code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import os
import re
__UpperCamelCase : List[Any] = '''src/transformers'''
# Pattern that looks at the indentation in a line.
__UpperCamelCase : List[str] = re.compile(R"^(\s*)\S")
# Pattern that matches `"key":" and puts `key` in group 0.
__UpperCamelCase : List[str] = re.compile(R"^\s*\"([^\"]+)\":")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__UpperCamelCase : List[Any] = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]")
# Pattern that matches `"key",` and puts `key` in group 0.
__UpperCamelCase : List[Any] = re.compile(R"^\s*\"([^\"]+)\",\s*$")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__UpperCamelCase : List[str] = re.compile(R"\[([^\]]+)\]")
def __A ( __lowerCamelCase ) -> Tuple:
a = _re_indent.search(__lowerCAmelCase )
return "" if search is None else search.groups()[0]
def __A ( __lowerCamelCase , __lowerCamelCase="" , __lowerCamelCase=None , __lowerCamelCase=None ) -> Optional[int]:
a = 0
a = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(__lowerCAmelCase ):
index += 1
a = ["""\n""".join(lines[:index] )]
else:
a = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
a = [lines[index]]
index += 1
while index < len(__lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(__lowerCAmelCase )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(__lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(__lowerCAmelCase ) )
if index < len(__lowerCAmelCase ) - 1:
a = [lines[index + 1]]
index += 1
else:
a = []
else:
blocks.append("""\n""".join(__lowerCAmelCase ) )
a = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(__lowerCAmelCase ) > 0:
blocks.append("""\n""".join(__lowerCAmelCase ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(__lowerCAmelCase ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def __A ( __lowerCamelCase ) -> str:
def _inner(__lowerCamelCase ):
return key(__lowerCAmelCase ).lower().replace("""_""" , """""" )
return _inner
def __A ( __lowerCamelCase , __lowerCamelCase=None ) -> int:
# If no key is provided, we use a noop.
def noop(__lowerCamelCase ):
return x
if key is None:
a = noop
# Constants are all uppercase, they go first.
a = [obj for obj in objects if key(__lowerCAmelCase ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
a = [obj for obj in objects if key(__lowerCAmelCase )[0].isupper() and not key(__lowerCAmelCase ).isupper()]
# Functions begin with a lowercase, they go last.
a = [obj for obj in objects if not key(__lowerCAmelCase )[0].isupper()]
a = ignore_underscore(__lowerCAmelCase )
return sorted(__lowerCAmelCase , key=__lowerCAmelCase ) + sorted(__lowerCAmelCase , key=__lowerCAmelCase ) + sorted(__lowerCAmelCase , key=__lowerCAmelCase )
def __A ( __lowerCamelCase ) -> List[Any]:
# This inner function sort imports between [ ].
def _replace(__lowerCamelCase ):
a = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
a = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
a = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(__lowerCAmelCase )] ) + "]"
a = import_statement.split("""\n""" )
if len(__lowerCAmelCase ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
a = 2 if lines[1].strip() == """[""" else 1
a = [(i, _re_strip_line.search(__lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
a = sort_objects(__lowerCAmelCase , key=lambda __lowerCamelCase : x[1] )
a = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(__lowerCAmelCase ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
a = _re_bracket_content.sub(_replace , lines[1] )
else:
a = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
a = keys[:-1]
a = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(__lowerCAmelCase )] )
return "\n".join(__lowerCAmelCase )
else:
# Finally we have to deal with imports fitting on one line
a = _re_bracket_content.sub(_replace , __lowerCAmelCase )
return import_statement
def __A ( __lowerCamelCase , __lowerCamelCase=True ) -> List[Any]:
with open(__lowerCAmelCase , encoding="""utf-8""" ) as f:
a = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
a = split_code_in_indented_blocks(
__lowerCAmelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(__lowerCAmelCase ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
a = main_blocks[block_idx]
a = block.split("""\n""" )
# Get to the start of the imports.
a = 0
while line_idx < len(__lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
a = len(__lowerCAmelCase )
else:
line_idx += 1
if line_idx >= len(__lowerCAmelCase ):
continue
# Ignore beginning and last line: they don't contain anything.
a = """\n""".join(block_lines[line_idx:-1] )
a = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
a = split_code_in_indented_blocks(__lowerCAmelCase , indent_level=__lowerCAmelCase )
# We have two categories of import key: list or _import_structure[key].append/extend
a = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
a = [(pattern.search(__lowerCAmelCase ).groups()[0] if pattern.search(__lowerCAmelCase ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
a = [(i, key) for i, key in enumerate(__lowerCAmelCase ) if key is not None]
a = [x[0] for x in sorted(__lowerCAmelCase , key=lambda __lowerCamelCase : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
a = 0
a = []
for i in range(len(__lowerCAmelCase ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
a = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(__lowerCAmelCase )
count += 1
# And we put our main block back together with its first and last line.
a = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(__lowerCAmelCase ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write("""\n""".join(__lowerCAmelCase ) )
def __A ( __lowerCamelCase=True ) -> List[Any]:
a = []
for root, _, files in os.walk(__lowerCAmelCase ):
if "__init__.py" in files:
a = sort_imports(os.path.join(__lowerCAmelCase , """__init__.py""" ) , check_only=__lowerCAmelCase )
if result:
a = [os.path.join(__lowerCAmelCase , """__init__.py""" )]
if len(__lowerCAmelCase ) > 0:
raise ValueError(f'Would overwrite {len(__lowerCAmelCase )} files, run `make style`.' )
if __name__ == "__main__":
__UpperCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
__UpperCamelCase : List[Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 371 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = True
a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = FlaxRobertaModelTester(self )
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 347 | 0 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__UpperCamelCase : int = logging.get_logger(__name__)
__UpperCamelCase : Optional[int] = {"vocab_file": "spiece.model"}
__UpperCamelCase : Union[str, Any] = {
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
__UpperCamelCase : Dict = {
"AI-Sweden/gpt-sw3-126m": 2_048,
"AI-Sweden/gpt-sw3-350m": 2_048,
"AI-Sweden/gpt-sw3-1.6b": 2_048,
"AI-Sweden/gpt-sw3-6.7b": 2_048,
"AI-Sweden/gpt-sw3-20b": 2_048,
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = VOCAB_FILES_NAMES
UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :Dict , __magic_name__ :Any , __magic_name__ :Dict=False , __magic_name__ :Optional[int]=False , __magic_name__ :Any=False , __magic_name__ :Optional[int]=None , __magic_name__ :Dict=None , __magic_name__ :str=None , __magic_name__ :List[str]=None , __magic_name__ :Optional[Dict[str, Any]] = None , **__magic_name__ :Union[str, Any] , ):
'''simple docstring'''
a = {} if sp_model_kwargs is None else sp_model_kwargs
a = kwargs.get("""name_or_path""" )
if name_or_path is None:
logger.warning(
"""name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"""
""" you are testing the model, this can safely be ignored""" )
a = """None"""
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
a = """<|endoftext|>""" if eos_token is None else eos_token
a = """<unk>""" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
a = unk_token if pad_token is None else pad_token
a = eos_token if bos_token is None else bos_token
else:
a = """<pad>""" if pad_token is None else pad_token
a = """<s>""" if bos_token is None else bos_token
super().__init__(
do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
a = do_lower_case
a = remove_space
a = keep_accents
a = vocab_file
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# Used for whitespace normalization in input texts
# fmt : off
a = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """"""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
a = re.compile(
F'[{"".join(map(__magic_name__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]' )
def __getstate__( self :Any ):
'''simple docstring'''
a = self.__dict__.copy()
a = None
return state
def __setstate__( self :int , __magic_name__ :Any ):
'''simple docstring'''
a = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
a = {}
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
return len(self.sp_model )
def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ):
'''simple docstring'''
a = self.non_printing_characters_re.sub("""""" , __magic_name__ )
# Normalize whitespaces
a = """""".join([char if char not in self.whitespaces else """ """ for char in text] )
# NFC Unicode normalization
a = unicodedata.normalize("""NFC""" , __magic_name__ )
return text
def lowerCamelCase__ ( self :Any , __magic_name__ :str , **__magic_name__ :Any ):
'''simple docstring'''
a = self.preprocess_text(__magic_name__ )
return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
def lowerCamelCase__ ( self :Dict , __magic_name__ :str ):
'''simple docstring'''
return self.sp_model.PieceToId(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :int ):
'''simple docstring'''
return self.sp_model.IdToPiece(__magic_name__ )
@staticmethod
def lowerCamelCase__ ( __magic_name__ :str ):
'''simple docstring'''
return out_string
def lowerCamelCase__ ( self :Tuple , __magic_name__ :List[str] ):
'''simple docstring'''
a = []
a = """"""
a = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__magic_name__ ) + token
a = True
a = []
else:
current_sub_tokens.append(__magic_name__ )
a = False
out_string += self.sp_model.decode(__magic_name__ )
return out_string
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowerCamelCase__ ( self :str , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__magic_name__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
a = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , """wb""" ) as fi:
a = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :Union[str, List[str]] , __magic_name__ :Union[str, bool] = False ):
'''simple docstring'''
if isinstance(__magic_name__ , __magic_name__ ):
a = self.preprocess_text(__magic_name__ )
a = self.sp_model.encode(__magic_name__ )
else:
a = [self.preprocess_text(__magic_name__ ) for t in text]
a = self.sp_model.encode(__magic_name__ )
if return_tensors is True or return_tensors == "pt":
a = torch.tensor(__magic_name__ )
return token_ids
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[int, List[int]] ):
'''simple docstring'''
return self.sp_model.decode(__magic_name__ )
def lowerCamelCase__ ( self :int , __magic_name__ :"Conversation" ):
'''simple docstring'''
a = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()]
a = (
F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(__magic_name__ ) + F'{self.bos_token}Bot:'
)
return self.encode(text=__magic_name__ )
| 350 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
UpperCamelCase__ = None
UpperCamelCase__ = "utf-8"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True # deprecated
UpperCamelCase__ = None # deprecated
UpperCamelCase__ = 10 << 20 # 10MB
UpperCamelCase__ = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
UpperCamelCase__ = JsonConfig
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
a = data_files
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
a = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
a = self.config.features.arrow_schema.field(__magic_name__ ).type
a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
a = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
# We keep only the field we are interested in
a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
a = dataset
a = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , """rb""" ) as f:
a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
a = max(self.config.chunksize // 32 , 16 << 10 )
a = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" )
try:
while True:
try:
a = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
a = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 347 | 0 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = FlaxRoFormerModelTester(self )
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
a = jnp.array([[0, 1, 2, 3, 4, 5]] )
a = model(__magic_name__ )[0]
a = 5_0000
a = (1, 6, vocab_size)
self.assertEqual(output.shape , __magic_name__ )
a = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 351 |
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :List[str] , __magic_name__ :int="</s>" , __magic_name__ :List[Any]="<unk>" , __magic_name__ :Optional[Any]="<pad>" , __magic_name__ :Optional[int]=125 , __magic_name__ :List[str]=None , **__magic_name__ :List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"""
""" extra_ids tokens""" )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
super().__init__(
eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
a = extra_ids
a = 2**8 # utf is 8 bits
# define special tokens dict
a = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
a = len(self.special_tokens_encoder )
a = len(__magic_name__ )
for i, token in enumerate(__magic_name__ ):
a = self.vocab_size + i - n
a = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__magic_name__ )) + [1]
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def lowerCamelCase__ ( self :str , __magic_name__ :List[int] ):
'''simple docstring'''
if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = self._add_eos_if_not_present(__magic_name__ )
if token_ids_a is None:
return token_ids_a
else:
a = self._add_eos_if_not_present(__magic_name__ )
return token_ids_a + token_ids_a
def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ):
'''simple docstring'''
a = [chr(__magic_name__ ) for i in text.encode("""utf-8""" )]
return tokens
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if token in self.special_tokens_encoder:
a = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
a = self.added_tokens_encoder[token]
elif len(__magic_name__ ) != 1:
a = self.unk_token_id
else:
a = ord(__magic_name__ ) + self._num_special_tokens
return token_id
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ):
'''simple docstring'''
if index in self.special_tokens_decoder:
a = self.special_tokens_decoder[index]
else:
a = chr(index - self._num_special_tokens )
return token
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = b""""""
for token in tokens:
if token in self.special_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.added_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.special_tokens_encoder:
a = token.encode("""utf-8""" )
elif token in self.added_tokens_encoder:
a = token.encode("""utf-8""" )
else:
a = bytes([ord(__magic_name__ )] )
bstring += tok_string
a = bstring.decode("""utf-8""" , errors="""ignore""" )
return string
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
return ()
| 347 | 0 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
__UpperCamelCase : List[Any] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n"
__UpperCamelCase : List[Any] = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n"
__UpperCamelCase : Any = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/ROUGE_(metric)""",
"""https://github.com/google-research/google-research/tree/master/rouge""",
] , )
def lowerCamelCase__ ( self :str , __magic_name__ :Union[str, Any] , __magic_name__ :str , __magic_name__ :Tuple=None , __magic_name__ :str=True , __magic_name__ :Union[str, Any]=False ):
'''simple docstring'''
if rouge_types is None:
a = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""]
a = rouge_scorer.RougeScorer(rouge_types=__magic_name__ , use_stemmer=__magic_name__ )
if use_aggregator:
a = scoring.BootstrapAggregator()
else:
a = []
for ref, pred in zip(__magic_name__ , __magic_name__ ):
a = scorer.score(__magic_name__ , __magic_name__ )
if use_aggregator:
aggregator.add_scores(__magic_name__ )
else:
scores.append(__magic_name__ )
if use_aggregator:
a = aggregator.aggregate()
else:
a = {}
for key in scores[0]:
a = [score[key] for score in scores]
return result
| 352 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self :Optional[int] , __magic_name__ :str , __magic_name__ :int=2 , __magic_name__ :List[str]=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :str=2 , __magic_name__ :Any=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=True , __magic_name__ :List[Any]=99 , __magic_name__ :Dict=36 , __magic_name__ :Optional[Any]=3 , __magic_name__ :str=4 , __magic_name__ :Optional[Any]=37 , __magic_name__ :Dict="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Dict=512 , __magic_name__ :str=16 , __magic_name__ :List[Any]=2 , __magic_name__ :Tuple=0.02 , __magic_name__ :Any=6 , __magic_name__ :Optional[int]=6 , __magic_name__ :Tuple=3 , __magic_name__ :str=4 , __magic_name__ :List[str]=None , __magic_name__ :str=1000 , ):
'''simple docstring'''
a = parent
a = batch_size
a = num_channels
a = image_size
a = patch_size
a = text_seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = coordinate_size
a = shape_size
a = num_labels
a = num_choices
a = scope
a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
a = text_seq_length
a = (image_size // patch_size) ** 2 + 1
a = self.text_seq_length + self.image_seq_length
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a = bbox[i, j, 3]
a = bbox[i, j, 1]
a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a = bbox[i, j, 2]
a = bbox[i, j, 0]
a = t
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.text_seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase__ ( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int ):
'''simple docstring'''
a = LayoutLMvaModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# text + image
a = model(__magic_name__ , pixel_values=__magic_name__ )
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
a = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
a = model(pixel_values=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :List[str] ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ):
'''simple docstring'''
return True
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = LayoutLMvaModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :Any=False ):
'''simple docstring'''
a = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__magic_name__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in get_values(__magic_name__ ):
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__magic_name__ , )
return inputs_dict
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = LayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""pt""" ).pixel_values.to(__magic_name__ )
a = torch.tensor([[1, 2]] )
a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
a = model(
input_ids=input_ids.to(__magic_name__ ) , bbox=bbox.to(__magic_name__ ) , pixel_values=pixel_values.to(__magic_name__ ) , )
# verify the logits
a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 0 |
def __A ( __lowerCamelCase ) -> Union[str, Any]:
a = len(__lowerCamelCase )
a = sum(__lowerCamelCase )
a = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
a = True
for i in range(1 , s + 1 ):
a = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
a = dp[i][j - 1]
if arr[i - 1] <= j:
a = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
a = s - 2 * j
break
return diff
| 353 |
from copy import deepcopy
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :list[int] | None = None , __magic_name__ :int | None = None ):
'''simple docstring'''
if arr is None and size is not None:
a = size
a = [0] * size
elif arr is not None:
self.init(__magic_name__ )
else:
raise ValueError("""Either arr or size must be specified""" )
def lowerCamelCase__ ( self :Dict , __magic_name__ :list[int] ):
'''simple docstring'''
a = len(__magic_name__ )
a = deepcopy(__magic_name__ )
for i in range(1 , self.size ):
a = self.next_(__magic_name__ )
if j < self.size:
self.tree[j] += self.tree[i]
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
a = self.next_(__magic_name__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index - (index & (-index))
def lowerCamelCase__ ( self :Any , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
a = self.next_(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
self.add(__magic_name__ , value - self.get(__magic_name__ ) )
def lowerCamelCase__ ( self :int , __magic_name__ :int ):
'''simple docstring'''
if right == 0:
return 0
a = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
a = self.prev(__magic_name__ )
return result
def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :int ):
'''simple docstring'''
return self.query(__magic_name__ , index + 1 )
def lowerCamelCase__ ( self :Dict , __magic_name__ :int ):
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
a = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
a = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
__UpperCamelCase : Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n"
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=8 ) -> Dict:
a = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
a = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def __A ( __lowerCamelCase , __lowerCamelCase=512 , __lowerCamelCase=512 ) -> Optional[Any]:
a = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
a = np.array(pil_image.convert("""RGB""" ) )
a = arr.astype(np.floataa ) / 127.5 - 1
a = np.transpose(__lowerCamelCase , [2, 0, 1] )
a = torch.from_numpy(__lowerCamelCase ).unsqueeze(0 )
return image
class __lowerCAmelCase ( __magic_name__ ):
def __init__( self :List[str] , __magic_name__ :UNetaDConditionModel , __magic_name__ :DDPMScheduler , __magic_name__ :VQModel , ):
'''simple docstring'''
super().__init__()
self.register_modules(
unet=__magic_name__ , scheduler=__magic_name__ , movq=__magic_name__ , )
a = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Any , __magic_name__ :Tuple , __magic_name__ :List[Any] ):
'''simple docstring'''
a = min(int(num_inference_steps * strength ) , __magic_name__ )
a = max(num_inference_steps - init_timestep , 0 )
a = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def lowerCamelCase__ ( self :str , __magic_name__ :int , __magic_name__ :Optional[Any] , __magic_name__ :Optional[int] , __magic_name__ :int , __magic_name__ :Dict , __magic_name__ :Union[str, Any] , __magic_name__ :List[Any]=None ):
'''simple docstring'''
if not isinstance(__magic_name__ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__magic_name__ )}' )
a = image.to(device=__magic_name__ , dtype=__magic_name__ )
a = batch_size * num_images_per_prompt
if image.shape[1] == 4:
a = image
else:
if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(__magic_name__ )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
elif isinstance(__magic_name__ , __magic_name__ ):
a = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__magic_name__ )
]
a = torch.cat(__magic_name__ , dim=0 )
else:
a = self.movq.encode(__magic_name__ ).latent_dist.sample(__magic_name__ )
a = self.movq.config.scaling_factor * init_latents
a = torch.cat([init_latents] , dim=0 )
a = init_latents.shape
a = randn_tensor(__magic_name__ , generator=__magic_name__ , device=__magic_name__ , dtype=__magic_name__ )
# get latents
a = self.scheduler.add_noise(__magic_name__ , __magic_name__ , __magic_name__ )
a = init_latents
return latents
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :str=0 ):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
a = torch.device(F'cuda:{gpu_id}' )
a = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :int , __magic_name__ :int=0 ):
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
a = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=__magic_name__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
a = None
for cpu_offloaded_model in [self.unet, self.movq]:
a , a = cpu_offload_with_hook(__magic_name__ , __magic_name__ , prev_module_hook=__magic_name__ )
# We'll offload the last model manually.
a = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(__magic_name__ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__magic_name__ )
def __call__( self :Any , __magic_name__ :Union[torch.FloatTensor, List[torch.FloatTensor]] , __magic_name__ :Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , __magic_name__ :Union[torch.FloatTensor, List[torch.FloatTensor]] , __magic_name__ :int = 512 , __magic_name__ :int = 512 , __magic_name__ :int = 100 , __magic_name__ :float = 4.0 , __magic_name__ :float = 0.3 , __magic_name__ :int = 1 , __magic_name__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ :Optional[str] = "pil" , __magic_name__ :bool = True , ):
'''simple docstring'''
a = self._execution_device
a = guidance_scale > 1.0
if isinstance(__magic_name__ , __magic_name__ ):
a = torch.cat(__magic_name__ , dim=0 )
a = image_embeds.shape[0]
if isinstance(__magic_name__ , __magic_name__ ):
a = torch.cat(__magic_name__ , dim=0 )
if do_classifier_free_guidance:
a = image_embeds.repeat_interleave(__magic_name__ , dim=0 )
a = negative_image_embeds.repeat_interleave(__magic_name__ , dim=0 )
a = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__magic_name__ )
if not isinstance(__magic_name__ , __magic_name__ ):
a = [image]
if not all(isinstance(__magic_name__ , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F'Input is in incorrect format: {[type(__magic_name__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor' )
a = torch.cat([prepare_image(__magic_name__ , __magic_name__ , __magic_name__ ) for i in image] , dim=0 )
a = image.to(dtype=image_embeds.dtype , device=__magic_name__ )
a = self.movq.encode(__magic_name__ )["""latents"""]
a = latents.repeat_interleave(__magic_name__ , dim=0 )
self.scheduler.set_timesteps(__magic_name__ , device=__magic_name__ )
a , a = self.get_timesteps(__magic_name__ , __magic_name__ , __magic_name__ )
a = timesteps[:1].repeat(batch_size * num_images_per_prompt )
a , a = downscale_height_and_width(__magic_name__ , __magic_name__ , self.movq_scale_factor )
a = self.prepare_latents(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , image_embeds.dtype , __magic_name__ , __magic_name__ )
for i, t in enumerate(self.progress_bar(__magic_name__ ) ):
# expand the latents if we are doing classifier free guidance
a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
a = {"""image_embeds""": image_embeds}
a = self.unet(
sample=__magic_name__ , timestep=__magic_name__ , encoder_hidden_states=__magic_name__ , added_cond_kwargs=__magic_name__ , return_dict=__magic_name__ , )[0]
if do_classifier_free_guidance:
a , a = noise_pred.split(latents.shape[1] , dim=1 )
a , a = noise_pred.chunk(2 )
a , a = variance_pred.chunk(2 )
a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
a = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
a , a = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
a = self.scheduler.step(
__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ , )[0]
# post-processing
a = self.movq.decode(__magic_name__ , force_not_quantize=__magic_name__ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
a = image * 0.5 + 0.5
a = image.clamp(0 , 1 )
a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
a = self.numpy_to_pil(__magic_name__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__magic_name__ )
| 354 |
from __future__ import annotations
from typing import Generic, TypeVar
__UpperCamelCase : Union[str, Any] = TypeVar("T")
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple , __magic_name__ :T ):
'''simple docstring'''
a = data
a = self
a = 0
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T ):
'''simple docstring'''
a = DisjointSetTreeNode(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :T ):
'''simple docstring'''
a = self.map[data]
if elem_ref != elem_ref.parent:
a = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :DisjointSetTreeNode[T] , __magic_name__ :DisjointSetTreeNode[T] ):
'''simple docstring'''
if nodea.rank > nodea.rank:
a = nodea
else:
a = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T , __magic_name__ :T ):
'''simple docstring'''
self.link(self.find_set(__magic_name__ ) , self.find_set(__magic_name__ ) )
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Union[str, Any] ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :T ):
'''simple docstring'''
if node not in self.connections:
a = {}
def lowerCamelCase__ ( self :Any , __magic_name__ :T , __magic_name__ :T , __magic_name__ :int ):
'''simple docstring'''
self.add_node(__magic_name__ )
self.add_node(__magic_name__ )
a = weight
a = weight
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
a = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __magic_name__ : x[2] )
# creating the disjoint set
a = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__magic_name__ )
# MST generation
a = 0
a = 0
a = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
a , a , a = edges[index]
index += 1
a = disjoint_set.find_set(__magic_name__ )
a = disjoint_set.find_set(__magic_name__ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__magic_name__ , __magic_name__ , __magic_name__ )
disjoint_set.union(__magic_name__ , __magic_name__ )
return graph
| 347 | 0 |
from __future__ import annotations
from collections.abc import Callable
__UpperCamelCase : List[Any] = list[list[float | int]]
def lowercase__ ( __lowerCamelCase , __lowerCamelCase ) -> Matrix:
a = len(__lowerCamelCase )
a = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )]
a = 42
a = 42
a = 42
a = 42
a = 42
a = 42
for row in range(__lowerCamelCase ):
for col in range(__lowerCamelCase ):
a = matrix[row][col]
a = vector[row][0]
a = 0
a = 0
while row < size and col < size:
# pivoting
a = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase , __lowerCamelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
a , a = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __lowerCamelCase ):
a = augmented[rowa][col] / augmented[row][col]
a = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __lowerCamelCase ):
for row in range(__lowerCamelCase ):
a = augmented[row][col] / augmented[col][col]
for cola in range(__lowerCamelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCamelCase )
]
def lowercase__ ( __lowerCamelCase ) -> Callable[[int], int]:
a = len(__lowerCamelCase )
a = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )]
a = [[0] for _ in range(__lowerCamelCase )]
a = 42
a = 42
a = 42
a = 42
for x_val, y_val in enumerate(__lowerCamelCase ):
for col in range(__lowerCamelCase ):
a = (x_val + 1) ** (size - col - 1)
a = y_val
a = solve(__lowerCamelCase , __lowerCamelCase )
def interpolated_func(__lowerCamelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__lowerCamelCase ) )
return interpolated_func
def lowercase__ ( __lowerCamelCase ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowercase__ ( __lowerCamelCase = question_function , __lowerCamelCase = 10 ) -> int:
a = [func(__lowerCamelCase ) for x_val in range(1 , order + 1 )]
a = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
a = 0
a = 42
a = 42
for poly in polynomials:
a = 1
while func(__lowerCamelCase ) == poly(__lowerCamelCase ):
x_val += 1
ret += poly(__lowerCamelCase )
return ret
if __name__ == "__main__":
print(F'{solution() = }')
| 355 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = tempfile.mkdtemp()
a = BlipImageProcessor()
a = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
a = BlipProcessor(__magic_name__ , __magic_name__ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :List[Any] , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer
def lowerCamelCase__ ( self :str , **__magic_name__ :List[str] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
a = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
a = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = self.prepare_image_inputs()
a = image_processor(__magic_name__ , return_tensors="""np""" )
a = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = processor(text=__magic_name__ )
a = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__magic_name__ )
a = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 347 | 0 |
"""simple docstring"""
import datasets
__UpperCamelCase : str = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n"
__UpperCamelCase : Dict = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n"
__UpperCamelCase : Dict = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n"
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ),
"""references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ),
} ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , )
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
return {"accuracy": simple_accuracy(__magic_name__ , __magic_name__ )}
| 356 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
UpperCamelCase__ = '''nat'''
UpperCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__magic_name__ )
a = num_heads
a = kernel_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) )
a = layer_scale_init_value
a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 347 | 0 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = True
a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = FlaxRobertaModelTester(self )
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 357 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 347 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''dandelin/vilt-b32-finetuned-vqa'''
UpperCamelCase__ = (
'''This is a tool that answers a question about an image. It takes an input named `image` which should be the '''
'''image containing the information, as well as a `question` which should be the question in English. It '''
'''returns a text that is the answer to the question.'''
