : List[str] , *__a : Union[str, Any] , **__a : str ):
super().__init__(*__a , **__a )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def UpperCamelCase__ ( self : int , __a : Optional[int]=None , __a : List[Any]=None , __a : Any=None , __a : Union[str, Any]=None , __a : Dict=None , __a : Union[str, Any]=None , **__a : Any , ):
_a = {}
if truncation is not None:
_a = truncation
_a = generate_kwargs
_a = {}
if return_tensors is not None and return_type is None:
_a = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
_a = return_type
if clean_up_tokenization_spaces is not None:
_a = clean_up_tokenization_spaces
if stop_sequence is not None:
_a = self.tokenizer.encode(__a , add_special_tokens=__a )
if len(__a ) > 1:
warnings.warn(
"Stopping on a multiple token sequence is not yet supported on transformers. The first token of"
" the stop sequence will be used as the stop sequence string in the interim." )
_a = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def UpperCamelCase__ ( self : str , __a : int , __a : int , __a : int ):
return True
def UpperCamelCase__ ( self : Any , *__a : Optional[int] , __a : Dict ):
_a = self.model.config.prefix if self.model.config.prefix is not None else ""
if isinstance(args[0] , __a ):
if self.tokenizer.pad_token_id is None:
raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input" )
_a = ([prefix + arg for arg in args[0]],)
_a = True
elif isinstance(args[0] , __a ):
_a = (prefix + args[0],)
_a = False
else:
raise ValueError(
f' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`' )
_a = self.tokenizer(*__a , padding=__a , truncation=__a , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : Dict , *__a : List[str] , **__a : Optional[Any] ):
_a = super().__call__(*__a , **__a )
if (
isinstance(args[0] , __a )
and all(isinstance(__a , __a ) for el in args[0] )
and all(len(__a ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def UpperCamelCase__ ( self : Tuple , __a : Union[str, Any] , __a : List[str]=TruncationStrategy.DO_NOT_TRUNCATE , **__a : Optional[int] ):
_a = self._parse_and_tokenize(__a , truncation=__a , **__a )
return inputs
def UpperCamelCase__ ( self : int , __a : str , **__a : Optional[Any] ):
if self.framework == "pt":
_a , _a = model_inputs["input_ids"].shape
elif self.framework == "tf":
_a , _a = tf.shape(model_inputs["input_ids"] ).numpy()
_a = generate_kwargs.get("min_length" , self.model.config.min_length )
_a = generate_kwargs.get("max_length" , self.model.config.max_length )
self.check_inputs(__a , generate_kwargs["min_length"] , generate_kwargs["max_length"] )
_a = self.model.generate(**__a , **__a )
_a = output_ids.shape[0]
if self.framework == "pt":
_a = output_ids.reshape(__a , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
_a = tf.reshape(__a , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : Dict=ReturnType.TEXT , __a : Union[str, Any]=False ):
_a = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
_a = {f'{self.return_name}_token_ids': output_ids}
elif return_type == ReturnType.TEXT:
_a = {
f'{self.return_name}_text': self.tokenizer.decode(
__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , )
}
records.append(__a )
return records
@add_end_docstrings(lowerCamelCase_ )
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='summary'
def __call__( self : List[Any] , *__a : Tuple , **__a : Tuple ):
return super().__call__(*__a , **__a )
def UpperCamelCase__ ( self : List[str] , __a : int , __a : int , __a : int ):
if max_length < min_length:
logger.warning(f'Your min_length={min_length} must be inferior than your max_length={max_length}.' )
if input_length < max_length:
logger.warning(
f'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '
"a summarization task, where outputs shorter than the input are typically wanted, you might "
f'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})' )
@add_end_docstrings(lowerCamelCase_ )
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='translation'
def UpperCamelCase__ ( self : Any , __a : int , __a : int , __a : int ):
if input_length > 0.9 * max_length:
logger.warning(
f'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '
"increasing your max_length manually, e.g. translator('...', max_length=400)" )
return True
def UpperCamelCase__ ( self : str , *__a : List[str] , __a : Dict=TruncationStrategy.DO_NOT_TRUNCATE , __a : Optional[int]=None , __a : Tuple=None ):
if getattr(self.tokenizer , "_build_translation_inputs" , __a ):
return self.tokenizer._build_translation_inputs(
*__a , return_tensors=self.framework , truncation=__a , src_lang=__a , tgt_lang=__a )
else:
return super()._parse_and_tokenize(*__a , truncation=__a )
def UpperCamelCase__ ( self : Any , __a : Optional[Any]=None , __a : Tuple=None , **__a : Tuple ):
_a , _a , _a = super()._sanitize_parameters(**__a )
if src_lang is not None:
_a = src_lang
if tgt_lang is not None:
_a = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
_a = kwargs.get("task" , self.task )
_a = task.split("_" )
if task and len(__a ) == 4:
# translation, XX, to YY
_a = items[1]
_a = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : List[Any] , *__a : int , **__a : Any ):
return super().__call__(*__a , **__a )
| 354 |
'''simple docstring'''
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
lowerCAmelCase_ : Tuple = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN'])
def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[int]:
_a = test_results.split(" " )
_a = 0
_a = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
_a = expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def _lowerCamelCase ( lowercase : str ) -> Optional[Any]:
_a = {}
_a = None
_a = False
for line in failures_short_lines.split("\n" ):
if re.search(r"_ \[doctest\]" , lowercase ):
_a = True
_a = line.split(" " )[2]
elif in_error and not line.split(" " )[0].isdigit():
_a = line
_a = False
return failures
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Tuple , __a : str , __a : Dict ):
_a = title
_a = doc_test_results["time_spent"].split("," )[0]
_a = doc_test_results["success"]
_a = doc_test_results["failures"]
_a = self.n_success + self.n_failures
# Failures and success of the modeling tests
_a = doc_test_results
@property
def UpperCamelCase__ ( self : int ):
_a = [self._time_spent]
_a = 0
for time in time_spent:
_a = time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(__a ) == 1:
_a = [0, 0, time_parts[0]]
_a , _a , _a = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
_a , _a , _a = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(__a )}h{int(__a )}m{int(__a )}s'
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def UpperCamelCase__ ( self : List[str] ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def UpperCamelCase__ ( self : str ):
_a = 40
_a = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(__a , __a )}
_a = ""
for category, failures in category_failures.items():
if len(__a ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(__a )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def UpperCamelCase__ ( self : List[str] ):
_a = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(__a )
@staticmethod
def UpperCamelCase__ ( ):
_a = [
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(__a )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=__a , )
def UpperCamelCase__ ( self : Tuple ):
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
_a = f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed."
_a = client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=__a , )
def UpperCamelCase__ ( self : Dict , __a : List[str] , __a : List[Any] , __a : Tuple , __a : int ):
_a = ""
for key, value in failures.items():
_a = value[:2_00] + " [Truncated]" if len(__a ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
_a = job_name
_a = {"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
_a = {
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def UpperCamelCase__ ( self : str ):
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
_a = self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
_a = sorted(self.doc_test_results.items() , key=lambda __a : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
_a = f'*Num failures* :{len(job_result["failed"] )} \n'
_a = job_result["failures"]
_a = self.get_reply_blocks(__a , __a , __a , text=__a )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=f'Results for {job}' , blocks=__a , thread_ts=self.thread_ts["ts"] , )
time.sleep(1 )
def _lowerCamelCase ( ) -> Any:
_a = os.environ["GITHUB_RUN_ID"]
_a = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
_a = requests.get(lowercase ).json()
_a = {}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
_a = math.ceil((result["total_count"] - 100) / 100 )
for i in range(lowercase ):
_a = requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return jobs
except Exception as e:
print("Unknown error, could not fetch links." , lowercase )
return {}
def _lowerCamelCase ( lowercase : str ) -> Dict:
_a = {}
if os.path.exists(lowercase ):
_a = os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase , lowercase ) , encoding="utf-8" ) as f:
_a = f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase , lowercase )}.' ) from e
return _artifact
def _lowerCamelCase ( ) -> str:
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict , __a : str ):
_a = name
_a = []
def __str__( self : List[str] ):
return self.name
def UpperCamelCase__ ( self : str , __a : str ):
self.paths.append({"name": self.name, "path": path} )
_a = {}
_a = filter(os.path.isdir , os.listdir() )
for directory in directories:
_a = directory
if artifact_name not in _available_artifacts:
_a = Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
lowerCAmelCase_ : List[Any] = get_job_links()
lowerCAmelCase_ : Any = retrieve_available_artifacts()
lowerCAmelCase_ : List[str] = collections.OrderedDict(
[
('*.py', 'API Examples'),
('*.md', 'MD Examples'),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
lowerCAmelCase_ : Optional[Any] = {
v: {
'failed': [],
'failures': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
lowerCAmelCase_ : int = github_actions_job_links.get('run_doctests')
lowerCAmelCase_ : Union[str, Any] = available_artifacts['doc_tests_gpu_test_reports'].paths[0]
lowerCAmelCase_ : List[str] = retrieve_artifact(artifact_path['name'])
if "stats" in artifact:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = handle_test_results(artifact['stats'])
lowerCAmelCase_ : List[str] = failed
lowerCAmelCase_ : Optional[Any] = success
lowerCAmelCase_ : Tuple = time_spent[1:-1] + ', '
lowerCAmelCase_ : List[Any] = extract_first_line_failure(artifact['failures_short'])
for line in artifact["summary_short"].split('\n'):
if re.search('FAILED', line):
lowerCAmelCase_ : int = line.replace('FAILED ', '')
lowerCAmelCase_ : Optional[int] = line.split()[0].replace('\n', '')
if "::" in line:
lowerCAmelCase_ , lowerCAmelCase_ : str = line.split('::')
else:
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
lowerCAmelCase_ : Union[str, Any] = docs[file_regex]
doc_test_results[category]["failed"].append(test)
lowerCAmelCase_ : List[str] = all_failures[test] if test in all_failures else 'N/A'
lowerCAmelCase_ : Optional[Any] = failure
break
lowerCAmelCase_ : Tuple = Message('🤗 Results of the doc tests.', doc_test_results)
message.post()
message.post_reply()
| 346 | 0 |
'''simple docstring'''
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
lowerCAmelCase_ : List[str] = 2_00
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
lowerCAmelCase_ : Union[str, Any] = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
lowerCAmelCase_ : List[Any] = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 10_00))
def _lowerCamelCase ( lowercase : str , lowercase : str ) -> tuple[str, float]:
_a = len([g for position, g in enumerate(lowercase ) if g == main_target[position]] )
return (item, float(lowercase ))
def _lowerCamelCase ( lowercase : str , lowercase : str ) -> tuple[str, str]:
_a = random.randint(0 , len(lowercase ) - 1 )
_a = parent_a[:random_slice] + parent_a[random_slice:]
_a = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str:
_a = list(lowercase )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
_a = random.choice(lowercase )
return "".join(lowercase )
def _lowerCamelCase ( lowercase : tuple[str, float] , lowercase : list[tuple[str, float]] , lowercase : list[str] , ) -> list[str]:
_a = []
# Generate more children proportionally to the fitness score.
_a = int(parent_a[1] * 100 ) + 1
_a = 10 if child_n >= 10 else child_n
for _ in range(lowercase ):
_a = population_score[random.randint(0 , lowercase )][0]
_a , _a = crossover(parent_a[0] , lowercase )
# Append new string to the population list.
pop.append(mutate(lowercase , lowercase ) )
pop.append(mutate(lowercase , lowercase ) )
return pop
def _lowerCamelCase ( lowercase : str , lowercase : list[str] , lowercase : bool = True ) -> tuple[int, int, str]:
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
_a = F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(lowercase )
# Verify that the target contains no genes besides the ones inside genes variable.
_a = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_a = F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(lowercase )
# Generate random starting population.
_a = []
for _ in range(lowercase ):
population.append("".join([random.choice(lowercase ) for i in range(len(lowercase ) )] ) )
# Just some logs to know what the algorithms is doing.
_a , _a = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowercase )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_a = [evaluate(lowercase , lowercase ) for item in population]
# Check if there is a matching evolution.
_a = sorted(lowercase , key=lambda lowercase : x[1] , reverse=lowercase )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_a = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowercase )
# Normalize population score to be between 0 and 1.
_a = [
(item, score / len(lowercase )) for item, score in population_score
]
# This is selection
for i in range(lowercase ):
population.extend(select(population_score[int(lowercase )] , lowercase , lowercase ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowercase ) > N_POPULATION:
break
if __name__ == "__main__":
lowerCAmelCase_ : List[Any] = (
'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'
)
lowerCAmelCase_ : Any = list(
' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'
'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'
)
lowerCAmelCase_ : Any = basic(target_str, genes_list)
print(
f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 355 |
'''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _lowerCamelCase ( ) -> str:
_a = HfArgumentParser(lowercase )
_a = parser.parse_args_into_dataclasses()[0]
_a = TensorFlowBenchmark(args=lowercase )
try:
_a = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
_a = "Arg --no_{0} is no longer used, please use --no-{0} instead."
_a = " ".join(str(lowercase ).split(" " )[:-1] )
_a = ""
_a = eval(str(lowercase ).split(" " )[-1] )
_a = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowercase )
if len(lowercase ) > 0:
_a = full_error_msg + begin_error_msg + str(lowercase )
raise ValueError(lowercase )
benchmark.run()
if __name__ == "__main__":
main()
| 346 | 0 |
'''simple docstring'''
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def _lowerCamelCase ( lowercase : np.ndarray , lowercase : np.ndarray , lowercase : np.ndarray , lowercase : int , lowercase : int ) -> np.ndarray:
_a = cva.getAffineTransform(lowercase , lowercase )
return cva.warpAffine(lowercase , lowercase , (rows, cols) )
if __name__ == "__main__":
# read original image
lowerCAmelCase_ : List[Any] = cva.imread(
str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg')
)
# turn image in gray scale value
lowerCAmelCase_ : Optional[int] = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
lowerCAmelCase_ : int = gray_img.shape
# set different points to rotate image
lowerCAmelCase_ : str = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa)
lowerCAmelCase_ : Union[str, Any] = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa)
lowerCAmelCase_ : List[Any] = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa)
lowerCAmelCase_ : Union[str, Any] = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa)
# add all rotated images in a list
lowerCAmelCase_ : Dict = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
lowerCAmelCase_ : Optional[int] = plt.figure(1)
lowerCAmelCase_ : List[Any] = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3']
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray')
plt.title(titles[i])
plt.axis('off')
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show()
| 356 |
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
lowerCAmelCase_ : Union[str, Any] = None
try:
import msvcrt
except ImportError:
lowerCAmelCase_ : Tuple = None
try:
import fcntl
except ImportError:
lowerCAmelCase_ : Optional[int] = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
lowerCAmelCase_ : Any = OSError
# Data
# ------------------------------------------------
lowerCAmelCase_ : Tuple = [
'Timeout',
'BaseFileLock',
'WindowsFileLock',
'UnixFileLock',
'SoftFileLock',
'FileLock',
]
lowerCAmelCase_ : Optional[int] = '3.0.12'
lowerCAmelCase_ : Tuple = None
def _lowerCamelCase ( ) -> Optional[int]:
global _logger
_a = _logger or logging.getLogger(__name__ )
return _logger
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Dict , __a : Optional[Any] ):
_a = lock_file
return None
def __str__( self : Any ):
_a = f'The file lock \'{self.lock_file}\' could not be acquired.'