)
UpperCamelCase__ = '''image_qa'''
UpperCamelCase__ = AutoProcessor
UpperCamelCase__ = AutoModelForVisualQuestionAnswering
UpperCamelCase__ = ['''image''', '''text''']
UpperCamelCase__ = ['''text''']
def __init__( self :Optional[Any] , *__magic_name__ :Any , **__magic_name__ :Tuple ):
'''simple docstring'''
requires_backends(self , ["""vision"""] )
super().__init__(*__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :List[str] , __magic_name__ :"Image" , __magic_name__ :str ):
'''simple docstring'''
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors="""pt""" )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Optional[int] ):
'''simple docstring'''
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def lowerCamelCase__ ( self :Dict , __magic_name__ :List[Any] ):
'''simple docstring'''
a = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 358 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width
__UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it.
__UpperCamelCase : str = 1 / 100
__UpperCamelCase : Optional[int] = ""
__UpperCamelCase : List[Any] = ""
__UpperCamelCase : Union[str, Any] = ""
__UpperCamelCase : Tuple = 250
def __A ( ) -> None:
a , a = get_dataset(__lowerCamelCase , __lowerCamelCase )
for index in range(__lowerCamelCase ):
a = random.sample(range(len(__lowerCamelCase ) ) , 4 )
a , a , a = update_image_and_anno(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
a = random_chars(32 )
a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
a = []
for anno in new_annos:
a = anno[3] - anno[1]
a = anno[4] - anno[2]
a = anno[1] + width / 2
a = anno[2] + height / 2
a = f'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(__lowerCamelCase )
with open(f'{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]:
a = []
a = []
for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ):
a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(__lowerCamelCase ) as in_file:
a = in_file.readlines()
a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' )
a = []
for obj_list in obj_lists:
a = obj_list.rstrip("""\n""" ).split(""" """ )
a = float(obj[1] ) - float(obj[3] ) / 2
a = float(obj[2] ) - float(obj[4] ) / 2
a = float(obj[1] ) + float(obj[3] ) / 2
a = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(__lowerCamelCase )
labels.append(__lowerCamelCase )
return img_paths, labels
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]:
a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = int(scale_x * output_size[1] )
a = int(scale_y * output_size[0] )
a = []
a = []
for i, index in enumerate(__lowerCamelCase ):
a = all_img_list[index]
path_list.append(__lowerCamelCase )
a = all_annos[index]
a = cva.imread(__lowerCamelCase )
if i == 0: # top-left
a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = bbox[2] * scale_y
a = bbox[3] * scale_x
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = bbox[2] * scale_y
a = scale_x + bbox[3] * (1 - scale_x)
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = scale_y + bbox[2] * (1 - scale_y)
a = bbox[3] * scale_x
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
a = cva.resize(
__lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = scale_y + bbox[2] * (1 - scale_y)
a = scale_x + bbox[3] * (1 - scale_x)
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
a = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __A ( __lowerCamelCase ) -> str:
assert number_char > 1, "The number of character should greater than 1"
a = ascii_lowercase + digits
return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 347 | 0 |
import random
class __lowerCAmelCase :
@staticmethod
def lowerCamelCase__ ( __magic_name__ :str ):
'''simple docstring'''
a : Dict = [ord(__magic_name__ ) for i in text]
a : Dict = []
a : Optional[Any] = []
for i in plain:
a : List[Any] = random.randint(1 , 300 )
a : Optional[Any] = (i + k) * k
cipher.append(__magic_name__ )
key.append(__magic_name__ )
return cipher, key
@staticmethod
def lowerCamelCase__ ( __magic_name__ :list[int] , __magic_name__ :list[int] ):
'''simple docstring'''
a : Any = []
for i in range(len(__magic_name__ ) ):
a : List[str] = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(__magic_name__ ) )
return "".join(__magic_name__ )
if __name__ == "__main__":
__UpperCamelCase : int = Onepad().encrypt("Hello")
print(c, k)
print(Onepad().decrypt(c, k))
| 359 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Optional[Any] = {
"configuration_mobilenet_v2": [
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileNetV2Config",
"MobileNetV2OnnxConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ["MobileNetV2FeatureExtractor"]
__UpperCamelCase : Tuple = ["MobileNetV2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileNetV2ForImageClassification",
"MobileNetV2ForSemanticSegmentation",
"MobileNetV2Model",
"MobileNetV2PreTrainedModel",
"load_tf_weights_in_mobilenet_v2",
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
"""simple docstring"""
from __future__ import annotations
def __A ( __lowerCamelCase ) -> list[int]:
a = 2
a = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(__lowerCamelCase )
if n > 1:
factors.append(__lowerCamelCase )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360 |
def __A ( __lowerCamelCase ) -> bool:
if num < 0:
return False
a = num
a = 0
while num > 0:
a = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model")
__UpperCamelCase : Any = {"target_lang": "fi", "source_lang": "en"}
__UpperCamelCase : Optional[int] = ">>zh<<"
__UpperCamelCase : List[Any] = "Helsinki-NLP/"
if is_torch_available():
__UpperCamelCase : str = "pt"
elif is_tf_available():
__UpperCamelCase : Union[str, Any] = "tf"
else:
__UpperCamelCase : int = "jax"
@require_sentencepiece
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = MarianTokenizer
UpperCamelCase__ = False
UpperCamelCase__ = True
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
a = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""]
a = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
a = Path(self.tmpdirname )
save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] )
save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] )
copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] )
a = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :Any , **__magic_name__ :str ):
'''simple docstring'''
return MarianTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def lowerCamelCase__ ( self :Dict , __magic_name__ :List[Any] ):
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = """</s>"""
a = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """</s>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """<pad>""" )
self.assertEqual(len(__magic_name__ ) , 9 )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' )
a = en_de_tokenizer(["""I am a small frog"""] , return_tensors=__magic_name__ )
self.assertIsInstance(__magic_name__ , __magic_name__ )
a = [38, 121, 14, 697, 3_8848, 0]
self.assertListEqual(__magic_name__ , batch.input_ids[0] )
a = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(__magic_name__ )
a = [x.name for x in Path(__magic_name__ ).glob("""*""" )]
self.assertIn("""source.spm""" , __magic_name__ )
MarianTokenizer.from_pretrained(__magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_tokenizer()
a = tok(
["""I am a small frog""" * 1000, """I am a small frog"""] , padding=__magic_name__ , truncation=__magic_name__ , return_tensors=__magic_name__ )
self.assertIsInstance(__magic_name__ , __magic_name__ )
self.assertEqual(batch.input_ids.shape , (2, 512) )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizer()
a = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=__magic_name__ , return_tensors=__magic_name__ )
self.assertIsInstance(__magic_name__ , __magic_name__ )
self.assertEqual(batch_smaller.input_ids.shape , (2, 10) )
@slow
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = {"""input_ids""": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" )
a = """Tämä on testi"""
a = """This is a test"""
a = [76, 7, 2047, 2]
a = [69, 12, 11, 940, 2]
a = tokenizer(__magic_name__ ).input_ids
self.assertListEqual(__magic_name__ , __magic_name__ )
a = tokenizer(text_target=__magic_name__ ).input_ids
self.assertListEqual(__magic_name__ , __magic_name__ )
a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
| 361 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = CanineTokenizer
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
a = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowerCamelCase__ ( self :Tuple , **__magic_name__ :Dict ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
a = 1024
return tokenizer
@require_torch
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
a = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
a = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
a = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
a = chr(0Xe_0_0_7 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
a = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a , a = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_5
a = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
a = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = chr(0Xe_0_0_5 )
a = chr(0Xe_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
a = tokenizer.tokenize(__magic_name__ )
a = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = [new_token_a]
a = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
a = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
a = 0Xe_0_0_7
a = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
a = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
a = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = """hello world"""
if self.space_between_special_tokens:
a = """[CLS] hello world [SEP]"""
else:
a = input
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
a = """a"""
a = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
a = 0Xe_0_0_6
a = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
| 347 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Dict = logging.get_logger(__name__)
__UpperCamelCase : str = {
"google/pix2struct-textcaps-base": (
"https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''pix2struct_text_model'''
UpperCamelCase__ = ['''past_key_values''']
UpperCamelCase__ = {
'''hidden_size''': '''hidden_size''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Optional[Any] , __magic_name__ :int=5_0244 , __magic_name__ :Tuple=768 , __magic_name__ :Any=64 , __magic_name__ :List[Any]=2048 , __magic_name__ :Optional[Any]=12 , __magic_name__ :Optional[Any]=12 , __magic_name__ :Any=32 , __magic_name__ :Any=128 , __magic_name__ :str=0.1 , __magic_name__ :str=1E-6 , __magic_name__ :Any=1.0 , __magic_name__ :Dict="gelu_new" , __magic_name__ :int=0 , __magic_name__ :List[str]=False , __magic_name__ :List[str]=0 , __magic_name__ :Optional[int]=1 , __magic_name__ :Union[str, Any]=False , __magic_name__ :int=True , **__magic_name__ :str , ):
'''simple docstring'''
a = vocab_size
a = hidden_size
a = d_kv
a = d_ff
a = num_layers
a = num_heads
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = dropout_rate
a = layer_norm_epsilon
a = initializer_factor
a = use_cache
a = eos_token_id
a = decoder_start_token_id
# for backwards compatibility
a = dense_act_fn
super().__init__(
pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , is_decoder=__magic_name__ , **__magic_name__ , )
@classmethod
def lowerCamelCase__ ( cls :int , __magic_name__ :Union[str, os.PathLike] , **__magic_name__ :List[Any] ):
'''simple docstring'''
cls._set_token_in_kwargs(__magic_name__ )
a , a = cls.get_config_dict(__magic_name__ , **__magic_name__ )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get("""model_type""" ) == "pix2struct":
a = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(__magic_name__ , **__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''pix2struct_vision_model'''
def __init__( self :Optional[Any] , __magic_name__ :Optional[Any]=768 , __magic_name__ :int=768 , __magic_name__ :Any=2048 , __magic_name__ :Any=64 , __magic_name__ :List[str]=12 , __magic_name__ :int=12 , __magic_name__ :Union[str, Any]="gelu_new" , __magic_name__ :Tuple=1E-6 , __magic_name__ :Any=0.0 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :Any=1E-1_0 , __magic_name__ :Dict=1.0 , __magic_name__ :Optional[int]=4096 , __magic_name__ :Union[str, Any]=32 , __magic_name__ :int=128 , **__magic_name__ :str , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = hidden_size
a = patch_embed_hidden_size
a = d_ff
a = dropout_rate
a = num_hidden_layers
a = num_attention_heads
a = initializer_range
a = initializer_factor
a = attention_dropout
a = layer_norm_eps
a = dense_act_fn
a = seq_len
a = relative_attention_num_buckets
a = relative_attention_max_distance
a = d_kv
@classmethod
def lowerCamelCase__ ( cls :Union[str, Any] , __magic_name__ :Union[str, os.PathLike] , **__magic_name__ :Tuple ):
'''simple docstring'''
cls._set_token_in_kwargs(__magic_name__ )
a , a = cls.get_config_dict(__magic_name__ , **__magic_name__ )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get("""model_type""" ) == "pix2struct":
a = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(__magic_name__ , **__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''pix2struct'''
UpperCamelCase__ = True
def __init__( self :Optional[Any] , __magic_name__ :Any=None , __magic_name__ :Optional[Any]=None , __magic_name__ :int=1.0 , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Dict=False , __magic_name__ :List[str]=False , __magic_name__ :List[str]=True , **__magic_name__ :Tuple , ):
'''simple docstring'''
super().__init__(tie_word_embeddings=__magic_name__ , is_encoder_decoder=__magic_name__ , **__magic_name__ )
if text_config is None:
a = {}
logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" )
if vision_config is None:
a = {}
logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" )
a = PixaStructTextConfig(**__magic_name__ )
a = PixaStructVisionConfig(**__magic_name__ )
a = self.text_config.decoder_start_token_id
a = self.text_config.pad_token_id
a = self.text_config.eos_token_id
a = initializer_factor
a = initializer_range
a = self.initializer_range
a = self.initializer_range
a = is_vqa
@classmethod
def lowerCamelCase__ ( cls :Optional[int] , __magic_name__ :PixaStructTextConfig , __magic_name__ :PixaStructVisionConfig , **__magic_name__ :Optional[int] ):
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = copy.deepcopy(self.__dict__ )
a = self.text_config.to_dict()
a = self.vision_config.to_dict()
a = self.__class__.model_type
return output | 362 |
def __A ( __lowerCamelCase ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
def __A ( __lowerCamelCase ) -> int:
if not numbers:
return 0
if not isinstance(__lowerCamelCase , (list, tuple) ) or not all(
isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
a = a = a = numbers[0]
for i in range(1 , len(__lowerCamelCase ) ):
# update the maximum and minimum subarray products
a = numbers[i]
if number < 0:
a , a = min_till_now, max_till_now
a = max(__lowerCamelCase , max_till_now * number )
a = min(__lowerCamelCase , min_till_now * number )
# update the maximum product found till now
a = max(__lowerCamelCase , __lowerCamelCase )
return max_prod
| 363 |
def __A ( __lowerCamelCase ) -> int:
if not numbers:
return 0
if not isinstance(__lowerCamelCase , (list, tuple) ) or not all(
isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
a = a = a = numbers[0]
for i in range(1 , len(__lowerCamelCase ) ):
# update the maximum and minimum subarray products
a = numbers[i]
if number < 0:
a , a = min_till_now, max_till_now
a = max(__lowerCamelCase , max_till_now * number )
a = min(__lowerCamelCase , min_till_now * number )
# update the maximum product found till now
a = max(__lowerCamelCase , __lowerCamelCase )
return max_prod
| 347 | 0 |
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def __A ( __lowerCamelCase ) -> float:
return np.dot(__lowerCamelCase , __lowerCamelCase )
class __lowerCAmelCase :
def __init__( self :Optional[int] , *,
__magic_name__ :float = np.inf , __magic_name__ :str = "linear" , __magic_name__ :float = 0.0 , ):
'''simple docstring'''
a = regularization
a = gamma
if kernel == "linear":
a = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError("""rbf kernel requires gamma""" )
if not isinstance(self.gamma , (float, int) ):
raise ValueError("""gamma must be float or int""" )
if not self.gamma > 0:
raise ValueError("""gamma must be > 0""" )
a = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
a = F'Unknown kernel: {kernel}'
raise ValueError(__magic_name__ )
def lowerCamelCase__ ( self :str , __magic_name__ :ndarray , __magic_name__ :ndarray ):
'''simple docstring'''
return np.dot(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Any , __magic_name__ :ndarray , __magic_name__ :ndarray ):
'''simple docstring'''
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def lowerCamelCase__ ( self :List[str] , __magic_name__ :list[ndarray] , __magic_name__ :ndarray ):
'''simple docstring'''
a = observations
a = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((a ) , ) = np.shape(__magic_name__ )
def to_minimize(__magic_name__ :ndarray ) -> float:
a = 0
((a ) , ) = np.shape(__magic_name__ )
for i in range(__magic_name__ ):
for j in range(__magic_name__ ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(__magic_name__ )
a = LinearConstraint(__magic_name__ , 0 , 0 )
a = Bounds(0 , self.regularization )
a = minimize(
__magic_name__ , np.ones(__magic_name__ ) , bounds=__magic_name__ , constraints=[ly_contraint] ).x
a = l_star
# calculating mean offset of separation plane to points
a = 0
for i in range(__magic_name__ ):
for j in range(__magic_name__ ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
a = s / n
def lowerCamelCase__ ( self :Any , __magic_name__ :ndarray ):
'''simple docstring'''
a = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , __magic_name__ )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 364 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase : Optional[Any] = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : List[str] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json",
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''glpn'''
def __init__( self :Optional[int] , __magic_name__ :Union[str, Any]=3 , __magic_name__ :Union[str, Any]=4 , __magic_name__ :Dict=[2, 2, 2, 2] , __magic_name__ :List[Any]=[8, 4, 2, 1] , __magic_name__ :Any=[32, 64, 160, 256] , __magic_name__ :List[Any]=[7, 3, 3, 3] , __magic_name__ :Optional[int]=[4, 2, 2, 2] , __magic_name__ :int=[1, 2, 5, 8] , __magic_name__ :Tuple=[4, 4, 4, 4] , __magic_name__ :str="gelu" , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[str]=0.02 , __magic_name__ :List[str]=0.1 , __magic_name__ :Optional[Any]=1E-6 , __magic_name__ :Union[str, Any]=64 , __magic_name__ :Optional[int]=10 , __magic_name__ :List[str]=-1 , **__magic_name__ :List[str] , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = num_channels
a = num_encoder_blocks
a = depths
a = sr_ratios
a = hidden_sizes
a = patch_sizes
a = strides
a = mlp_ratios
a = num_attention_heads
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = drop_path_rate
a = layer_norm_eps
a = decoder_hidden_size
a = max_depth
a = head_in_index
| 365 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase )
a = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
a = dataset_size < in_memory_max_size
else:
a = False
a = is_small_dataset(__lowerCamelCase )
assert result == expected
| 347 | 0 |
def __A ( __lowerCamelCase ) -> bool:
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" )
if len(__lowerCamelCase ) == 0:
raise ValueError("""Input list must be a non empty list""" )
if len(__lowerCamelCase ) == 1:
return True
a = series[1] - series[0]
for index in range(len(__lowerCamelCase ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def __A ( __lowerCamelCase ) -> float:
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" )
if len(__lowerCamelCase ) == 0:
raise ValueError("""Input list must be a non empty list""" )
a = 0
for val in series:
answer += val
return answer / len(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 366 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( __lowerCamelCase ) -> bool:
a = int(number**0.5 )
return number == sq * sq
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]:
a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
a = x_den * y_den * z_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( __lowerCamelCase = 35 ) -> int:
a = set()
a = 42
a = Fraction(0 )
a = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
a = x_num * y_den + x_den * y_num
a = x_den * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
a = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
a = x_num * y_num
a = x_den * y_num + x_num * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = x_num * x_num * y_num * y_num
a = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }')
| 347 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
UpperCamelCase__ = '''nat'''
UpperCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__magic_name__ )
a = num_heads
a = kernel_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) )
a = layer_scale_init_value
a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 367 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = FlaxRoFormerModelTester(self )
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
a = jnp.array([[0, 1, 2, 3, 4, 5]] )
a = model(__magic_name__ )[0]
a = 5_0000
a = (1, 6, vocab_size)
self.assertEqual(output.shape , __magic_name__ )
a = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 0 |
def __A ( __lowerCamelCase = 50 ) -> int:
a = [1] * (length + 1)
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
ways_number[row_length] += ways_number[
row_length - tile_start - tile_length
]
return ways_number[length]
if __name__ == "__main__":
print(F'{solution() = }')
| 368 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
"""simple docstring"""
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"""files""" , [
["""full:README.md""", """dataset_infos.json"""],
["""empty:README.md""", """dataset_infos.json"""],
["""dataset_infos.json"""],
["""full:README.md"""],
] , )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Tuple:
a = tmp_path_factory.mktemp("""dset_infos_dir""" )
if "full:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""---\ndataset_info:\n dataset_size: 42\n---""" )
if "empty:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""""" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f:
f.write("""{\"default\": {\"dataset_size\": 42}}""" )
a = DatasetInfosDict.from_directory(__lowerCamelCase )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"""dataset_info""" , [
DatasetInfo(),
DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ),
] , )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
a = str(__lowerCamelCase )
dataset_info.write_to_directory(__lowerCamelCase )
a = DatasetInfo.from_directory(__lowerCamelCase )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(__lowerCamelCase , """dataset_info.json""" ) )
def __A ( ) -> Optional[int]:
a = DatasetInfo(
description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , )
a = dataset_info._to_yaml_dict()
assert sorted(__lowerCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
a = yaml.safe_dump(__lowerCamelCase )
a = yaml.safe_load(__lowerCamelCase )
assert dataset_info_yaml_dict == reloaded
def __A ( ) -> List[str]:
a = DatasetInfo()
a = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"""dataset_infos_dict""" , [
DatasetInfosDict(),
DatasetInfosDict({"""default""": DatasetInfo()} ),
DatasetInfosDict({"""my_config_name""": DatasetInfo()} ),
DatasetInfosDict(
{
"""default""": DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , )
} ),
DatasetInfosDict(
{
"""v1""": DatasetInfo(dataset_size=42 ),
"""v2""": DatasetInfo(dataset_size=1337 ),
} ),
] , )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
a = str(__lowerCamelCase )
dataset_infos_dict.write_to_directory(__lowerCamelCase )
a = DatasetInfosDict.from_directory(__lowerCamelCase )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
a = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
a = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(__lowerCamelCase , """README.md""" ) )
| 369 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = (IPNDMScheduler,)
UpperCamelCase__ = (('''num_inference_steps''', 50),)
def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {"""num_train_timesteps""": 1000}
config.update(**__magic_name__ )
return config
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
return sample
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ):
scheduler.set_timesteps(__magic_name__ )
elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
a = dummy_past_residuals[:]
a = scheduler.timesteps[5]
a = scheduler.timesteps[6]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.full_loop()
a = torch.mean(torch.abs(__magic_name__ ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 347 | 0 |
import argparse
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
import timm
import torch
from huggingface_hub import hf_hub_download
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase : Union[str, Any] = logging.get_logger()
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> int:
print(f'Converting {name}...' )
with torch.no_grad():
if hidden_sizes == 128:
if name[-1] == "S":
a = timm.create_model("""levit_128s""" , pretrained=__lowerCamelCase )
else:
a = timm.create_model("""levit_128""" , pretrained=__lowerCamelCase )
if hidden_sizes == 192:
a = timm.create_model("""levit_192""" , pretrained=__lowerCamelCase )
if hidden_sizes == 256:
a = timm.create_model("""levit_256""" , pretrained=__lowerCamelCase )
if hidden_sizes == 384:
a = timm.create_model("""levit_384""" , pretrained=__lowerCamelCase )
from_model.eval()
a = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval()
a = OrderedDict()
a = from_model.state_dict()
a = list(from_model.state_dict().keys() )
a = list(our_model.state_dict().keys() )
print(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
for i in range(len(__lowerCamelCase ) ):
a = weights[og_keys[i]]
our_model.load_state_dict(__lowerCamelCase )
a = torch.randn((2, 3, 224, 224) )
a = from_model(__lowerCamelCase )
a = our_model(__lowerCamelCase ).logits
assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one."