return temp
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : List[Any] , __a : Optional[int] ):
_a = lock
return None
def __enter__( self : str ):
return self.lock
def __exit__( self : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Dict ):
self.lock.release()
return None
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int]=-1 , __a : Tuple=None ):
_a = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
_a = self.hash_filename_if_too_long(__a , __a )
# The path to the lock file.
_a = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
_a = None
# The default timeout value.
_a = timeout
# We use this lock primarily for the lock counter.
_a = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
_a = 0
return None
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return self._lock_file
@property
def UpperCamelCase__ ( self : List[Any] ):
return self._timeout
@timeout.setter
def UpperCamelCase__ ( self : int , __a : List[Any] ):
_a = float(__a )
return None
def UpperCamelCase__ ( self : Dict ):
raise NotImplementedError()
def UpperCamelCase__ ( self : str ):
raise NotImplementedError()
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return self._lock_file_fd is not None
def UpperCamelCase__ ( self : int , __a : int=None , __a : Tuple=0.05 ):
# Use the default timeout, if no timeout is provided.
if timeout is None:
_a = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
_a = id(self )
_a = self._lock_file
_a = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' )
self._acquire()
if self.is_locked:
logger().debug(f'Lock {lock_id} acquired on {lock_filename}' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' )
raise Timeout(self._lock_file )
else:
logger().debug(
f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' )
time.sleep(__a )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
_a = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def UpperCamelCase__ ( self : Union[str, Any] , __a : int=False ):
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
_a = id(self )
_a = self._lock_file
logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' )
self._release()
_a = 0
logger().debug(f'Lock {lock_id} released on {lock_filename}' )
return None
def __enter__( self : List[Any] ):
self.acquire()
return self
def __exit__( self : str , __a : str , __a : Dict , __a : Dict ):
self.release()
return None
def __del__( self : int ):
self.release(force=__a )
return None
def UpperCamelCase__ ( self : Tuple , __a : str , __a : int ):
_a = os.path.basename(__a )
if len(__a ) > max_length and max_length > 0:
_a = os.path.dirname(__a )
_a = str(hash(__a ) )
_a = filename[: max_length - len(__a ) - 8] + "..." + hashed_filename + ".lock"
return os.path.join(__a , __a )
else:
return path
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : int , __a : str , __a : List[Any]=-1 , __a : List[Any]=None ):
from .file_utils import relative_to_absolute_path
super().__init__(__a , timeout=__a , max_filename_length=__a )
_a = "\\\\?\\" + relative_to_absolute_path(self.lock_file )
def UpperCamelCase__ ( self : int ):
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
_a = os.open(self._lock_file , __a )
except OSError:
pass
else:
try:
msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(__a )
else:
_a = fd
return None
def UpperCamelCase__ ( self : Optional[Any] ):
_a = self._lock_file_fd
_a = None
msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 )
os.close(__a )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[str] , __a : Optional[Any] , __a : Union[str, Any]=-1 , __a : int=None ):
_a = os.statvfs(os.path.dirname(__a ) ).f_namemax
super().__init__(__a , timeout=__a , max_filename_length=__a )
def UpperCamelCase__ ( self : Any ):
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
_a = os.open(self._lock_file , __a )
try:
fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(__a )
else:
_a = fd
return None
def UpperCamelCase__ ( self : Tuple ):
# Do not remove the lockfile:
#
# https://github.com/benediktschmitt/py-filelock/issues/31
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
_a = self._lock_file_fd
_a = None
fcntl.flock(__a , fcntl.LOCK_UN )
os.close(__a )
return None
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
_a = os.open(self._lock_file , __a )
except OSError:
pass
else:
_a = fd
return None
def UpperCamelCase__ ( self : Union[str, Any] ):
os.close(self._lock_file_fd )
_a = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
lowerCAmelCase_ : str = None
if msvcrt:
lowerCAmelCase_ : List[str] = WindowsFileLock
elif fcntl:
lowerCAmelCase_ : List[str] = UnixFileLock
else:
lowerCAmelCase_ : int = SoftFileLock
if warnings is not None:
warnings.warn('only soft file lock is available')
| 346 | 0 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int = 10 ) -> str:
if not isinstance(lowercase , lowercase ) or n < 0:
raise ValueError("Invalid input" )
_a = 10**n
_a = 2_8433 * (pow(2 , 783_0457 , lowercase )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(10) = }""")
| 357 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42
__a =42
__a =42
__a =42
__a =42
def UpperCamelCase__ ( self : str ):
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def UpperCamelCase__ ( self : List[str] ):
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = torch.arange(self.height * self.width )
_a = torch.stack(
[
pixel_indices % self.width,
torch.div(__a , self.width , rounding_mode="trunc" ),
] , axis=1 , )
return coords
@property
def UpperCamelCase__ ( self : List[Any] ):
_a , *_a = self.shape
_a = int(np.prod(__a ) )
_a = self.get_image_coords()
_a = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
_a = self.get_camera_rays(__a )
_a = rays.view(__a , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def UpperCamelCase__ ( self : Dict , __a : torch.Tensor ):
_a , *_a , _a = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
_a = coords.view(__a , -1 , 2 )
_a = self.resolution()
_a = self.fov()
_a = (flat.float() / (res - 1)) * 2 - 1
_a = fracs * torch.tan(fov / 2 )
_a = fracs.view(__a , -1 , 2 )
_a = (
self.z.view(__a , 1 , 3 )
+ self.x.view(__a , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(__a , 1 , 3 ) * fracs[:, :, 1:]
)
_a = directions / directions.norm(dim=-1 , keepdim=__a )
_a = torch.stack(
[
torch.broadcast_to(self.origin.view(__a , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(__a , *__a , 2 , 3 )
def UpperCamelCase__ ( self : Dict , __a : int , __a : int ):
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=__a , height=__a , x_fov=self.x_fov , y_fov=self.y_fov , )
def _lowerCamelCase ( lowercase : int ) -> DifferentiableProjectiveCamera:
_a = []
_a = []
_a = []
_a = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
_a = np.array([np.sin(lowercase ), np.cos(lowercase ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
_a = -z * 4
_a = np.array([np.cos(lowercase ), -np.sin(lowercase ), 0.0] )
_a = np.cross(lowercase , lowercase )
origins.append(lowercase )
xs.append(lowercase )
ys.append(lowercase )
zs.append(lowercase )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , width=lowercase , height=lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowercase )) , )
| 346 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =StableDiffusionInpaintPipeline
__a =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__a =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__a =frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__a =frozenset([] )
def UpperCamelCase__ ( self : Optional[Any] ):
torch.manual_seed(0 )
_a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__a , )
_a = PNDMScheduler(skip_prk_steps=__a )
torch.manual_seed(0 )
_a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
_a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , )
_a = CLIPTextModel(__a )
_a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
_a = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def UpperCamelCase__ ( self : str , __a : Any , __a : int=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
_a = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a )
_a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_a = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) )
_a = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) )
if str(__a ).startswith("mps" ):
_a = torch.manual_seed(__a )
else:
_a = torch.Generator(device=__a ).manual_seed(__a )
_a = {
"prompt": "A painting of a squirrel eating a burger",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def UpperCamelCase__ ( self : Dict ):
_a = "cpu" # ensure determinism for the device-dependent torch.Generator
_a = self.get_dummy_components()
_a = StableDiffusionInpaintPipeline(**__a )
_a = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
_a = self.get_dummy_inputs(__a )
_a = sd_pipe(**__a ).images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase__ ( self : List[str] ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self : List[str] ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
_a = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench.npy" )
_a = "stabilityai/stable-diffusion-2-inpainting"
_a = StableDiffusionInpaintPipeline.from_pretrained(__a , safety_checker=__a )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "Face of a yellow cat, high resolution, sitting on a park bench"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , mask_image=__a , generator=__a , output_type="np" , )
_a = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def UpperCamelCase__ ( self : Any ):
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
_a = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench_fp16.npy" )
_a = "stabilityai/stable-diffusion-2-inpainting"
_a = StableDiffusionInpaintPipeline.from_pretrained(
__a , torch_dtype=torch.floataa , safety_checker=__a , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
_a = "Face of a yellow cat, high resolution, sitting on a park bench"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , mask_image=__a , generator=__a , output_type="np" , )
_a = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def UpperCamelCase__ ( self : List[str] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
_a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
_a = "stabilityai/stable-diffusion-2-inpainting"
_a = PNDMScheduler.from_pretrained(__a , subfolder="scheduler" )
_a = StableDiffusionInpaintPipeline.from_pretrained(
__a , safety_checker=__a , scheduler=__a , torch_dtype=torch.floataa , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_a = "Face of a yellow cat, high resolution, sitting on a park bench"
_a = torch.manual_seed(0 )
_a = pipe(
prompt=__a , image=__a , mask_image=__a , generator=__a , num_inference_steps=2 , output_type="np" , )
_a = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 358 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
lowerCAmelCase_ : List[str] = TypeVar('T')
lowerCAmelCase_ : Dict = TypeVar('U')
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : T | None , __a : U | None ):
_a = key
_a = val
_a = None
_a = None
def __repr__( self : Any ):
return (
f'Node: key: {self.key}, val: {self.val}, '
f'has next: {bool(self.next )}, has prev: {bool(self.prev )}'
)
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
def __init__( self : Dict ):
_a = DoubleLinkedListNode(__a , __a )
_a = DoubleLinkedListNode(__a , __a )
_a , _a = self.rear, self.head
def __repr__( self : str ):
_a = ["DoubleLinkedList"]
_a = self.head
while node.next is not None:
rep.append(str(__a ) )
_a = node.next
rep.append(str(self.rear ) )
return ",\n ".join(__a )
def UpperCamelCase__ ( self : int , __a : DoubleLinkedListNode[T, U] ):
_a = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_a = node
_a = previous
_a = node
_a = self.rear
def UpperCamelCase__ ( self : Any , __a : DoubleLinkedListNode[T, U] ):
if node.prev is None or node.next is None:
return None
_a = node.next
_a = node.prev
_a = None
_a = None
return node
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
__a ={}
def __init__( self : Union[str, Any] , __a : int ):
_a = DoubleLinkedList()
_a = capacity
_a = 0
_a = 0
_a = 0
_a = {}
def __repr__( self : Optional[int] ):
return (
f'CacheInfo(hits={self.hits}, misses={self.miss}, '
f'capacity={self.capacity}, current size={self.num_keys})'
)
def __contains__( self : str , __a : T ):
return key in self.cache
def UpperCamelCase__ ( self : str , __a : T ):
# Note: pythonic interface would throw KeyError rather than return None
if key in self.cache:
self.hits += 1
_a = self.cache[key]
_a = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(__a )
return node.val
self.miss += 1
return None
def UpperCamelCase__ ( self : Tuple , __a : T , __a : U ):
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_a = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(__a ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_a = DoubleLinkedListNode(__a , __a )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_a = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_a = value
self.list.add(__a )
@classmethod
def UpperCamelCase__ ( cls : Tuple , __a : int = 1_28 ):
def cache_decorator_inner(__a : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*__a : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
_a = LRUCache(__a )
_a = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_a = func(*__a )
cls.decorator_function_to_instance_map[func].put(args[0] , __a )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(__a , "cache_info" , __a ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 | 0 |
'''simple docstring'''
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
lowerCAmelCase_ : Union[str, Any] = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS}
def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : Dict , lowercase : Any ) -> Optional[Any]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' )
if tokenizer_name is None:
_a = TOKENIZER_CLASSES
else:
_a = {tokenizer_name: getattr(lowercase , tokenizer_name + "Fast" )}
logger.info(F'Loading tokenizer classes: {tokenizer_names}' )
for tokenizer_name in tokenizer_names:
_a = TOKENIZER_CLASSES[tokenizer_name]
_a = True
if checkpoint_name is None:
_a = list(tokenizer_class.max_model_input_sizes.keys() )
else:
_a = [checkpoint_name]
logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' )
for checkpoint in checkpoint_names:
logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' )
# Load tokenizer
_a = tokenizer_class.from_pretrained(lowercase , force_download=lowercase )
# Save fast tokenizer
logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' )
# For organization names we create sub-directories
if "/" in checkpoint:
_a , _a = checkpoint.split("/" )
_a = os.path.join(lowercase , lowercase )
elif add_prefix:
_a = checkpoint
_a = dump_path
else:
_a = None
_a = dump_path
logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
_a = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
_a = file_path.split(lowercase )[-1][0]
if next_char == "/":
_a = os.path.join(lowercase , lowercase )
_a = None
logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' )
_a = tokenizer.save_pretrained(
lowercase , legacy_format=lowercase , filename_prefix=lowercase )
logger.info(F'=> File names {file_names}' )
for file_name in file_names:
if not file_name.endswith("tokenizer.json" ):
os.remove(lowercase )
logger.info(F'=> removing {file_name}' )
if __name__ == "__main__":
lowerCAmelCase_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.'
)
parser.add_argument(
'--tokenizer_name',
default=None,
type=str,
help=(
f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """
'download and convert all the checkpoints from AWS.'
),
)
parser.add_argument(
'--checkpoint_name',
default=None,
type=str,
help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.',
)
parser.add_argument(
'--force_download',
action='store_true',
help='Re-download checkpoints.',
)
lowerCAmelCase_ : Any = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 359 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase_ : Optional[int] = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase_ : Tuple = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def _lowerCamelCase ( lowercase : str ) -> str:
re.sub("<n>" , "" , lowercase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(lowercase ) )
| 346 | 0 |
'''simple docstring'''
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='facebook/bart-large-mnli'
__a =(
'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '
'should be the text to classify, and `labels`, which should be the list of labels to use for classification. '
'It returns the most likely label in the list of provided `labels` for the input text.'
)
__a ='text_classifier'
__a =AutoTokenizer
__a =AutoModelForSequenceClassification
__a =['text', ['text']]
__a =['text']
def UpperCamelCase__ ( self : str ):
super().setup()
_a = self.model.config
_a = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
_a = int(__a )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def UpperCamelCase__ ( self : str , __a : str , __a : Optional[Any] ):
_a = labels
return self.pre_processor(
[text] * len(__a ) , [f'This example is {label}' for label in labels] , return_tensors="pt" , padding="max_length" , )
def UpperCamelCase__ ( self : Dict , __a : Any ):
_a = outputs.logits
_a = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 360 |
'''simple docstring'''
import requests
lowerCAmelCase_ : List[Any] = 'YOUR API KEY'
def _lowerCamelCase ( lowercase : str , lowercase : str = giphy_api_key ) -> list:
_a = "+".join(query.split() )
_a = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'
_a = requests.get(lowercase ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 346 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase_ : Optional[Any] = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : List[Any] = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : List[str] = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 361 |
'''simple docstring'''
import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase_ : str = '▁'
lowerCAmelCase_ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =BertGenerationTokenizer
__a =False
__a =True
def UpperCamelCase__ ( self : Optional[Any] ):
super().setUp()
_a = BertGenerationTokenizer(__a , keep_accents=__a )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ ( self : Tuple ):
_a = "<s>"
_a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a )
def UpperCamelCase__ ( self : List[str] ):
_a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<unk>" )
self.assertEqual(vocab_keys[1] , "<s>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(__a ) , 10_02 )
def UpperCamelCase__ ( self : str ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def UpperCamelCase__ ( self : Tuple ):
_a = BertGenerationTokenizer(__a , keep_accents=__a )
_a = tokenizer.tokenize("This is a test" )
self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__a ) , [2_85, 46, 10, 1_70, 3_82] , )
_a = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
_a = tokenizer.convert_tokens_to_ids(__a )
self.assertListEqual(
__a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_a = tokenizer.convert_ids_to_tokens(__a )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
@cached_property
def UpperCamelCase__ ( self : Any ):
return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
@slow
def UpperCamelCase__ ( self : List[str] ):
_a = "Hello World!"
_a = [1_85_36, 22_60, 1_01]
self.assertListEqual(__a , self.big_tokenizer.encode(__a ) )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
_a = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"
)
_a = [
8_71,
4_19,
3_58,
9_46,
9_91,
25_21,
4_52,
3_58,
13_57,
3_87,
77_51,
35_36,
1_12,
9_85,
4_56,
1_26,
8_65,
9_38,
54_00,
57_34,
4_58,
13_68,
4_67,
7_86,
24_62,
52_46,
11_59,
6_33,
8_65,
45_19,
4_57,
5_82,
8_52,
25_57,
4_27,
9_16,
5_08,
4_05,
3_43_24,
4_97,
3_91,
4_08,
1_13_42,
12_44,
3_85,
1_00,
9_38,
9_85,
4_56,
5_74,
3_62,
1_25_97,
32_00,
31_29,
11_72,
]
self.assertListEqual(__a , self.big_tokenizer.encode(__a ) )
@require_torch
@slow
def UpperCamelCase__ ( self : Tuple ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
_a = list(self.big_tokenizer.get_vocab().keys() )[:10]
_a = " ".join(__a )
_a = self.big_tokenizer.encode_plus(__a , return_tensors="pt" , return_token_type_ids=__a )
_a = self.big_tokenizer.batch_encode_plus(
[sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__a )
_a = BertGenerationConfig()
_a = BertGenerationEncoder(__a )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**__a )
model(**__a )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
# fmt: off
_a = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__a , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
| 346 | 0 |
'''simple docstring'''
import random
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
@staticmethod
def UpperCamelCase__ ( __a : str ):
_a = [ord(__a ) for i in text]
_a = []
_a = []
for i in plain:
_a = random.randint(1 , 3_00 )
_a = (i + k) * k
cipher.append(__a )
key.append(__a )
return cipher, key
@staticmethod
def UpperCamelCase__ ( __a : list[int] , __a : list[int] ):
_a = []
for i in range(len(__a ) ):
_a = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(__a ) )
return "".join(__a )
if __name__ == "__main__":
lowerCAmelCase_ : Dict = Onepad().encrypt('Hello')
print(c, k)
print(Onepad().decrypt(c, k))
| 362 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Union[str, Any]:
_enforce_args(lowercase , lowercase )
if n == 0:
return 0
_a = float("-inf" )
for i in range(1 , n + 1 ):
_a = max(
lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , lowercase ) )
return max_revue
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Tuple:
_enforce_args(lowercase , lowercase )
_a = [float("-inf" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(lowercase , lowercase , lowercase )
def _lowerCamelCase ( lowercase : int , lowercase : list , lowercase : list ) -> List[str]:
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_a = float("-inf" )
for i in range(1 , n + 1 ):
_a = max(
lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowercase , lowercase ) , )
_a = max_revenue
return max_rev[n]
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Any:
_enforce_args(lowercase , lowercase )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_a = [float("-inf" ) for _ in range(n + 1 )]
_a = 0
for i in range(1 , n + 1 ):
_a = max_rev[i]
for j in range(1 , i + 1 ):
_a = max(lowercase , prices[j - 1] + max_rev[i - j] )
_a = max_revenue_i
return max_rev[n]
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Dict:
if n < 0:
_a = F'n must be greater than or equal to 0. Got n = {n}'
raise ValueError(lowercase )
if n > len(lowercase ):
_a = (
"Each integral piece of rod must have a corresponding price. "
F'Got n = {n} but length of prices = {len(lowercase )}'
)
raise ValueError(lowercase )
def _lowerCamelCase ( ) -> Any:
_a = [6, 10, 12, 15, 20, 23]
_a = len(lowercase )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_a = 36
_a = top_down_cut_rod(lowercase , lowercase )
_a = bottom_up_cut_rod(lowercase , lowercase )
_a = naive_cut_rod_recursive(lowercase , lowercase )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 346 | 0 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase_ : Any = 16
lowerCAmelCase_ : List[Any] = 32
def _lowerCamelCase ( lowercase : Accelerator , lowercase : int = 16 ) -> Optional[Any]:
_a = AutoTokenizer.from_pretrained("bert-base-cased" )
_a = load_dataset("glue" , "mrpc" )
def tokenize_function(lowercase : List[str] ):
# max_length=None => use the model max length (it's actually the default)
_a = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_a = datasets.map(
lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_a = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(lowercase : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_a = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_a = 16
elif accelerator.mixed_precision != "no":
_a = 8
else:
_a = None
return tokenizer.pad(
lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , )
# Instantiate dataloaders.
_a = DataLoader(
tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase )
_a = DataLoader(
tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase_ : List[str] = mocked_dataloaders # noqa: F811
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Optional[Any]:
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1":
_a = 2
# Initialize accelerator
_a = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_a = config["lr"]
_a = int(config["num_epochs"] )
_a = int(config["seed"] )
_a = int(config["batch_size"] )
_a = evaluate.load("glue" , "mrpc" )
# If the batch size is too big we use gradient accumulation
_a = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_a = batch_size // MAX_GPU_BATCH_SIZE
_a = MAX_GPU_BATCH_SIZE
set_seed(lowercase )
_a , _a = get_dataloaders(lowercase , lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_a = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_a = model.to(accelerator.device )
# Instantiate optimizer
_a = AdamW(params=model.parameters() , lr=lowercase )
# Instantiate scheduler
_a = get_linear_schedule_with_warmup(
optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_a , _a , _a , _a , _a = accelerator.prepare(
lowercase , lowercase , lowercase , lowercase , lowercase )
# Now we train the model
for epoch in range(lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_a = model(**lowercase )
_a = outputs.loss
_a = loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
_a = 0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_a = model(**lowercase )
_a = outputs.logits.argmax(dim=-1 )
_a , _a = accelerator.gather((predictions, batch["labels"]) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(lowercase ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
_a = predictions[: len(eval_dataloader.dataset ) - samples_seen]
_a = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=lowercase , references=lowercase , )
_a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:' , lowercase )
def _lowerCamelCase ( ) -> List[str]:
_a = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
_a = parser.parse_args()
_a = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(lowercase , lowercase )
if __name__ == "__main__":
main()
| 363 |
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[Any] , *__a : Optional[int] , **__a : List[str] ):
super().__init__(*__a , **__a )
self.check_model_type(__a )
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : int=None , __a : Optional[Any]=None , **__a : List[Any] ):
_a , _a = {}, {}
if padding is not None:
_a = padding
if truncation is not None:
_a = truncation
if top_k is not None:
_a = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : Union[str, Any] , __a : Union["Image.Image", str] , __a : str = None , **__a : Any ):
if isinstance(__a , (Image.Image, str) ) and isinstance(__a , __a ):
_a = {"image": image, "question": question}
else:
_a = image
_a = super().__call__(__a , **__a )
return results
def UpperCamelCase__ ( self : Tuple , __a : Tuple , __a : Optional[Any]=False , __a : List[Any]=False ):
_a = load_image(inputs["image"] )
_a = self.tokenizer(
inputs["question"] , return_tensors=self.framework , padding=__a , truncation=__a )
_a = self.image_processor(images=__a , return_tensors=self.framework )
model_inputs.update(__a )
return model_inputs
def UpperCamelCase__ ( self : List[Any] , __a : List[str] ):
_a = self.model(**__a )
return model_outputs
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : Dict=5 ):
if top_k > self.model.config.num_labels:
_a = self.model.config.num_labels
if self.framework == "pt":
_a = model_outputs.logits.sigmoid()[0]
_a , _a = probs.topk(__a )
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
_a = scores.tolist()
_a = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
| 346 | 0 |
'''simple docstring'''
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ : List[Any] = logging.get_logger(__name__)
lowerCAmelCase_ : Union[str, Any] = {
'microsoft/xprophetnet-large-wiki100-cased': (
'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json'
),
}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='xlm-prophetnet'
__a =['past_key_values']
__a ={
'num_attention_heads': 'num_encoder_attention_heads',
}
def __init__( self : Dict , __a : Optional[float] = 0.1 , __a : Optional[Union[str, Callable]] = "gelu" , __a : Optional[int] = 3_05_22 , __a : Optional[int] = 10_24 , __a : Optional[int] = 40_96 , __a : Optional[int] = 12 , __a : Optional[int] = 16 , __a : Optional[int] = 40_96 , __a : Optional[int] = 12 , __a : Optional[int] = 16 , __a : Optional[float] = 0.1 , __a : Optional[float] = 0.1 , __a : Optional[int] = 5_12 , __a : Optional[float] = 0.02 , __a : Optional[bool] = True , __a : Optional[bool] = True , __a : Optional[int] = 0 , __a : Optional[int] = 2 , __a : Optional[int] = 32 , __a : Optional[int] = 1_28 , __a : Optional[bool] = False , __a : Optional[float] = 0.0 , __a : Optional[bool] = True , __a : Optional[int] = 0 , __a : Optional[int] = 1 , __a : Optional[int] = 2 , **__a : Optional[Any] , ):
_a = vocab_size
_a = hidden_size
_a = encoder_ffn_dim
_a = num_encoder_layers
_a = num_encoder_attention_heads
_a = decoder_ffn_dim
_a = num_decoder_layers
_a = num_decoder_attention_heads
_a = max_position_embeddings
_a = init_std # Normal(0, this parameter)
_a = activation_function
# parameters for xlmprophetnet
_a = ngram
_a = num_buckets
_a = relative_max_distance
_a = disable_ngram_loss
_a = eps
# 3 Types of Dropout
_a = attention_dropout
_a = activation_dropout
_a = dropout
_a = use_cache
super().__init__(
pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , add_cross_attention=__a , decoder_start_token_id=__a , **__a , )
@property
def UpperCamelCase__ ( self : Any ):
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def UpperCamelCase__ ( self : int , __a : Tuple ):
raise NotImplementedError(
"This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"
" `num_decoder_layers`." )
| 364 |
'''simple docstring'''
from random import randint, random
def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : int , lowercase : bool = False , lowercase : bool = False , lowercase : int = 5 , ) -> list:
_a = [[-1] * number_of_cells] # Create a highway without any car
_a = 0
_a = max(lowercase , 0 )
while i < number_of_cells:
_a = (
randint(0 , lowercase ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def _lowerCamelCase ( lowercase : list , lowercase : int ) -> int:
_a = 0
_a = highway_now[car_index + 1 :]
for cell in range(len(lowercase ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(lowercase , -1 )
def _lowerCamelCase ( lowercase : list , lowercase : float , lowercase : int ) -> list:
_a = len(lowercase )
# Beforce calculations, the highway is empty
_a = [-1] * number_of_cells
for car_index in range(lowercase ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
_a = min(highway_now[car_index] + 1 , lowercase )
# Number of empty cell before the next car
_a = get_distance(lowercase , lowercase ) - 1
# We can't have the car causing an accident
_a = min(next_highway[car_index] , lowercase )
if random() < probability:
# Randomly, a driver will slow down
_a = max(next_highway[car_index] - 1 , 0 )
return next_highway
def _lowerCamelCase ( lowercase : list , lowercase : int , lowercase : float , lowercase : int ) -> list:
_a = len(highway[0] )
for i in range(lowercase ):
_a = update(highway[i] , lowercase , lowercase )
_a = [-1] * number_of_cells
for car_index in range(lowercase ):
_a = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
_a = (car_index + speed) % number_of_cells
# Commit the change of position
_a = speed
highway.append(lowercase )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 | 0 |
'''simple docstring'''
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ : str = logging.get_logger(__name__)
lowerCAmelCase_ : Any = {
'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json',
'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json',
}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='encodec'
def __init__( self : int , __a : str=[1.5, 3.0, 6.0, 12.0, 24.0] , __a : Optional[int]=2_40_00 , __a : str=1 , __a : List[str]=False , __a : Union[str, Any]=None , __a : List[str]=None , __a : str=1_28 , __a : Any=32 , __a : Dict=1 , __a : Tuple=[8, 5, 4, 2] , __a : List[str]="weight_norm" , __a : List[Any]=7 , __a : Any=7 , __a : List[Any]=3 , __a : Optional[int]=2 , __a : List[Any]=True , __a : Optional[Any]="reflect" , __a : Union[str, Any]=2 , __a : Optional[int]=2 , __a : Union[str, Any]=1.0 , __a : Any=10_24 , __a : Tuple=None , __a : Optional[Any]=True , **__a : Dict , ):
_a = target_bandwidths
_a = sampling_rate
_a = audio_channels
_a = normalize
_a = chunk_length_s
_a = overlap
_a = hidden_size
_a = num_filters
_a = num_residual_layers
_a = upsampling_ratios
_a = norm_type
_a = kernel_size
_a = last_kernel_size
_a = residual_kernel_size
_a = dilation_growth_rate
_a = use_causal_conv
_a = pad_mode
_a = compress
_a = num_lstm_layers
_a = trim_right_ratio
_a = codebook_size
_a = codebook_dim if codebook_dim is not None else hidden_size
_a = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' )
super().__init__(**__a )
@property
def UpperCamelCase__ ( self : Dict ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def UpperCamelCase__ ( self : Dict ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def UpperCamelCase__ ( self : Any ):
_a = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 365 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int = 10 ) -> str:
if not isinstance(lowercase , lowercase ) or n < 0:
raise ValueError("Invalid input" )
_a = 10**n
_a = 2_8433 * (pow(2 , 783_0457 , lowercase )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(10) = }""")
| 346 | 0 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =['audio_values', 'audio_mask']
def __init__( self : List[str] , __a : Optional[Any]=20_48 , __a : Optional[Any]=1 , __a : Tuple=[16, 16] , __a : List[str]=1_28 , __a : str=4_41_00 , __a : int=86 , __a : Any=20_48 , __a : Dict=0.0 , **__a : Tuple , ):
super().__init__(
feature_size=__a , sampling_rate=__a , padding_value=__a , **__a , )
_a = spectrogram_length
_a = num_channels
_a = patch_size
_a = feature_size // self.patch_size[1]
_a = n_fft
_a = sampling_rate // hop_length_to_sampling_rate
_a = sampling_rate
_a = padding_value
_a = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__a , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=__a , norm="slaney" , mel_scale="slaney" , ).T
def UpperCamelCase__ ( self : Dict , __a : np.array ):
_a = spectrogram(
__a , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , )
_a = log_spec[:, :-1]
_a = log_spec - 20.0
_a = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self : str , __a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __a : Optional[Union[str, TensorType]] = None , __a : Optional[bool] = True , __a : Optional[int] = None , __a : bool = False , __a : bool = False , **__a : str , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"This feature extractor is set to support sampling rate"
f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'
f' with {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
_a = isinstance(__a , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'Only mono-channel audio is supported for input to {self}' )
_a = is_batched_numpy or (
isinstance(__a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_a = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__a , np.ndarray ):
_a = np.asarray(__a , dtype=np.floataa )
elif isinstance(__a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_a = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_a = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
_a = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , __a ):
_a = [np.asarray(__a , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
_a = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
_a = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
_a = np.array(__a ).astype(np.floataa )
# convert into correct format for padding
_a = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
_a = np.ones([len(__a ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
_a = padded_audio_features * self.padding_value
for i in range(len(__a ) ):
_a = audio_features[i]
_a = feature
# return as BatchFeature
if return_attention_mask:
_a = {"audio_values": padded_audio_features, "audio_mask": audio_mask}
else:
_a = {"audio_values": padded_audio_features}
_a = BatchFeature(data=__a , tensor_type=__a )
return encoded_inputs
| 366 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int = 6008_5147_5143 ) -> int:
try:
_a = int(lowercase )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
_a = 2
_a = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
_a = i
while n % i == 0:
_a = n // i
i += 1
return int(lowercase )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 346 | 0 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCAmelCase_ : Optional[Any] = get_tests_dir('fixtures')
lowerCAmelCase_ : Optional[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
lowerCAmelCase_ : Optional[Any] = get_tests_dir('fixtures/dummy-config.json')
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : int ):
_a = 0
def UpperCamelCase__ ( self : Dict ):
_a = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" )
self.assertIsInstance(__a , __a )
def UpperCamelCase__ ( self : Optional[Any] ):
_a = AutoFeatureExtractor.from_pretrained(__a )
self.assertIsInstance(__a , __a )
def UpperCamelCase__ ( self : Any ):
with tempfile.TemporaryDirectory() as tmpdirname:
_a = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
_a = AutoFeatureExtractor.from_pretrained(__a ).to_dict()
config_dict.pop("feature_extractor_type" )
_a = WavaVecaFeatureExtractor(**__a )
# save in new folder
model_config.save_pretrained(__a )
config.save_pretrained(__a )
_a = AutoFeatureExtractor.from_pretrained(__a )
# make sure private variable is not incorrectly saved
_a = json.loads(config.to_json_string() )
self.assertTrue("_processor_class" not in dict_as_saved )
self.assertIsInstance(__a , __a )
def UpperCamelCase__ ( self : Optional[Any] ):
_a = AutoFeatureExtractor.from_pretrained(__a )
self.assertIsInstance(__a , __a )
def UpperCamelCase__ ( self : int ):
with self.assertRaisesRegex(
__a , "bert-base is not a local folder and is not a valid model identifier" ):
_a = AutoFeatureExtractor.from_pretrained("bert-base" )
def UpperCamelCase__ ( self : Tuple ):
with self.assertRaisesRegex(
__a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
_a = AutoFeatureExtractor.from_pretrained(__a , revision="aaaaaa" )
def UpperCamelCase__ ( self : str ):
with self.assertRaisesRegex(
__a , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ):
_a = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" )
def UpperCamelCase__ ( self : List[Any] ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__a ):
_a = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__a ):
_a = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a )
_a = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(__a )
_a = AutoFeatureExtractor.from_pretrained(__a , trust_remote_code=__a )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
def UpperCamelCase__ ( self : List[str] ):
try:
AutoConfig.register("custom" , __a )
AutoFeatureExtractor.register(__a , __a )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__a ):
AutoFeatureExtractor.register(__a , __a )
# Now that the config is registered, it can be used as any other config with the auto-API
_a = CustomFeatureExtractor.from_pretrained(__a )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(__a )
_a = AutoFeatureExtractor.from_pretrained(__a )
self.assertIsInstance(__a , __a )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def UpperCamelCase__ ( self : List[Any] ):
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =True
try:
AutoConfig.register("custom" , __a )
AutoFeatureExtractor.register(__a , __a )
# If remote code is not set, the default is to use local
_a = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
_a = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
_a = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
self.assertTrue(not hasattr(__a , "is_local" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 367 |
'''simple docstring'''
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=os.environ.get('LOGLEVEL', 'INFO').upper(),
stream=sys.stdout,
)
lowerCAmelCase_ : List[Any] = logging.getLogger(__name__)
lowerCAmelCase_ : List[Any] = {'facebook/bart-base': BartForConditionalGeneration}
lowerCAmelCase_ : int = {'facebook/bart-base': BartTokenizer}
def _lowerCamelCase ( ) -> Union[str, Any]:
_a = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." )
parser.add_argument(
"--validation_file" , type=lowercase , default=lowercase , help="A csv or a json file containing the validation data." )
parser.add_argument(
"--max_length" , type=lowercase , default=5 , help="The maximum total input sequence length after tokenization." , )
parser.add_argument(
"--num_beams" , type=lowercase , default=lowercase , help=(
"Number of beams to use for evaluation. This argument will be "
"passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."
) , )
parser.add_argument(
"--model_name_or_path" , type=lowercase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowercase , )
parser.add_argument(
"--config_name" , type=lowercase , default=lowercase , help="Pretrained config name or path if not the same as model_name" , )
parser.add_argument(
"--device" , type=lowercase , default="cpu" , help="Device where the model will be run" , )
parser.add_argument("--output_file_path" , type=lowercase , default=lowercase , help="Where to store the final ONNX file." )
_a = parser.parse_args()
return args
def _lowerCamelCase ( lowercase : Any , lowercase : Tuple="cpu" ) -> Optional[Any]:
_a = model_dict[model_name].from_pretrained(lowercase ).to(lowercase )
_a = tokenizer_dict[model_name].from_pretrained(lowercase )
if model_name in ["facebook/bart-base"]:
_a = 0
_a = None
_a = 0
return huggingface_model, tokenizer
def _lowerCamelCase ( lowercase : List[str] , lowercase : Tuple , lowercase : int , lowercase : Any , lowercase : Dict ) -> Any:
model.eval()
_a = None
_a = torch.jit.script(BARTBeamSearchGenerator(lowercase ) )
with torch.no_grad():
_a = "My friends are cool but they eat too many carbs."