a = name
print(__lowerCamelCase )
if push_to_hub:
our_model.save_pretrained(save_directory / checkpoint_name )
a = LevitImageProcessor()
image_processor.save_pretrained(save_directory / checkpoint_name )
print(f'Pushed {checkpoint_name}' )
def __A ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> Tuple:
a = """imagenet-1k-id2label.json"""
a = 1000
a = (1, num_labels)
a = """huggingface/label-files"""
a = num_labels
a = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
a = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase )
a = {
"""levit-128S""": 128,
"""levit-128""": 128,
"""levit-192""": 192,
"""levit-256""": 256,
"""levit-384""": 384,
}
a = {
"""levit-128S""": ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
"""levit-128""": ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
"""levit-192""": ImageNetPreTrainedConfig(
hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
"""levit-256""": ImageNetPreTrainedConfig(
hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
"""levit-384""": ImageNetPreTrainedConfig(
hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ),
}
if model_name:
convert_weight_and_push(
names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return config, expected_shape
if __name__ == "__main__":
__UpperCamelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="levit-dump-folder/",
type=Path,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
parser.add_argument(
"--no-push_to_hub",
dest="push_to_hub",
action="store_false",
help="Do not push model and image processor to the hub",
)
__UpperCamelCase : Optional[Any] = parser.parse_args()
__UpperCamelCase : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 370 |
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def __A ( ) -> None:
a = input("""Enter message: """ )
a = input("""Enter key [alphanumeric]: """ )
a = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
a = """encrypt"""
a = encrypt_message(__lowerCamelCase , __lowerCamelCase )
elif mode.lower().startswith("""d""" ):
a = """decrypt"""
a = decrypt_message(__lowerCamelCase , __lowerCamelCase )
print(f'\n{mode.title()}ed message:' )
print(__lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = []
a = 0
a = key.upper()
for symbol in message:
a = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(__lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(__lowerCamelCase ):
a = 0
else:
translated.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
if __name__ == "__main__":
main()
| 347 | 0 |
import argparse
import torch
from transformers import (
EncodecConfig,
EncodecFeatureExtractor,
EncodecModel,
logging,
)
# checkpoints downloaded from:
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
logging.set_verbosity_info()
__UpperCamelCase : int = logging.get_logger("transformers.models.encodec")
__UpperCamelCase : Optional[int] = {
"quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited",
"quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size",
"quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed",
"quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg",
}
__UpperCamelCase : Tuple = {
"encoder.model.0.conv.conv": "encoder.layers.0.conv",
"encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv",
"encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv",
"encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv",
"encoder.model.3.conv.conv": "encoder.layers.3.conv",
"encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv",
"encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv",
"encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv",
"encoder.model.6.conv.conv": "encoder.layers.6.conv",
"encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv",
"encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv",
"encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv",
"encoder.model.9.conv.conv": "encoder.layers.9.conv",
"encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv",
"encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv",
"encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv",
"encoder.model.12.conv.conv": "encoder.layers.12.conv",
"encoder.model.13.lstm": "encoder.layers.13.lstm",
"encoder.model.15.conv.conv": "encoder.layers.15.conv",
}
__UpperCamelCase : Optional[Any] = {
"encoder.model.0.conv.norm": "encoder.layers.0.norm",
"encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm",
"encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm",
"encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm",
"encoder.model.3.conv.norm": "encoder.layers.3.norm",
"encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm",
"encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm",
"encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm",
"encoder.model.6.conv.norm": "encoder.layers.6.norm",
"encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm",
"encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm",
"encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm",
"encoder.model.9.conv.norm": "encoder.layers.9.norm",
"encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm",
"encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm",
"encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm",
"encoder.model.12.conv.norm": "encoder.layers.12.norm",
"encoder.model.15.conv.norm": "encoder.layers.15.norm",
}
__UpperCamelCase : Optional[int] = {
"decoder.model.0.conv.conv": "decoder.layers.0.conv",
"decoder.model.1.lstm": "decoder.layers.1.lstm",
"decoder.model.3.convtr.convtr": "decoder.layers.3.conv",
"decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv",
"decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv",
"decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv",
"decoder.model.6.convtr.convtr": "decoder.layers.6.conv",
"decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv",
"decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv",
"decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv",
"decoder.model.9.convtr.convtr": "decoder.layers.9.conv",
"decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv",
"decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv",
"decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv",
"decoder.model.12.convtr.convtr": "decoder.layers.12.conv",
"decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv",
"decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv",
"decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv",
"decoder.model.15.conv.conv": "decoder.layers.15.conv",
}
__UpperCamelCase : Dict = {
"decoder.model.0.conv.norm": "decoder.layers.0.norm",
"decoder.model.3.convtr.norm": "decoder.layers.3.norm",
"decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm",
"decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm",
"decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm",
"decoder.model.6.convtr.norm": "decoder.layers.6.norm",
"decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm",
"decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm",
"decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm",
"decoder.model.9.convtr.norm": "decoder.layers.9.norm",
"decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm",
"decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm",
"decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm",
"decoder.model.12.convtr.norm": "decoder.layers.12.norm",
"decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm",
"decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm",
"decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm",
"decoder.model.15.conv.norm": "decoder.layers.15.norm",
}
__UpperCamelCase : Any = {
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_DECODER,
}
__UpperCamelCase : List[str] = {
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_ENCODER_48K,
**MAPPING_DECODER,
**MAPPING_DECODER_48K,
}
__UpperCamelCase : Optional[Any] = []
__UpperCamelCase : List[str] = []
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
for attribute in key.split(""".""" ):
a = getattr(__lowerCamelCase , __lowerCamelCase )
if weight_type is not None:
a = getattr(__lowerCamelCase , __lowerCamelCase ).shape
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
elif weight_type == "running_mean":
a = value
elif weight_type == "running_var":
a = value
elif weight_type == "num_batches_tracked":
a = value
elif weight_type == "weight_ih_l0":
a = value
elif weight_type == "weight_hh_l0":
a = value
elif weight_type == "bias_ih_l0":
a = value
elif weight_type == "bias_hh_l0":
a = value
elif weight_type == "weight_ih_l1":
a = value
elif weight_type == "weight_hh_l1":
a = value
elif weight_type == "bias_ih_l1":
a = value
elif weight_type == "bias_hh_l1":
a = value
else:
a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> int:
for key in ignore_keys:
if key.endswith(""".*""" ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
a , a = key.split(""".*.""" )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
a = []
if model_name == "encodec_24khz" or "encodec_32khz":
a = MAPPING_24K
elif model_name == "encodec_48khz":
a = MAPPING_48K
else:
raise ValueError(f'Unsupported model: {model_name}' )
for name, value in orig_dict.items():
if should_ignore(__lowerCamelCase , __lowerCamelCase ):
logger.info(f'{name} was ignored' )
continue
a = False
for key, mapped_key in MAPPING.items():
if "*" in key:
a , a = key.split(""".*.""" )
if prefix in name and suffix in name:
a = suffix
if key in name:
# HACK otherwise .embed gets initialized with .embed_avg too
if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ):
continue
a = True
if "*" in mapped_key:
a = name.split(__lowerCamelCase )[0].split(""".""" )[-2]
a = mapped_key.replace("""*""" , __lowerCamelCase )
if "weight_g" in name:
a = """weight_g"""
elif "weight_v" in name:
a = """weight_v"""
elif "weight_ih_l0" in name:
a = """weight_ih_l0"""
elif "weight_hh_l0" in name:
a = """weight_hh_l0"""
elif "bias_ih_l0" in name:
a = """bias_ih_l0"""
elif "bias_hh_l0" in name:
a = """bias_hh_l0"""
elif "weight_ih_l1" in name:
a = """weight_ih_l1"""
elif "weight_hh_l1" in name:
a = """weight_hh_l1"""
elif "bias_ih_l1" in name:
a = """bias_ih_l1"""
elif "bias_hh_l1" in name:
a = """bias_hh_l1"""
elif "bias" in name:
a = """bias"""
elif "weight" in name:
a = """weight"""
elif "running_mean" in name:
a = """running_mean"""
elif "running_var" in name:
a = """running_var"""
elif "num_batches_tracked" in name:
a = """num_batches_tracked"""
else:
a = None
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
continue
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
@torch.no_grad()
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> str:
if config_path is not None:
a = EncodecConfig.from_pretrained(__lowerCamelCase )
else:
a = EncodecConfig()
if model_name == "encodec_24khz":
pass # config is already correct
elif model_name == "encodec_32khz":
a = [8, 5, 4, 4]
a = [2.2]
a = 64
a = 3_2000
a = 2048
a = False
a = False
a = False
elif model_name == "encodec_48khz":
a = [8, 5, 4, 2]
a = [3.0, 6.0, 12.0, 24.0]
a = 4_8000
a = 2
a = False
a = """time_group_norm"""
a = True
a = 1.0
a = 0.01
else:
raise ValueError(f'Unknown model name: {model_name}' )
a = EncodecModel(__lowerCamelCase )
a = EncodecFeatureExtractor(
feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , )
feature_extractor.save_pretrained(__lowerCamelCase )
a = torch.load(__lowerCamelCase )
if "best_state" in original_checkpoint:
# we might have a training state saved, in which case discard the yaml results and just retain the weights
a = original_checkpoint["""best_state"""]
recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
model.save_pretrained(__lowerCamelCase )
if repo_id:
print("""Pushing to the hub...""" )
feature_extractor.push_to_hub(__lowerCamelCase )
model.push_to_hub(__lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"--model",
default="encodec_24khz",
type=str,
help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
__UpperCamelCase : Optional[int] = parser.parse_args()
convert_checkpoint(
args.model,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 371 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = True
a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = FlaxRobertaModelTester(self )
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 347 | 0 |
def __A ( __lowerCamelCase ) -> list:
a = len(__lowerCamelCase )
for i in range(1 , __lowerCamelCase ):
a = collection[i]
a = 0
a = i - 1
while low <= high:
a = (low + high) // 2
if val < collection[mid]:
a = mid - 1
else:
a = mid + 1
for j in range(__lowerCamelCase , __lowerCamelCase , -1 ):
a = collection[j - 1]
a = val
return collection
if __name__ == "__main__":
__UpperCamelCase : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip()
__UpperCamelCase : List[str] = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 350 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
UpperCamelCase__ = None
UpperCamelCase__ = "utf-8"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True # deprecated
UpperCamelCase__ = None # deprecated
UpperCamelCase__ = 10 << 20 # 10MB
UpperCamelCase__ = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
UpperCamelCase__ = JsonConfig
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
a = data_files
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
a = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
a = self.config.features.arrow_schema.field(__magic_name__ ).type
a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
a = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
# We keep only the field we are interested in
a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
a = dataset
a = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , """rb""" ) as f:
a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
a = max(self.config.chunksize // 32 , 16 << 10 )
a = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" )
try:
while True:
try:
a = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
a = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 347 | 0 |
from __future__ import annotations
__UpperCamelCase : List[str] = tuple[int, int, int]
__UpperCamelCase : Optional[Any] = tuple[str, str, str]
# used alphabet --------------------------
# from string.ascii_uppercase
__UpperCamelCase : Optional[Any] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# -------------------------- default selection --------------------------
# rotors --------------------------
__UpperCamelCase : int = "EGZWVONAHDCLFQMSIPJBYUKXTR"
__UpperCamelCase : List[Any] = "FOBHMDKEXQNRAULPGSJVTYICZW"
__UpperCamelCase : Dict = "ZJXESIUQLHAVRMDOYGTNFWPBKC"
# reflector --------------------------
__UpperCamelCase : str = {
"A": "N",
"N": "A",
"B": "O",
"O": "B",
"C": "P",
"P": "C",
"D": "Q",
"Q": "D",
"E": "R",
"R": "E",
"F": "S",
"S": "F",
"G": "T",
"T": "G",
"H": "U",
"U": "H",
"I": "V",
"V": "I",
"J": "W",
"W": "J",
"K": "X",
"X": "K",
"L": "Y",
"Y": "L",
"M": "Z",
"Z": "M",
}
# -------------------------- extra rotors --------------------------
__UpperCamelCase : Optional[int] = "RMDJXFUWGISLHVTCQNKYPBEZOA"
__UpperCamelCase : Dict = "SGLCPQWZHKXAREONTFBVIYJUDM"
__UpperCamelCase : Optional[Any] = "HVSICLTYKQUBXDWAJZOMFGPREN"
__UpperCamelCase : List[Any] = "RZWQHFMVDBKICJLNTUXAGYPSOE"
__UpperCamelCase : Optional[Any] = "LFKIJODBEGAMQPXVUHYSTCZRWN"
__UpperCamelCase : Optional[Any] = "KOAEGVDHXPQZMLFTYWJNBRCIUS"
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]:
# Checks if there are 3 unique rotors
if (unique_rotsel := len(set(__lowerCamelCase ) )) < 3:
a = f'Please use 3 unique rotors (not {unique_rotsel})'
raise Exception(__lowerCamelCase )
# Checks if rotor positions are valid
a , a , a = rotpos
if not 0 < rotorposa <= len(__lowerCamelCase ):
a = f'First rotor position is not within range of 1..26 ({rotorposa}'
raise ValueError(__lowerCamelCase )
if not 0 < rotorposa <= len(__lowerCamelCase ):
a = f'Second rotor position is not within range of 1..26 ({rotorposa})'
raise ValueError(__lowerCamelCase )
if not 0 < rotorposa <= len(__lowerCamelCase ):
a = f'Third rotor position is not within range of 1..26 ({rotorposa})'
raise ValueError(__lowerCamelCase )
# Validates string and returns dict
a = _plugboard(__lowerCamelCase )
return rotpos, rotsel, pbdict
def __A ( __lowerCamelCase ) -> dict[str, str]:
# tests the input string if it
# a) is type string
# b) has even length (so pairs can be made)
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
a = f'Plugboard setting isn\'t type string ({type(__lowerCamelCase )})'
raise TypeError(__lowerCamelCase )
elif len(__lowerCamelCase ) % 2 != 0:
a = f'Odd number of symbols ({len(__lowerCamelCase )})'
raise Exception(__lowerCamelCase )
elif pbstring == "":
return {}
pbstring.replace(""" """ , """""" )
# Checks if all characters are unique
a = set()
for i in pbstring:
if i not in abc:
a = f'\'{i}\' not in list of symbols'
raise Exception(__lowerCamelCase )
elif i in tmppbl:
a = f'Duplicate symbol ({i})'
raise Exception(__lowerCamelCase )
else:
tmppbl.add(__lowerCamelCase )
del tmppbl
# Created the dictionary
a = {}
for j in range(0 , len(__lowerCamelCase ) - 1 , 2 ):
a = pbstring[j + 1]
a = pbstring[j]
return pb
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = (rotora, rotora, rotora) , __lowerCamelCase = "" , ) -> str:
a = text.upper()
a , a , a = _validator(
__lowerCamelCase , __lowerCamelCase , plugb.upper() )
a , a , a = rotor_position
a , a , a = rotor_selection
rotorposa -= 1
rotorposa -= 1
rotorposa -= 1
a = []
# encryption/decryption process --------------------------
for symbol in text:
if symbol in abc:
# 1st plugboard --------------------------
if symbol in plugboard:
a = plugboard[symbol]
# rotor ra --------------------------
a = abc.index(__lowerCamelCase ) + rotorposa
a = rotora[index % len(__lowerCamelCase )]
# rotor rb --------------------------
a = abc.index(__lowerCamelCase ) + rotorposa
a = rotora[index % len(__lowerCamelCase )]
# rotor rc --------------------------
a = abc.index(__lowerCamelCase ) + rotorposa
a = rotora[index % len(__lowerCamelCase )]
# reflector --------------------------
# this is the reason you don't need another machine to decipher
a = reflector[symbol]
# 2nd rotors
a = abc[rotora.index(__lowerCamelCase ) - rotorposa]
a = abc[rotora.index(__lowerCamelCase ) - rotorposa]
a = abc[rotora.index(__lowerCamelCase ) - rotorposa]
# 2nd plugboard
if symbol in plugboard:
a = plugboard[symbol]
# moves/resets rotor positions
rotorposa += 1
if rotorposa >= len(__lowerCamelCase ):
a = 0
rotorposa += 1
if rotorposa >= len(__lowerCamelCase ):
a = 0
rotorposa += 1
if rotorposa >= len(__lowerCamelCase ):
a = 0
# else:
# pass
# Error could be also raised
# raise ValueError(
# 'Invalid symbol('+repr(symbol)+')')
result.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : List[Any] = "This is my Python script that emulates the Enigma machine from WWII."
__UpperCamelCase : Union[str, Any] = (1, 1, 1)
__UpperCamelCase : List[Any] = "pictures"
__UpperCamelCase : Tuple = (rotora, rotora, rotora)
__UpperCamelCase : str = enigma(message, rotor_pos, rotor_sel, pb)
print("Encrypted message:", en)
print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
| 351 |
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :List[str] , __magic_name__ :int="</s>" , __magic_name__ :List[Any]="<unk>" , __magic_name__ :Optional[Any]="<pad>" , __magic_name__ :Optional[int]=125 , __magic_name__ :List[str]=None , **__magic_name__ :List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"""
""" extra_ids tokens""" )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
super().__init__(
eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
a = extra_ids
a = 2**8 # utf is 8 bits
# define special tokens dict
a = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
a = len(self.special_tokens_encoder )
a = len(__magic_name__ )
for i, token in enumerate(__magic_name__ ):
a = self.vocab_size + i - n
a = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__magic_name__ )) + [1]
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def lowerCamelCase__ ( self :str , __magic_name__ :List[int] ):
'''simple docstring'''
if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = self._add_eos_if_not_present(__magic_name__ )
if token_ids_a is None:
return token_ids_a
else:
a = self._add_eos_if_not_present(__magic_name__ )
return token_ids_a + token_ids_a
def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ):
'''simple docstring'''
a = [chr(__magic_name__ ) for i in text.encode("""utf-8""" )]
return tokens
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if token in self.special_tokens_encoder:
a = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
a = self.added_tokens_encoder[token]
elif len(__magic_name__ ) != 1:
a = self.unk_token_id
else:
a = ord(__magic_name__ ) + self._num_special_tokens
return token_id
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ):
'''simple docstring'''
if index in self.special_tokens_decoder:
a = self.special_tokens_decoder[index]
else:
a = chr(index - self._num_special_tokens )
return token
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = b""""""
for token in tokens:
if token in self.special_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.added_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.special_tokens_encoder:
a = token.encode("""utf-8""" )
elif token in self.added_tokens_encoder:
a = token.encode("""utf-8""" )
else:
a = bytes([ord(__magic_name__ )] )
bstring += tok_string
a = bstring.decode("""utf-8""" , errors="""ignore""" )
return string
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
return ()
| 347 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : List[str] = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 352 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self :Optional[int] , __magic_name__ :str , __magic_name__ :int=2 , __magic_name__ :List[str]=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :str=2 , __magic_name__ :Any=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=True , __magic_name__ :List[Any]=99 , __magic_name__ :Dict=36 , __magic_name__ :Optional[Any]=3 , __magic_name__ :str=4 , __magic_name__ :Optional[Any]=37 , __magic_name__ :Dict="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Dict=512 , __magic_name__ :str=16 , __magic_name__ :List[Any]=2 , __magic_name__ :Tuple=0.02 , __magic_name__ :Any=6 , __magic_name__ :Optional[int]=6 , __magic_name__ :Tuple=3 , __magic_name__ :str=4 , __magic_name__ :List[str]=None , __magic_name__ :str=1000 , ):
'''simple docstring'''
a = parent
a = batch_size
a = num_channels
a = image_size
a = patch_size
a = text_seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = coordinate_size
a = shape_size
a = num_labels
a = num_choices
a = scope
a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
a = text_seq_length
a = (image_size // patch_size) ** 2 + 1
a = self.text_seq_length + self.image_seq_length
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a = bbox[i, j, 3]
a = bbox[i, j, 1]
a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a = bbox[i, j, 2]
a = bbox[i, j, 0]
a = t
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.text_seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase__ ( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int ):
'''simple docstring'''
a = LayoutLMvaModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# text + image
a = model(__magic_name__ , pixel_values=__magic_name__ )
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
a = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
a = model(pixel_values=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :List[str] ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ):
'''simple docstring'''
return True
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = LayoutLMvaModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :Any=False ):
'''simple docstring'''
a = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__magic_name__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in get_values(__magic_name__ ):
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__magic_name__ , )
return inputs_dict
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = LayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""pt""" ).pixel_values.to(__magic_name__ )
a = torch.tensor([[1, 2]] )
a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
a = model(
input_ids=input_ids.to(__magic_name__ ) , bbox=bbox.to(__magic_name__ ) , pixel_values=pixel_values.to(__magic_name__ ) , )
# verify the logits
a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 0 |
def __A ( __lowerCamelCase ) -> list[int]:
a = [0 for i in range(len(__lowerCamelCase ) )]
# initialize interval's left pointer and right pointer
a , a = 0, 0
for i in range(1 , len(__lowerCamelCase ) ):
# case when current index is inside the interval
if i <= right_pointer:
a = min(right_pointer - i + 1 , z_result[i - left_pointer] )
a = min_edge
while go_next(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
a , a = i, i + z_result[i] - 1
return z_result
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> bool:
return i + z_result[i] < len(__lowerCamelCase ) and s[z_result[i]] == s[i + z_result[i]]
def __A ( __lowerCamelCase , __lowerCamelCase ) -> int:
a = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
a = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(__lowerCamelCase ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 353 |
from copy import deepcopy
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :list[int] | None = None , __magic_name__ :int | None = None ):
'''simple docstring'''
if arr is None and size is not None:
a = size
a = [0] * size
elif arr is not None:
self.init(__magic_name__ )
else:
raise ValueError("""Either arr or size must be specified""" )
def lowerCamelCase__ ( self :Dict , __magic_name__ :list[int] ):
'''simple docstring'''
a = len(__magic_name__ )
a = deepcopy(__magic_name__ )
for i in range(1 , self.size ):
a = self.next_(__magic_name__ )
if j < self.size:
self.tree[j] += self.tree[i]
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
a = self.next_(__magic_name__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index - (index & (-index))
def lowerCamelCase__ ( self :Any , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
a = self.next_(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
self.add(__magic_name__ , value - self.get(__magic_name__ ) )
def lowerCamelCase__ ( self :int , __magic_name__ :int ):
'''simple docstring'''
if right == 0:
return 0
a = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
a = self.prev(__magic_name__ )
return result
def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :int ):
'''simple docstring'''
return self.query(__magic_name__ , index + 1 )
def lowerCamelCase__ ( self :Dict , __magic_name__ :int ):
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
a = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
a = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowerCAmelCase :
@staticmethod
def lowerCamelCase__ ( *__magic_name__ :Optional[int] , **__magic_name__ :Any ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
UpperCamelCase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING
def lowerCamelCase__ ( self :Any , __magic_name__ :str , __magic_name__ :List[Any] , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = ObjectDetectionPipeline(model=__magic_name__ , image_processor=__magic_name__ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :str ):
'''simple docstring'''
a = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 )
self.assertGreater(len(__magic_name__ ) , 0 )
for detected_object in outputs:
self.assertEqual(
__magic_name__ , {
"""score""": ANY(__magic_name__ ),
"""label""": ANY(__magic_name__ ),
"""box""": {"""xmin""": ANY(__magic_name__ ), """ymin""": ANY(__magic_name__ ), """xmax""": ANY(__magic_name__ ), """ymax""": ANY(__magic_name__ )},
} , )
import datasets
a = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" )
a = [
Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
]
a = object_detector(__magic_name__ , threshold=0.0 )
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) )
for outputs in batch_outputs:
self.assertGreater(len(__magic_name__ ) , 0 )
for detected_object in outputs:
self.assertEqual(
__magic_name__ , {
"""score""": ANY(__magic_name__ ),
"""label""": ANY(__magic_name__ ),
"""box""": {"""xmin""": ANY(__magic_name__ ), """ymin""": ANY(__magic_name__ ), """xmax""": ANY(__magic_name__ ), """ymax""": ANY(__magic_name__ )},
} , )
@require_tf
@unittest.skip("""Object detection not implemented in TF""" )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
pass
@require_torch
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = """hf-internal-testing/tiny-detr-mobilenetsv3"""
a = AutoModelForObjectDetection.from_pretrained(__magic_name__ )
a = AutoFeatureExtractor.from_pretrained(__magic_name__ )
a = ObjectDetectionPipeline(model=__magic_name__ , feature_extractor=__magic_name__ )
a = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
] , )
a = object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
[
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
],
[
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
],
] , )
@require_torch
@slow
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = """facebook/detr-resnet-50"""
a = AutoModelForObjectDetection.from_pretrained(__magic_name__ )
a = AutoFeatureExtractor.from_pretrained(__magic_name__ )
a = ObjectDetectionPipeline(model=__magic_name__ , feature_extractor=__magic_name__ )
a = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
] , )
a = object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
[
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
],
[
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
],
] , )
@require_torch
@slow
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = """facebook/detr-resnet-50"""
a = pipeline("""object-detection""" , model=__magic_name__ )
a = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
] , )
a = object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
[
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
],
[
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
],
] , )
@require_torch
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = 0.9985
a = """facebook/detr-resnet-50"""
a = pipeline("""object-detection""" , model=__magic_name__ )
a = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=__magic_name__ )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
] , )
@require_torch
@require_pytesseract
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = """Narsil/layoutlmv3-finetuned-funsd"""
a = 0.9993
a = pipeline("""object-detection""" , model=__magic_name__ , threshold=__magic_name__ )
a = object_detector(
"""https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}},
{"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}},
] , )
| 354 |
from __future__ import annotations
from typing import Generic, TypeVar
__UpperCamelCase : Union[str, Any] = TypeVar("T")
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple , __magic_name__ :T ):
'''simple docstring'''
a = data
a = self
a = 0
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T ):
'''simple docstring'''
a = DisjointSetTreeNode(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :T ):
'''simple docstring'''
a = self.map[data]
if elem_ref != elem_ref.parent:
a = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :DisjointSetTreeNode[T] , __magic_name__ :DisjointSetTreeNode[T] ):
'''simple docstring'''
if nodea.rank > nodea.rank:
a = nodea
else:
a = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T , __magic_name__ :T ):
'''simple docstring'''
self.link(self.find_set(__magic_name__ ) , self.find_set(__magic_name__ ) )
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Union[str, Any] ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :T ):
'''simple docstring'''
if node not in self.connections:
a = {}
def lowerCamelCase__ ( self :Any , __magic_name__ :T , __magic_name__ :T , __magic_name__ :int ):
'''simple docstring'''
self.add_node(__magic_name__ )
self.add_node(__magic_name__ )
a = weight
a = weight
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
a = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __magic_name__ : x[2] )
# creating the disjoint set
a = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__magic_name__ )
# MST generation
a = 0
a = 0
a = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
a , a , a = edges[index]
index += 1
a = disjoint_set.find_set(__magic_name__ )
a = disjoint_set.find_set(__magic_name__ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__magic_name__ , __magic_name__ , __magic_name__ )
disjoint_set.union(__magic_name__ , __magic_name__ )
return graph
| 347 | 0 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase : List[str] = logging.get_logger(__name__)
def lowercase__ ( __lowerCamelCase ) -> Dict:
a = MobileNetVaConfig(layer_norm_eps=0.001 )
if "_quant" in model_name:
raise ValueError("""Quantized models are not supported.""" )
a = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , __lowerCamelCase )
if matches:
a = float(matches[1] )
a = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
a = 1001
a = """imagenet-1k-id2label.json"""
a = """huggingface/label-files"""
a = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
a = {int(__lowerCamelCase ) + 1: v for k, v in idalabel.items()}
a = """background"""
a = idalabel
a = {v: k for k, v in idalabel.items()}
return config
def lowercase__ ( ) -> Tuple:
a = """http://images.cocodataset.org/val2017/000000039769.jpg"""
a = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowercase__ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[Any]:
a = get_mobilenet_va_config(__lowerCamelCase )
# Load 🤗 model
a = MobileNetVaForImageClassification(__lowerCamelCase ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
a = MobileNetVaImageProcessor(
crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , )
a = image_processor(images=prepare_img() , return_tensors="""pt""" )
a = model(**__lowerCamelCase )
a = outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
a = torch.tensor([-4.1739, -1.1233, 3.1205] )
elif model_name == "mobilenet_v1_0.75_192":
a = torch.tensor([-3.9440, -2.3141, -0.3333] )
else:
a = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-4 )
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print("""Pushing to the hub...""" )
a = """google/""" + model_name
image_processor.push_to_hub(__lowerCamelCase )
model.push_to_hub(__lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="mobilenet_v1_1.0_224",
type=str,
help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.",
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__UpperCamelCase : Tuple = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 355 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = tempfile.mkdtemp()
a = BlipImageProcessor()
a = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
a = BlipProcessor(__magic_name__ , __magic_name__ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :List[Any] , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer
def lowerCamelCase__ ( self :str , **__magic_name__ :List[str] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
a = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
a = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = self.prepare_image_inputs()
a = image_processor(__magic_name__ , return_tensors="""np""" )
a = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = processor(text=__magic_name__ )
a = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__magic_name__ )
a = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 347 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
PNDMScheduler,
StableDiffusionLDMaDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import nightly, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
enable_full_determinism()
class __lowerCAmelCase ( unittest.TestCase ):
UpperCamelCase__ = StableDiffusionLDMaDPipeline
UpperCamelCase__ = TEXT_TO_IMAGE_PARAMS
UpperCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