_a = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device )
_a = model.generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=lowercase , max_length=lowercase , early_stopping=lowercase , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
lowercase , (
inputs["input_ids"],
inputs["attention_mask"],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , lowercase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={
"input_ids": {0: "batch", 1: "seq"},
"output_ids": {0: "batch", 1: "seq_out"},
} , example_outputs=lowercase , )
logger.info("Model exported to {}".format(lowercase ) )
_a = remove_dup_initializers(os.path.abspath(lowercase ) )
logger.info("Deduplicated and optimized model written to {}".format(lowercase ) )
_a = onnxruntime.InferenceSession(lowercase )
_a = ort_sess.run(
lowercase , {
"input_ids": inputs["input_ids"].cpu().numpy(),
"attention_mask": inputs["attention_mask"].cpu().numpy(),
"num_beams": np.array(lowercase ),
"max_length": np.array(lowercase ),
"decoder_start_token_id": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info("Model outputs from torch and ONNX Runtime are similar." )
logger.info("Success." )
def _lowerCamelCase ( ) -> Any:
_a = parse_args()
_a = 5
_a = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_a = torch.device(args.device )
_a , _a = load_model_tokenizer(args.model_name_or_path , lowercase )
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" )
model.to(lowercase )
if args.max_length:
_a = args.max_length
if args.num_beams:
_a = args.num_beams
if args.output_file_path:
_a = args.output_file_path
else:
_a = "BART.onnx"
logger.info("Exporting model to ONNX" )
export_and_validate_model(lowercase , lowercase , lowercase , lowercase , lowercase )
if __name__ == "__main__":
main()
| 346 | 0 |
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Optional[Any]=False ) -> Dict:
try:
_a = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_a = default
else:
# KEY is set, convert it to True or False.
try:
_a = strtobool(lowercase )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'If set, {key} must be yes or no.' )
return _value
lowerCAmelCase_ : Dict = parse_flag_from_env('RUN_SLOW', default=False)
lowerCAmelCase_ : Optional[Any] = parse_flag_from_env('RUN_REMOTE', default=False)
lowerCAmelCase_ : int = parse_flag_from_env('RUN_LOCAL', default=True)
lowerCAmelCase_ : Any = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
lowerCAmelCase_ : List[str] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
lowerCAmelCase_ : Optional[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
lowerCAmelCase_ : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
lowerCAmelCase_ : Union[str, Any] = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
lowerCAmelCase_ : List[Any] = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
lowerCAmelCase_ : Dict = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
lowerCAmelCase_ : Any = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def _lowerCamelCase ( lowercase : List[str] ) -> int:
try:
import faiss # noqa
except ImportError:
_a = unittest.skip("test requires faiss" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Dict ) -> Any:
try:
import regex # noqa
except ImportError:
_a = unittest.skip("test requires regex" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[Any]:
try:
import elasticsearch # noqa
except ImportError:
_a = unittest.skip("test requires elasticsearch" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Optional[Any] ) -> str:
try:
import sqlalchemy # noqa
except ImportError:
_a = unittest.skip("test requires sqlalchemy" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]:
if not config.TORCH_AVAILABLE:
_a = unittest.skip("test requires PyTorch" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Dict ) -> Tuple:
if not config.TF_AVAILABLE:
_a = unittest.skip("test requires TensorFlow" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Optional[int] ) -> Any:
if not config.JAX_AVAILABLE:
_a = unittest.skip("test requires JAX" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Any ) -> int:
if not config.PIL_AVAILABLE:
_a = unittest.skip("test requires Pillow" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : int ) -> Tuple:
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("test requires transformers" )(lowercase )
else:
return test_case
def _lowerCamelCase ( lowercase : int ) -> str:
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("test requires tiktoken" )(lowercase )
else:
return test_case
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Any:
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("test requires spacy" )(lowercase )
else:
return test_case
def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[Any]:
def _require_spacy_model(lowercase : int ):
try:
import spacy # noqa F401
spacy.load(lowercase )
except ImportError:
return unittest.skip("test requires spacy" )(lowercase )
except OSError:
return unittest.skip("test requires spacy model '{}'".format(lowercase ) )(lowercase )
else:
return test_case
return _require_spacy_model
def _lowerCamelCase ( lowercase : Dict ) -> Tuple:
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("test requires pyspark" )(lowercase )
else:
return test_case
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Tuple:
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("test requires joblibspark" )(lowercase )
else:
return test_case
def _lowerCamelCase ( lowercase : Tuple ) -> Tuple:
if not _run_slow_tests or _run_slow_tests == 0:
_a = unittest.skip("test is slow" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : List[str] ) -> List[str]:
if not _run_local_tests or _run_local_tests == 0:
_a = unittest.skip("test is local" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : Tuple ) -> Dict:
if not _run_packaged_tests or _run_packaged_tests == 0:
_a = unittest.skip("test is packaged" )(lowercase )
return test_case
def _lowerCamelCase ( lowercase : str ) -> Dict:
if not _run_remote_tests or _run_remote_tests == 0:
_a = unittest.skip("test requires remote" )(lowercase )
return test_case
def _lowerCamelCase ( *lowercase : str ) -> int:
def decorate(cls : str ):
for name, fn in cls.__dict__.items():
if callable(lowercase ) and name.startswith("test" ):
for decorator in decorators:
_a = decorator(lowercase )
setattr(cls , lowercase , lowercase )
return cls
return decorate
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
pass
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =0
__a =1
__a =2
@contextmanager
def _lowerCamelCase ( lowercase : Optional[int]=OfflineSimulationMode.CONNECTION_FAILS , lowercase : Dict=1E-1_6 ) -> str:
_a = requests.Session().request
def timeout_request(lowercase : Tuple , lowercase : List[Any] , lowercase : List[Any] , **lowercase : Optional[int] ):
# Change the url to an invalid url so that the connection hangs
_a = "https://10.255.255.1"
if kwargs.get("timeout" ) is None:
raise RequestWouldHangIndefinitelyError(
F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' )
_a = timeout
try:
return online_request(lowercase , lowercase , **lowercase )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
_a = url
_a = e.args[0]
_a = (max_retry_error.args[0].replace("10.255.255.1" , F'OfflineMock[{url}]' ),)
_a = (max_retry_error,)
raise
def raise_connection_error(lowercase : Any , lowercase : Any , **lowercase : Union[str, Any] ):
raise requests.ConnectionError("Offline mode is enabled." , request=lowercase )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("requests.Session.send" , lowercase ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("requests.Session.request" , lowercase ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("datasets.config.HF_DATASETS_OFFLINE" , lowercase ):
yield
else:
raise ValueError("Please use a value from the OfflineSimulationMode enum." )
@contextmanager
def _lowerCamelCase ( *lowercase : Tuple , **lowercase : List[str] ) -> Dict:
_a = str(Path().resolve() )
with tempfile.TemporaryDirectory(*lowercase , **lowercase ) as tmp_dir:
try:
os.chdir(lowercase )
yield
finally:
os.chdir(lowercase )
@contextmanager
def _lowerCamelCase ( ) -> int:
import gc
gc.collect()
_a = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def _lowerCamelCase ( ) -> Optional[int]:
import gc
gc.collect()
_a = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def _lowerCamelCase ( lowercase : Tuple , lowercase : Optional[Any] ) -> Optional[int]:
return deepcopy(lowercase ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowercase ).integers(0 , 100 , 10 ).tolist()
def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[int]:
import decorator
from requests.exceptions import HTTPError
def _wrapper(lowercase : Tuple , *lowercase : List[Any] , **lowercase : Union[str, Any] ):
try:
return func(*lowercase , **lowercase )
except HTTPError as err:
if str(lowercase ).startswith("500" ) or str(lowercase ).startswith("502" ):
pytest.xfail(str(lowercase ) )
raise err
return decorator.decorator(_wrapper , lowercase )
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Optional[int] , __a : List[str] , __a : int , __a : List[str] ):
_a = returncode
_a = stdout
_a = stderr
async def _lowerCamelCase ( lowercase : List[Any] , lowercase : Tuple ) -> Optional[Any]:
while True:
_a = await stream.readline()
if line:
callback(lowercase )
else:
break
async def _lowerCamelCase ( lowercase : Any , lowercase : Dict=None , lowercase : Dict=None , lowercase : Optional[Any]=None , lowercase : Optional[int]=False , lowercase : Tuple=False ) -> _RunOutput:
if echo:
print("\nRunning: " , " ".join(lowercase ) )
_a = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowercase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_a = []
_a = []
def tee(lowercase : Union[str, Any] , lowercase : Tuple , lowercase : str , lowercase : Dict="" ):
_a = line.decode("utf-8" ).rstrip()
sink.append(lowercase )
if not quiet:
print(lowercase , lowercase , file=lowercase )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda lowercase : tee(lowercase , lowercase , sys.stdout , label="stdout:" ) ),
_read_stream(p.stderr , lambda lowercase : tee(lowercase , lowercase , sys.stderr , label="stderr:" ) ),
] , timeout=lowercase , )
return _RunOutput(await p.wait() , lowercase , lowercase )
def _lowerCamelCase ( lowercase : Any , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : List[str]=180 , lowercase : Dict=False , lowercase : Optional[int]=True ) -> _RunOutput:
_a = asyncio.get_event_loop()
_a = loop.run_until_complete(
_stream_subprocess(lowercase , env=lowercase , stdin=lowercase , timeout=lowercase , quiet=lowercase , echo=lowercase ) )
_a = " ".join(lowercase )
if result.returncode > 0:
_a = "\n".join(result.stderr )
raise RuntimeError(
F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n'
F'The combined stderr from workers follows:\n{stderr}' )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F'\'{cmd_str}\' produced no output.' )
return result
def _lowerCamelCase ( ) -> Dict:
_a = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" )
_a = re.sub(r"^gw" , "" , lowercase , 0 , re.M )
return int(lowercase )
def _lowerCamelCase ( ) -> List[Any]:
_a = 2_9500
_a = pytest_xdist_worker_id()
return port + uniq_delta
| 368 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
lowerCAmelCase_ : Dict = abspath(join(dirname(dirname(dirname(__file__))), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def _lowerCamelCase ( lowercase : str ) -> Optional[int]:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(lowercase )
def _lowerCamelCase ( lowercase : Dict ) -> str:
from transformers.testing_utils import pytest_terminal_summary_main
_a = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(lowercase , id=lowercase )
| 346 | 0 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowerCAmelCase_ : Tuple = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , *__a : Dict , **__a : Any ):
super().__init__(*__a , **__a )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def UpperCamelCase__ ( self : Dict , __a : Dict=None ):
_a = {}
if top_k is not None:
_a = top_k
return {}, {}, postprocess_params
def __call__( self : Any , __a : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__a : Tuple ):
return super().__call__(__a , **__a )
def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] ):
_a = load_image(__a )
_a = self.image_processor(images=__a , return_tensors=self.framework )
return model_inputs
def UpperCamelCase__ ( self : str , __a : str ):
_a = self.model(**__a )
return model_outputs
def UpperCamelCase__ ( self : Dict , __a : Union[str, Any] , __a : Any=5 ):
if top_k > self.model.config.num_labels:
_a = self.model.config.num_labels
if self.framework == "pt":
_a = model_outputs.logits.softmax(-1 )[0]
_a , _a = probs.topk(__a )
elif self.framework == "tf":
_a = stable_softmax(model_outputs.logits , axis=-1 )[0]
_a = tf.math.top_k(__a , k=__a )
_a , _a = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
_a = scores.tolist()
_a = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
| 369 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
@register_to_config
def __init__( self : List[Any] , __a : int , __a : int , __a : int , __a : float , __a : int , __a : int , __a : int , __a : int , __a : str , __a : bool = False , ):
super().__init__()
_a = nn.Embedding(__a , __a )
_a = nn.Embedding(__a , __a )
_a = False
_a = nn.Dropout(p=__a )
_a = TaConfig(
vocab_size=__a , d_model=__a , num_heads=__a , d_kv=__a , d_ff=__a , dropout_rate=__a , feed_forward_proj=__a , is_decoder=__a , is_encoder_decoder=__a , )
_a = nn.ModuleList()
for lyr_num in range(__a ):
_a = TaBlock(__a )
self.encoders.append(__a )
_a = TaLayerNorm(__a )
_a = nn.Dropout(p=__a )
def UpperCamelCase__ ( self : str , __a : Union[str, Any] , __a : Dict ):
_a = self.token_embedder(__a )
_a = encoder_input_tokens.shape[1]
_a = torch.arange(__a , device=encoder_input_tokens.device )
x += self.position_encoding(__a )
_a = self.dropout_pre(__a )
# inverted the attention mask
_a = encoder_input_tokens.size()
_a = self.get_extended_attention_mask(__a , __a )
for lyr in self.encoders:
_a = lyr(__a , __a )[0]
_a = self.layer_norm(__a )
return self.dropout_post(__a ), encoder_inputs_mask
| 346 | 0 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
lowerCAmelCase_ : Dict = 'examples/'
lowerCAmelCase_ : str = {
'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'),
'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
lowerCAmelCase_ : Dict = {
'init': 'src/diffusers/__init__.py',
'setup': 'setup.py',
}
lowerCAmelCase_ : Tuple = 'README.md'
def _lowerCamelCase ( lowercase : List[str] , lowercase : List[str] , lowercase : Any ) -> List[str]:
with open(lowercase , "r" , encoding="utf-8" , newline="\n" ) as f:
_a = f.read()
_a , _a = REPLACE_PATTERNS[pattern]
_a = replace.replace("VERSION" , lowercase )
_a = re_pattern.sub(lowercase , lowercase )
with open(lowercase , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(lowercase )
def _lowerCamelCase ( lowercase : List[str] ) -> Optional[Any]:
for folder, directories, fnames in os.walk(lowercase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("research_projects" )
if "legacy" in directories:
directories.remove("legacy" )
for fname in fnames:
if fname.endswith(".py" ):
update_version_in_file(os.path.join(lowercase , lowercase ) , lowercase , pattern="examples" )
def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict=False ) -> Dict:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(lowercase , lowercase , lowercase )
if not patch:
update_version_in_examples(lowercase )
def _lowerCamelCase ( ) -> Any:
_a = "🤗 Transformers currently provides the following architectures"
_a = "1. Want to contribute a new model?"
with open(lowercase , "r" , encoding="utf-8" , newline="\n" ) as f:
_a = f.readlines()
# Find the start of the list.
_a = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_a = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("1." ):
_a = lines[index].replace(
"https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , )
index += 1
with open(lowercase , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(lowercase )
def _lowerCamelCase ( ) -> List[Any]:
with open(REPLACE_FILES["init"] , "r" ) as f:
_a = f.read()
_a = REPLACE_PATTERNS["init"][0].search(lowercase ).groups()[0]
return packaging.version.parse(lowercase )
def _lowerCamelCase ( lowercase : Dict=False ) -> Union[str, Any]:
_a = get_version()
if patch and default_version.is_devrelease:
raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" )
if default_version.is_devrelease:
_a = default_version.base_version
elif patch:
_a = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
_a = F'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
_a = input(F'Which version are you releasing? [{default_version}]' )
if len(lowercase ) == 0:
_a = default_version
print(F'Updating version to {version}.' )
global_version_update(lowercase , patch=lowercase )
def _lowerCamelCase ( ) -> Dict:
_a = get_version()
_a = F'{current_version.major}.{current_version.minor + 1}.0.dev0'
_a = current_version.base_version
# Check with the user we got that right.
_a = input(F'Which version are we developing now? [{dev_version}]' )
if len(lowercase ) == 0:
_a = dev_version
print(F'Updating version to {version}.' )
global_version_update(lowercase )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
lowerCAmelCase_ : Any = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 370 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def _lowerCamelCase ( lowercase : Any ) -> Any:
_a = filter(lambda lowercase : p.requires_grad , model.parameters() )
_a = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase_ : List[str] = logging.getLogger(__name__)
def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict ) -> Union[str, Any]:
if metric == "rouge2":
_a = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
_a = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
_a = "{val_avg_em:.4f}-{step_count}"
elif metric == "loss":
_a = "{val_avg_loss:.4f}-{step_count}"
else:
raise NotImplementedError(
F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
" function." )
_a = ModelCheckpoint(
dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def _lowerCamelCase ( lowercase : Dict , lowercase : Dict ) -> str:
return EarlyStopping(
monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , )
class __SCREAMING_SNAKE_CASE (pl.Callback ):
"""simple docstring"""
def UpperCamelCase__ ( self : Tuple , __a : Optional[int] , __a : Any ):
_a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Tuple , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Dict=True ):
logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' )
_a = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
_a = Path(pl_module.hparams.output_dir )
if type_path == "test":
_a = od / "test_results.txt"
_a = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_a = od / f'{type_path}_results/{trainer.global_step:05d}.txt'
_a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=__a )
generations_file.parent.mkdir(exist_ok=__a )
with open(__a , "a+" ) as writer:
for key in sorted(__a ):
if key in ["log", "progress_bar", "preds"]:
continue
_a = metrics[key]
if isinstance(__a , torch.Tensor ):
_a = val.item()
_a = f'{key}: {val:.6f}\n'
writer.write(__a )
if not save_generations:
return
if "preds" in metrics:
_a = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(__a )
@rank_zero_only
def UpperCamelCase__ ( self : Any , __a : List[Any] , __a : Dict ):
try:
_a = pl_module.model.model.num_parameters()
except AttributeError:
_a = pl_module.model.num_parameters()
_a = count_trainable_parameters(__a )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} )
@rank_zero_only
def UpperCamelCase__ ( self : Union[str, Any] , __a : pl.Trainer , __a : pl.LightningModule ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__a , __a , "test" )
@rank_zero_only
def UpperCamelCase__ ( self : Optional[int] , __a : pl.Trainer , __a : str ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 346 | 0 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int ) -> int:
_a = [1]
_a , _a , _a = 0, 0, 0
_a = ugly_nums[ia] * 2
_a = ugly_nums[ia] * 3
_a = ugly_nums[ia] * 5
for _ in range(1 , lowercase ):
_a = min(lowercase , lowercase , lowercase )
ugly_nums.append(lowercase )
if next_num == next_a:
ia += 1
_a = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
_a = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
_a = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(f"""{ugly_numbers(2_00) = }""")
| 371 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
lowerCAmelCase_ : str = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
lowerCAmelCase_ : Union[str, Any] = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]:
_a = (images / 2 + 0.5).clamp(0 , 1 )
_a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_a = numpy_to_pil(lowercase )
return images
def _lowerCamelCase ( lowercase : int ) -> List[Any]:
if images.ndim == 3:
_a = images[None, ...]
_a = (images * 255).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
_a = [Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
_a = [Image.fromarray(lowercase ) for image in images]
return pil_images
| 346 | 0 |
'''simple docstring'''
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def _lowerCamelCase ( lowercase : Tuple=32 , lowercase : Tuple=10 , lowercase : Dict=100 , lowercase : Tuple=1026 , lowercase : Union[str, Any]=True , lowercase : Optional[int]="data/tokenized_stories_train_wikitext103.jbl" , lowercase : Tuple="igf_context_pairs.jbl" , ) -> int:
set_seed(3 )
# generate train_data and objective_set
_a , _a = generate_datasets(
lowercase , lowercase , number=lowercase , min_len=1026 , trim=lowercase )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
_a = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" )
# load pretrained model
_a = load_gpta("gpt2" ).to(lowercase )
print("computing perplexity on objective set" )
_a = compute_perplexity(lowercase , lowercase , lowercase ).item()
print("perplexity on objective set:" , lowercase )
# collect igf pairs and save to file demo.jbl
collect_objective_set(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Union[str, Any]=15 , lowercase : int=128 , lowercase : Union[str, Any]=100 , lowercase : Any="igf_model.pt" , ) -> Optional[Any]:
set_seed(42 )
# Load pre-trained model
_a = GPTaLMHeadModel.from_pretrained("gpt2" )
# Initialize secondary learner to use embedding weights of model
_a = SecondaryLearner(lowercase )
# Train secondary learner
_a = train_secondary_learner(
lowercase , lowercase , max_epochs=lowercase , batch_size=lowercase , eval_freq=100 , igf_model_path=lowercase , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : List[str] , lowercase : List[str] , lowercase : Tuple=32 , lowercase : List[Any]=1000 , lowercase : List[Any]=16 , lowercase : Any=1.0 , lowercase : int=recopy_gpta , lowercase : Optional[Any]=None , lowercase : Optional[int]=10 , lowercase : List[str]="gpt2_finetuned.pt" , ) -> Optional[int]:
_a = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" )
_a = RandomSampler(lowercase )
_a = DataLoader(lowercase , sampler=lowercase )
_a = max_steps // (len(lowercase )) + 1
_a = 0
_a = torch.zeros((1, context_len) , dtype=torch.long , device=lowercase )
_a , _a , _a = recopy_model(lowercase , lowercase , lowercase )
model.train()
if secondary_learner is not None:
secondary_learner.to(lowercase )
secondary_learner.eval()
_a = []
_a = 0
_a = []
_a = []
# Compute the performance of the transformer model at the beginning
_a = compute_perplexity(lowercase , lowercase , lowercase )
test_perps.append(lowercase )
print("Test perplexity, step" , lowercase , ":" , lowercase )
for epoch in range(int(lowercase ) ):
for step, example in enumerate(lowercase ):
torch.cuda.empty_cache()
_a = random.randint(0 , example.size(2 ) - context_len - 1 )
_a = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
_a = model(lowercase , labels=lowercase )
_a = True
if secondary_learner is not None:
_a = secondary_learner.forward(
torch.tensor(lowercase , dtype=torch.long , device=lowercase ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(lowercase ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
_a = -1
if predicted_q < threshold:
_a = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
_a = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
_a = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
_a = compute_perplexity(lowercase , lowercase , lowercase )
test_perps.append(lowercase )
print("Test perplexity, step" , lowercase , ":" , lowercase )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , lowercase )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def _lowerCamelCase ( ) -> Optional[int]:
_a = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" )
# Required parameters
parser.add_argument(
"--data_dir" , default=lowercase , type=lowercase , required=lowercase , help="The input data dir. Should contain data files for WikiText." , )
parser.add_argument(
"--model_name_or_path" , default=lowercase , type=lowercase , required=lowercase , help="Path to pretrained model or model identifier from huggingface.co/models" , )
parser.add_argument(
"--data_file" , type=lowercase , default=lowercase , help=(
"A jbl file containing tokenized data which can be split as objective dataset, "
"train_dataset and test_dataset."
) , )
parser.add_argument(
"--igf_data_file" , type=lowercase , default=lowercase , help="A jbl file containing the context and information gain pairs to train secondary learner." , )
parser.add_argument(
"--output_dir" , default=lowercase , type=lowercase , required=lowercase , help="The output directory where the final fine-tuned model is stored." , )
parser.add_argument(
"--tokenizer_name" , default=lowercase , type=lowercase , help="Pretrained tokenizer name or path if not the same as model_name" , )
parser.add_argument("--seed" , type=lowercase , default=lowercase , help="A seed for reproducible training." )
parser.add_argument(
"--context_len" , default=32 , type=lowercase , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--size_objective_set" , default=100 , type=lowercase , help="number of articles that are long enough to be used as our objective set" , )
parser.add_argument(
"--eval_freq" , default=100 , type=lowercase , help="secondary model evaluation is triggered at eval_freq" )
parser.add_argument("--max_steps" , default=1000 , type=lowercase , help="To calculate training epochs" )
parser.add_argument(
"--secondary_learner_batch_size" , default=128 , type=lowercase , help="batch size of training data for secondary learner" , )
parser.add_argument(
"--batch_size" , default=16 , type=lowercase , help="batch size of training data of language model(gpt2) " )
parser.add_argument(
"--eval_interval" , default=10 , type=lowercase , help=(
"decay the selectivity of our secondary learner filter from"
"1 standard deviation above average to 1 below average after 10 batches"
) , )
parser.add_argument(
"--number" , default=100 , type=lowercase , help="The number of examples split to be used as objective_set/test_data" )
parser.add_argument(
"--min_len" , default=1026 , type=lowercase , help="The minimum length of the article to be used as objective set" )
parser.add_argument(
"--secondary_learner_max_epochs" , default=15 , type=lowercase , help="number of epochs to train secondary learner" )
parser.add_argument("--trim" , default=lowercase , type=lowercase , help="truncate the example if it exceeds context length" )
parser.add_argument(
"--threshold" , default=1.0 , type=lowercase , help=(
"The threshold value used by secondary learner to filter the train_data and allow only"
" informative data as input to the model"
) , )
parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=lowercase , help="finetuned_model_name" )
parser.add_argument(
"--recopy_model" , default=lowercase , type=lowercase , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=lowercase , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , )
# Load train data for secondary learner
_a = joblib.load("data/IGF_values.jbl" )
# Train secondary learner
_a = training_secondary_learner(
lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , )
# load pretrained gpt2 model
_a = GPTaLMHeadModel.from_pretrained("gpt2" )
set_seed(42 )
# Generate train and test data to train and evaluate gpt2 model
_a , _a = generate_datasets(
context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=lowercase )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
lowercase , lowercase , lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=lowercase , secondary_learner=lowercase , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , )
if __name__ == "__main__":
main()
| 350 |
'''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[int]:
_a = 10
_a = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_a = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(lowercase ) ),
} , features=lowercase , )
return dataset
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : int ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=lowercase )
return filename
# FILE_CONTENT + files
lowerCAmelCase_ : Union[str, Any] = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]:
_a = tmp_path_factory.mktemp("data" ) / "file.txt"
_a = FILE_CONTENT
with open(lowercase , "w" ) as f:
f.write(lowercase )
return filename
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> str:
import bza
_a = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_a = bytes(lowercase , "utf-8" )
with bza.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> Optional[Any]:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_a = bytes(lowercase , "utf-8" )
with gzip.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Union[str, Any]:
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_a = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_a = bytes(lowercase , "utf-8" )
with lza.frame.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Tuple ) -> Optional[Any]:
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_a = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(lowercase , "w" ) as archive:
archive.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : Optional[Any] ) -> Dict:
import tarfile
_a = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any ) -> Union[str, Any]:
import lzma
_a = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_a = bytes(lowercase , "utf-8" )
with lzma.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int , lowercase : Any ) -> Union[str, Any]:
import zipfile
_a = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict ) -> List[str]:
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_a = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_a = bytes(lowercase , "utf-8" )
with zstd.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] ) -> Union[str, Any]:
_a = tmp_path_factory.mktemp("data" ) / "file.xml"
_a = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(lowercase , "w" ) as f:
f.write(lowercase )
return filename
lowerCAmelCase_ : Optional[int] = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
lowerCAmelCase_ : List[Any] = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
lowerCAmelCase_ : Dict = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
lowerCAmelCase_ : Dict = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
lowerCAmelCase_ : List[Any] = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> List[str]:
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> str:
_a = datasets.Dataset.from_dict(lowercase )
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict ) -> Dict:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(lowercase ) ) as con:
_a = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[Any] ) -> str:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(lowercase , "w" , newline="" ) as f:
_a = csv.DictWriter(lowercase , fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(lowercase , "w" , newline="" ) as f:
_a = csv.DictWriter(lowercase , fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> int:
import bza
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(lowercase , "rb" ) as f:
_a = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(lowercase , "wb" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Any , lowercase : Any ) -> List[str]:
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : Any , lowercase : List[Any] ) -> Dict:
_a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) )
f.write(lowercase , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Optional[Any] , lowercase : int ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[Any] ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_a = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(lowercase , "wb" ) as f:
_a = pq.ParquetWriter(lowercase , schema=lowercase )
_a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase ) )] for k in DATA[0]} , schema=lowercase )
writer.write_table(lowercase )
writer.close()
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_a = {"data": DATA}
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_a = {"data": DATA_DICT_OF_LISTS}
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] ) -> str:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> List[str]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[Any] ) -> Optional[Any]:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA_312:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> int:
_a = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(lowercase , "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(lowercase ) + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[str] , lowercase : Dict ) -> Tuple:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(lowercase , "rb" ) as orig_file:
with gzip.open(lowercase , "wb" ) as zipped_file:
zipped_file.writelines(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[Any] ) -> List[Any]:
import gzip
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(lowercase , "rb" ) as orig_file:
with gzip.open(lowercase , "wb" ) as zipped_file:
zipped_file.writelines(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[Any] , lowercase : int ) -> str:
_a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : int , lowercase : List[Any] ) -> Optional[int]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("nested" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] , lowercase : str ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : Any , lowercase : Optional[int] ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.basename(lowercase ) )
f.add(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(lowercase , "w" ) as f:
f.add(lowercase , arcname=os.path.join("nested" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : int ) -> str:
_a = ["0", "1", "2", "3"]
_a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> Dict:
_a = ["0", "1", "2", "3"]
_a = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Dict:
_a = ["0", "1", "2", "3"]
_a = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(lowercase , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : Union[str, Any] , lowercase : Any ) -> Optional[Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Dict , lowercase : List[str] , lowercase : List[str] ) -> Union[str, Any]:
_a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
f.write(lowercase , arcname=os.path.join("main_dir" , os.path.basename(lowercase ) ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Tuple , lowercase : int , lowercase : str ) -> int:
_a = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename("unsupported.ext" ) )
f.write(lowercase , arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : List[Any] ) -> Any:
_a = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_a = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(lowercase , "w" , encoding="utf-8" ) as f:
f.write(lowercase )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[Any]:
return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def _lowerCamelCase ( ) -> Optional[int]:
return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> Dict:
_a = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(lowercase , "w" ) as f:
f.write(lowercase , arcname=os.path.basename(lowercase ) )
f.write(lowercase , arcname=os.path.basename(lowercase ).replace(".jpg" , "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def _lowerCamelCase ( lowercase : str ) -> str:
_a = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt" , "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt" , "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
return data_dir
| 346 | 0 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase_ : str = {'vocab_file': 'vocab.json'}
lowerCAmelCase_ : List[str] = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
lowerCAmelCase_ : List[str] = {'mgp-str': 27}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =VOCAB_FILES_NAMES
__a =PRETRAINED_VOCAB_FILES_MAP
__a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Union[str, Any] , __a : Tuple , __a : Dict="[GO]" , __a : List[str]="[GO]" , __a : Optional[Any]="[s]" , __a : Optional[Any]="[GO]" , **__a : Optional[Any] ):
super().__init__(
unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , **__a , )
with open(__a , encoding="utf-8" ) as vocab_handle:
_a = json.load(__a )
_a = {v: k for k, v in self.vocab.items()}
@property
def UpperCamelCase__ ( self : Union[str, Any] ):
return len(self.vocab )
def UpperCamelCase__ ( self : int ):
return dict(self.vocab , **self.added_tokens_encoder )
def UpperCamelCase__ ( self : List[Any] , __a : str ):
_a = []
for s in text:
char_tokens.extend(__a )
return char_tokens
def UpperCamelCase__ ( self : int , __a : Optional[Any] ):
return self.vocab.get(__a , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self : str , __a : int ):
return self.decoder.get(__a )
def UpperCamelCase__ ( self : List[str] , __a : str , __a : Optional[str] = None ):
if not os.path.isdir(__a ):
logger.error("Vocabulary path ({}) should be a directory".format(__a ) )
return
_a = os.path.join(
__a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(__a , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=__a , ensure_ascii=__a ) + "\n" )
return (vocab_file,)
| 351 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =['image_processor', 'tokenizer']
__a ='LayoutLMv2ImageProcessor'
__a =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast')
def __init__( self : Dict , __a : int=None , __a : List[Any]=None , **__a : str ):
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __a , )
_a = kwargs.pop("feature_extractor" )
_a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__a , __a )
def __call__( self : Optional[int] , __a : Optional[Any] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Optional[Any] , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
_a = self.image_processor(images=__a , return_tensors=__a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__a , __a ):
_a = [text] # add batch dimension (as the image processor always adds a batch dimension)
_a = features["words"]
_a = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , )
# add pixel values
_a = features.pop("pixel_values" )
if return_overflowing_tokens is True:
_a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] )
_a = images
return encoded_inputs
def UpperCamelCase__ ( self : int , __a : List[Any] , __a : int ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
_a = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__a ) != len(__a ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
f' {len(__a )} and {len(__a )}' )
return images_with_overflow
def UpperCamelCase__ ( self : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ):
return self.tokenizer.batch_decode(*__a , **__a )
def UpperCamelCase__ ( self : Union[str, Any] , *__a : Optional[int] , **__a : Optional[Any] ):
return self.tokenizer.decode(*__a , **__a )
@property
def UpperCamelCase__ ( self : int ):
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def UpperCamelCase__ ( self : List[Any] ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , )
return self.image_processor_class
@property
def UpperCamelCase__ ( self : int ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , )
return self.image_processor
| 346 | 0 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