torch.manual_seed(0 )
a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
a = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , )
torch.manual_seed(0 )
a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
a = CLIPTextModel(__magic_name__ )
a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
a = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def lowerCamelCase__ ( self :List[str] , __magic_name__ :int , __magic_name__ :Dict=0 ):
'''simple docstring'''
if str(__magic_name__ ).startswith("""mps""" ):
a = torch.manual_seed(__magic_name__ )
else:
a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
a = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = """cpu""" # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = StableDiffusionLDMaDPipeline(**__magic_name__ )
a = ldmad_pipe.to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_dummy_inputs(__magic_name__ )
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = rgb[0, -3:, -3:, -1]
a = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
a = np.array(
[0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] )
a = np.array([103.46727, 85.812004, 87.849236] )
assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2
assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.get_dummy_components()
a = StableDiffusionLDMaDPipeline(**__magic_name__ )
a = ldmad_pipe.to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_dummy_inputs(__magic_name__ )
a = 3 * [inputs["""prompt"""]]
# forward
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = rgb_slice_a[0, -3:, -3:, -1]
a = depth_slice_a[0, -3:, -1]
a = self.get_dummy_inputs(__magic_name__ )
a = 3 * [inputs.pop("""prompt""" )]
a = ldmad_pipe.tokenizer(
__magic_name__ , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors="""pt""" , )
a = text_inputs["""input_ids"""].to(__magic_name__ )
a = ldmad_pipe.text_encoder(__magic_name__ )[0]
a = prompt_embeds
# forward
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = rgb_slice_a[0, -3:, -3:, -1]
a = depth_slice_a[0, -3:, -1]
assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4
assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = """cpu""" # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = PNDMScheduler(skip_prk_steps=__magic_name__ )
a = StableDiffusionLDMaDPipeline(**__magic_name__ )
a = ldmad_pipe.to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_dummy_inputs(__magic_name__ )
a = """french fries"""
a = ldmad_pipe(**__magic_name__ , negative_prompt=__magic_name__ )
a , a = output.rgb, output.depth
a = rgb[0, -3:, -3:, -1]
a = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
a = np.array(
[0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] )
a = np.array([107.84738, 84.62802, 89.962135] )
assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2
assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[Any]="cpu" , __magic_name__ :Optional[int]=torch.floataa , __magic_name__ :int=0 ):
'''simple docstring'''
a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
a = np.random.RandomState(__magic_name__ ).standard_normal((1, 4, 64, 64) )
a = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ )
a = {
"""prompt""": """a photograph of an astronaut riding a horse""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" )
a = ldmad_pipe.to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_inputs(__magic_name__ )
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = rgb[0, -3:, -3:, -1].flatten()
a = rgb[0, -3:, -1].flatten()
assert rgb.shape == (1, 512, 512, 3)
assert depth.shape == (1, 512, 512)
a = np.array(
[0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] )
a = np.array(
[0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] )
assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3
assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3
@nightly
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :str , __magic_name__ :List[str]="cpu" , __magic_name__ :Optional[int]=torch.floataa , __magic_name__ :List[str]=0 ):
'''simple docstring'''
a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
a = np.random.RandomState(__magic_name__ ).standard_normal((1, 4, 64, 64) )
a = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ )
a = {
"""prompt""": """a photograph of an astronaut riding a horse""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_inputs(__magic_name__ )
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = 0.495586
a = 0.33795515
a = 112.48518
a = 98.489746
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3
assert np.abs(expected_depth_std - depth.std() ) < 1E-3
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_inputs(__magic_name__ )
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = 0.4194127
a = 0.35375586
a = 0.5638502
a = 0.34686103
assert rgb.shape == (1, 512, 512, 3)
assert depth.shape == (1, 512, 512, 1)
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3
assert np.abs(expected_depth_std - depth.std() ) < 1E-3
| 356 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
UpperCamelCase__ = '''nat'''
UpperCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__magic_name__ )
a = num_heads
a = kernel_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) )
a = layer_scale_init_value
a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 347 | 0 |
class __lowerCAmelCase :
def __init__( self :Optional[Any] , __magic_name__ :Tuple , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = name
a = val
def __str__( self :Union[str, Any] ):
'''simple docstring'''
return F'{self.__class__.__name__}({self.name}, {self.val})'
def __lt__( self :Any , __magic_name__ :List[Any] ):
'''simple docstring'''
return self.val < other.val
class __lowerCAmelCase :
def __init__( self :Tuple , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {}
a = {}
a = self.build_heap(__magic_name__ )
def __getitem__( self :Tuple , __magic_name__ :Optional[int] ):
'''simple docstring'''
return self.get_value(__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :str ):
'''simple docstring'''
return (idx - 1) // 2
def lowerCamelCase__ ( self :Tuple , __magic_name__ :List[str] ):
'''simple docstring'''
return idx * 2 + 1
def lowerCamelCase__ ( self :Any , __magic_name__ :int ):
'''simple docstring'''
return idx * 2 + 2
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Any ):
'''simple docstring'''
return self.heap_dict[key]
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
a = len(__magic_name__ ) - 1
a = self.get_parent_idx(__magic_name__ )
for idx, i in enumerate(__magic_name__ ):
a = idx
a = i.val
for i in range(__magic_name__ , -1 , -1 ):
self.sift_down(__magic_name__ , __magic_name__ )
return array
def lowerCamelCase__ ( self :Any , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
while True:
a = self.get_left_child_idx(__magic_name__ ) # noqa: E741
a = self.get_right_child_idx(__magic_name__ )
a = idx
if l < len(__magic_name__ ) and array[l] < array[idx]:
a = l
if r < len(__magic_name__ ) and array[r] < array[smallest]:
a = r
if smallest != idx:
a , a = array[smallest], array[idx]
(
(
a
) , (
a
) ,
) = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
a = smallest
else:
break
def lowerCamelCase__ ( self :Dict , __magic_name__ :str ):
'''simple docstring'''
a = self.get_parent_idx(__magic_name__ )
while p >= 0 and self.heap[p] > self.heap[idx]:
a , a = self.heap[idx], self.heap[p]
a , a = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
a = p
a = self.get_parent_idx(__magic_name__ )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
return self.heap[0]
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a , a = self.heap[-1], self.heap[0]
a , a = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
a = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def lowerCamelCase__ ( self :str , __magic_name__ :Any ):
'''simple docstring'''
self.heap.append(__magic_name__ )
a = len(self.heap ) - 1
a = node.val
self.sift_up(len(self.heap ) - 1 )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return len(self.heap ) == 0
def lowerCamelCase__ ( self :str , __magic_name__ :int , __magic_name__ :Any ):
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
a = new_value
a = new_value
self.sift_up(self.idx_of_element[node] )
__UpperCamelCase : Optional[Any] = Node("R", -1)
__UpperCamelCase : Union[str, Any] = Node("B", 6)
__UpperCamelCase : List[str] = Node("A", 3)
__UpperCamelCase : Union[str, Any] = Node("X", 1)
__UpperCamelCase : int = Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__UpperCamelCase : List[str] = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 347 | 0 |
def __A ( __lowerCamelCase ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 358 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width
__UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it.
__UpperCamelCase : str = 1 / 100
__UpperCamelCase : Optional[int] = ""
__UpperCamelCase : List[Any] = ""
__UpperCamelCase : Union[str, Any] = ""
__UpperCamelCase : Tuple = 250
def __A ( ) -> None:
a , a = get_dataset(__lowerCamelCase , __lowerCamelCase )
for index in range(__lowerCamelCase ):
a = random.sample(range(len(__lowerCamelCase ) ) , 4 )
a , a , a = update_image_and_anno(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
a = random_chars(32 )
a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
a = []
for anno in new_annos:
a = anno[3] - anno[1]
a = anno[4] - anno[2]
a = anno[1] + width / 2
a = anno[2] + height / 2
a = f'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(__lowerCamelCase )
with open(f'{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]:
a = []
a = []
for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ):
a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(__lowerCamelCase ) as in_file:
a = in_file.readlines()
a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' )
a = []
for obj_list in obj_lists:
a = obj_list.rstrip("""\n""" ).split(""" """ )
a = float(obj[1] ) - float(obj[3] ) / 2
a = float(obj[2] ) - float(obj[4] ) / 2
a = float(obj[1] ) + float(obj[3] ) / 2
a = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(__lowerCamelCase )
labels.append(__lowerCamelCase )
return img_paths, labels
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]:
a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = int(scale_x * output_size[1] )
a = int(scale_y * output_size[0] )
a = []
a = []
for i, index in enumerate(__lowerCamelCase ):
a = all_img_list[index]
path_list.append(__lowerCamelCase )
a = all_annos[index]
a = cva.imread(__lowerCamelCase )
if i == 0: # top-left
a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = bbox[2] * scale_y
a = bbox[3] * scale_x
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = bbox[2] * scale_y
a = scale_x + bbox[3] * (1 - scale_x)
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = scale_y + bbox[2] * (1 - scale_y)
a = bbox[3] * scale_x
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
a = cva.resize(
__lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = scale_y + bbox[2] * (1 - scale_y)
a = scale_x + bbox[3] * (1 - scale_x)
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
a = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __A ( __lowerCamelCase ) -> str:
assert number_char > 1, "The number of character should greater than 1"
a = ascii_lowercase + digits
return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 347 | 0 |
import math
def __A ( __lowerCamelCase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCamelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __A ( __lowerCamelCase = 0.1 ) -> int:
a : List[str] = 3
a : List[str] = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(__lowerCamelCase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Optional[Any] = {
"configuration_mobilenet_v2": [
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileNetV2Config",
"MobileNetV2OnnxConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ["MobileNetV2FeatureExtractor"]
__UpperCamelCase : Tuple = ["MobileNetV2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileNetV2ForImageClassification",
"MobileNetV2ForSemanticSegmentation",
"MobileNetV2Model",
"MobileNetV2PreTrainedModel",
"load_tf_weights_in_mobilenet_v2",
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
"""simple docstring"""
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__UpperCamelCase : List[str] = 4
__UpperCamelCase : List[Any] = 3
class __lowerCAmelCase ( __magic_name__ ):
pass
def __A ( __lowerCamelCase ) -> Union[str, Any]:
for shard in shards:
for i in range(__lowerCamelCase ):
yield {"i": i, "shard": shard}
def __A ( ) -> str:
a = int(os.environ["""RANK"""] )
a = int(os.environ["""WORLD_SIZE"""] )
a = ArgumentParser()
parser.add_argument("""--streaming""" , type=__lowerCamelCase )
parser.add_argument("""--local_rank""" , type=__lowerCamelCase )
parser.add_argument("""--num_workers""" , type=__lowerCamelCase , default=0 )
a = parser.parse_args()
a = args.streaming
a = args.num_workers
a = {"""shards""": [f'shard_{shard_idx}' for shard_idx in range(__lowerCamelCase )]}
a = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase )
if not streaming:
a = Dataset.from_list(list(__lowerCamelCase ) )
a = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase )
a = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase )
a = NUM_SHARDS * NUM_ITEMS_PER_SHARD
a = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
a = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 360 |
def __A ( __lowerCamelCase ) -> bool:
if num < 0:
return False
a = num
a = 0
while num > 0:
a = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 361 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = CanineTokenizer
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
a = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowerCamelCase__ ( self :Tuple , **__magic_name__ :Dict ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
a = 1024
return tokenizer
@require_torch
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
a = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
a = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
a = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
a = chr(0Xe_0_0_7 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
a = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a , a = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_5
a = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
a = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = chr(0Xe_0_0_5 )
a = chr(0Xe_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
a = tokenizer.tokenize(__magic_name__ )
a = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = [new_token_a]
a = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
a = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
a = 0Xe_0_0_7
a = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
a = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
a = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = """hello world"""
if self.space_between_special_tokens:
a = """[CLS] hello world [SEP]"""
else:
a = input
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
a = """a"""
a = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
a = 0Xe_0_0_6
a = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
| 347 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=__magic_name__ ).to(__magic_name__ )
a = AutoTokenizer.from_pretrained("""google/mt5-small""" )
a = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids
a = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids
a = model(input_ids.to(__magic_name__ ) , labels=labels.to(__magic_name__ ) ).loss
a = -(labels.shape[-1] * loss.item())
a = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 ) | 362 |
def __A ( __lowerCamelCase ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
__UpperCamelCase : List[Any] = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
__UpperCamelCase : Optional[Any] = dataset.iloc[:, 1:2].values
__UpperCamelCase : Tuple = dataset.iloc[:, 2].values
__UpperCamelCase : Any = train_test_split(X, y, test_size=0.2, random_state=0)
__UpperCamelCase : int = PolynomialFeatures(degree=4)
__UpperCamelCase : List[str] = poly_reg.fit_transform(X)
__UpperCamelCase : List[Any] = LinearRegression()
pol_reg.fit(X_poly, y)
def __A ( ) -> List[str]:
plt.scatter(__lowerCamelCase , __lowerCamelCase , color="""red""" )
plt.plot(__lowerCamelCase , pol_reg.predict(poly_reg.fit_transform(__lowerCamelCase ) ) , color="""blue""" )
plt.title("""Truth or Bluff (Linear Regression)""" )
plt.xlabel("""Position level""" )
plt.ylabel("""Salary""" )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 363 |
def __A ( __lowerCamelCase ) -> int:
if not numbers:
return 0
if not isinstance(__lowerCamelCase , (list, tuple) ) or not all(
isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
a = a = a = numbers[0]
for i in range(1 , len(__lowerCamelCase ) ):
# update the maximum and minimum subarray products
a = numbers[i]
if number < 0:
a , a = min_till_now, max_till_now
a = max(__lowerCamelCase , max_till_now * number )
a = min(__lowerCamelCase , min_till_now * number )
# update the maximum product found till now
a = max(__lowerCamelCase , __lowerCamelCase )
return max_prod
| 347 | 0 |
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
__UpperCamelCase : Optional[Any] = 250_004
__UpperCamelCase : Any = 250_020
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = MBartTokenizer
UpperCamelCase__ = MBartTokenizerFast
UpperCamelCase__ = True
UpperCamelCase__ = True
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
a = MBartTokenizer(__magic_name__ , keep_accents=__magic_name__ )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = MBartTokenizer(__magic_name__ , keep_accents=__magic_name__ )
a = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
a = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__magic_name__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
a = tokenizer.convert_tokens_to_ids(__magic_name__ )
self.assertListEqual(
__magic_name__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
a = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
a = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
a = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ )
a = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ )
a = tempfile.mkdtemp()
a = tokenizer_r.save_pretrained(__magic_name__ )
a = tokenizer_p.save_pretrained(__magic_name__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
a = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(__magic_name__ , __magic_name__ )
# Checks everything loads correctly in the same way
a = tokenizer_r.from_pretrained(__magic_name__ )
a = tokenizer_p.from_pretrained(__magic_name__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__magic_name__ )
# Save tokenizer rust, legacy_format=True
a = tempfile.mkdtemp()
a = tokenizer_r.save_pretrained(__magic_name__ , legacy_format=__magic_name__ )
a = tokenizer_p.save_pretrained(__magic_name__ )
# Checks it save with the same files
self.assertSequenceEqual(__magic_name__ , __magic_name__ )
# Checks everything loads correctly in the same way
a = tokenizer_r.from_pretrained(__magic_name__ )
a = tokenizer_p.from_pretrained(__magic_name__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) )
shutil.rmtree(__magic_name__ )
# Save tokenizer rust, legacy_format=False
a = tempfile.mkdtemp()
a = tokenizer_r.save_pretrained(__magic_name__ , legacy_format=__magic_name__ )
a = tokenizer_p.save_pretrained(__magic_name__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
a = tokenizer_r.from_pretrained(__magic_name__ )
a = tokenizer_p.from_pretrained(__magic_name__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) )
shutil.rmtree(__magic_name__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
UpperCamelCase__ = '''facebook/mbart-large-en-ro'''
UpperCamelCase__ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
UpperCamelCase__ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
UpperCamelCase__ = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE]
@classmethod
def lowerCamelCase__ ( cls :Optional[int] ):
'''simple docstring'''
a = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
a = 1
return cls
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_0001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_0004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_0020 )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
self.assertIn(__magic_name__ , self.tokenizer.all_special_ids )
a = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2]
a = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
self.assertNotIn(self.tokenizer.eos_token , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = ["""this is gunna be a long sentence """ * 20]
assert isinstance(src_text[0] , __magic_name__ )
a = 10
a = self.tokenizer(__magic_name__ , max_length=__magic_name__ , truncation=__magic_name__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , __magic_name__ )
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_0026, 25_0001] )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = tempfile.mkdtemp()
a = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__magic_name__ )
a = MBartTokenizer.from_pretrained(__magic_name__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __magic_name__ )
@require_torch
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__magic_name__ , return_tensors="""pt""" )
a = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__magic_name__ , truncation=__magic_name__ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
a = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(__magic_name__ , __magic_name__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
a = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __magic_name__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.tokenizer(self.src_text , padding=__magic_name__ , truncation=__magic_name__ , max_length=3 , return_tensors="""pt""" )
a = self.tokenizer(
text_target=self.tgt_text , padding=__magic_name__ , truncation=__magic_name__ , max_length=10 , return_tensors="""pt""" )
a = targets["""input_ids"""]
a = shift_tokens_right(__magic_name__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(__magic_name__ ) , {
# A, test, EOS, en_XX
"""input_ids""": [[62, 3034, 2, 25_0004]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 25_0001,
} , )
| 364 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase : Optional[Any] = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="""session""" )
def __A ( ) -> Optional[Any]:
a = 10
a = datasets.Features(
{
"""tokens""": datasets.Sequence(datasets.Value("""string""" ) ),
"""labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ),
"""answers""": datasets.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
"""id""": datasets.Value("""int64""" ),
} )
a = datasets.Dataset.from_dict(
{
"""tokens""": [["""foo"""] * 5] * n,
"""labels""": [[1] * 5] * n,
"""answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10,
"""id""": list(range(__lowerCamelCase ) ),
} , features=__lowerCamelCase , )
return dataset
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> int:
a = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" )
dataset.map(cache_file_name=__lowerCamelCase )
return filename
# FILE_CONTENT + files
__UpperCamelCase : Union[str, Any] = "\\n Text data.\n Second line of data."
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[str]:
a = tmp_path_factory.mktemp("""data""" ) / """file.txt"""
a = FILE_CONTENT
with open(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase )
return filename
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Tuple:
import bza
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2"""
a = bytes(__lowerCamelCase , """utf-8""" )
with bza.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[Any]:
import gzip
a = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" )
a = bytes(__lowerCamelCase , """utf-8""" )
with gzip.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Dict:
if datasets.config.LZ4_AVAILABLE:
import lza.frame
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4"""
a = bytes(__lowerCamelCase , """utf-8""" )
with lza.frame.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> List[str]:
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z"""
with pyazr.SevenZipFile(__lowerCamelCase , """w""" ) as archive:
archive.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> List[str]:
import tarfile
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar"""
with tarfile.TarFile(__lowerCamelCase , """w""" ) as f:
f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[str]:
import lzma
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz"""
a = bytes(__lowerCamelCase , """utf-8""" )
with lzma.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
import zipfile
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> str:
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst"""
a = bytes(__lowerCamelCase , """utf-8""" )
with zstd.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Any:
a = tmp_path_factory.mktemp("""data""" ) / """file.xml"""
a = textwrap.dedent(
"""\
<?xml version=\"1.0\" encoding=\"UTF-8\" ?>
<tmx version=\"1.4\">
<header segtype=\"sentence\" srclang=\"ca\" />
<body>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>
</tu>
</body>
</tmx>""" )
with open(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase )
return filename
__UpperCamelCase : Dict = [
{"col_1": "0", "col_2": 0, "col_3": 0.0},
{"col_1": "1", "col_2": 1, "col_3": 1.0},
{"col_1": "2", "col_2": 2, "col_3": 2.0},
{"col_1": "3", "col_2": 3, "col_3": 3.0},
]
__UpperCamelCase : Tuple = [
{"col_1": "4", "col_2": 4, "col_3": 4.0},
{"col_1": "5", "col_2": 5, "col_3": 5.0},
]
__UpperCamelCase : List[Any] = {
"col_1": ["0", "1", "2", "3"],
"col_2": [0, 1, 2, 3],
"col_3": [0.0, 1.0, 2.0, 3.0],
}
__UpperCamelCase : Optional[Any] = [
{"col_3": 0.0, "col_1": "0", "col_2": 0},
{"col_3": 1.0, "col_1": "1", "col_2": 1},
]
__UpperCamelCase : Union[str, Any] = [
{"col_1": "s0", "col_2": 0, "col_3": 0.0},
{"col_1": "s1", "col_2": 1, "col_3": 1.0},
{"col_1": "s2", "col_2": 2, "col_3": 2.0},
{"col_1": "s3", "col_2": 3, "col_3": 3.0},
]
@pytest.fixture(scope="""session""" )
def __A ( ) -> List[str]:
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Union[str, Any]:
a = datasets.Dataset.from_dict(__lowerCamelCase )
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" )
dataset.map(cache_file_name=__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> int:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" )
with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con:
a = con.cursor()
cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" )
for item in DATA:
cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Tuple:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" )
with open(__lowerCamelCase , """w""" , newline="""""" ) as f:
a = csv.DictWriter(__lowerCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] )
writer.writeheader()
for item in DATA:
writer.writerow(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> int:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" )
with open(__lowerCamelCase , """w""" , newline="""""" ) as f:
a = csv.DictWriter(__lowerCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] )
writer.writeheader()
for item in DATA:
writer.writerow(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
import bza
a = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2"""
with open(__lowerCamelCase , """rb""" ) as f:
a = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) )
f.write(__lowerCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
a = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Tuple:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" )
a = pa.schema(
{
"""col_1""": pa.string(),
"""col_2""": pa.intaa(),
"""col_3""": pa.floataa(),
} )
with open(__lowerCamelCase , """wb""" ) as f:
a = pq.ParquetWriter(__lowerCamelCase , schema=__lowerCamelCase )
a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__lowerCamelCase ) )] for k in DATA[0]} , schema=__lowerCamelCase )
writer.write_table(__lowerCamelCase )
writer.close()
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[str]:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" )
a = {"""data""": DATA}
with open(__lowerCamelCase , """w""" ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Tuple:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" )
a = {"""data""": DATA_DICT_OF_LISTS}
with open(__lowerCamelCase , """w""" ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Any:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in DATA:
f.write(json.dumps(__lowerCamelCase ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[str]:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in DATA:
f.write(json.dumps(__lowerCamelCase ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Tuple:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in DATA_312:
f.write(json.dumps(__lowerCamelCase ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Any:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in DATA_STR:
f.write(json.dumps(__lowerCamelCase ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Tuple:
import gzip
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" )
with open(__lowerCamelCase , """rb""" ) as orig_file:
with gzip.open(__lowerCamelCase , """wb""" ) as zipped_file:
zipped_file.writelines(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
import gzip
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" )
with open(__lowerCamelCase , """rb""" ) as orig_file:
with gzip.open(__lowerCamelCase , """wb""" ) as zipped_file:
zipped_file.writelines(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
a = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__lowerCamelCase ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar"""
with tarfile.TarFile(__lowerCamelCase , """w""" ) as f:
f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar"""
with tarfile.TarFile(__lowerCamelCase , """w""" ) as f:
f.add(__lowerCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__lowerCamelCase ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Union[str, Any]:
a = ["""0""", """1""", """2""", """3"""]
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Dict:
a = ["""0""", """1""", """2""", """3"""]
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> int:
a = ["""0""", """1""", """2""", """3"""]
a = tmp_path_factory.mktemp("""data""" ) / """dataset.abc"""
with open(__lowerCamelCase , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename("""unsupported.ext""" ) )
f.write(__lowerCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[Any]:
a = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] )
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" )
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( ) -> Any:
return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" )
@pytest.fixture(scope="""session""" )
def __A ( ) -> Tuple:
return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" )
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ).replace(""".jpg""" , """2.jpg""" ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[str]:
a = tmp_path_factory.mktemp("""data_dir""" )
(data_dir / "subdir").mkdir()
with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f:
f.write("""foo\n""" * 10 )
with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 10 )
# hidden file
with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f:
f.write("""foo\n""" * 10 )
with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 10 )
return data_dir
| 365 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase )
a = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
a = dataset_size < in_memory_max_size
else:
a = False
a = is_small_dataset(__lowerCamelCase )
assert result == expected
| 347 | 0 |
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> np.ndarray:
# prepare kernel
# the kernel size have to be odd
if (ksize % 2) == 0:
a = ksize + 1
a = np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(__lowerCamelCase ):
for x in range(__lowerCamelCase ):
# distance from center
a = x - ksize // 2
a = y - ksize // 2
# degree to radiant
a = theta / 180 * np.pi
a = np.cos(_theta )
a = np.sin(_theta )
# get kernel x
a = cos_theta * px + sin_theta * py
# get kernel y
a = -sin_theta * px + cos_theta * py
# fill kernel
a = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
__UpperCamelCase : Any = imread("../image_data/lena.jpg")
# turn image in gray scale value
__UpperCamelCase : List[str] = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
__UpperCamelCase : str = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 120, 150]:
__UpperCamelCase : Optional[Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
__UpperCamelCase : str = out / out.max() * 255
__UpperCamelCase : Tuple = out.astype(np.uinta)
imshow("Original", gray)
imshow("Gabor filter with 20x20 mask and 6 directions", out)
waitKey(0)
| 366 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( __lowerCamelCase ) -> bool:
a = int(number**0.5 )
return number == sq * sq
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]:
a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
a = x_den * y_den * z_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( __lowerCamelCase = 35 ) -> int:
a = set()
a = 42
a = Fraction(0 )
a = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
a = x_num * y_den + x_den * y_num
a = x_den * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
a = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
a = x_num * y_num
a = x_den * y_num + x_num * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = x_num * x_num * y_num * y_num
a = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }')
| 347 | 0 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def __A ( __lowerCamelCase ) -> list[list[float]]:
a = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(__lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
a = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
a = [[0.0, 0.0], [0.0, 0.0]]
a , a = matrix[1][1], matrix[0][0]
a , a = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(__lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(__lowerCamelCase ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
a = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
a = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
a = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
a = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
a = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
a = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
a = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
a = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
a = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
a = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
a = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
a = array(__lowerCamelCase )
for i in range(3 ):
for j in range(3 ):
a = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
a = array(__lowerCamelCase )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(__lowerCamelCase )
# Calculate the inverse of the matrix
return [[float(d(__lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 367 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = FlaxRoFormerModelTester(self )
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
a = jnp.array([[0, 1, 2, 3, 4, 5]] )
a = model(__magic_name__ )[0]
a = 5_0000
a = (1, 6, vocab_size)
self.assertEqual(output.shape , __magic_name__ )
a = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 0 |
__UpperCamelCase : Optional[int] = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
# Return True if there is node that has not iterated.
a = [False] * len(__lowerCamelCase )
a = [s]
a = True
while queue:
a = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(__lowerCamelCase )
a = True
a = u
return visited[t]
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
a = [-1] * (len(__lowerCamelCase ))
a = 0
a = []
a = [i[:] for i in graph] # Record original cut, copy.
while bfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
a = float("""Inf""" )
a = sink
while s != source:
# Find the minimum value in select path
a = min(__lowerCamelCase , graph[parent[s]][s] )
a = parent[s]
max_flow += path_flow
a = sink
while v != source:
a = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
a = parent[v]
for i in range(len(__lowerCamelCase ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| 368 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Union[str, Any] = {
"configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"],
"tokenization_roberta": ["RobertaTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ["RobertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = [
"ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaForCausalLM",
"RobertaForMaskedLM",
"RobertaForMultipleChoice",
"RobertaForQuestionAnswering",
"RobertaForSequenceClassification",
"RobertaForTokenClassification",
"RobertaModel",
"RobertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaForCausalLM",
"TFRobertaForMaskedLM",
"TFRobertaForMultipleChoice",
"TFRobertaForQuestionAnswering",
"TFRobertaForSequenceClassification",
"TFRobertaForTokenClassification",
"TFRobertaMainLayer",
"TFRobertaModel",
"TFRobertaPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"FlaxRobertaForCausalLM",
"FlaxRobertaForMaskedLM",
"FlaxRobertaForMultipleChoice",
"FlaxRobertaForQuestionAnswering",
"FlaxRobertaForSequenceClassification",
"FlaxRobertaForTokenClassification",
"FlaxRobertaModel",
"FlaxRobertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 369 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = (IPNDMScheduler,)
UpperCamelCase__ = (('''num_inference_steps''', 50),)
def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {"""num_train_timesteps""": 1000}
config.update(**__magic_name__ )
return config
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
return sample
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ):
scheduler.set_timesteps(__magic_name__ )
elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
a = dummy_past_residuals[:]
a = scheduler.timesteps[5]
a = scheduler.timesteps[6]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.full_loop()
a = torch.mean(torch.abs(__magic_name__ ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 347 | 0 |
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase : int = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model")
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = SpeechTaTokenizer
UpperCamelCase__ = False
UpperCamelCase__ = True
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
a = SpeechTaTokenizer(__magic_name__ )
a = AddedToken("""<mask>""" , lstrip=__magic_name__ , rstrip=__magic_name__ )
a = mask_token
tokenizer.add_special_tokens({"""mask_token""": mask_token} )
tokenizer.add_tokens(["""<ctc_blank>"""] )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Any ):
'''simple docstring'''
a = """this is a test"""
a = """this is a test"""
return input_text, output_text
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Optional[Any]=False , __magic_name__ :Any=20 , __magic_name__ :int=5 ):
'''simple docstring'''
a , a = self.get_input_output_texts(__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )
return text, ids
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = """<pad>"""
a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-4] , """œ""" )
self.assertEqual(vocab_keys[-2] , """<mask>""" )
self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" )
self.assertEqual(len(__magic_name__ ) , 81 )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = tokenizer.vocab_size
a = len(__magic_name__ )
self.assertNotEqual(__magic_name__ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
a = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""]
a = tokenizer.add_tokens(__magic_name__ )
a = tokenizer.vocab_size
a = len(__magic_name__ )
self.assertNotEqual(__magic_name__ , 0 )
self.assertEqual(__magic_name__ , __magic_name__ )
self.assertEqual(__magic_name__ , len(__magic_name__ ) )
self.assertEqual(__magic_name__ , all_size + len(__magic_name__ ) )
a = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=__magic_name__ )
self.assertGreaterEqual(len(__magic_name__ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
a = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""}
a = tokenizer.add_special_tokens(__magic_name__ )
a = tokenizer.vocab_size
a = len(__magic_name__ )
self.assertNotEqual(__magic_name__ , 0 )
self.assertEqual(__magic_name__ , __magic_name__ )
self.assertEqual(__magic_name__ , len(__magic_name__ ) )
self.assertEqual(__magic_name__ , all_size_a + len(__magic_name__ ) )
a = tokenizer.encode(
""">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=__magic_name__ )
self.assertGreaterEqual(len(__magic_name__ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = self.get_tokenizer()
a = tokenizer.tokenize("""This is a test""" )
# fmt: off
self.assertListEqual(__magic_name__ , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
a = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] )
a = tokenizer.convert_tokens_to_ids(__magic_name__ )
# fmt: off
self.assertListEqual(__magic_name__ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
a = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] )
@slow
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = [
"""Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """
"""general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """
"""Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """
"""models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""",
"""BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """
"""conditioning on both left and right context in all layers.""",
"""The quick brown fox jumps over the lazy dog.""",
]
# fmt: off
a = {
"""input_ids""": [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
"""attention_mask""": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=__magic_name__ , )
| 370 |
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def __A ( ) -> None:
a = input("""Enter message: """ )
a = input("""Enter key [alphanumeric]: """ )
a = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
a = """encrypt"""
a = encrypt_message(__lowerCamelCase , __lowerCamelCase )
elif mode.lower().startswith("""d""" ):
a = """decrypt"""
a = decrypt_message(__lowerCamelCase , __lowerCamelCase )
print(f'\n{mode.title()}ed message:' )
print(__lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = []
a = 0
a = key.upper()
for symbol in message:
a = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(__lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(__lowerCamelCase ):
a = 0
else:
translated.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
if __name__ == "__main__":
main()
| 347 | 0 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : List[str] = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''blenderbot-small'''
UpperCamelCase__ = ['''past_key_values''']
UpperCamelCase__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self :Optional[int] , __magic_name__ :Optional[Any]=5_0265 , __magic_name__ :int=512 , __magic_name__ :Dict=8 , __magic_name__ :int=2048 , __magic_name__ :Any=16 , __magic_name__ :int=8 , __magic_name__ :int=2048 , __magic_name__ :List[Any]=16 , __magic_name__ :List[str]=0.0 , __magic_name__ :Optional[Any]=0.0 , __magic_name__ :Union[str, Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]="gelu" , __magic_name__ :Optional[Any]=512 , __magic_name__ :int=0.1 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :List[str]=0.0 , __magic_name__ :Tuple=0.02 , __magic_name__ :Union[str, Any]=1 , __magic_name__ :Dict=False , __magic_name__ :List[str]=0 , __magic_name__ :int=1 , __magic_name__ :Optional[Any]=2 , __magic_name__ :int=2 , **__magic_name__ :int , ):
'''simple docstring'''
a = vocab_size
a = max_position_embeddings
a = d_model
a = encoder_ffn_dim
a = encoder_layers
a = encoder_attention_heads
a = decoder_ffn_dim
a = decoder_layers
a = decoder_attention_heads
a = dropout
a = attention_dropout
a = activation_dropout
a = activation_function
a = init_std
a = encoder_layerdrop
a = decoder_layerdrop
a = use_cache
a = encoder_layers
a = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
a = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
a = {0: """batch"""}
a = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
a = {0: """batch""", 1: """decoder_sequence"""}
a = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
elif self.task == "causal-lm":
# TODO: figure this case out.
a = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
a , a = self.num_layers
for i in range(__magic_name__ ):
a = {0: """batch""", 2: """past_sequence + sequence"""}
a = {0: """batch""", 2: """past_sequence + sequence"""}
else:
a = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}),
("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}),
] )
return common_inputs
@property
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
a = super().outputs
else:
a = super(__magic_name__ , self ).outputs
if self.use_past:
a , a = self.num_layers
for i in range(__magic_name__ ):
a = {0: """batch""", 2: """past_sequence + sequence"""}
a = {0: """batch""", 2: """past_sequence + sequence"""}
return common_outputs
def lowerCamelCase__ ( self :int , __magic_name__ :PreTrainedTokenizer , __magic_name__ :int = -1 , __magic_name__ :int = -1 , __magic_name__ :bool = False , __magic_name__ :Optional[TensorType] = None , ):
'''simple docstring'''
a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Generate decoder inputs
a = seq_length if not self.use_past else 1
a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
a = dict(**__magic_name__ , **__magic_name__ )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
a , a = common_inputs["""input_ids"""].shape
a = common_inputs["""decoder_input_ids"""].shape[1]
a , a = self.num_attention_heads
a = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
a = decoder_seq_length + 3
a = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
a = torch.cat(
[common_inputs["""decoder_attention_mask"""], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 )
a = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
a , a = self.num_layers
a = min(__magic_name__ , __magic_name__ )
a = max(__magic_name__ , __magic_name__ ) - min_num_layers
a = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder"""
for _ in range(__magic_name__ ):
common_inputs["past_key_values"].append(
(
torch.zeros(__magic_name__ ),
torch.zeros(__magic_name__ ),
torch.zeros(__magic_name__ ),
torch.zeros(__magic_name__ ),
) )
# TODO: test this.
a = encoder_shape if remaining_side_name == """encoder""" else decoder_shape
for _ in range(__magic_name__ , __magic_name__ ):
common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) )
return common_inputs
def lowerCamelCase__ ( self :Dict , __magic_name__ :PreTrainedTokenizer , __magic_name__ :int = -1 , __magic_name__ :int = -1 , __magic_name__ :bool = False , __magic_name__ :Optional[TensorType] = None , ):
'''simple docstring'''
a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
a , a = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
a = seqlen + 2
a , a = self.num_layers
a , a = self.num_attention_heads
a = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
a = common_inputs["""attention_mask"""].dtype
a = torch.cat(
[common_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
a = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ )
]
return common_inputs
def lowerCamelCase__ ( self :Tuple , __magic_name__ :PreTrainedTokenizer , __magic_name__ :int = -1 , __magic_name__ :int = -1 , __magic_name__ :bool = False , __magic_name__ :Optional[TensorType] = None , ):
'''simple docstring'''
a = compute_effective_axis_dimension(
__magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
a = tokenizer.num_special_tokens_to_add(__magic_name__ )
a = compute_effective_axis_dimension(
__magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ )
# Generate dummy inputs according to compute batch and sequence
a = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size
a = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) )
return common_inputs
def lowerCamelCase__ ( self :Any , __magic_name__ :PreTrainedTokenizer , __magic_name__ :int = -1 , __magic_name__ :int = -1 , __magic_name__ :bool = False , __magic_name__ :Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
a = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
elif self.task == "causal-lm":
a = self._generate_dummy_inputs_for_causal_lm(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
else:
a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
return common_inputs
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Union[str, Any] , __magic_name__ :List[Any] , __magic_name__ :int , __magic_name__ :Any ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
a = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
else:
a = super(__magic_name__ , self )._flatten_past_key_values_(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
| 371 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = True
a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = FlaxRobertaModelTester(self )
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 347 | 0 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __lowerCAmelCase :
def __init__( self :int , __magic_name__ :Optional[Any] , __magic_name__ :Dict=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :Optional[Any]=True , __magic_name__ :int=True , __magic_name__ :int=True , __magic_name__ :List[Any]=99 , __magic_name__ :List[str]=32 , __magic_name__ :Any=2 , __magic_name__ :int=4 , __magic_name__ :List[str]=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Any=0.1 , __magic_name__ :Optional[int]=512 , __magic_name__ :Dict=16 , __magic_name__ :Tuple=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Tuple=3 , __magic_name__ :Any=4 , __magic_name__ :str=None , ):
'''simple docstring'''
a = parent
a = 13
a = 7
a = True
a = True
a = True
a = True
a = 99
a = 384
a = 2
a = 4
a = 37
a = """gelu"""
a = 0.1
a = 0.1
a = 512
a = 16
a = 2
a = 0.02
a = 3
a = 4
a = 128
a = 2
a = 9
a = 1
a = None
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = None
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
a = ids_tensor([self.batch_size] , self.num_choices )
a = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__magic_name__ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Any , __magic_name__ :str , __magic_name__ :List[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Tuple , __magic_name__ :List[Any] , __magic_name__ :List[Any] ):
'''simple docstring'''
a = TFConvBertModel(config=__magic_name__ )
a = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
a = [input_ids, input_mask]
a = model(__magic_name__ )
a = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :Dict , __magic_name__ :Union[str, Any] , __magic_name__ :Tuple , __magic_name__ :Dict , __magic_name__ :List[str] , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :Dict ):
'''simple docstring'''
a = TFConvBertForMaskedLM(config=__magic_name__ )
a = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
a = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str , __magic_name__ :Any , __magic_name__ :Any , __magic_name__ :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[int] , __magic_name__ :Dict ):
'''simple docstring'''
a = self.num_labels
a = TFConvBertForSequenceClassification(config=__magic_name__ )
a = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
a = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Any , __magic_name__ :int , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :int ):
'''simple docstring'''
a = self.num_choices
a = TFConvBertForMultipleChoice(config=__magic_name__ )
a = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
a = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
a = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
a = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
a = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ ( self :int , __magic_name__ :str , __magic_name__ :Any , __magic_name__ :Optional[int] , __magic_name__ :Any , __magic_name__ :Any , __magic_name__ :List[Any] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = self.num_labels
a = TFConvBertForTokenClassification(config=__magic_name__ )
a = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
a = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ ( self :List[str] , __magic_name__ :List[Any] , __magic_name__ :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :Dict , __magic_name__ :Any ):
'''simple docstring'''
a = TFConvBertForQuestionAnswering(config=__magic_name__ )
a = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
a = model(__magic_name__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCamelCase__ = (
{
'''feature-extraction''': TFConvBertModel,
'''fill-mask''': TFConvBertForMaskedLM,
'''question-answering''': TFConvBertForQuestionAnswering,
'''text-classification''': TFConvBertForSequenceClassification,
'''token-classification''': TFConvBertForTokenClassification,
'''zero-shot''': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = TFConvBertModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
@slow
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = True
a = True
if hasattr(__magic_name__ , """use_cache""" ):
a = True
a = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length )
a = getattr(self.model_tester , """key_length""" , __magic_name__ )
for model_class in self.all_model_classes:
a = self._prepare_for_class(__magic_name__ , __magic_name__ )
a = model_class(__magic_name__ )
a = len(model(__magic_name__ ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__magic_name__ , saved_model=__magic_name__ )
a = os.path.join(__magic_name__ , """saved_model""" , """1""" )
a = tf.keras.models.load_model(__magic_name__ )
a = model(__magic_name__ )
if self.is_encoder_decoder:
a = outputs["""encoder_hidden_states"""]
a = outputs["""encoder_attentions"""]
else:
a = outputs["""hidden_states"""]
a = outputs["""attentions"""]
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
a = getattr(
self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" )
self.assertIsNotNone(__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = True
a = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length )
a = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length )
a = getattr(self.model_tester , """key_length""" , __magic_name__ )
a = getattr(self.model_tester , """key_length""" , __magic_name__ )
def check_decoder_attentions_output(__magic_name__ :Dict ):
a = len(__magic_name__ )
self.assertEqual(out_len % 2 , 0 )
a = outputs.decoder_attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__magic_name__ :Tuple ):
a = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
a = True
a = False
a = model_class(__magic_name__ )
a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) )
a = len(__magic_name__ )
self.assertEqual(config.output_hidden_states , __magic_name__ )
check_encoder_attentions_output(__magic_name__ )
if self.is_encoder_decoder:
a = model_class(__magic_name__ )
a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(config.output_hidden_states , __magic_name__ )
check_decoder_attentions_output(__magic_name__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
a = True
a = model_class(__magic_name__ )
a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(config.output_hidden_states , __magic_name__ )
check_encoder_attentions_output(__magic_name__ )
# Check attention is always last and order is fine
a = True
a = True
a = model_class(__magic_name__ )
a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__magic_name__ ) )
self.assertEqual(model.config.output_hidden_states , __magic_name__ )
check_encoder_attentions_output(__magic_name__ )
@require_tf
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" )
a = tf.constant([[0, 1, 2, 3, 4, 5]] )
a = model(__magic_name__ )[0]
a = [1, 6, 768]
self.assertEqual(output.shape , __magic_name__ )
a = tf.constant(
[
[
[-0.03475493, -0.4686034, -0.30638832],
[0.22637248, -0.26988646, -0.7423424],
[0.10324868, -0.45013508, -0.58280784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __magic_name__ , atol=1E-4 )
| 350 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
UpperCamelCase__ = None
UpperCamelCase__ = "utf-8"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True # deprecated
UpperCamelCase__ = None # deprecated
UpperCamelCase__ = 10 << 20 # 10MB
UpperCamelCase__ = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
UpperCamelCase__ = JsonConfig
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
a = data_files
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
a = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
a = self.config.features.arrow_schema.field(__magic_name__ ).type
a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
a = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
# We keep only the field we are interested in
a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
a = dataset
a = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , """rb""" ) as f:
a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
a = max(self.config.chunksize // 32 , 16 << 10 )
a = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" )
try:
while True:
try:
a = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
a = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 347 | 0 |
def __A ( __lowerCamelCase = 5000_0000 ) -> int:
a = set()
a = int((limit - 24) ** (1 / 2) )
a = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , __lowerCamelCase ) ) )
for primea in primes:
a = primea * primea
for primea in primes:
a = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
a = primea * primea * primea * primea
a = square + cube + tetr
if total >= limit:
break
ret.add(__lowerCamelCase )
return len(__lowerCamelCase )
if __name__ == "__main__":
print(F'{solution() = }')
| 351 |
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :List[str] , __magic_name__ :int="</s>" , __magic_name__ :List[Any]="<unk>" , __magic_name__ :Optional[Any]="<pad>" , __magic_name__ :Optional[int]=125 , __magic_name__ :List[str]=None , **__magic_name__ :List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"""
""" extra_ids tokens""" )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
super().__init__(
eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
a = extra_ids
a = 2**8 # utf is 8 bits
# define special tokens dict
a = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
a = len(self.special_tokens_encoder )
a = len(__magic_name__ )
for i, token in enumerate(__magic_name__ ):
a = self.vocab_size + i - n
a = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__magic_name__ )) + [1]
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def lowerCamelCase__ ( self :str , __magic_name__ :List[int] ):
'''simple docstring'''
if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = self._add_eos_if_not_present(__magic_name__ )
if token_ids_a is None:
return token_ids_a
else:
a = self._add_eos_if_not_present(__magic_name__ )
return token_ids_a + token_ids_a
def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ):
'''simple docstring'''
a = [chr(__magic_name__ ) for i in text.encode("""utf-8""" )]
return tokens
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if token in self.special_tokens_encoder:
a = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
a = self.added_tokens_encoder[token]
elif len(__magic_name__ ) != 1:
a = self.unk_token_id
else:
a = ord(__magic_name__ ) + self._num_special_tokens
return token_id
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ):
'''simple docstring'''
if index in self.special_tokens_decoder:
a = self.special_tokens_decoder[index]
else:
a = chr(index - self._num_special_tokens )
return token
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = b""""""
for token in tokens:
if token in self.special_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.added_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.special_tokens_encoder:
a = token.encode("""utf-8""" )
elif token in self.added_tokens_encoder:
a = token.encode("""utf-8""" )
else:
a = bytes([ord(__magic_name__ )] )
bstring += tok_string
a = bstring.decode("""utf-8""" , errors="""ignore""" )
return string
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
return ()
| 347 | 0 |
from __future__ import annotations
import queue
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = data
a = None
a = None
def __A ( ) -> TreeNode:
print("""\n********Press N to stop entering at any point of time********\n""" )
a = input("""Enter the value of the root node: """ ).strip().lower()
a = queue.Queue()
a = TreeNode(int(__lowerCamelCase ) )
q.put(__lowerCamelCase )
while not q.empty():
a = q.get()
a = f'Enter the left node of {node_found.data}: '
a = input(__lowerCamelCase ).strip().lower() or """n"""
if check == "n":
return tree_node
a = TreeNode(int(__lowerCamelCase ) )
a = left_node
q.put(__lowerCamelCase )
a = f'Enter the right node of {node_found.data}: '
a = input(__lowerCamelCase ).strip().lower() or """n"""
if check == "n":
return tree_node
a = TreeNode(int(__lowerCamelCase ) )
a = right_node
q.put(__lowerCamelCase )
raise
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
print(node.data , end=""",""" )
pre_order(node.left )
pre_order(node.right )
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
in_order(node.left )
print(node.data , end=""",""" )
in_order(node.right )
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=""",""" )
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
a = queue.Queue()
q.put(__lowerCamelCase )
while not q.empty():
a = q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
a = queue.Queue()
q.put(__lowerCamelCase )
while not q.empty():
a = []
while not q.empty():
a = q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__lowerCamelCase )
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
a = []
a = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=""",""" )
stack.append(__lowerCamelCase )
a = n.left
# end of while means current node doesn't have left child
a = stack.pop()
# start to traverse its right child
a = n.right
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
a = []
a = node
while n or stack:
while n:
stack.append(__lowerCamelCase )
a = n.left
a = stack.pop()
print(n.data , end=""",""" )
a = n.right
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
a , a = [], []
a = node
stacka.append(__lowerCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
a = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__lowerCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=""",""" )
def __A ( __lowerCamelCase = "" , __lowerCamelCase=50 , __lowerCamelCase="*" ) -> str:
if not s:
return "\n" + width * char
a , a = divmod(width - len(__lowerCamelCase ) - 2 , 2 )
return f'{left * char} {s} {(left + extra) * char}'
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
__UpperCamelCase : TreeNode = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 50 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 352 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self :Optional[int] , __magic_name__ :str , __magic_name__ :int=2 , __magic_name__ :List[str]=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :str=2 , __magic_name__ :Any=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=True , __magic_name__ :List[Any]=99 , __magic_name__ :Dict=36 , __magic_name__ :Optional[Any]=3 , __magic_name__ :str=4 , __magic_name__ :Optional[Any]=37 , __magic_name__ :Dict="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Dict=512 , __magic_name__ :str=16 , __magic_name__ :List[Any]=2 , __magic_name__ :Tuple=0.02 , __magic_name__ :Any=6 , __magic_name__ :Optional[int]=6 , __magic_name__ :Tuple=3 , __magic_name__ :str=4 , __magic_name__ :List[str]=None , __magic_name__ :str=1000 , ):
'''simple docstring'''
a = parent
a = batch_size
a = num_channels
a = image_size
a = patch_size
a = text_seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = coordinate_size
a = shape_size
a = num_labels
a = num_choices
a = scope
a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
a = text_seq_length
a = (image_size // patch_size) ** 2 + 1
a = self.text_seq_length + self.image_seq_length
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a = bbox[i, j, 3]
a = bbox[i, j, 1]
a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a = bbox[i, j, 2]
a = bbox[i, j, 0]
a = t
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.text_seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase__ ( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int ):
'''simple docstring'''
a = LayoutLMvaModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# text + image
a = model(__magic_name__ , pixel_values=__magic_name__ )
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
a = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
a = model(pixel_values=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :List[str] ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ):
'''simple docstring'''
return True
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = LayoutLMvaModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :Any=False ):
'''simple docstring'''
a = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__magic_name__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in get_values(__magic_name__ ):
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__magic_name__ , )
return inputs_dict
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = LayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""pt""" ).pixel_values.to(__magic_name__ )
a = torch.tensor([[1, 2]] )
a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
a = model(
input_ids=input_ids.to(__magic_name__ ) , bbox=bbox.to(__magic_name__ ) , pixel_values=pixel_values.to(__magic_name__ ) , )
# verify the logits
a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 0 |
import copy
import inspect
import unittest
from transformers import AutoBackbone
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import require_timm, require_torch, torch_device
from transformers.utils.import_utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
if is_torch_available():
import torch
from transformers import TimmBackbone, TimmBackboneConfig
from ...test_pipeline_mixin import PipelineTesterMixin
class __lowerCAmelCase :
def __init__( self :Tuple , __magic_name__ :List[str] , __magic_name__ :int=None , __magic_name__ :str=None , __magic_name__ :Dict=None , __magic_name__ :Union[str, Any]="resnet50" , __magic_name__ :int=3 , __magic_name__ :str=32 , __magic_name__ :int=3 , __magic_name__ :List[Any]=True , __magic_name__ :str=True , ):
'''simple docstring'''
a = parent
a = out_indices if out_indices is not None else [4]
a = stage_names
a = out_features
a = backbone
a = batch_size
a = image_size
a = num_channels
a = use_pretrained_backbone
a = is_training
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = self.get_config()
return config, pixel_values
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return TimmBackboneConfig(
image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , )
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[Any] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
a = TimmBackbone(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
a = model(__magic_name__ )
self.parent.assertEqual(
result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a = config_and_inputs
a = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
@require_timm
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = (TimmBackbone,) if is_torch_available() else ()
UpperCamelCase__ = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {}
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = TimmBackboneModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = """resnet18"""
a = """microsoft/resnet-18"""
a = AutoBackbone.from_pretrained(__magic_name__ , use_timm_backbone=__magic_name__ )
a = AutoBackbone.from_pretrained(__magic_name__ )
self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) )
self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) )
self.assertEqual(timm_model.channels , transformers_model.channels )