lowerCAmelCase_ : str = datasets.load_iris()
lowerCAmelCase_ : Any = np.array(data['data'])
lowerCAmelCase_ : Union[str, Any] = np.array(data['target'])
lowerCAmelCase_ : int = data['target_names']
lowerCAmelCase_ : str = train_test_split(X, y)
def _lowerCamelCase ( lowercase : Tuple , lowercase : Union[str, Any] ) -> List[Any]:
return np.linalg.norm(np.array(lowercase ) - np.array(lowercase ) )
def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : List[str]=5 ) -> Dict:
_a = zip(lowercase , lowercase )
# List of distances of all points from the point to be classified
_a = []
for data_point in data:
_a = euclidean_distance(data_point[0] , lowercase )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
_a = [i[1] for i in sorted(lowercase )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
_a = Counter(lowercase ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 352 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
lowerCAmelCase_ : int = '▁'
lowerCAmelCase_ : Optional[Any] = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
lowerCAmelCase_ : Optional[int] = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
lowerCAmelCase_ : List[str] = {
'facebook/s2t-small-librispeech-asr': 10_24,
}
lowerCAmelCase_ : List[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
lowerCAmelCase_ : Union[str, Any] = {'mustc': MUSTC_LANGS}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =VOCAB_FILES_NAMES
__a =PRETRAINED_VOCAB_FILES_MAP
__a =MAX_MODEL_INPUT_SIZES
__a =['input_ids', 'attention_mask']
__a =[]
def __init__( self : Optional[Any] , __a : Optional[Any] , __a : Any , __a : Any="<s>" , __a : List[str]="</s>" , __a : str="<pad>" , __a : List[str]="<unk>" , __a : Union[str, Any]=False , __a : Any=False , __a : List[str]=None , __a : Optional[int]=None , __a : Optional[Dict[str, Any]] = None , **__a : int , ):
_a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , )
_a = do_upper_case
_a = do_lower_case
_a = load_json(__a )
_a = {v: k for k, v in self.encoder.items()}
_a = spm_file
_a = load_spm(__a , self.sp_model_kwargs )
if lang_codes is not None:
_a = lang_codes
_a = LANGUAGES[lang_codes]
_a = [f'<lang:{lang}>' for lang in self.langs]
_a = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs}
_a = self.lang_tokens
_a = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
_a = {}
@property
def UpperCamelCase__ ( self : str ):
return len(self.encoder )
@property
def UpperCamelCase__ ( self : str ):
return self._tgt_lang
@tgt_lang.setter
def UpperCamelCase__ ( self : Optional[int] , __a : Any ):
_a = new_tgt_lang
self.set_tgt_lang_special_tokens(__a )
def UpperCamelCase__ ( self : List[Any] , __a : str ):
_a = self.lang_code_to_id[tgt_lang]
_a = [lang_code_id]
def UpperCamelCase__ ( self : Dict , __a : str ):
return self.sp_model.encode(__a , out_type=__a )
def UpperCamelCase__ ( self : List[str] , __a : Any ):
return self.encoder.get(__a , self.encoder[self.unk_token] )
def UpperCamelCase__ ( self : str , __a : int ):
return self.decoder.get(__a , self.unk_token )
def UpperCamelCase__ ( self : str , __a : List[str] ):
_a = []
_a = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
_a = self.sp_model.decode(__a )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
_a = []
else:
current_sub_tokens.append(__a )
_a = self.sp_model.decode(__a )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def UpperCamelCase__ ( self : int , __a : Any , __a : int=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def UpperCamelCase__ ( self : Any , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a )
_a = [1] * len(self.prefix_tokens )
_a = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__a )) + suffix_ones
return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ):
_a = self.__dict__.copy()
_a = None
return state
def __setstate__( self : str , __a : Dict ):
_a = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_a = {}
_a = load_spm(self.spm_file , self.sp_model_kwargs )
def UpperCamelCase__ ( self : List[str] , __a : str , __a : Optional[str] = None ):
_a = Path(__a )
assert save_dir.is_dir(), f'{save_directory} should be a directory'
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder , __a )
if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __a )
elif not os.path.isfile(self.spm_file ):
with open(__a , "wb" ) as fi:
_a = self.sp_model.serialized_model_proto()
fi.write(__a )
return (str(__a ), str(__a ))
def _lowerCamelCase ( lowercase : str , lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
_a = sentencepiece.SentencePieceProcessor(**lowercase )
spm.Load(str(lowercase ) )
return spm
def _lowerCamelCase ( lowercase : str ) -> Union[Dict, List]:
with open(lowercase , "r" ) as f:
return json.load(lowercase )
def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> None:
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase , indent=2 )
| 346 | 0 |
'''simple docstring'''
from math import factorial
def _lowerCamelCase ( lowercase : int = 20 ) -> int:
_a = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
_a = n // 2
return int(factorial(lowercase ) / (factorial(lowercase ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
lowerCAmelCase_ : Optional[Any] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 353 |
'''simple docstring'''
from manim import *
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def UpperCamelCase__ ( self : Dict ):
_a = Rectangle(height=0.5 , width=0.5 )
_a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_a = [mem.copy() for i in range(6 )]
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = VGroup(__a , __a ).arrange(__a , buff=0 )
_a = Text("CPU" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__a )
_a = [mem.copy() for i in range(4 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("GPU" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
gpu.move_to([-1, -1, 0] )
self.add(__a )
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("Model" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a )
model.move_to([3, -1.0, 0] )
self.add(__a )
_a = []
for i, rect in enumerate(__a ):
rect.set_stroke(__a )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
_a = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__a , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__a , buff=0.0 )
self.add(__a )
cpu_targs.append(__a )
_a = [mem.copy() for i in range(6 )]
_a = VGroup(*__a ).arrange(__a , buff=0 )
_a = Text("Loaded Checkpoint" , font_size=24 )
_a = Group(__a , __a ).arrange(__a , aligned_edge=__a , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
_a = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_a = MarkupText(
f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__a , __a )
_a = MarkupText(
f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , )
blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() )
_a = MarkupText(
f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__a ) , Write(__a ) )
self.play(Write(__a , run_time=1 ) , Create(__a , run_time=1 ) )
_a = []
_a = []
for i, rect in enumerate(__a ):
_a = fill.copy().set_fill(__a , opacity=0.7 )
target.move_to(__a )
first_animations.append(GrowFromCenter(__a , run_time=1 ) )
_a = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__a , run_time=1.5 ) )
self.play(*__a )
self.play(*__a )
self.wait()
| 346 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
lowerCAmelCase_ : int = logging.get_logger(__name__)
lowerCAmelCase_ : str = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='deberta-v2'
def __init__( self : Dict , __a : List[str]=12_81_00 , __a : int=15_36 , __a : Tuple=24 , __a : Dict=24 , __a : Any=61_44 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Any=0.1 , __a : Optional[Any]=5_12 , __a : int=0 , __a : Tuple=0.02 , __a : Tuple=1e-7 , __a : List[str]=False , __a : Tuple=-1 , __a : Dict=0 , __a : Tuple=True , __a : Dict=None , __a : int=0 , __a : Tuple="gelu" , **__a : Optional[Any] , ):
super().__init__(**__a )
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = relative_attention
_a = max_relative_positions
_a = pad_token_id
_a = position_biased_input
# Backwards compatibility
if type(__a ) == str:
_a = [x.strip() for x in pos_att_type.lower().split("|" )]
_a = pos_att_type
_a = vocab_size
_a = layer_norm_eps
_a = kwargs.get("pooler_hidden_size" , __a )
_a = pooler_dropout
_a = pooler_hidden_act
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
@property
def UpperCamelCase__ ( self : Tuple ):
if self.task == "multiple-choice":
_a = {0: "batch", 1: "choice", 2: "sequence"}
else:
_a = {0: "batch", 1: "sequence"}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] )
else:
return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] )
@property
def UpperCamelCase__ ( self : List[Any] ):
return 12
def UpperCamelCase__ ( self : Tuple , __a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __a : int = -1 , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , __a : "PreTrainedTokenizerBase" = None , ):
_a = super().generate_dummy_inputs(preprocessor=__a , framework=__a )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 354 |
'''simple docstring'''
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
lowerCAmelCase_ : Tuple = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN'])
def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[int]:
_a = test_results.split(" " )
_a = 0
_a = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
_a = expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def _lowerCamelCase ( lowercase : str ) -> Optional[Any]:
_a = {}
_a = None
_a = False
for line in failures_short_lines.split("\n" ):
if re.search(r"_ \[doctest\]" , lowercase ):
_a = True
_a = line.split(" " )[2]
elif in_error and not line.split(" " )[0].isdigit():
_a = line
_a = False
return failures
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Tuple , __a : str , __a : Dict ):
_a = title
_a = doc_test_results["time_spent"].split("," )[0]
_a = doc_test_results["success"]
_a = doc_test_results["failures"]
_a = self.n_success + self.n_failures
# Failures and success of the modeling tests
_a = doc_test_results
@property
def UpperCamelCase__ ( self : int ):
_a = [self._time_spent]
_a = 0
for time in time_spent:
_a = time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(__a ) == 1:
_a = [0, 0, time_parts[0]]
_a , _a , _a = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
_a , _a , _a = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(__a )}h{int(__a )}m{int(__a )}s'
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def UpperCamelCase__ ( self : List[str] ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def UpperCamelCase__ ( self : str ):
_a = 40
_a = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(__a , __a )}
_a = ""
for category, failures in category_failures.items():
if len(__a ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(__a )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def UpperCamelCase__ ( self : List[str] ):
_a = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(__a )
@staticmethod
def UpperCamelCase__ ( ):
_a = [
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(__a )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=__a , )
def UpperCamelCase__ ( self : Tuple ):
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
_a = f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed."
_a = client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=__a , )
def UpperCamelCase__ ( self : Dict , __a : List[str] , __a : List[Any] , __a : Tuple , __a : int ):
_a = ""
for key, value in failures.items():
_a = value[:2_00] + " [Truncated]" if len(__a ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
_a = job_name
_a = {"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
_a = {
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def UpperCamelCase__ ( self : str ):
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
_a = self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
_a = sorted(self.doc_test_results.items() , key=lambda __a : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
_a = f'*Num failures* :{len(job_result["failed"] )} \n'
_a = job_result["failures"]
_a = self.get_reply_blocks(__a , __a , __a , text=__a )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=f'Results for {job}' , blocks=__a , thread_ts=self.thread_ts["ts"] , )
time.sleep(1 )
def _lowerCamelCase ( ) -> Any:
_a = os.environ["GITHUB_RUN_ID"]
_a = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
_a = requests.get(lowercase ).json()
_a = {}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
_a = math.ceil((result["total_count"] - 100) / 100 )
for i in range(lowercase ):
_a = requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return jobs
except Exception as e:
print("Unknown error, could not fetch links." , lowercase )
return {}
def _lowerCamelCase ( lowercase : str ) -> Dict:
_a = {}
if os.path.exists(lowercase ):
_a = os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase , lowercase ) , encoding="utf-8" ) as f:
_a = f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase , lowercase )}.' ) from e
return _artifact
def _lowerCamelCase ( ) -> str:
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Dict , __a : str ):
_a = name
_a = []
def __str__( self : List[str] ):
return self.name
def UpperCamelCase__ ( self : str , __a : str ):
self.paths.append({"name": self.name, "path": path} )
_a = {}
_a = filter(os.path.isdir , os.listdir() )
for directory in directories:
_a = directory
if artifact_name not in _available_artifacts:
_a = Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
lowerCAmelCase_ : List[Any] = get_job_links()
lowerCAmelCase_ : Any = retrieve_available_artifacts()
lowerCAmelCase_ : List[str] = collections.OrderedDict(
[
('*.py', 'API Examples'),
('*.md', 'MD Examples'),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
lowerCAmelCase_ : Optional[Any] = {
v: {
'failed': [],
'failures': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
lowerCAmelCase_ : int = github_actions_job_links.get('run_doctests')
lowerCAmelCase_ : Union[str, Any] = available_artifacts['doc_tests_gpu_test_reports'].paths[0]
lowerCAmelCase_ : List[str] = retrieve_artifact(artifact_path['name'])
if "stats" in artifact:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = handle_test_results(artifact['stats'])
lowerCAmelCase_ : List[str] = failed
lowerCAmelCase_ : Optional[Any] = success
lowerCAmelCase_ : Tuple = time_spent[1:-1] + ', '
lowerCAmelCase_ : List[Any] = extract_first_line_failure(artifact['failures_short'])
for line in artifact["summary_short"].split('\n'):
if re.search('FAILED', line):
lowerCAmelCase_ : int = line.replace('FAILED ', '')
lowerCAmelCase_ : Optional[int] = line.split()[0].replace('\n', '')
if "::" in line:
lowerCAmelCase_ , lowerCAmelCase_ : str = line.split('::')
else:
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
lowerCAmelCase_ : Union[str, Any] = docs[file_regex]
doc_test_results[category]["failed"].append(test)
lowerCAmelCase_ : List[str] = all_failures[test] if test in all_failures else 'N/A'
lowerCAmelCase_ : Optional[Any] = failure
break
lowerCAmelCase_ : Tuple = Message('🤗 Results of the doc tests.', doc_test_results)
message.post()
message.post_reply()
| 346 | 0 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def _lowerCamelCase ( ) -> str:
_a = ArgumentParser(
description=(
"PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"
) )
# Optional arguments for the launch helper
parser.add_argument("--num_cores" , type=lowercase , default=1 , help="Number of TPU cores to use (1 or 8)." )
# positional
parser.add_argument(
"training_script" , type=lowercase , help=(
"The full path to the single TPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script"
) , )
# rest from the training program
parser.add_argument("training_script_args" , nargs=lowercase )
return parser.parse_args()
def _lowerCamelCase ( ) -> Optional[int]:
_a = parse_args()
# Import training_script as a module.
_a = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
_a = script_fpath.stem
_a = importlib.import_module(lowercase )
# Patch sys.argv
_a = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 355 |
'''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _lowerCamelCase ( ) -> str:
_a = HfArgumentParser(lowercase )
_a = parser.parse_args_into_dataclasses()[0]
_a = TensorFlowBenchmark(args=lowercase )
try:
_a = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
_a = "Arg --no_{0} is no longer used, please use --no-{0} instead."
_a = " ".join(str(lowercase ).split(" " )[:-1] )
_a = ""
_a = eval(str(lowercase ).split(" " )[-1] )
_a = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowercase )
if len(lowercase ) > 0:
_a = full_error_msg + begin_error_msg + str(lowercase )
raise ValueError(lowercase )
benchmark.run()
if __name__ == "__main__":
main()
| 346 | 0 |
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def _lowerCamelCase ( lowercase : str , lowercase : str , **lowercase : List[str] ) -> Dict:
_a = AutoConfig.from_pretrained(lowercase , **lowercase )
_a = AutoModelForSeqaSeqLM.from_config(lowercase )
model.save_pretrained(lowercase )
AutoTokenizer.from_pretrained(lowercase ).save_pretrained(lowercase )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 356 |
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
lowerCAmelCase_ : Union[str, Any] = None
try:
import msvcrt
except ImportError:
lowerCAmelCase_ : Tuple = None
try:
import fcntl
except ImportError:
lowerCAmelCase_ : Optional[int] = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
lowerCAmelCase_ : Any = OSError
# Data
# ------------------------------------------------
lowerCAmelCase_ : Tuple = [
'Timeout',
'BaseFileLock',
'WindowsFileLock',
'UnixFileLock',
'SoftFileLock',
'FileLock',
]
lowerCAmelCase_ : Optional[int] = '3.0.12'
lowerCAmelCase_ : Tuple = None
def _lowerCamelCase ( ) -> Optional[int]:
global _logger
_a = _logger or logging.getLogger(__name__ )
return _logger
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Dict , __a : Optional[Any] ):
_a = lock_file
return None
def __str__( self : Any ):
_a = f'The file lock \'{self.lock_file}\' could not be acquired.'
return temp
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : List[Any] , __a : Optional[int] ):
_a = lock
return None
def __enter__( self : str ):
return self.lock
def __exit__( self : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Dict ):
self.lock.release()
return None
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int]=-1 , __a : Tuple=None ):
_a = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
_a = self.hash_filename_if_too_long(__a , __a )
# The path to the lock file.
_a = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
_a = None
# The default timeout value.
_a = timeout
# We use this lock primarily for the lock counter.
_a = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
_a = 0
return None
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return self._lock_file
@property
def UpperCamelCase__ ( self : List[Any] ):
return self._timeout
@timeout.setter
def UpperCamelCase__ ( self : int , __a : List[Any] ):
_a = float(__a )
return None
def UpperCamelCase__ ( self : Dict ):
raise NotImplementedError()
def UpperCamelCase__ ( self : str ):
raise NotImplementedError()
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return self._lock_file_fd is not None
def UpperCamelCase__ ( self : int , __a : int=None , __a : Tuple=0.05 ):
# Use the default timeout, if no timeout is provided.
if timeout is None:
_a = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
_a = id(self )
_a = self._lock_file
_a = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' )
self._acquire()
if self.is_locked:
logger().debug(f'Lock {lock_id} acquired on {lock_filename}' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' )
raise Timeout(self._lock_file )
else:
logger().debug(
f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' )
time.sleep(__a )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
_a = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def UpperCamelCase__ ( self : Union[str, Any] , __a : int=False ):
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
_a = id(self )
_a = self._lock_file
logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' )
self._release()
_a = 0
logger().debug(f'Lock {lock_id} released on {lock_filename}' )
return None
def __enter__( self : List[Any] ):
self.acquire()
return self
def __exit__( self : str , __a : str , __a : Dict , __a : Dict ):
self.release()
return None
def __del__( self : int ):
self.release(force=__a )
return None
def UpperCamelCase__ ( self : Tuple , __a : str , __a : int ):
_a = os.path.basename(__a )
if len(__a ) > max_length and max_length > 0:
_a = os.path.dirname(__a )
_a = str(hash(__a ) )
_a = filename[: max_length - len(__a ) - 8] + "..." + hashed_filename + ".lock"
return os.path.join(__a , __a )
else:
return path
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : int , __a : str , __a : List[Any]=-1 , __a : List[Any]=None ):
from .file_utils import relative_to_absolute_path
super().__init__(__a , timeout=__a , max_filename_length=__a )
_a = "\\\\?\\" + relative_to_absolute_path(self.lock_file )
def UpperCamelCase__ ( self : int ):
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
_a = os.open(self._lock_file , __a )
except OSError:
pass
else:
try:
msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(__a )
else:
_a = fd
return None
def UpperCamelCase__ ( self : Optional[Any] ):
_a = self._lock_file_fd
_a = None
msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 )
os.close(__a )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[str] , __a : Optional[Any] , __a : Union[str, Any]=-1 , __a : int=None ):
_a = os.statvfs(os.path.dirname(__a ) ).f_namemax
super().__init__(__a , timeout=__a , max_filename_length=__a )
def UpperCamelCase__ ( self : Any ):
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
_a = os.open(self._lock_file , __a )
try:
fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(__a )
else:
_a = fd
return None
def UpperCamelCase__ ( self : Tuple ):
# Do not remove the lockfile:
#
# https://github.com/benediktschmitt/py-filelock/issues/31
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
_a = self._lock_file_fd
_a = None
fcntl.flock(__a , fcntl.LOCK_UN )
os.close(__a )
return None
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
_a = os.open(self._lock_file , __a )
except OSError:
pass
else:
_a = fd
return None
def UpperCamelCase__ ( self : Union[str, Any] ):
os.close(self._lock_file_fd )
_a = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
lowerCAmelCase_ : str = None
if msvcrt:
lowerCAmelCase_ : List[str] = WindowsFileLock
elif fcntl:
lowerCAmelCase_ : List[str] = UnixFileLock
else:
lowerCAmelCase_ : int = SoftFileLock
if warnings is not None:
warnings.warn('only soft file lock is available')
| 346 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42
__a =42
__a =42
__a =42
__a =42
def UpperCamelCase__ ( self : str ):
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def UpperCamelCase__ ( self : List[str] ):
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = torch.arange(self.height * self.width )
_a = torch.stack(
[
pixel_indices % self.width,
torch.div(__a , self.width , rounding_mode="trunc" ),
] , axis=1 , )
return coords
@property
def UpperCamelCase__ ( self : List[Any] ):
_a , *_a = self.shape
_a = int(np.prod(__a ) )
_a = self.get_image_coords()
_a = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
_a = self.get_camera_rays(__a )
_a = rays.view(__a , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def UpperCamelCase__ ( self : Dict , __a : torch.Tensor ):
_a , *_a , _a = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
_a = coords.view(__a , -1 , 2 )
_a = self.resolution()
_a = self.fov()
_a = (flat.float() / (res - 1)) * 2 - 1
_a = fracs * torch.tan(fov / 2 )
_a = fracs.view(__a , -1 , 2 )
_a = (
self.z.view(__a , 1 , 3 )
+ self.x.view(__a , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(__a , 1 , 3 ) * fracs[:, :, 1:]
)
_a = directions / directions.norm(dim=-1 , keepdim=__a )
_a = torch.stack(
[
torch.broadcast_to(self.origin.view(__a , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(__a , *__a , 2 , 3 )
def UpperCamelCase__ ( self : Dict , __a : int , __a : int ):
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=__a , height=__a , x_fov=self.x_fov , y_fov=self.y_fov , )
def _lowerCamelCase ( lowercase : int ) -> DifferentiableProjectiveCamera:
_a = []
_a = []
_a = []
_a = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
_a = np.array([np.sin(lowercase ), np.cos(lowercase ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
_a = -z * 4
_a = np.array([np.cos(lowercase ), -np.sin(lowercase ), 0.0] )
_a = np.cross(lowercase , lowercase )
origins.append(lowercase )
xs.append(lowercase )
ys.append(lowercase )
zs.append(lowercase )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , width=lowercase , height=lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowercase )) , )
| 357 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42 # [batch_size x 3]
__a =42
__a =42
__a =42
__a =42
__a =42
def UpperCamelCase__ ( self : str ):
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def UpperCamelCase__ ( self : List[str] ):
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = torch.arange(self.height * self.width )
_a = torch.stack(
[
pixel_indices % self.width,
torch.div(__a , self.width , rounding_mode="trunc" ),
] , axis=1 , )
return coords
@property
def UpperCamelCase__ ( self : List[Any] ):
_a , *_a = self.shape
_a = int(np.prod(__a ) )
_a = self.get_image_coords()
_a = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
_a = self.get_camera_rays(__a )
_a = rays.view(__a , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def UpperCamelCase__ ( self : Dict , __a : torch.Tensor ):
_a , *_a , _a = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
_a = coords.view(__a , -1 , 2 )
_a = self.resolution()
_a = self.fov()
_a = (flat.float() / (res - 1)) * 2 - 1
_a = fracs * torch.tan(fov / 2 )
_a = fracs.view(__a , -1 , 2 )
_a = (
self.z.view(__a , 1 , 3 )
+ self.x.view(__a , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(__a , 1 , 3 ) * fracs[:, :, 1:]
)
_a = directions / directions.norm(dim=-1 , keepdim=__a )
_a = torch.stack(
[
torch.broadcast_to(self.origin.view(__a , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(__a , *__a , 2 , 3 )
def UpperCamelCase__ ( self : Dict , __a : int , __a : int ):
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=__a , height=__a , x_fov=self.x_fov , y_fov=self.y_fov , )
def _lowerCamelCase ( lowercase : int ) -> DifferentiableProjectiveCamera:
_a = []
_a = []
_a = []
_a = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
_a = np.array([np.sin(lowercase ), np.cos(lowercase ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
_a = -z * 4
_a = np.array([np.cos(lowercase ), -np.sin(lowercase ), 0.0] )
_a = np.cross(lowercase , lowercase )
origins.append(lowercase )
xs.append(lowercase )
ys.append(lowercase )
zs.append(lowercase )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , width=lowercase , height=lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowercase )) , )
| 346 | 0 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[Any] , __a : int , __a : Tuple=13 , __a : Optional[Any]=7 , __a : Dict=True , __a : Tuple=True , __a : List[str]=True , __a : List[str]=True , __a : Optional[int]=True , __a : Optional[Any]=False , __a : Union[str, Any]=False , __a : List[str]=False , __a : str=2 , __a : str=99 , __a : List[Any]=0 , __a : List[Any]=32 , __a : Dict=5 , __a : Tuple=4 , __a : Dict=0.1 , __a : Optional[int]=0.1 , __a : Tuple=5_12 , __a : int=12 , __a : int=2 , __a : str=0.02 , __a : int=3 , __a : Dict=4 , __a : Dict="last" , __a : List[Any]=None , __a : Tuple=None , ):
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_input_lengths
_a = use_token_type_ids
_a = use_labels
_a = gelu_activation
_a = sinusoidal_embeddings
_a = causal
_a = asm
_a = n_langs
_a = vocab_size
_a = n_special
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = num_labels
_a = num_choices
_a = summary_type
_a = use_proj
_a = scope
def UpperCamelCase__ ( self : List[str] ):
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
if self.use_input_lengths:
_a = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , 2 ).float()
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCamelCase__ ( self : Tuple ):
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def UpperCamelCase__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] , __a : Optional[Any] , __a : Tuple , __a : Optional[int] , __a : List[Any] , __a : Any , __a : int , __a : Optional[int] , ):
_a = FlaubertModel(config=__a )
model.to(__a )
model.eval()
_a = model(__a , lengths=__a , langs=__a )
_a = model(__a , langs=__a )
_a = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self : Tuple , __a : int , __a : Union[str, Any] , __a : Dict , __a : Optional[int] , __a : str , __a : Dict , __a : Optional[int] , __a : str , __a : Union[str, Any] , ):
_a = FlaubertWithLMHeadModel(__a )
model.to(__a )
model.eval()
_a = model(__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self : Dict , __a : Any , __a : Any , __a : int , __a : int , __a : Dict , __a : List[str] , __a : List[Any] , __a : Any , __a : str , ):
_a = FlaubertForQuestionAnsweringSimple(__a )
model.to(__a )
model.eval()
_a = model(__a )
_a = model(__a , start_positions=__a , end_positions=__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ ( self : Union[str, Any] , __a : List[str] , __a : Optional[int] , __a : str , __a : Tuple , __a : List[Any] , __a : List[str] , __a : Tuple , __a : Any , __a : Optional[int] , ):
_a = FlaubertForQuestionAnswering(__a )
model.to(__a )
model.eval()
_a = model(__a )
_a = model(
__a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , p_mask=__a , )
_a = model(
__a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , )
((_a ) , ) = result_with_labels.to_tuple()
_a = model(__a , start_positions=__a , end_positions=__a )
((_a ) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def UpperCamelCase__ ( self : str , __a : List[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : Any , __a : Dict , __a : List[Any] , __a : Optional[int] , __a : int , __a : Dict , ):
_a = FlaubertForSequenceClassification(__a )
model.to(__a )
model.eval()
_a = model(__a )
_a = model(__a , labels=__a )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ ( self : str , __a : Optional[int] , __a : List[str] , __a : List[str] , __a : Optional[Any] , __a : Tuple , __a : List[str] , __a : List[Any] , __a : int , __a : Dict , ):
_a = self.num_labels
_a = FlaubertForTokenClassification(__a )
model.to(__a )
model.eval()
_a = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self : List[Any] , __a : Tuple , __a : Any , __a : Tuple , __a : List[Any] , __a : Optional[Any] , __a : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[Any] , ):
_a = self.num_choices
_a = FlaubertForMultipleChoice(config=__a )
model.to(__a )
model.eval()
_a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = model(
__a , attention_mask=__a , token_type_ids=__a , labels=__a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ ( self : int ):
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"lengths": input_lengths,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =(
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
__a =(
{
'feature-extraction': FlaubertModel,
'fill-mask': FlaubertWithLMHeadModel,
'question-answering': FlaubertForQuestionAnsweringSimple,
'text-classification': FlaubertForSequenceClassification,
'token-classification': FlaubertForTokenClassification,
'zero-shot': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : Any , __a : Union[str, Any] , __a : Dict , __a : List[str] ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCamelCase__ ( self : Dict , __a : str , __a : int , __a : List[str]=False ):
_a = super()._prepare_for_class(__a , __a , return_labels=__a )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
_a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__a )
_a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__a )
return inputs_dict
def UpperCamelCase__ ( self : Optional[Any] ):
_a = FlaubertModelTester(self )
_a = ConfigTester(self , config_class=__a , emb_dim=37 )
def UpperCamelCase__ ( self : List[str] ):
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self : Optional[int] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__a )
def UpperCamelCase__ ( self : str ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__a )
def UpperCamelCase__ ( self : Dict ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*__a )
def UpperCamelCase__ ( self : List[str] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__a )
def UpperCamelCase__ ( self : Tuple ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*__a )
def UpperCamelCase__ ( self : Any ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*__a )
@slow
def UpperCamelCase__ ( self : List[Any] ):
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = FlaubertModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@slow
@require_torch_gpu
def UpperCamelCase__ ( self : Any ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
_a = True
_a = model_class(config=__a )
_a = self._prepare_for_class(__a , __a )
_a = torch.jit.trace(
__a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(__a , os.path.join(__a , "traced_model.pt" ) )
_a = torch.jit.load(os.path.join(__a , "traced_model.pt" ) , map_location=__a )
loaded(inputs_dict["input_ids"].to(__a ) , inputs_dict["attention_mask"].to(__a ) )
@require_torch
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCamelCase__ ( self : List[Any] ):
_a = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" )
_a = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
with torch.no_grad():
_a = model(__a )[0]
_a = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , __a )
_a = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
| 358 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
lowerCAmelCase_ : List[str] = TypeVar('T')
lowerCAmelCase_ : Dict = TypeVar('U')
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __a : T | None , __a : U | None ):
_a = key
_a = val
_a = None
_a = None
def __repr__( self : Any ):
return (
f'Node: key: {self.key}, val: {self.val}, '
f'has next: {bool(self.next )}, has prev: {bool(self.prev )}'
)
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
def __init__( self : Dict ):
_a = DoubleLinkedListNode(__a , __a )
_a = DoubleLinkedListNode(__a , __a )
_a , _a = self.rear, self.head
def __repr__( self : str ):
_a = ["DoubleLinkedList"]
_a = self.head
while node.next is not None:
rep.append(str(__a ) )
_a = node.next
rep.append(str(self.rear ) )
return ",\n ".join(__a )
def UpperCamelCase__ ( self : int , __a : DoubleLinkedListNode[T, U] ):
_a = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_a = node
_a = previous
_a = node
_a = self.rear
def UpperCamelCase__ ( self : Any , __a : DoubleLinkedListNode[T, U] ):
if node.prev is None or node.next is None:
return None
_a = node.next
_a = node.prev
_a = None
_a = None
return node
class __SCREAMING_SNAKE_CASE (Generic[T, U] ):
"""simple docstring"""
__a ={}
def __init__( self : Union[str, Any] , __a : int ):
_a = DoubleLinkedList()
_a = capacity
_a = 0
_a = 0
_a = 0
_a = {}
def __repr__( self : Optional[int] ):
return (
f'CacheInfo(hits={self.hits}, misses={self.miss}, '
f'capacity={self.capacity}, current size={self.num_keys})'
)
def __contains__( self : str , __a : T ):
return key in self.cache
def UpperCamelCase__ ( self : str , __a : T ):
# Note: pythonic interface would throw KeyError rather than return None
if key in self.cache:
self.hits += 1
_a = self.cache[key]
_a = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(__a )
return node.val
self.miss += 1
return None
def UpperCamelCase__ ( self : Tuple , __a : T , __a : U ):
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_a = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(__a ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_a = DoubleLinkedListNode(__a , __a )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_a = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_a = value
self.list.add(__a )
@classmethod
def UpperCamelCase__ ( cls : Tuple , __a : int = 1_28 ):
def cache_decorator_inner(__a : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*__a : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
_a = LRUCache(__a )
_a = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_a = func(*__a )
cls.decorator_function_to_instance_map[func].put(args[0] , __a )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(__a , "cache_info" , __a ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 | 0 |
'''simple docstring'''
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__)
lowerCAmelCase_ : Optional[int] = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n'
lowerCAmelCase_ : Any = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n'
lowerCAmelCase_ : Dict = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n'
lowerCAmelCase_ : Union[str, Any] = {
'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip',
'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip',
'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip',
'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip',
'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip',
'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip',
'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip',
'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip',
'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip',
'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip',
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE (datasets.Metric ):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[int] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , )
def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] ):
# check that config name specifies a valid BLEURT model
if self.config_name == "default":
logger.warning(
"Using default BLEURT-Base checkpoint for sequence maximum length 128. "
"You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." )
_a = "bleurt-base-128"
if self.config_name.lower() in CHECKPOINT_URLS:
_a = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
_a = self.config_name.upper()
else:
raise KeyError(
f'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' )
# download the model checkpoint specified by self.config_name and set up the scorer
_a = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
_a = score.BleurtScorer(os.path.join(__a , __a ) )
def UpperCamelCase__ ( self : str , __a : int , __a : str ):
_a = self.scorer.score(references=__a , candidates=__a )
return {"scores": scores}
| 359 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase_ : Optional[int] = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase_ : Tuple = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def _lowerCamelCase ( lowercase : str ) -> str:
re.sub("<n>" , "" , lowercase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(lowercase ) )
| 346 | 0 |
'''simple docstring'''
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def _lowerCamelCase ( lowercase : Optional[Any] ) -> Optional[Any]:
return x + 2
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : List[str] ):
_a = "x = 3"
_a = {}
_a = evaluate(__a , {} , state=__a )
assert result == 3
self.assertDictEqual(__a , {"x": 3} )
_a = "x = y"
_a = {"y": 5}
_a = evaluate(__a , {} , state=__a )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(__a , {"x": 5, "y": 5} )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = "y = add_two(x)"
_a = {"x": 3}
_a = evaluate(__a , {"add_two": add_two} , state=__a )
assert result == 5
self.assertDictEqual(__a , {"x": 3, "y": 5} )
# Won't work without the tool
with CaptureStdout() as out:
_a = evaluate(__a , {} , state=__a )
assert result is None
assert "tried to execute add_two" in out.out
def UpperCamelCase__ ( self : Tuple ):
_a = "x = 3"
_a = {}
_a = evaluate(__a , {} , state=__a )
assert result == 3
self.assertDictEqual(__a , {"x": 3} )
def UpperCamelCase__ ( self : Dict ):
_a = "test_dict = {'x': x, 'y': add_two(x)}"
_a = {"x": 3}
_a = evaluate(__a , {"add_two": add_two} , state=__a )
self.assertDictEqual(__a , {"x": 3, "y": 5} )
self.assertDictEqual(__a , {"x": 3, "test_dict": {"x": 3, "y": 5}} )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = "x = 3\ny = 5"
_a = {}
_a = evaluate(__a , {} , state=__a )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(__a , {"x": 3, "y": 5} )
def UpperCamelCase__ ( self : Optional[int] ):
_a = "text = f'This is x: {x}.'"
_a = {"x": 3}
_a = evaluate(__a , {} , state=__a )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(__a , {"x": 3, "text": "This is x: 3."} )
def UpperCamelCase__ ( self : Optional[Any] ):
_a = "if x <= 3:\n y = 2\nelse:\n y = 5"
_a = {"x": 3}
_a = evaluate(__a , {} , state=__a )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(__a , {"x": 3, "y": 2} )
_a = {"x": 8}
_a = evaluate(__a , {} , state=__a )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(__a , {"x": 8, "y": 5} )
def UpperCamelCase__ ( self : Any ):
_a = "test_list = [x, add_two(x)]"
_a = {"x": 3}
_a = evaluate(__a , {"add_two": add_two} , state=__a )
self.assertListEqual(__a , [3, 5] )
self.assertDictEqual(__a , {"x": 3, "test_list": [3, 5]} )
def UpperCamelCase__ ( self : str ):
_a = "y = x"
_a = {"x": 3}
_a = evaluate(__a , {} , state=__a )
assert result == 3
self.assertDictEqual(__a , {"x": 3, "y": 3} )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = "test_list = [x, add_two(x)]\ntest_list[1]"
_a = {"x": 3}
_a = evaluate(__a , {"add_two": add_two} , state=__a )
assert result == 5
self.assertDictEqual(__a , {"x": 3, "test_list": [3, 5]} )
_a = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']"
_a = {"x": 3}
_a = evaluate(__a , {"add_two": add_two} , state=__a )
assert result == 5
self.assertDictEqual(__a , {"x": 3, "test_dict": {"x": 3, "y": 5}} )
def UpperCamelCase__ ( self : Any ):
_a = "x = 0\nfor i in range(3):\n x = i"
_a = {}
_a = evaluate(__a , {"range": range} , state=__a )
assert result == 2
self.assertDictEqual(__a , {"x": 2, "i": 2} )
| 360 |
'''simple docstring'''
import requests
lowerCAmelCase_ : List[Any] = 'YOUR API KEY'
def _lowerCamelCase ( lowercase : str , lowercase : str = giphy_api_key ) -> list:
_a = "+".join(query.split() )
_a = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'
_a = requests.get(lowercase ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 346 | 0 |
'''simple docstring'''
from __future__ import annotations
def _lowerCamelCase ( lowercase : list[int] , lowercase : int ) -> int:
if len(lowercase ) < k or k < 0:
raise ValueError("Invalid Input" )
_a = _a = sum(array[:k] )
for i in range(len(lowercase ) - k ):
_a = current_sum - array[i] + array[i + k]
_a = max(lowercase , lowercase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
lowerCAmelCase_ : int = [randint(-10_00, 10_00) for i in range(1_00)]
lowerCAmelCase_ : List[str] = randint(0, 1_10)
print(f"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
| 361 |
'''simple docstring'''
import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase_ : str = '▁'
lowerCAmelCase_ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =BertGenerationTokenizer
__a =False
__a =True
def UpperCamelCase__ ( self : Optional[Any] ):
super().setUp()
_a = BertGenerationTokenizer(__a , keep_accents=__a )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ ( self : Tuple ):
_a = "<s>"
_a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a )
def UpperCamelCase__ ( self : List[str] ):
_a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<unk>" )
self.assertEqual(vocab_keys[1] , "<s>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(__a ) , 10_02 )
def UpperCamelCase__ ( self : str ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def UpperCamelCase__ ( self : Tuple ):
_a = BertGenerationTokenizer(__a , keep_accents=__a )
_a = tokenizer.tokenize("This is a test" )
self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__a ) , [2_85, 46, 10, 1_70, 3_82] , )
_a = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
_a = tokenizer.convert_tokens_to_ids(__a )
self.assertListEqual(
__a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_a = tokenizer.convert_ids_to_tokens(__a )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
@cached_property
def UpperCamelCase__ ( self : Any ):
return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
@slow
def UpperCamelCase__ ( self : List[str] ):
_a = "Hello World!"