# Out indices are set to the last layer by default. For timm models, we don't know
# the number of layers in advance, so we set it to (-1,), whereas for transformers
# models, we set it to [len(stage_names) - 1] (kept for backward compatibility).
self.assertEqual(timm_model.out_indices , (-1,) )
self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] )
a = AutoBackbone.from_pretrained(__magic_name__ , use_timm_backbone=__magic_name__ , out_indices=[1, 2, 3] )
a = AutoBackbone.from_pretrained(__magic_name__ , out_indices=[1, 2, 3] )
self.assertEqual(timm_model.out_indices , transformers_model.out_indices )
self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) )
self.assertEqual(timm_model.channels , transformers_model.channels )
@unittest.skip("""TimmBackbone doesn't support feed forward chunking""" )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone initialization is managed on the timm side""" )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip("""model weights aren't tied in TimmBackbone.""" )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
@unittest.skip("""model weights aren't tied in TimmBackbone.""" )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone doesn't support output_attentions.""" )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
@unittest.skip("""Safetensors is not supported by timm.""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = True
a = self.has_attentions
# no need to test all models as different heads yield the same functionality
a = self.all_model_classes[0]
a = model_class(__magic_name__ )
model.to(__magic_name__ )
a = self._prepare_for_class(__magic_name__ , __magic_name__ )
a = model(**__magic_name__ )
a = outputs[0][-1]
# Encoder-/Decoder-only models
a = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
a = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=__magic_name__ )
self.assertIsNotNone(hidden_states.grad )
if self.has_attentions:
self.assertIsNotNone(attentions.grad )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(**__magic_name__ )
self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) )
self.assertEqual(len(model.channels ) , len(config.out_indices ) )
# Check output of last stage is taken if out_features=None, out_indices=None
a = copy.deepcopy(__magic_name__ )
a = None
a = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(**__magic_name__ )
self.assertEqual(len(result.feature_maps ) , 1 )
self.assertEqual(len(model.channels ) , 1 )
# Check backbone can be initialized with fresh weights
a = copy.deepcopy(__magic_name__ )
a = False
a = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(**__magic_name__ )
| 353 |
from copy import deepcopy
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :list[int] | None = None , __magic_name__ :int | None = None ):
'''simple docstring'''
if arr is None and size is not None:
a = size
a = [0] * size
elif arr is not None:
self.init(__magic_name__ )
else:
raise ValueError("""Either arr or size must be specified""" )
def lowerCamelCase__ ( self :Dict , __magic_name__ :list[int] ):
'''simple docstring'''
a = len(__magic_name__ )
a = deepcopy(__magic_name__ )
for i in range(1 , self.size ):
a = self.next_(__magic_name__ )
if j < self.size:
self.tree[j] += self.tree[i]
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
a = self.next_(__magic_name__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index - (index & (-index))
def lowerCamelCase__ ( self :Any , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
a = self.next_(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
self.add(__magic_name__ , value - self.get(__magic_name__ ) )
def lowerCamelCase__ ( self :int , __magic_name__ :int ):
'''simple docstring'''
if right == 0:
return 0
a = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
a = self.prev(__magic_name__ )
return result
def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :int ):
'''simple docstring'''
return self.query(__magic_name__ , index + 1 )
def lowerCamelCase__ ( self :Dict , __magic_name__ :int ):
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
a = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
a = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class __lowerCAmelCase ( __magic_name__ ):
def __init__( self :Tuple , __magic_name__ :Any , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = params
a = np.array(__magic_name__ )
a = np.array([len(__magic_name__ ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self :List[Any] , __magic_name__ :str ):
'''simple docstring'''
return (self.token_ids[index], self.lengths[index])
def __len__( self :int ):
'''simple docstring'''
return len(self.lengths )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.params.max_model_input_size
a = self.lengths > max_len
logger.info(F'Splitting {sum(__magic_name__ )} too long sequences.' )
def divide_chunks(__magic_name__ :List[Any] , __magic_name__ :str ):
return [l[i : i + n] for i in range(0 , len(__magic_name__ ) , __magic_name__ )]
a = []
a = []
if self.params.mlm:
a , a = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""]
else:
a , a = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""]
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
a = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
a = np.insert(__magic_name__ , 0 , __magic_name__ )
if sub_s[-1] != sep_id:
a = np.insert(__magic_name__ , len(__magic_name__ ) , __magic_name__ )
assert len(__magic_name__ ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(__magic_name__ )
new_tok_ids.extend(__magic_name__ )
new_lengths.extend([len(__magic_name__ ) for l in sub_seqs] )
a = np.array(__magic_name__ )
a = np.array(__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = len(self )
a = self.lengths > 11
a = self.token_ids[indices]
a = self.lengths[indices]
a = len(self )
logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
if "unk_token" not in self.params.special_tok_ids:
return
else:
a = self.params.special_tok_ids["""unk_token"""]
a = len(self )
a = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
a = (unk_occs / self.lengths) < 0.5
a = self.token_ids[indices]
a = self.lengths[indices]
a = len(self )
logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
if not self.params.is_master:
return
logger.info(F'{len(self )} sequences' )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def lowerCamelCase__ ( self :Any , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = [t[0] for t in batch]
a = [t[1] for t in batch]
assert len(__magic_name__ ) == len(__magic_name__ )
# Max for paddings
a = max(__magic_name__ )
# Pad token ids
if self.params.mlm:
a = self.params.special_tok_ids["""pad_token"""]
else:
a = self.params.special_tok_ids["""unk_token"""]
a = [list(t.astype(__magic_name__ ) ) + [pad_idx] * (max_seq_len_ - len(__magic_name__ )) for t in token_ids]
assert len(tk_ ) == len(__magic_name__ )
assert all(len(__magic_name__ ) == max_seq_len_ for t in tk_ )
a = torch.tensor(tk_ ) # (bs, max_seq_len_)
a = torch.tensor(__magic_name__ ) # (bs)
return tk_t, lg_t
| 354 |
from __future__ import annotations
from typing import Generic, TypeVar
__UpperCamelCase : Union[str, Any] = TypeVar("T")
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple , __magic_name__ :T ):
'''simple docstring'''
a = data
a = self
a = 0
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T ):
'''simple docstring'''
a = DisjointSetTreeNode(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :T ):
'''simple docstring'''
a = self.map[data]
if elem_ref != elem_ref.parent:
a = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :DisjointSetTreeNode[T] , __magic_name__ :DisjointSetTreeNode[T] ):
'''simple docstring'''
if nodea.rank > nodea.rank:
a = nodea
else:
a = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T , __magic_name__ :T ):
'''simple docstring'''
self.link(self.find_set(__magic_name__ ) , self.find_set(__magic_name__ ) )
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Union[str, Any] ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :T ):
'''simple docstring'''
if node not in self.connections:
a = {}
def lowerCamelCase__ ( self :Any , __magic_name__ :T , __magic_name__ :T , __magic_name__ :int ):
'''simple docstring'''
self.add_node(__magic_name__ )
self.add_node(__magic_name__ )
a = weight
a = weight
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
a = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __magic_name__ : x[2] )
# creating the disjoint set
a = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__magic_name__ )
# MST generation
a = 0
a = 0
a = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
a , a , a = edges[index]
index += 1
a = disjoint_set.find_set(__magic_name__ )
a = disjoint_set.find_set(__magic_name__ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__magic_name__ , __magic_name__ , __magic_name__ )
disjoint_set.union(__magic_name__ , __magic_name__ )
return graph
| 347 | 0 |
from maths.prime_factors import prime_factors
def lowercase__ ( __lowerCamelCase ) -> int:
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
a = f'Input value of [number={number}] must be an integer'
raise TypeError(__lowerCamelCase )
if number < 1:
raise ValueError("""Input must be a positive integer""" )
return -1 if len(prime_factors(__lowerCamelCase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 355 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = tempfile.mkdtemp()
a = BlipImageProcessor()
a = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
a = BlipProcessor(__magic_name__ , __magic_name__ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :List[Any] , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer
def lowerCamelCase__ ( self :str , **__magic_name__ :List[str] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
a = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
a = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = self.prepare_image_inputs()
a = image_processor(__magic_name__ , return_tensors="""np""" )
a = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = processor(text=__magic_name__ )
a = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__magic_name__ )
a = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 347 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCAmelCase ( metaclass=__magic_name__ ):
UpperCamelCase__ = ['''keras_nlp''']
def __init__( self :Union[str, Any] , *__magic_name__ :Union[str, Any] , **__magic_name__ :str ):
'''simple docstring'''
requires_backends(self , ["""keras_nlp"""] )
| 356 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
UpperCamelCase__ = '''nat'''
UpperCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__magic_name__ )
a = num_heads
a = kernel_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) )
a = layer_scale_init_value
a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 347 | 0 |
__UpperCamelCase : int = "Alexander Joslin"
import operator as op
from .stack import Stack
def __A ( __lowerCamelCase ) -> int:
a = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub}
a = Stack()
a = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__lowerCamelCase ) )
elif i in operators:
# RULE 2
operator_stack.push(__lowerCamelCase )
elif i == ")":
# RULE 4
a = operator_stack.peek()
operator_stack.pop()
a = operand_stack.peek()
operand_stack.pop()
a = operand_stack.peek()
operand_stack.pop()
a = operators[opr](__lowerCamelCase , __lowerCamelCase )
operand_stack.push(__lowerCamelCase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
__UpperCamelCase : Tuple = "(5 + ((4 * 2) * (2 + 3)))"
# answer = 45
print(F'{equation} = {dijkstras_two_stack_algorithm(equation)}')
| 357 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 347 | 0 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''image_processor''', '''tokenizer''']
UpperCamelCase__ = '''ViltImageProcessor'''
UpperCamelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self :Optional[int] , __magic_name__ :Any=None , __magic_name__ :List[str]=None , **__magic_name__ :List[Any] ):
'''simple docstring'''
a = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __magic_name__ , )
a = kwargs.pop("""feature_extractor""" )
a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__magic_name__ , __magic_name__ )
a = self.image_processor
def __call__( self :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ :bool = True , __magic_name__ :Union[bool, str, PaddingStrategy] = False , __magic_name__ :Union[bool, str, TruncationStrategy] = None , __magic_name__ :Optional[int] = None , __magic_name__ :int = 0 , __magic_name__ :Optional[int] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = True , __magic_name__ :Optional[Union[str, TensorType]] = None , **__magic_name__ :Dict , ):
'''simple docstring'''
a = self.tokenizer(
text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
# add pixel_values + pixel_mask
a = self.image_processor(__magic_name__ , return_tensors=__magic_name__ )
encoding.update(__magic_name__ )
return encoding
def lowerCamelCase__ ( self :List[str] , *__magic_name__ :Dict , **__magic_name__ :int ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] , *__magic_name__ :Optional[int] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
return self.tokenizer.decode(*__magic_name__ , **__magic_name__ )
@property
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.tokenizer.model_input_names
a = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , )
return self.image_processor_class
@property
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , )
return self.image_processor
| 358 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width
__UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it.
__UpperCamelCase : str = 1 / 100
__UpperCamelCase : Optional[int] = ""
__UpperCamelCase : List[Any] = ""
__UpperCamelCase : Union[str, Any] = ""
__UpperCamelCase : Tuple = 250
def __A ( ) -> None:
a , a = get_dataset(__lowerCamelCase , __lowerCamelCase )
for index in range(__lowerCamelCase ):
a = random.sample(range(len(__lowerCamelCase ) ) , 4 )
a , a , a = update_image_and_anno(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
a = random_chars(32 )
a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
a = []
for anno in new_annos:
a = anno[3] - anno[1]
a = anno[4] - anno[2]
a = anno[1] + width / 2
a = anno[2] + height / 2
a = f'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(__lowerCamelCase )
with open(f'{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]:
a = []
a = []
for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ):
a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(__lowerCamelCase ) as in_file:
a = in_file.readlines()
a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' )
a = []
for obj_list in obj_lists:
a = obj_list.rstrip("""\n""" ).split(""" """ )
a = float(obj[1] ) - float(obj[3] ) / 2
a = float(obj[2] ) - float(obj[4] ) / 2
a = float(obj[1] ) + float(obj[3] ) / 2
a = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(__lowerCamelCase )
labels.append(__lowerCamelCase )
return img_paths, labels
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]:
a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = int(scale_x * output_size[1] )
a = int(scale_y * output_size[0] )
a = []
a = []
for i, index in enumerate(__lowerCamelCase ):
a = all_img_list[index]
path_list.append(__lowerCamelCase )
a = all_annos[index]
a = cva.imread(__lowerCamelCase )
if i == 0: # top-left
a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = bbox[2] * scale_y
a = bbox[3] * scale_x
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = bbox[2] * scale_y
a = scale_x + bbox[3] * (1 - scale_x)
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = scale_y + bbox[2] * (1 - scale_y)
a = bbox[3] * scale_x
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
a = cva.resize(
__lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = scale_y + bbox[2] * (1 - scale_y)
a = scale_x + bbox[3] * (1 - scale_x)
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
a = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __A ( __lowerCamelCase ) -> str:
assert number_char > 1, "The number of character should greater than 1"
a = ascii_lowercase + digits
return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 347 | 0 |
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
__UpperCamelCase : int = True
except ImportError:
__UpperCamelCase : Dict = False
try:
from torch.hub import _get_torch_home
__UpperCamelCase : Any = _get_torch_home()
except ImportError:
__UpperCamelCase : Any = os.path.expanduser(
os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
)
__UpperCamelCase : Optional[int] = os.path.join(torch_cache_home, "transformers")
__UpperCamelCase : Any = "https://cdn.huggingface.co"
__UpperCamelCase : int = "https://s3.amazonaws.com/models.huggingface.co/bert"
__UpperCamelCase : Optional[Any] = "/".join(str(Path(__file__).resolve()).split("/")[:-1])
__UpperCamelCase : Optional[Any] = os.path.join(PATH, "config.yaml")
__UpperCamelCase : Any = os.path.join(PATH, "attributes.txt")
__UpperCamelCase : Union[str, Any] = os.path.join(PATH, "objects.txt")
__UpperCamelCase : Union[str, Any] = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
__UpperCamelCase : List[str] = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
__UpperCamelCase : Dict = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
__UpperCamelCase : List[Any] = "pytorch_model.bin"
__UpperCamelCase : List[Any] = "config.yaml"
def __A ( __lowerCamelCase=OBJECTS , __lowerCamelCase=ATTRIBUTES ) -> Dict:
a : Tuple = []
with open(__lowerCamelCase ) as f:
for object in f.readlines():
vg_classes.append(object.split(""",""" )[0].lower().strip() )
a : Dict = []
with open(__lowerCamelCase ) as f:
for object in f.readlines():
vg_attrs.append(object.split(""",""" )[0].lower().strip() )
return vg_classes, vg_attrs
def __A ( __lowerCamelCase ) -> List[str]:
a : Optional[int] = OrderedDict()
with open(__lowerCamelCase , """rb""" ) as f:
a : Any = pkl.load(__lowerCamelCase )["""model"""]
for k in copy.deepcopy(list(ckp.keys() ) ):
a : List[str] = ckp.pop(__lowerCamelCase )
if isinstance(__lowerCamelCase , np.ndarray ):
a : int = torch.tensor(__lowerCamelCase )
else:
assert isinstance(__lowerCamelCase , torch.tensor ), type(__lowerCamelCase )
a : Tuple = v
return r
class __lowerCAmelCase :
UpperCamelCase__ = {}
def __init__( self :Optional[int] , __magic_name__ :dict , __magic_name__ :str = "root" , __magic_name__ :List[str]=0 ):
'''simple docstring'''
a : Any = name
a : str = level
a : List[Any] = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
a : Optional[int] = copy.deepcopy(__magic_name__ )
a : List[Any] = copy.deepcopy(__magic_name__ )
if isinstance(__magic_name__ , __magic_name__ ):
a : Dict = Config(__magic_name__ , name=__magic_name__ , level=level + 1 )
a : Any = v
setattr(self , __magic_name__ , __magic_name__ )
a : List[str] = d
def __repr__( self :int ):
'''simple docstring'''
return str(list((self._pointer.keys()) ) )
def __setattr__( self :Any , __magic_name__ :Tuple , __magic_name__ :List[str] ):
'''simple docstring'''
a : Dict = val
a : str = val
a : Any = key.split(""".""" )
a : Optional[int] = len(__magic_name__ ) - 1
a : List[str] = self._pointer
if len(__magic_name__ ) > 1:
for i, l in enumerate(__magic_name__ ):
if hasattr(self , __magic_name__ ) and isinstance(getattr(self , __magic_name__ ) , __magic_name__ ):
setattr(getattr(self , __magic_name__ ) , """.""".join(levels[i:] ) , __magic_name__ )
if l == last_level:
a : str = val
else:
a : Any = pointer[l]
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return self._pointer
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
with open(F'{file_name}' , """w""" ) as stream:
dump(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Any , __magic_name__ :Dict , __magic_name__ :Optional[Any] ):
'''simple docstring'''
with open(F'{file_name}' , """w""" ) as stream:
json.dump(__magic_name__ , __magic_name__ )
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
with open(__magic_name__ ) as stream:
a : int = load(__magic_name__ , Loader=__magic_name__ )
return data
def __str__( self :List[str] ):
'''simple docstring'''
a : Tuple = """ """
if self._name != "root":
a : str = F'{t * (self._level-1)}{self._name}:\n'
else:
a : Optional[Any] = """"""
a : Dict = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(__magic_name__ , __magic_name__ ):
r += F'{t * (self._level)}{v}\n'
self._level += 1
else:
r += F'{t * (self._level)}{k}: {v} ({type(__magic_name__ ).__name__})\n'
a : Optional[int] = level
return r[:-1]
@classmethod
def lowerCamelCase__ ( cls :Union[str, Any] , __magic_name__ :str , **__magic_name__ :Dict ):
'''simple docstring'''
a , a : Optional[int] = cls.get_config_dict(__magic_name__ , **__magic_name__ )
return cls(__magic_name__ )
@classmethod
def lowerCamelCase__ ( cls :int , __magic_name__ :str , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
a : str = kwargs.pop("""cache_dir""" , __magic_name__ )
a : Tuple = kwargs.pop("""force_download""" , __magic_name__ )
a : Union[str, Any] = kwargs.pop("""resume_download""" , __magic_name__ )
a : Optional[Any] = kwargs.pop("""proxies""" , __magic_name__ )
a : int = kwargs.pop("""local_files_only""" , __magic_name__ )
if os.path.isdir(__magic_name__ ):
a : int = os.path.join(__magic_name__ , __magic_name__ )
elif os.path.isfile(__magic_name__ ) or is_remote_url(__magic_name__ ):
a : Dict = pretrained_model_name_or_path
else:
a : List[str] = hf_bucket_url(__magic_name__ , filename=__magic_name__ , use_cdn=__magic_name__ )
try:
# Load from URL or cache if already cached
a : int = cached_path(
__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
a : Optional[int] = Config.load_yaml(__magic_name__ )
except EnvironmentError:
a : Dict = """Can't load config for"""
raise EnvironmentError(__magic_name__ )
if resolved_config_file == config_file:
print("""loading configuration file from path""" )
else:
print("""loading configuration file cache""" )
return Config.load_yaml(__magic_name__ ), kwargs
def __A ( __lowerCamelCase ) -> Any:
a : Optional[Any] = torch.load("""dump.pt""" , map_location=in_tensor.device )
a : int = in_tensor.numpy()
a : Optional[Any] = out_tensor.numpy()[0]
print(na.shape , na[0, 0, :5] )
print(na.shape , na[0, 0, :5] )
assert np.allclose(__lowerCamelCase , __lowerCamelCase , rtol=0.01 , atol=0.1 ), (
f'{sum([1 for x in np.isclose(__lowerCamelCase , __lowerCamelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %'
" element-wise mismatch"
)
raise Exception("""tensors are all good""" )
# Hugging face functions below
def __A ( __lowerCamelCase ) -> Union[str, Any]:
a : Optional[int] = urlparse(__lowerCamelCase )
return parsed.scheme in ("http", "https")
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=True ) -> str:
a : List[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
a : List[str] = """/""" not in model_id
if legacy_format:
return f'{endpoint}/{model_id}-{filename}'
else:
return f'{endpoint}/{model_id}/{filename}'
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=0 , __lowerCamelCase=None , ) -> List[str]:
a : Dict = """python/{}""".format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
ua += "; " + "; ".join("""{}/{}""".format(__lowerCamelCase , __lowerCamelCase ) for k, v in user_agent.items() )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
ua += "; " + user_agent
a : Any = {"""user-agent""": ua}
if resume_size > 0:
a : Any = """bytes=%d-""" % (resume_size,)
a : Dict = requests.get(__lowerCamelCase , stream=__lowerCamelCase , proxies=__lowerCamelCase , headers=__lowerCamelCase )
if response.status_code == 416: # Range not satisfiable
return
a : Optional[int] = response.headers.get("""Content-Length""" )
a : int = resume_size + int(__lowerCamelCase ) if content_length is not None else None
a : Any = tqdm(
unit="""B""" , unit_scale=__lowerCamelCase , total=__lowerCamelCase , initial=__lowerCamelCase , desc="""Downloading""" , )
for chunk in response.iter_content(chunk_size=1024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(__lowerCamelCase ) )
temp_file.write(__lowerCamelCase )
progress.close()
def __A ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase=10 , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase=False , ) -> Optional[int]:
if cache_dir is None:
a : List[str] = TRANSFORMERS_CACHE
if isinstance(__lowerCamelCase , __lowerCamelCase ):
a : Tuple = str(__lowerCamelCase )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
a : str = None
if not local_files_only:
try:
a : Optional[Any] = requests.head(__lowerCamelCase , allow_redirects=__lowerCamelCase , proxies=__lowerCamelCase , timeout=__lowerCamelCase )
if response.status_code == 200:
a : Tuple = response.headers.get("""ETag""" )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
a : Any = url_to_filename(__lowerCamelCase , __lowerCamelCase )
# get cache path to put the file
a : str = os.path.join(__lowerCamelCase , __lowerCamelCase )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(__lowerCamelCase ):
return cache_path
else:
a : int = [
file
for file in fnmatch.filter(os.listdir(__lowerCamelCase ) , filename + """.*""" )
if not file.endswith(""".json""" ) and not file.endswith(""".lock""" )
]
if len(__lowerCamelCase ) > 0:
return os.path.join(__lowerCamelCase , matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
"""Cannot find the requested files in the cached path and outgoing traffic has been"""
""" disabled. To enable model look-ups and downloads online, set 'local_files_only'"""
""" to False.""" )
return None
# From now on, etag is not None.
if os.path.exists(__lowerCamelCase ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
a : Union[str, Any] = cache_path + """.lock"""
with FileLock(__lowerCamelCase ):
# If the download just completed while the lock was activated.
if os.path.exists(__lowerCamelCase ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
a : int = cache_path + """.incomplete"""
@contextmanager
def _resumable_file_manager():
with open(__lowerCamelCase , """a+b""" ) as f:
yield f
a : List[str] = _resumable_file_manager
if os.path.exists(__lowerCamelCase ):
a : Union[str, Any] = os.stat(__lowerCamelCase ).st_size
else:
a : List[Any] = 0
else:
a : List[str] = partial(tempfile.NamedTemporaryFile , dir=__lowerCamelCase , delete=__lowerCamelCase )
a : str = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
"""%s not found in cache or force_download set to True, downloading to %s""" , __lowerCamelCase , temp_file.name , )
http_get(
__lowerCamelCase , __lowerCamelCase , proxies=__lowerCamelCase , resume_size=__lowerCamelCase , user_agent=__lowerCamelCase , )
os.replace(temp_file.name , __lowerCamelCase )
a : List[str] = {"""url""": url, """etag""": etag}
a : Optional[Any] = cache_path + """.json"""
with open(__lowerCamelCase , """w""" ) as meta_file:
json.dump(__lowerCamelCase , __lowerCamelCase )
return cache_path
def __A ( __lowerCamelCase , __lowerCamelCase=None ) -> List[str]:
a : Union[str, Any] = url.encode("""utf-8""" )
a : str = shaaaa(__lowerCamelCase )
a : Optional[Any] = url_hash.hexdigest()
if etag:
a : Union[str, Any] = etag.encode("""utf-8""" )
a : Union[str, Any] = shaaaa(__lowerCamelCase )
filename += "." + etag_hash.hexdigest()
if url.endswith(""".h5""" ):
filename += ".h5"
return filename
def __A ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False , ) -> Union[str, Any]:
if cache_dir is None:
a : Dict = TRANSFORMERS_CACHE
if isinstance(__lowerCamelCase , __lowerCamelCase ):
a : Any = str(__lowerCamelCase )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
a : int = str(__lowerCamelCase )
if is_remote_url(__lowerCamelCase ):
# URL, so get it from the cache (downloading if necessary)
a : str = get_from_cache(
__lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , user_agent=__lowerCamelCase , local_files_only=__lowerCamelCase , )
elif os.path.exists(__lowerCamelCase ):