_a = [1_85_36, 22_60, 1_01]
self.assertListEqual(__a , self.big_tokenizer.encode(__a ) )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
_a = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"
)
_a = [
8_71,
4_19,
3_58,
9_46,
9_91,
25_21,
4_52,
3_58,
13_57,
3_87,
77_51,
35_36,
1_12,
9_85,
4_56,
1_26,
8_65,
9_38,
54_00,
57_34,
4_58,
13_68,
4_67,
7_86,
24_62,
52_46,
11_59,
6_33,
8_65,
45_19,
4_57,
5_82,
8_52,
25_57,
4_27,
9_16,
5_08,
4_05,
3_43_24,
4_97,
3_91,
4_08,
1_13_42,
12_44,
3_85,
1_00,
9_38,
9_85,
4_56,
5_74,
3_62,
1_25_97,
32_00,
31_29,
11_72,
]
self.assertListEqual(__a , self.big_tokenizer.encode(__a ) )
@require_torch
@slow
def UpperCamelCase__ ( self : Tuple ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
_a = list(self.big_tokenizer.get_vocab().keys() )[:10]
_a = " ".join(__a )
_a = self.big_tokenizer.encode_plus(__a , return_tensors="pt" , return_token_type_ids=__a )
_a = self.big_tokenizer.batch_encode_plus(
[sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__a )
_a = BertGenerationConfig()
_a = BertGenerationEncoder(__a )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**__a )
model(**__a )
@slow
def UpperCamelCase__ ( self : Optional[int] ):
# fmt: off
_a = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__a , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
| 346 | 0 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
lowerCAmelCase_ : int = '▁'
lowerCAmelCase_ : Optional[Any] = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
lowerCAmelCase_ : Optional[int] = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
lowerCAmelCase_ : List[str] = {
'facebook/s2t-small-librispeech-asr': 10_24,
}
lowerCAmelCase_ : List[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
lowerCAmelCase_ : Union[str, Any] = {'mustc': MUSTC_LANGS}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =VOCAB_FILES_NAMES
__a =PRETRAINED_VOCAB_FILES_MAP
__a =MAX_MODEL_INPUT_SIZES
__a =['input_ids', 'attention_mask']
__a =[]
def __init__( self : Optional[Any] , __a : Optional[Any] , __a : Any , __a : Any="<s>" , __a : List[str]="</s>" , __a : str="<pad>" , __a : List[str]="<unk>" , __a : Union[str, Any]=False , __a : Any=False , __a : List[str]=None , __a : Optional[int]=None , __a : Optional[Dict[str, Any]] = None , **__a : int , ):
_a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , )
_a = do_upper_case
_a = do_lower_case
_a = load_json(__a )
_a = {v: k for k, v in self.encoder.items()}
_a = spm_file
_a = load_spm(__a , self.sp_model_kwargs )
if lang_codes is not None:
_a = lang_codes
_a = LANGUAGES[lang_codes]
_a = [f'<lang:{lang}>' for lang in self.langs]
_a = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs}
_a = self.lang_tokens
_a = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
_a = {}
@property
def UpperCamelCase__ ( self : str ):
return len(self.encoder )
@property
def UpperCamelCase__ ( self : str ):
return self._tgt_lang
@tgt_lang.setter
def UpperCamelCase__ ( self : Optional[int] , __a : Any ):
_a = new_tgt_lang
self.set_tgt_lang_special_tokens(__a )
def UpperCamelCase__ ( self : List[Any] , __a : str ):
_a = self.lang_code_to_id[tgt_lang]
_a = [lang_code_id]
def UpperCamelCase__ ( self : Dict , __a : str ):
return self.sp_model.encode(__a , out_type=__a )
def UpperCamelCase__ ( self : List[str] , __a : Any ):
return self.encoder.get(__a , self.encoder[self.unk_token] )
def UpperCamelCase__ ( self : str , __a : int ):
return self.decoder.get(__a , self.unk_token )
def UpperCamelCase__ ( self : str , __a : List[str] ):
_a = []
_a = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
_a = self.sp_model.decode(__a )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
_a = []
else:
current_sub_tokens.append(__a )
_a = self.sp_model.decode(__a )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def UpperCamelCase__ ( self : int , __a : Any , __a : int=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def UpperCamelCase__ ( self : Any , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a )
_a = [1] * len(self.prefix_tokens )
_a = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__a )) + suffix_ones
return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ):
_a = self.__dict__.copy()
_a = None
return state
def __setstate__( self : str , __a : Dict ):
_a = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_a = {}
_a = load_spm(self.spm_file , self.sp_model_kwargs )
def UpperCamelCase__ ( self : List[str] , __a : str , __a : Optional[str] = None ):
_a = Path(__a )
assert save_dir.is_dir(), f'{save_directory} should be a directory'
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder , __a )
if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __a )
elif not os.path.isfile(self.spm_file ):
with open(__a , "wb" ) as fi:
_a = self.sp_model.serialized_model_proto()
fi.write(__a )
return (str(__a ), str(__a ))
def _lowerCamelCase ( lowercase : str , lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
_a = sentencepiece.SentencePieceProcessor(**lowercase )
spm.Load(str(lowercase ) )
return spm
def _lowerCamelCase ( lowercase : str ) -> Union[Dict, List]:
with open(lowercase , "r" ) as f:
return json.load(lowercase )
def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> None:
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase , indent=2 )
| 362 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Union[str, Any]:
_enforce_args(lowercase , lowercase )
if n == 0:
return 0
_a = float("-inf" )
for i in range(1 , n + 1 ):
_a = max(
lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , lowercase ) )
return max_revue
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Tuple:
_enforce_args(lowercase , lowercase )
_a = [float("-inf" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(lowercase , lowercase , lowercase )
def _lowerCamelCase ( lowercase : int , lowercase : list , lowercase : list ) -> List[str]:
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_a = float("-inf" )
for i in range(1 , n + 1 ):
_a = max(
lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowercase , lowercase ) , )
_a = max_revenue
return max_rev[n]
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Any:
_enforce_args(lowercase , lowercase )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_a = [float("-inf" ) for _ in range(n + 1 )]
_a = 0
for i in range(1 , n + 1 ):
_a = max_rev[i]
for j in range(1 , i + 1 ):
_a = max(lowercase , prices[j - 1] + max_rev[i - j] )
_a = max_revenue_i
return max_rev[n]
def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Dict:
if n < 0:
_a = F'n must be greater than or equal to 0. Got n = {n}'
raise ValueError(lowercase )
if n > len(lowercase ):
_a = (
"Each integral piece of rod must have a corresponding price. "
F'Got n = {n} but length of prices = {len(lowercase )}'
)
raise ValueError(lowercase )
def _lowerCamelCase ( ) -> Any:
_a = [6, 10, 12, 15, 20, 23]
_a = len(lowercase )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_a = 36
_a = top_down_cut_rod(lowercase , lowercase )
_a = bottom_up_cut_rod(lowercase , lowercase )
_a = naive_cut_rod_recursive(lowercase , lowercase )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 346 | 0 |
'''simple docstring'''
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
lowerCAmelCase_ : Optional[Any] = HfApi()
lowerCAmelCase_ : Optional[Any] = {}
# fmt: off
lowerCAmelCase_ : str = torch.tensor([
-0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467,
1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189,
-1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839,
0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557
])
lowerCAmelCase_ : List[Any] = torch.tensor([
-2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436,
1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208,
-2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948,
2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365
])
lowerCAmelCase_ : Tuple = torch.tensor([
-0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869,
-0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304,
-0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925,
0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943
])
lowerCAmelCase_ : Optional[Any] = torch.tensor([
0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172,
-0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309,
0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805,
-0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505
])
lowerCAmelCase_ : Optional[Any] = torch.tensor([
0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133,
-0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395,
0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559,
-0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386
])
lowerCAmelCase_ : List[Any] = torch.tensor([
0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078,
-0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330,
0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683,
-0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431
])
lowerCAmelCase_ : List[Any] = torch.tensor([
0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042,
-0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398,
0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574,
-0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390
])
lowerCAmelCase_ : int = torch.tensor([
0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042,
-0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290,
0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746,
-0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473
])
lowerCAmelCase_ : Tuple = torch.tensor([
-1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330,
1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243,
-2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810,
1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251])
lowerCAmelCase_ : Tuple = torch.tensor([
-1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324,
0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181,
-2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259,
1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266
])
lowerCAmelCase_ : int = torch.tensor([
-1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212,
0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027,
-2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131,
1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355
])
lowerCAmelCase_ : Optional[int] = torch.tensor([
-2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959,
1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351,
-3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341,
3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066
])
lowerCAmelCase_ : str = torch.tensor([
-2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740,
1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398,
-2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395,
2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243
])
lowerCAmelCase_ : Tuple = torch.tensor([
-2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336,
1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908,
-3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560,
3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343
])
lowerCAmelCase_ : Any = torch.tensor([
-1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344,
1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391,
-2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439,
1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219
])
# fmt: on
lowerCAmelCase_ : str = api.list_models(filter='diffusers')
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
lowerCAmelCase_ : Tuple = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1]
print(f"""Started running {mod.modelId}!!!""")
if mod.modelId.startswith('CompVis'):
lowerCAmelCase_ : str = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet')
else:
lowerCAmelCase_ : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
lowerCAmelCase_ : Tuple = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
lowerCAmelCase_ : List[str] = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
lowerCAmelCase_ : List[str] = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1e-3
)
print(f"""{mod.modelId} has passed successfully!!!""")
| 363 |
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[Any] , *__a : Optional[int] , **__a : List[str] ):
super().__init__(*__a , **__a )
self.check_model_type(__a )
def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : int=None , __a : Optional[Any]=None , **__a : List[Any] ):
_a , _a = {}, {}
if padding is not None:
_a = padding
if truncation is not None:
_a = truncation
if top_k is not None:
_a = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : Union[str, Any] , __a : Union["Image.Image", str] , __a : str = None , **__a : Any ):
if isinstance(__a , (Image.Image, str) ) and isinstance(__a , __a ):
_a = {"image": image, "question": question}
else:
_a = image
_a = super().__call__(__a , **__a )
return results
def UpperCamelCase__ ( self : Tuple , __a : Tuple , __a : Optional[Any]=False , __a : List[Any]=False ):
_a = load_image(inputs["image"] )
_a = self.tokenizer(
inputs["question"] , return_tensors=self.framework , padding=__a , truncation=__a )
_a = self.image_processor(images=__a , return_tensors=self.framework )
model_inputs.update(__a )
return model_inputs
def UpperCamelCase__ ( self : List[Any] , __a : List[str] ):
_a = self.model(**__a )
return model_outputs
def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : Dict=5 ):
if top_k > self.model.config.num_labels:
_a = self.model.config.num_labels
if self.framework == "pt":
_a = model_outputs.logits.sigmoid()[0]
_a , _a = probs.topk(__a )
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
_a = scores.tolist()
_a = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
| 346 | 0 |
'''simple docstring'''
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
lowerCAmelCase_ : Optional[int] = object()
# For specifying empty leaf dict `{}`
lowerCAmelCase_ : str = object()
def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Optional[int] ) -> Tuple:
_a = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(lowercase ) - len(lowercase ) + 1 ):
_a = [x.match(lowercase ) for x, y in zip(lowercase , ks[i:] )]
if matches and all(lowercase ):
return True
return False
def _lowerCamelCase ( lowercase : Optional[Any] ) -> Union[str, Any]:
def replace(lowercase : Optional[Any] , lowercase : List[Any] ):
for rule, replacement in rules:
if _match(lowercase , lowercase ):
return replacement
return val
return replace
def _lowerCamelCase ( ) -> str:
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , lowercase )),
(("transformer", "wte", "embedding"), P("mp" , lowercase )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowercase , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , lowercase )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(lowercase , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , lowercase )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Union[str, Any]:
_a = _get_partition_rules()
_a = _replacement_rules(lowercase )
_a = {k: _unmatched for k in flatten_dict(lowercase )}
_a = {k: replace(lowercase , lowercase ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(lowercase ) )
| 364 |
'''simple docstring'''
from random import randint, random
def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : int , lowercase : bool = False , lowercase : bool = False , lowercase : int = 5 , ) -> list:
_a = [[-1] * number_of_cells] # Create a highway without any car
_a = 0
_a = max(lowercase , 0 )
while i < number_of_cells:
_a = (
randint(0 , lowercase ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def _lowerCamelCase ( lowercase : list , lowercase : int ) -> int:
_a = 0
_a = highway_now[car_index + 1 :]
for cell in range(len(lowercase ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(lowercase , -1 )
def _lowerCamelCase ( lowercase : list , lowercase : float , lowercase : int ) -> list:
_a = len(lowercase )
# Beforce calculations, the highway is empty
_a = [-1] * number_of_cells
for car_index in range(lowercase ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
_a = min(highway_now[car_index] + 1 , lowercase )
# Number of empty cell before the next car
_a = get_distance(lowercase , lowercase ) - 1
# We can't have the car causing an accident
_a = min(next_highway[car_index] , lowercase )
if random() < probability:
# Randomly, a driver will slow down
_a = max(next_highway[car_index] - 1 , 0 )
return next_highway
def _lowerCamelCase ( lowercase : list , lowercase : int , lowercase : float , lowercase : int ) -> list:
_a = len(highway[0] )
for i in range(lowercase ):
_a = update(highway[i] , lowercase , lowercase )
_a = [-1] * number_of_cells
for car_index in range(lowercase ):
_a = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
_a = (car_index + speed) % number_of_cells
# Commit the change of position
_a = speed
highway.append(lowercase )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 | 0 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ : List[str] = logging.get_logger(__name__)
lowerCAmelCase_ : List[str] = {
'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json',
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='wavlm'
def __init__( self : Union[str, Any] , __a : List[str]=32 , __a : Tuple=7_68 , __a : Union[str, Any]=12 , __a : Optional[Any]=12 , __a : str=30_72 , __a : Dict="gelu" , __a : int=0.1 , __a : List[str]=0.1 , __a : Optional[int]=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.1 , __a : Optional[Any]=0.1 , __a : Any=0.02 , __a : List[Any]=1e-5 , __a : Tuple="group" , __a : Union[str, Any]="gelu" , __a : Any=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a : str=(5, 2, 2, 2, 2, 2, 2) , __a : List[Any]=(10, 3, 3, 3, 3, 2, 2) , __a : List[Any]=False , __a : List[Any]=1_28 , __a : Union[str, Any]=16 , __a : Union[str, Any]=3_20 , __a : Optional[Any]=8_00 , __a : Optional[Any]=False , __a : List[str]=True , __a : str=0.05 , __a : Tuple=10 , __a : str=2 , __a : List[str]=0.0 , __a : Dict=10 , __a : Optional[int]=3_20 , __a : Optional[Any]=2 , __a : int=0.1 , __a : int=1_00 , __a : str=2_56 , __a : List[str]=2_56 , __a : Union[str, Any]=0.1 , __a : Dict="mean" , __a : Tuple=False , __a : Optional[int]=False , __a : List[Any]=2_56 , __a : Optional[int]=(5_12, 5_12, 5_12, 5_12, 15_00) , __a : Optional[Any]=(5, 3, 3, 1, 1) , __a : int=(1, 2, 3, 1, 1) , __a : List[Any]=5_12 , __a : Dict=80 , __a : str=0 , __a : Tuple=1 , __a : Optional[int]=2 , __a : int=False , __a : List[str]=3 , __a : Any=2 , __a : Tuple=3 , __a : Dict=None , **__a : Tuple , ):
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__a )
_a = list(__a )
_a = list(__a )
_a = conv_bias
_a = num_buckets
_a = max_bucket_distance
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = num_ctc_classes
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
_a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# adapter
_a = add_adapter
_a = adapter_kernel_size
_a = adapter_stride
_a = num_adapter_layers
_a = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_a = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_a = list(__a )
_a = list(__a )
_a = list(__a )
_a = xvector_output_dim
@property
def UpperCamelCase__ ( self : List[str] ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 365 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int = 10 ) -> str:
if not isinstance(lowercase , lowercase ) or n < 0:
raise ValueError("Invalid input" )
_a = 10**n
_a = 2_8433 * (pow(2 , 783_0457 , lowercase )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(10) = }""")
| 346 | 0 |
'''simple docstring'''
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
lowerCAmelCase_ : Tuple = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n'
lowerCAmelCase_ : Optional[Any] = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n'
lowerCAmelCase_ : List[Any] = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE (datasets.Metric ):
"""simple docstring"""
def UpperCamelCase__ ( self : Union[str, Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def UpperCamelCase__ ( self : Tuple , __a : List[List[List[str]]] , __a : List[List[str]] , __a : int = 1 , __a : int = 4 , ):
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=__a , hypotheses=__a , min_len=__a , max_len=__a )
}
| 366 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int = 6008_5147_5143 ) -> int:
try:
_a = int(lowercase )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
_a = 2
_a = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
_a = i
while n % i == 0:
_a = n // i
i += 1
return int(lowercase )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 346 | 0 |
Subsets and Splits