# File, and it exists.
a : Union[str, Any] = url_or_filename
elif urlparse(__lowerCamelCase ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError("""file {} not found""".format(__lowerCamelCase ) )
else:
# Something unknown
raise ValueError("""unable to parse {} as a URL or as a local path""".format(__lowerCamelCase ) )
if extract_compressed_file:
if not is_zipfile(__lowerCamelCase ) and not tarfile.is_tarfile(__lowerCamelCase ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
a , a : Dict = os.path.split(__lowerCamelCase )
a : List[str] = output_file.replace(""".""" , """-""" ) + """-extracted"""
a : List[Any] = os.path.join(__lowerCamelCase , __lowerCamelCase )
if os.path.isdir(__lowerCamelCase ) and os.listdir(__lowerCamelCase ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
a : Tuple = output_path + """.lock"""
with FileLock(__lowerCamelCase ):
shutil.rmtree(__lowerCamelCase , ignore_errors=__lowerCamelCase )
os.makedirs(__lowerCamelCase )
if is_zipfile(__lowerCamelCase ):
with ZipFile(__lowerCamelCase , """r""" ) as zip_file:
zip_file.extractall(__lowerCamelCase )
zip_file.close()
elif tarfile.is_tarfile(__lowerCamelCase ):
a : Tuple = tarfile.open(__lowerCamelCase )
tar_file.extractall(__lowerCamelCase )
tar_file.close()
else:
raise EnvironmentError("""Archive format of {} could not be identified""".format(__lowerCamelCase ) )
return output_path_extracted
return output_path
def __A ( __lowerCamelCase , __lowerCamelCase="," ) -> Optional[Any]:
assert isinstance(__lowerCamelCase , __lowerCamelCase )
if os.path.isfile(__lowerCamelCase ):
with open(__lowerCamelCase ) as f:
a : Optional[Any] = eval(f.read() )
else:
a : Union[str, Any] = requests.get(__lowerCamelCase )
try:
a : str = requests.json()
except Exception:
a : Optional[Any] = req.content.decode()
assert data is not None, "could not connect"
try:
a : Any = eval(__lowerCamelCase )
except Exception:
a : int = data.split("""\n""" )
req.close()
return data
def __A ( __lowerCamelCase ) -> Any:
a : List[str] = requests.get(__lowerCamelCase )
a : List[str] = np.array(Image.open(BytesIO(response.content ) ) )
return img
def __A ( __lowerCamelCase ) -> List[str]:
a : Tuple = url.split("""/""" )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(__lowerCamelCase )
with open(__lowerCamelCase , """rb""" ) as stream:
a : List[str] = pkl.load(__lowerCamelCase )
a : Optional[Any] = weights.pop("""model""" )
a : Dict = {}
for k, v in model.items():
a : Any = torch.from_numpy(__lowerCamelCase )
if "running_var" in k:
a : str = torch.tensor([0] )
a : Tuple = k.replace("""running_var""" , """num_batches_tracked""" )
a : Any = zero
return new
def __A ( ) -> str:
print(f'{os.path.abspath(os.path.join(__lowerCamelCase , os.pardir ) )}/demo.ipynb' )
def __A ( __lowerCamelCase , __lowerCamelCase="RGB" ) -> List[Any]:
assert isinstance(__lowerCamelCase , __lowerCamelCase )
if os.path.isfile(__lowerCamelCase ):
a : Optional[int] = cva.imread(__lowerCamelCase )
else:
a : int = get_image_from_url(__lowerCamelCase )
assert img is not None, f'could not connect to: {im}'
a : Optional[int] = cva.cvtColor(__lowerCamelCase , cva.COLOR_BGR2RGB )
if input_format == "RGB":
a : Tuple = img[:, :, ::-1]
return img
def __A ( __lowerCamelCase , __lowerCamelCase=1 ) -> List[str]:
return (images[i : i + batch] for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ))
| 359 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Optional[Any] = {
"configuration_mobilenet_v2": [
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileNetV2Config",
"MobileNetV2OnnxConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ["MobileNetV2FeatureExtractor"]
__UpperCamelCase : Tuple = ["MobileNetV2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileNetV2ForImageClassification",
"MobileNetV2ForSemanticSegmentation",
"MobileNetV2Model",
"MobileNetV2PreTrainedModel",
"load_tf_weights_in_mobilenet_v2",
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
"""simple docstring"""
__UpperCamelCase : str = tuple[float, float, float]
__UpperCamelCase : Union[str, Any] = tuple[float, float, float]
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Vectorad:
a = end_pointa[0] - end_pointa[0]
a = end_pointa[1] - end_pointa[1]
a = end_pointa[2] - end_pointa[2]
return (x, y, z)
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Vectorad:
a = ab[1] * ac[2] - ab[2] * ac[1] # *i
a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
a = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def __A ( __lowerCamelCase , __lowerCamelCase ) -> bool:
return tuple(round(__lowerCamelCase , __lowerCamelCase ) for x in vector ) == (0, 0, 0)
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 10 ) -> bool:
a = create_vector(__lowerCamelCase , __lowerCamelCase )
a = create_vector(__lowerCamelCase , __lowerCamelCase )
return is_zero_vector(get_ad_vectors_cross(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
| 360 |
def __A ( __lowerCamelCase ) -> bool:
if num < 0:
return False
a = num
a = 0
while num > 0:
a = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> float:
a = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError("""All input parameters must be positive""" )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError("""Relative densities cannot be greater than one""" )
else:
a = 1 - (matter_density + radiation_density + dark_energy)
a = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
a = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
__UpperCamelCase : Union[str, Any] = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1E-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 361 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = CanineTokenizer
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
a = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowerCamelCase__ ( self :Tuple , **__magic_name__ :Dict ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
a = 1024
return tokenizer
@require_torch
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
a = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
a = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
a = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
a = chr(0Xe_0_0_7 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
a = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a , a = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_5
a = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
a = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = chr(0Xe_0_0_5 )
a = chr(0Xe_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
a = tokenizer.tokenize(__magic_name__ )
a = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = [new_token_a]
a = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
a = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
a = 0Xe_0_0_7
a = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
a = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
a = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = """hello world"""
if self.space_between_special_tokens:
a = """[CLS] hello world [SEP]"""
else:
a = input
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
a = """a"""
a = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
a = 0Xe_0_0_6
a = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
| 347 | 0 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''ClapFeatureExtractor'''
UpperCamelCase__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self :Dict , __magic_name__ :Any , __magic_name__ :Optional[int] ):
'''simple docstring'''
super().__init__(__magic_name__ , __magic_name__ )
def __call__( self :Tuple , __magic_name__ :Union[str, Any]=None , __magic_name__ :List[Any]=None , __magic_name__ :str=None , **__magic_name__ :str ):
'''simple docstring'''
a = kwargs.pop("""sampling_rate""" , __magic_name__ )
if text is None and audios is None:
raise ValueError("""You have to specify either text or audios. Both cannot be none.""" )
if text is not None:
a = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
if audios is not None:
a = self.feature_extractor(
__magic_name__ , sampling_rate=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
if text is not None and audios is not None:
a = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ )
def lowerCamelCase__ ( self :List[str] , *__magic_name__ :Optional[Any] , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :List[str] , *__magic_name__ :Dict , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*__magic_name__ , **__magic_name__ )
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.tokenizer.model_input_names
a = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) ) | 362 |
def __A ( __lowerCamelCase ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
from typing import Any
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> list:
_validation(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , )
# Creates data structures and fill initial step
a = {}
a = {}
for state in states_space:
a = observations_space[0]
a = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
a = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(__lowerCamelCase ) ):
a = observations_space[o]
a = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
a = """"""
a = -1
for k_state in states_space:
a = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
a = probability
a = k_state
# Update probabilities and pointers dicts
a = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
a = arg_max
# The final observation
a = observations_space[len(__lowerCamelCase ) - 1]
# argmax for given final observation
a = """"""
a = -1
for k_state in states_space:
a = probabilities[(k_state, final_observation)]
if probability > max_probability:
a = probability
a = k_state
a = arg_max
# Process pointers backwards
a = last_state
a = []
for o in range(len(__lowerCamelCase ) - 1 , -1 , -1 ):
result.append(__lowerCamelCase )
a = pointers[previous, observations_space[o]]
result.reverse()
return result
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> None:
_validate_not_empty(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , )
_validate_lists(__lowerCamelCase , __lowerCamelCase )
_validate_dicts(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> None:
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("""There's an empty parameter""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> None:
_validate_list(__lowerCamelCase , """observations_space""" )
_validate_list(__lowerCamelCase , """states_space""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> None:
if not isinstance(_object , __lowerCamelCase ):
a = f'{var_name} must be a list'
raise ValueError(__lowerCamelCase )
else:
for x in _object:
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
a = f'{var_name} must be a list of strings'
raise ValueError(__lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> None:
_validate_dict(__lowerCamelCase , """initial_probabilities""" , __lowerCamelCase )
_validate_nested_dict(__lowerCamelCase , """transition_probabilities""" )
_validate_nested_dict(__lowerCamelCase , """emission_probabilities""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> None:
_validate_dict(_object , __lowerCamelCase , __lowerCamelCase )
for x in _object.values():
_validate_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False ) -> None:
if not isinstance(_object , __lowerCamelCase ):
a = f'{var_name} must be a dict'
raise ValueError(__lowerCamelCase )
if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object ):
a = f'{var_name} all keys must be strings'
raise ValueError(__lowerCamelCase )
if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object.values() ):
a = """nested dictionary """ if nested else """"""
a = f'{var_name} {nested_text}all values must be {value_type.__name__}'
raise ValueError(__lowerCamelCase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 363 |
def __A ( __lowerCamelCase ) -> int:
if not numbers:
return 0
if not isinstance(__lowerCamelCase , (list, tuple) ) or not all(
isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
a = a = a = numbers[0]
for i in range(1 , len(__lowerCamelCase ) ):
# update the maximum and minimum subarray products
a = numbers[i]
if number < 0:
a , a = min_till_now, max_till_now
a = max(__lowerCamelCase , max_till_now * number )
a = min(__lowerCamelCase , min_till_now * number )
# update the maximum product found till now
a = max(__lowerCamelCase , __lowerCamelCase )
return max_prod
| 347 | 0 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :str , __magic_name__ :List[str] , __magic_name__ :List[Any]=3 , __magic_name__ :Dict=32 , __magic_name__ :Optional[Any]=3 , __magic_name__ :Dict=10 , __magic_name__ :List[Any]=[10, 20, 30, 40] , __magic_name__ :Dict=[1, 1, 2, 1] , __magic_name__ :Dict=True , __magic_name__ :Tuple=True , __magic_name__ :Optional[Any]="relu" , __magic_name__ :Optional[int]=3 , __magic_name__ :List[Any]=None , ):
'''simple docstring'''
a = parent
a = batch_size
a = image_size
a = num_channels
a = embeddings_size
a = hidden_sizes
a = depths
a = is_training
a = use_labels
a = hidden_act
a = num_labels
a = scope
a = len(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = self.get_config()
return config, pixel_values
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Any , __magic_name__ :str ):
'''simple docstring'''
a = FlaxRegNetModel(config=__magic_name__ )
a = model(__magic_name__ )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase__ ( self :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = FlaxRegNetForImageClassification(config=__magic_name__ )
a = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a = config_and_inputs
a = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = FlaxRegNetModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
return
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__magic_name__ )
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
a = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
def check_hidden_states_output(__magic_name__ :str , __magic_name__ :Optional[int] , __magic_name__ :Optional[int] ):
a = model_class(__magic_name__ )
a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
a = self.model_tester.num_stages
self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
a = self._prepare_for_class(__magic_name__ , __magic_name__ )
a = model_class(__magic_name__ )
@jax.jit
def model_jitted(__magic_name__ :Dict , **__magic_name__ :Union[str, Any] ):
return model(pixel_values=__magic_name__ , **__magic_name__ )
with self.subTest("""JIT Enabled""" ):
a = model_jitted(**__magic_name__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
a = model_jitted(**__magic_name__ ).to_tuple()
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) )
for jitted_output, output in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(jitted_output.shape , output.shape )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""np""" )
a = model(**__magic_name__ )
# verify the logits
a = (1, 1000)
self.assertEqual(outputs.logits.shape , __magic_name__ )
a = jnp.array([-0.4180, -1.5051, -3.4836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 364 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase : Optional[Any] = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __lowerCAmelCase ( __magic_name__ ):
@slow
@require_torch
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" )
a = BertTokenizer.from_pretrained("""bert-base-uncased""" )
a = bertabert.config.encoder.vocab_size
a = tokenizer.sep_token_id
a = tokenizer.cls_token_id
a = 128
a = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" )
a = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" )
a = train_dataset.select(range(32 ) )
a = val_dataset.select(range(16 ) )
a = 4
def _map_to_encoder_decoder_inputs(__magic_name__ :Optional[Any] ):
# Tokenizer will automatically set [BOS] <text> [EOS]
a = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=__magic_name__ , max_length=512 )
a = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=__magic_name__ , max_length=128 )
a = inputs.input_ids
a = inputs.attention_mask
a = outputs.input_ids
a = outputs.input_ids.copy()
a = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""]
]
a = outputs.attention_mask
assert all(len(__magic_name__ ) == 512 for x in inputs.input_ids )
assert all(len(__magic_name__ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__magic_name__ :str ):
a = pred.label_ids
a = pred.predictions
# all unnecessary tokens are removed
a = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
a = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
a = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__magic_name__ ) )] ) / len(__magic_name__ )
return {"accuracy": accuracy}
# map train dataset
a = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=__magic_name__ , batch_size=__magic_name__ , remove_columns=["""article""", """highlights"""] , )
train_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
# same for validation dataset
a = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=__magic_name__ , batch_size=__magic_name__ , remove_columns=["""article""", """highlights"""] , )
val_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
a = self.get_auto_remove_tmp_dir()
a = SeqaSeqTrainingArguments(
output_dir=__magic_name__ , per_device_train_batch_size=__magic_name__ , per_device_eval_batch_size=__magic_name__ , predict_with_generate=__magic_name__ , evaluation_strategy="""steps""" , do_train=__magic_name__ , do_eval=__magic_name__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
a = SeqaSeqTrainer(
model=__magic_name__ , args=__magic_name__ , compute_metrics=_compute_metrics , train_dataset=__magic_name__ , eval_dataset=__magic_name__ , tokenizer=__magic_name__ , )
# start training
trainer.train()
| 365 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase )
a = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
a = dataset_size < in_memory_max_size
else:
a = False
a = is_small_dataset(__lowerCamelCase )
assert result == expected
| 347 | 0 |
import math
from collections.abc import Iterator
from itertools import takewhile
def __A ( __lowerCamelCase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCamelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __A ( ) -> Iterator[int]:
a = 2
while True:
if is_prime(__lowerCamelCase ):
yield num
num += 1
def __A ( __lowerCamelCase = 200_0000 ) -> int:
return sum(takewhile(lambda __lowerCamelCase : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 366 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( __lowerCamelCase ) -> bool:
a = int(number**0.5 )
return number == sq * sq
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]:
a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
a = x_den * y_den * z_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( __lowerCamelCase = 35 ) -> int:
a = set()
a = 42
a = Fraction(0 )
a = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
a = x_num * y_den + x_den * y_num
a = x_den * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
a = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
a = x_num * y_num
a = x_den * y_num + x_num * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = x_num * x_num * y_num * y_num
a = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }')
| 347 | 0 |
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> list[float]:
a , a = coefficient_matrix.shape
a , a = constant_matrix.shape
if rowsa != colsa:
a = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'
raise ValueError(__lowerCamelCase )
if colsa != 1:
a = f'Constant matrix must be nx1 but received {rowsa}x{colsa}'
raise ValueError(__lowerCamelCase )
if rowsa != rowsa:
a = (
"""Coefficient and constant matrices dimensions must be nxn and nx1 but """
f'received {rowsa}x{colsa} and {rowsa}x{colsa}'
)
raise ValueError(__lowerCamelCase )
if len(__lowerCamelCase ) != rowsa:
a = (
"""Number of initial values must be equal to number of rows in coefficient """
f'matrix but received {len(__lowerCamelCase )} and {rowsa}'
)
raise ValueError(__lowerCamelCase )
if iterations <= 0:
raise ValueError("""Iterations must be at least 1""" )
a = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
a , a = table.shape
strictly_diagonally_dominant(__lowerCamelCase )
# Iterates the whole matrix for given number of times
for _ in range(__lowerCamelCase ):
a = []
for row in range(__lowerCamelCase ):
a = 0
for col in range(__lowerCamelCase ):
if col == row:
a = table[row][col]
elif col == cols - 1:
a = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
a = (temp + val) / denom
new_val.append(__lowerCamelCase )
a = new_val
return [float(__lowerCamelCase ) for i in new_val]
def __A ( __lowerCamelCase ) -> bool:
a , a = table.shape
a = True
for i in range(0 , __lowerCamelCase ):
a = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 367 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = FlaxRoFormerModelTester(self )
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
a = jnp.array([[0, 1, 2, 3, 4, 5]] )
a = model(__magic_name__ )[0]
a = 5_0000
a = (1, 6, vocab_size)
self.assertEqual(output.shape , __magic_name__ )
a = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 0 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
__UpperCamelCase : List[str] = logging.get_logger(__name__)
__UpperCamelCase : Optional[int] = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
__UpperCamelCase : Dict = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def __A ( __lowerCamelCase ) -> Optional[int]:
a = {}
with open(__lowerCamelCase , """r""" ) as file:
for line_number, line in enumerate(__lowerCamelCase ):
a = line.strip()
if line:
a = line.split()
a = line_number
a = words[0]
a = value
return result
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
for attribute in key.split(""".""" ):
a = getattr(__lowerCamelCase , __lowerCamelCase )
a = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
a = PARAM_MAPPING[full_name.split(""".""" )[-1]]
a = """param"""
if weight_type is not None and weight_type != "param":
a = getattr(__lowerCamelCase , __lowerCamelCase ).shape
elif weight_type is not None and weight_type == "param":
a = hf_pointer
for attribute in hf_param_name.split(""".""" ):
a = getattr(__lowerCamelCase , __lowerCamelCase )
a = shape_pointer.shape
# let's reduce dimension
a = value[0]
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
a = getattr(__lowerCamelCase , __lowerCamelCase )
a = value
else:
a = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
a = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
a = PARAM_MAPPING[full_name.split(""".""" )[-1]]
a = """param"""
if weight_type is not None and weight_type != "param":
a = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
a = """.""".join([key, hf_param_name] )
else:
a = key
a = value if """lm_head""" in full_key else value[0]
__UpperCamelCase : int = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ) -> Dict:
a = False
for key, mapped_key in MAPPING.items():
a = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
a = True
if "*" in mapped_key:
a = name.split(__lowerCamelCase )[0].split(""".""" )[-2]
a = mapped_key.replace("""*""" , __lowerCamelCase )
if "weight_g" in name:
a = """weight_g"""
elif "weight_v" in name:
a = """weight_v"""
elif "bias" in name:
a = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a = """weight"""
else:
a = None
if hf_dict is not None:
rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return is_used
return is_used
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = []
a = fairseq_model.state_dict()
a = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
a = False
if "conv_layers" in name:
load_conv_layer(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
a = True
else:
a = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = full_name.split("""conv_layers.""" )[-1]
a = name.split(""".""" )
a = int(items[0] )
a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__lowerCamelCase )
@torch.no_grad()
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=False ) -> List[Any]:
if config_path is not None:
a = WavaVecaConfig.from_pretrained(__lowerCamelCase )
else:
a = WavaVecaConfig()
if is_seq_class:
a = read_txt_into_dict(__lowerCamelCase )
a = idalabel
a = WavaVecaForSequenceClassification(__lowerCamelCase )
a = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
feature_extractor.save_pretrained(__lowerCamelCase )
elif is_finetuned:
if dict_path:
a = Dictionary.load(__lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
a = target_dict.pad_index
a = target_dict.bos_index
a = target_dict.eos_index
a = len(target_dict.symbols )
a = os.path.join(__lowerCamelCase , """vocab.json""" )
if not os.path.isdir(__lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) )
return
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
a = target_dict.indices
# fairseq has the <pad> and <s> switched
a = 0
a = 1
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(__lowerCamelCase , __lowerCamelCase )
a = WavaVecaCTCTokenizer(
__lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , )
a = True if config.feat_extract_norm == """layer""" else False
a = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
a = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
a = WavaVecaForCTC(__lowerCamelCase )
else:
a = WavaVecaForPreTraining(__lowerCamelCase )
if is_finetuned or is_seq_class:
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
a = argparse.Namespace(task="""audio_pretraining""" )
a = fairseq.tasks.setup_task(__lowerCamelCase )
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase )
a = model[0].eval()
recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
__UpperCamelCase : Tuple = parser.parse_args()
__UpperCamelCase : Optional[Any] = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 368 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
"""simple docstring"""
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__UpperCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
type=str,
required=True,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--image_size",
default=512,
type=int,
help=(
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
" Base. Use 768 for Stable Diffusion v2."
),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--upcast_attention",
action="store_true",
help=(
"Whether the attention computation should always be upcasted. This is necessary when running stable"
" diffusion 2.1."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
def __A ( __lowerCamelCase ) -> Union[str, Any]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(f'could not parse string as bool {string}' )
parser.add_argument(
"--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool
)
parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int)
__UpperCamelCase : Optional[Any] = parser.parse_args()
__UpperCamelCase : Dict = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 369 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = (IPNDMScheduler,)
UpperCamelCase__ = (('''num_inference_steps''', 50),)
def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {"""num_train_timesteps""": 1000}
config.update(**__magic_name__ )
return config
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
return sample
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ):
scheduler.set_timesteps(__magic_name__ )
elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
a = dummy_past_residuals[:]
a = scheduler.timesteps[5]
a = scheduler.timesteps[6]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.full_loop()
a = torch.mean(torch.abs(__magic_name__ ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 347 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase : List[str] = logging.get_logger(__name__)
def __A ( __lowerCamelCase , __lowerCamelCase=False ) -> str:
a = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
a = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> int:
for i in range(config.num_hidden_layers ):
if base_model:
a = """"""
else:
a = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
a = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
a = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
a = in_proj_weight[
: config.hidden_size, :
]
a = in_proj_bias[: config.hidden_size]
a = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
a = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
a = in_proj_weight[
-config.hidden_size :, :
]
a = in_proj_bias[-config.hidden_size :]
def __A ( __lowerCamelCase ) -> Dict:
a = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
a = dct.pop(__lowerCamelCase )
a = val
def __A ( ) -> List[Any]:
a = """http://images.cocodataset.org/val2017/000000039769.jpg"""
a = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def __A ( __lowerCamelCase , __lowerCamelCase ) -> int:
a = ViTConfig()
a = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
a = True
a = int(vit_name[-12:-10] )
a = int(vit_name[-9:-6] )
else:
a = 1000
a = """huggingface/label-files"""
a = """imagenet-1k-id2label.json"""
a = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
a = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = int(vit_name[-6:-4] )
a = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith("""tiny""" ):
a = 192
a = 768
a = 12
a = 3
elif vit_name[9:].startswith("""small""" ):
a = 384
a = 1536
a = 12
a = 6
else:
pass
else:
if vit_name[4:].startswith("""small""" ):
a = 768
a = 2304
a = 8
a = 8
elif vit_name[4:].startswith("""base""" ):
pass
elif vit_name[4:].startswith("""large""" ):
a = 1024
a = 4096
a = 24
a = 16
elif vit_name[4:].startswith("""huge""" ):
a = 1280
a = 5120
a = 32
a = 16
# load original model from timm
a = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
a = timm_model.state_dict()
if base_model:
remove_classification_head_(__lowerCamelCase )
a = create_rename_keys(__lowerCamelCase , __lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# load HuggingFace model
if vit_name[-5:] == "in21k":
a = ViTModel(__lowerCamelCase ).eval()
else:
a = ViTForImageClassification(__lowerCamelCase ).eval()
model.load_state_dict(__lowerCamelCase )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
a = DeiTImageProcessor(size=config.image_size )
else:
a = ViTImageProcessor(size=config.image_size )
a = image_processor(images=prepare_img() , return_tensors="""pt""" )
a = encoding["""pixel_values"""]
a = model(__lowerCamelCase )
if base_model:
a = timm_model.forward_features(__lowerCamelCase )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__lowerCamelCase , outputs.pooler_output , atol=1E-3 )
else:
a = timm_model(__lowerCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCamelCase , outputs.logits , atol=1E-3 )
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--vit_name",
default="vit_base_patch16_224",
type=str,
help="Name of the ViT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
__UpperCamelCase : Union[str, Any] = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 370 |
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def __A ( ) -> None:
a = input("""Enter message: """ )
a = input("""Enter key [alphanumeric]: """ )
a = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
a = """encrypt"""
a = encrypt_message(__lowerCamelCase , __lowerCamelCase )
elif mode.lower().startswith("""d""" ):
a = """decrypt"""
a = decrypt_message(__lowerCamelCase , __lowerCamelCase )
print(f'\n{mode.title()}ed message:' )
print(__lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = []
a = 0
a = key.upper()
for symbol in message:
a = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(__lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(__lowerCamelCase ):
a = 0
else:
translated.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
if __name__ == "__main__":
main()
| 347 | 0 |
def __A ( __lowerCamelCase = 200_0000 ) -> int:
a = [0 for i in range(n + 1 )]
a = 1
a = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , __lowerCamelCase ):
a = 1
a = 0
for i in range(__lowerCamelCase ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(F'{solution() = }')
| 371 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = True
a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = FlaxRobertaModelTester(self )
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 347 | 0 |
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :int , __magic_name__ :Optional[Any] , __magic_name__ :List[str]=7 , __magic_name__ :Dict=3 , __magic_name__ :Union[str, Any]=18 , __magic_name__ :Optional[Any]=30 , __magic_name__ :List[Any]=400 , __magic_name__ :Any=True , __magic_name__ :Dict=None , __magic_name__ :int=True , __magic_name__ :Optional[int]=[0.5, 0.5, 0.5] , __magic_name__ :str=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
a = size if size is not None else {"""height""": 18, """width""": 18}
a = parent
a = batch_size
a = num_channels
a = image_size
a = min_resolution
a = max_resolution
a = do_resize
a = size
a = do_normalize
a = image_mean
a = image_std
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = DPTImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = DPTImageProcessingTester(self )
@property
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__magic_name__ , """image_mean""" ) )
self.assertTrue(hasattr(__magic_name__ , """image_std""" ) )
self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) )
self.assertTrue(hasattr(__magic_name__ , """do_resize""" ) )
self.assertTrue(hasattr(__magic_name__ , """size""" ) )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , Image.Image )
# Test not batched input
a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , np.ndarray )
# Test not batched input
a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , torch.Tensor )
# Test not batched input
a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 350 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
UpperCamelCase__ = None
UpperCamelCase__ = "utf-8"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True # deprecated
UpperCamelCase__ = None # deprecated
UpperCamelCase__ = 10 << 20 # 10MB
UpperCamelCase__ = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
UpperCamelCase__ = JsonConfig
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
a = data_files
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
a = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
a = self.config.features.arrow_schema.field(__magic_name__ ).type
a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
a = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
# We keep only the field we are interested in
a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
a = dataset
a = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , """rb""" ) as f:
a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
a = max(self.config.chunksize // 32 , 16 << 10 )
a = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" )
try:
while True:
try:
a = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
a = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 347 | 0 |
import math
def __A ( __lowerCamelCase ) -> str:
a = 0
a = 0
while num > 0:
a = num % 8
a = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) ))
counter += 1
a = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f'0o{int(__lowerCamelCase )}'
def __A ( ) -> None:
print("""\n2 in octal is:""" )
print(decimal_to_octal(2 ) ) # = 2
print("""\n8 in octal is:""" )
print(decimal_to_octal(8 ) ) # = 10
print("""\n65 in octal is:""" )
print(decimal_to_octal(65 ) ) # = 101
print("""\n216 in octal is:""" )
print(decimal_to_octal(216 ) ) # = 330
print("""\n512 in octal is:""" )
print(decimal_to_octal(512 ) ) # = 1000
print("""\n""" )
if __name__ == "__main__":
main()
| 351 |
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :List[str] , __magic_name__ :int="</s>" , __magic_name__ :List[Any]="<unk>" , __magic_name__ :Optional[Any]="<pad>" , __magic_name__ :Optional[int]=125 , __magic_name__ :List[str]=None , **__magic_name__ :List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"""
""" extra_ids tokens""" )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
super().__init__(
eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
a = extra_ids
a = 2**8 # utf is 8 bits
# define special tokens dict
a = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
a = len(self.special_tokens_encoder )
a = len(__magic_name__ )
for i, token in enumerate(__magic_name__ ):
a = self.vocab_size + i - n
a = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__magic_name__ )) + [1]
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def lowerCamelCase__ ( self :str , __magic_name__ :List[int] ):
'''simple docstring'''
if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = self._add_eos_if_not_present(__magic_name__ )
if token_ids_a is None:
return token_ids_a
else:
a = self._add_eos_if_not_present(__magic_name__ )
return token_ids_a + token_ids_a
def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ):
'''simple docstring'''
a = [chr(__magic_name__ ) for i in text.encode("""utf-8""" )]
return tokens
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if token in self.special_tokens_encoder:
a = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
a = self.added_tokens_encoder[token]
elif len(__magic_name__ ) != 1:
a = self.unk_token_id
else:
a = ord(__magic_name__ ) + self._num_special_tokens
return token_id
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ):
'''simple docstring'''
if index in self.special_tokens_decoder:
a = self.special_tokens_decoder[index]
else:
a = chr(index - self._num_special_tokens )
return token
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = b""""""
for token in tokens:
if token in self.special_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.added_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.special_tokens_encoder:
a = token.encode("""utf-8""" )
elif token in self.added_tokens_encoder:
a = token.encode("""utf-8""" )
else:
a = bytes([ord(__magic_name__ )] )
bstring += tok_string
a = bstring.decode("""utf-8""" , errors="""ignore""" )
return string
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
return ()
| 347 | 0 |
from __future__ import annotations
from PIL import Image
# Define glider example
__UpperCamelCase : List[Any] = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
__UpperCamelCase : str = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def __A ( __lowerCamelCase ) -> list[list[int]]:
a = []
for i in range(len(__lowerCamelCase ) ):
a = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
a = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(__lowerCamelCase ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(__lowerCamelCase ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(__lowerCamelCase ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
a = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(__lowerCamelCase )
return next_generation
def __A ( __lowerCamelCase , __lowerCamelCase ) -> list[Image.Image]:
a = []
for _ in range(__lowerCamelCase ):
# Create output image
a = Image.new("""RGB""" , (len(cells[0] ), len(__lowerCamelCase )) )
a = img.load()
# Save cells to image
for x in range(len(__lowerCamelCase ) ):
for y in range(len(cells[0] ) ):
a = 255 - cells[y][x] * 255
a = (colour, colour, colour)
# Save image
images.append(__lowerCamelCase )
a = new_generation(__lowerCamelCase )
return images
if __name__ == "__main__":
__UpperCamelCase : Any = generate_images(GLIDER, 16)
images[0].save("out.gif", save_all=True, append_images=images[1:])
| 352 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self :Optional[int] , __magic_name__ :str , __magic_name__ :int=2 , __magic_name__ :List[str]=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :str=2 , __magic_name__ :Any=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=True , __magic_name__ :List[Any]=99 , __magic_name__ :Dict=36 , __magic_name__ :Optional[Any]=3 , __magic_name__ :str=4 , __magic_name__ :Optional[Any]=37 , __magic_name__ :Dict="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Dict=512 , __magic_name__ :str=16 , __magic_name__ :List[Any]=2 , __magic_name__ :Tuple=0.02 , __magic_name__ :Any=6 , __magic_name__ :Optional[int]=6 , __magic_name__ :Tuple=3 , __magic_name__ :str=4 , __magic_name__ :List[str]=None , __magic_name__ :str=1000 , ):
'''simple docstring'''
a = parent
a = batch_size
a = num_channels
a = image_size
a = patch_size
a = text_seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = coordinate_size
a = shape_size
a = num_labels
a = num_choices
a = scope
a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
a = text_seq_length
a = (image_size // patch_size) ** 2 + 1
a = self.text_seq_length + self.image_seq_length
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a = bbox[i, j, 3]
a = bbox[i, j, 1]
a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a = bbox[i, j, 2]
a = bbox[i, j, 0]
a = t
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.text_seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase__ ( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int ):
'''simple docstring'''
a = LayoutLMvaModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# text + image
a = model(__magic_name__ , pixel_values=__magic_name__ )
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
a = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
a = model(pixel_values=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :List[str] ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ):
'''simple docstring'''
return True
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = LayoutLMvaModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :Any=False ):
'''simple docstring'''
a = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__magic_name__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in get_values(__magic_name__ ):
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__magic_name__ , )
return inputs_dict
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = LayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""pt""" ).pixel_values.to(__magic_name__ )
a = torch.tensor([[1, 2]] )
a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
a = model(
input_ids=input_ids.to(__magic_name__ ) , bbox=bbox.to(__magic_name__ ) , pixel_values=pixel_values.to(__magic_name__ ) , )
# verify the logits
a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 0 |
import argparse
import os
from io import BytesIO
from pathlib import Path
import requests
from clip_retrieval.clip_client import ClipClient
from PIL import Image
from tqdm import tqdm
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
a = 1.5
a = int(factor * num_class_images )
a = ClipClient(
url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__lowerCamelCase , aesthetic_weight=0.1 )
os.makedirs(f'{class_data_dir}/images' , exist_ok=__lowerCamelCase )
if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images:
return
while True:
a = client.query(text=__lowerCamelCase )
if len(__lowerCamelCase ) >= factor * num_class_images or num_images > 1E4:
break
else:
a = int(factor * num_images )
a = ClipClient(
url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__lowerCamelCase , aesthetic_weight=0.1 , )
a = 0
a = 0
a = tqdm(desc="""downloading real regularization images""" , total=__lowerCamelCase )
with open(f'{class_data_dir}/caption.txt' , """w""" ) as fa, open(f'{class_data_dir}/urls.txt' , """w""" ) as fa, open(
f'{class_data_dir}/images.txt' , """w""" ) as fa:
while total < num_class_images:
a = class_images[count]
count += 1
try:
a = requests.get(images["""url"""] )
if img.status_code == 200:
a = Image.open(BytesIO(img.content ) )
with open(f'{class_data_dir}/images/{total}.jpg' , """wb""" ) as f:
f.write(img.content )
fa.write(images["""caption"""] + """\n""" )
fa.write(images["""url"""] + """\n""" )
fa.write(f'{class_data_dir}/images/{total}.jpg' + """\n""" )
total += 1
pbar.update(1 )
else:
continue
except Exception:
continue
return
def __A ( ) -> str:
a = argparse.ArgumentParser("""""" , add_help=__lowerCamelCase )
parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__lowerCamelCase , type=__lowerCamelCase )
parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__lowerCamelCase , type=__lowerCamelCase )
parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=__lowerCamelCase )
return parser.parse_args()
if __name__ == "__main__":
__UpperCamelCase : Union[str, Any] = parse_args()
retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
| 353 |
from copy import deepcopy
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :list[int] | None = None , __magic_name__ :int | None = None ):
'''simple docstring'''
if arr is None and size is not None:
a = size
a = [0] * size
elif arr is not None:
self.init(__magic_name__ )
else:
raise ValueError("""Either arr or size must be specified""" )
def lowerCamelCase__ ( self :Dict , __magic_name__ :list[int] ):
'''simple docstring'''
a = len(__magic_name__ )
a = deepcopy(__magic_name__ )
for i in range(1 , self.size ):
a = self.next_(__magic_name__ )
if j < self.size:
self.tree[j] += self.tree[i]
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
a = self.next_(__magic_name__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index - (index & (-index))
def lowerCamelCase__ ( self :Any , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
a = self.next_(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
self.add(__magic_name__ , value - self.get(__magic_name__ ) )
def lowerCamelCase__ ( self :int , __magic_name__ :int ):
'''simple docstring'''
if right == 0:
return 0
a = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
a = self.prev(__magic_name__ )
return result
def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :int ):
'''simple docstring'''
return self.query(__magic_name__ , index + 1 )
def lowerCamelCase__ ( self :Dict , __magic_name__ :int ):
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
a = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
a = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''ibert'''
def __init__( self :int , __magic_name__ :Tuple=3_0522 , __magic_name__ :List[Any]=768 , __magic_name__ :List[Any]=12 , __magic_name__ :List[Any]=12 , __magic_name__ :Any=3072 , __magic_name__ :int="gelu" , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]=0.1 , __magic_name__ :Optional[int]=512 , __magic_name__ :Dict=2 , __magic_name__ :Dict=0.02 , __magic_name__ :List[Any]=1E-1_2 , __magic_name__ :Any=1 , __magic_name__ :Any=0 , __magic_name__ :Tuple=2 , __magic_name__ :Any="absolute" , __magic_name__ :Dict=False , __magic_name__ :Tuple="none" , **__magic_name__ :Any , ):
'''simple docstring'''
super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = hidden_act
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = initializer_range
a = layer_norm_eps
a = position_embedding_type
a = quant_mode
a = force_dequant
class __lowerCAmelCase ( __magic_name__ ):
@property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
if self.task == "multiple-choice":
a = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
a = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 354 |
from __future__ import annotations
from typing import Generic, TypeVar
__UpperCamelCase : Union[str, Any] = TypeVar("T")
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple , __magic_name__ :T ):
'''simple docstring'''
a = data
a = self
a = 0
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T ):
'''simple docstring'''
a = DisjointSetTreeNode(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :T ):
'''simple docstring'''
a = self.map[data]
if elem_ref != elem_ref.parent:
a = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :DisjointSetTreeNode[T] , __magic_name__ :DisjointSetTreeNode[T] ):
'''simple docstring'''
if nodea.rank > nodea.rank:
a = nodea
else:
a = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T , __magic_name__ :T ):
'''simple docstring'''
self.link(self.find_set(__magic_name__ ) , self.find_set(__magic_name__ ) )
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Union[str, Any] ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :T ):
'''simple docstring'''
if node not in self.connections:
a = {}
def lowerCamelCase__ ( self :Any , __magic_name__ :T , __magic_name__ :T , __magic_name__ :int ):
'''simple docstring'''
self.add_node(__magic_name__ )
self.add_node(__magic_name__ )
a = weight
a = weight
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
a = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __magic_name__ : x[2] )
# creating the disjoint set
a = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__magic_name__ )
# MST generation
a = 0
a = 0
a = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
a , a , a = edges[index]
index += 1
a = disjoint_set.find_set(__magic_name__ )
a = disjoint_set.find_set(__magic_name__ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__magic_name__ , __magic_name__ , __magic_name__ )
disjoint_set.union(__magic_name__ , __magic_name__ )
return graph
| 347 | 0 |
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
"huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json",
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''autoformer'''
UpperCamelCase__ = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self :int , __magic_name__ :Optional[int] = None , __magic_name__ :Optional[int] = None , __magic_name__ :str = "student_t" , __magic_name__ :str = "nll" , __magic_name__ :int = 1 , __magic_name__ :List[int] = [1, 2, 3, 4, 5, 6, 7] , __magic_name__ :bool = True , __magic_name__ :int = 0 , __magic_name__ :int = 0 , __magic_name__ :int = 0 , __magic_name__ :int = 0 , __magic_name__ :Optional[List[int]] = None , __magic_name__ :Optional[List[int]] = None , __magic_name__ :int = 64 , __magic_name__ :int = 2 , __magic_name__ :int = 2 , __magic_name__ :int = 2 , __magic_name__ :int = 2 , __magic_name__ :int = 32 , __magic_name__ :int = 32 , __magic_name__ :str = "gelu" , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :int = 100 , __magic_name__ :float = 0.02 , __magic_name__ :bool = True , __magic_name__ :str=True , __magic_name__ :int = 10 , __magic_name__ :int = 25 , __magic_name__ :int = 3 , **__magic_name__ :Tuple , ):
'''simple docstring'''
a = prediction_length
a = context_length if context_length is not None else prediction_length
a = distribution_output
a = loss
a = input_size
a = num_time_features
a = lags_sequence
a = scaling
a = num_dynamic_real_features
a = num_static_real_features
a = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(__magic_name__ ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
a = cardinality
else:
a = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(__magic_name__ ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
a = embedding_dimension
else:
a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
a = num_parallel_samples
# Transformer architecture configuration
a = input_size * len(self.lags_sequence ) + self._number_of_features
a = d_model
a = encoder_attention_heads
a = decoder_attention_heads
a = encoder_ffn_dim
a = decoder_ffn_dim
a = encoder_layers
a = decoder_layers
a = dropout
a = attention_dropout
a = activation_dropout
a = encoder_layerdrop
a = decoder_layerdrop
a = activation_function
a = init_std
a = use_cache
# Autoformer
a = label_length
a = moving_average
a = autocorrelation_factor
super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ )
@property
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 355 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = tempfile.mkdtemp()
a = BlipImageProcessor()
a = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
a = BlipProcessor(__magic_name__ , __magic_name__ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :List[Any] , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer
def lowerCamelCase__ ( self :str , **__magic_name__ :List[str] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
a = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
a = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = self.prepare_image_inputs()
a = image_processor(__magic_name__ , return_tensors="""np""" )
a = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = processor(text=__magic_name__ )
a = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__magic_name__ )
a = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 347 | 0 |
"""simple docstring"""
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
__UpperCamelCase : str = "tiny-wmt19-en-ru"
# Build
# borrowed from a test
__UpperCamelCase : Tuple = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
__UpperCamelCase : Optional[int] = dict(zip(vocab, range(len(vocab))))
__UpperCamelCase : str = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCamelCase : Optional[Any] = Path(tmpdirname)
__UpperCamelCase : int = build_dir / VOCAB_FILES_NAMES["src_vocab_file"]
__UpperCamelCase : Dict = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"]
__UpperCamelCase : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["merges_file"]
with open(src_vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, "w") as fp:
fp.write("\n".join(merges))
__UpperCamelCase : Optional[Any] = FSMTTokenizer(
langs=["en", "ru"],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
__UpperCamelCase : List[str] = FSMTConfig(
langs=["ru", "en"],
src_vocab_size=1_000,
tgt_vocab_size=1_000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
__UpperCamelCase : str = FSMTForConditionalGeneration(config)
print(F'num of params {tiny_model.num_parameters()}')
# Test
__UpperCamelCase : str = tokenizer(["Making tiny model"], return_tensors="pt")
__UpperCamelCase : Union[str, Any] = tiny_model(**batch)
print("test output:", len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F'Generated {mname_tiny}')
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 356 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
UpperCamelCase__ = '''nat'''
UpperCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__magic_name__ )
a = num_heads
a = kernel_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) )
a = layer_scale_init_value
a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 347 | 0 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 357 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 347 | 0 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowerCAmelCase :
@staticmethod
def lowerCamelCase__ ( *__magic_name__ :Tuple , **__magic_name__ :str ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
@require_torch
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , )
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
a = image_classifier(__magic_name__ , candidate_labels=["""a""", """b""", """c"""] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__magic_name__ ) , [
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}],
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}],
] , )
a = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
] , )
@require_tf
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" )
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
a = image_classifier(__magic_name__ , candidate_labels=["""a""", """b""", """c"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , )
a = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
] , )
@slow
@require_torch
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , )
# This is an image of 2 cats with remotes and no planes
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
a = image_classifier(__magic_name__ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
a = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
@slow
@require_tf
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" )
# This is an image of 2 cats with remotes and no planes
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
a = image_classifier(__magic_name__ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
a = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
| 358 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width
__UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it.
__UpperCamelCase : str = 1 / 100
__UpperCamelCase : Optional[int] = ""
__UpperCamelCase : List[Any] = ""
__UpperCamelCase : Union[str, Any] = ""
__UpperCamelCase : Tuple = 250
def __A ( ) -> None:
a , a = get_dataset(__lowerCamelCase , __lowerCamelCase )
for index in range(__lowerCamelCase ):
a = random.sample(range(len(__lowerCamelCase ) ) , 4 )
a , a , a = update_image_and_anno(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
a = random_chars(32 )
a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
a = []
for anno in new_annos:
a = anno[3] - anno[1]
a = anno[4] - anno[2]
a = anno[1] + width / 2
a = anno[2] + height / 2
a = f'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(__lowerCamelCase )
with open(f'{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]:
a = []
a = []
for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ):
a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(__lowerCamelCase ) as in_file:
a = in_file.readlines()
a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' )
a = []
for obj_list in obj_lists:
a = obj_list.rstrip("""\n""" ).split(""" """ )
a = float(obj[1] ) - float(obj[3] ) / 2
a = float(obj[2] ) - float(obj[4] ) / 2
a = float(obj[1] ) + float(obj[3] ) / 2
a = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(__lowerCamelCase )
labels.append(__lowerCamelCase )
return img_paths, labels
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]:
a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = int(scale_x * output_size[1] )
a = int(scale_y * output_size[0] )
a = []
a = []
for i, index in enumerate(__lowerCamelCase ):
a = all_img_list[index]
path_list.append(__lowerCamelCase )
a = all_annos[index]
a = cva.imread(__lowerCamelCase )
if i == 0: # top-left
a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = bbox[2] * scale_y
a = bbox[3] * scale_x
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = bbox[2] * scale_y
a = scale_x + bbox[3] * (1 - scale_x)
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = scale_y + bbox[2] * (1 - scale_y)
a = bbox[3] * scale_x
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
a = cva.resize(
__lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = scale_y + bbox[2] * (1 - scale_y)
a = scale_x + bbox[3] * (1 - scale_x)
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
a = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __A ( __lowerCamelCase ) -> str:
assert number_char > 1, "The number of character should greater than 1"
a = ascii_lowercase + digits
return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 347 | 0 |
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
if number < 0 or shift_amount < 0:
raise ValueError("""both inputs must be positive integers""" )
a : List[str] = str(bin(__lowerCamelCase ) )
binary_number += "0" * shift_amount
return binary_number
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
if number < 0 or shift_amount < 0:
raise ValueError("""both inputs must be positive integers""" )
a : Any = str(bin(__lowerCamelCase ) )[2:]
if shift_amount >= len(__lowerCamelCase ):
return "0b0"
a : Optional[Any] = binary_number[: len(__lowerCamelCase ) - shift_amount]
return "0b" + shifted_binary_number
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
if number >= 0: # Get binary representation of positive number
a : Any = """0""" + str(bin(__lowerCamelCase ) ).strip("""-""" )[2:]
else: # Get binary (2's complement) representation of negative number
a : Any = len(bin(__lowerCamelCase )[3:] ) # Find 2's complement of number
a : List[Any] = bin(abs(__lowerCamelCase ) - (1 << binary_number_length) )[3:]
a : int = (
"""1""" + """0""" * (binary_number_length - len(__lowerCamelCase )) + binary_number
)
if shift_amount >= len(__lowerCamelCase ):
return "0b" + binary_number[0] * len(__lowerCamelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__lowerCamelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Optional[Any] = {
"configuration_mobilenet_v2": [
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileNetV2Config",
"MobileNetV2OnnxConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ["MobileNetV2FeatureExtractor"]
__UpperCamelCase : Tuple = ["MobileNetV2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileNetV2ForImageClassification",
"MobileNetV2ForSemanticSegmentation",
"MobileNetV2Model",
"MobileNetV2PreTrainedModel",
"load_tf_weights_in_mobilenet_v2",
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
"""simple docstring"""
import requests
def __A ( __lowerCamelCase , __lowerCamelCase ) -> None:
a = {"""Content-Type""": """application/json"""}
a = requests.post(__lowerCamelCase , json={"""text""": message_body} , headers=__lowerCamelCase )
if response.status_code != 200:
a = (
"""Request to slack returned an error """
f'{response.status_code}, the response is:\n{response.text}'
)
raise ValueError(__lowerCamelCase )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
| 360 |
def __A ( __lowerCamelCase ) -> bool:
if num < 0:
return False
a = num
a = 0
while num > 0:
a = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCamelCase : int = logging.get_logger(__name__)
__UpperCamelCase : Union[str, Any] = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''segformer'''
def __init__( self :Dict , __magic_name__ :List[str]=3 , __magic_name__ :int=4 , __magic_name__ :Union[str, Any]=[2, 2, 2, 2] , __magic_name__ :List[Any]=[8, 4, 2, 1] , __magic_name__ :str=[32, 64, 160, 256] , __magic_name__ :int=[7, 3, 3, 3] , __magic_name__ :Dict=[4, 2, 2, 2] , __magic_name__ :List[Any]=[1, 2, 5, 8] , __magic_name__ :int=[4, 4, 4, 4] , __magic_name__ :Union[str, Any]="gelu" , __magic_name__ :Any=0.0 , __magic_name__ :Optional[int]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :str=0.02 , __magic_name__ :List[str]=0.1 , __magic_name__ :Any=1E-6 , __magic_name__ :Optional[int]=256 , __magic_name__ :Tuple=255 , **__magic_name__ :Tuple , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __magic_name__ , )
a = num_channels
a = num_encoder_blocks
a = depths
a = sr_ratios
a = hidden_sizes
a = patch_sizes
a = strides
a = mlp_ratios
a = num_attention_heads
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = classifier_dropout_prob
a = initializer_range
a = drop_path_rate
a = layer_norm_eps
a = decoder_hidden_size
a = kwargs.get("""reshape_last_stage""" , __magic_name__ )
a = semantic_loss_ignore_index
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = version.parse('''1.11''' )
@property
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
return 1E-4
@property
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return 12
| 361 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = CanineTokenizer
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
a = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowerCamelCase__ ( self :Tuple , **__magic_name__ :Dict ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
a = 1024
return tokenizer
@require_torch
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
a = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
a = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
a = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
a = chr(0Xe_0_0_7 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
a = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a , a = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_5
a = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
a = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = chr(0Xe_0_0_5 )
a = chr(0Xe_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
a = tokenizer.tokenize(__magic_name__ )
a = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = [new_token_a]
a = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
a = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
a = 0Xe_0_0_7
a = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
a = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
a = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = """hello world"""
if self.space_between_special_tokens:
a = """[CLS] hello world [SEP]"""
else:
a = input
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
a = """a"""
a = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
a = 0Xe_0_0_6
a = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
| 347 | 0 |
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
__UpperCamelCase : int = argparse.ArgumentParser(
description=(
"Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned"
" Distillation"
)
)
parser.add_argument("--model_type", default="bert", choices=["bert"])
parser.add_argument("--model_name", default="bert-base-uncased", type=str)
parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str)
parser.add_argument("--vocab_transform", action="store_true")
__UpperCamelCase : List[str] = parser.parse_args()
if args.model_type == "bert":
__UpperCamelCase : Dict = BertForMaskedLM.from_pretrained(args.model_name)
__UpperCamelCase : Tuple = "bert"
else:
raise ValueError("args.model_type should be \"bert\".")
__UpperCamelCase : List[str] = model.state_dict()
__UpperCamelCase : Any = {}
for w in ["word_embeddings", "position_embeddings"]:
__UpperCamelCase : Tuple = state_dict[F'{prefix}.embeddings.{w}.weight']
for w in ["weight", "bias"]:
__UpperCamelCase : Optional[int] = state_dict[F'{prefix}.embeddings.LayerNorm.{w}']
__UpperCamelCase : str = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
__UpperCamelCase : List[Any] = state_dict[
F'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}'
]
__UpperCamelCase : Dict = state_dict[
F'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}'
]
__UpperCamelCase : Union[str, Any] = state_dict[
F'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}'
]
__UpperCamelCase : Optional[int] = state_dict[
F'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}'
]
__UpperCamelCase : int = state_dict[
F'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}'
]
__UpperCamelCase : str = state_dict[
F'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}'
]
__UpperCamelCase : Optional[int] = state_dict[
F'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}'
]
__UpperCamelCase : int = state_dict[
F'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}'
]
std_idx += 1
__UpperCamelCase : List[str] = state_dict["cls.predictions.decoder.weight"]
__UpperCamelCase : Tuple = state_dict["cls.predictions.bias"]
if args.vocab_transform:
for w in ["weight", "bias"]:
__UpperCamelCase : List[Any] = state_dict[F'cls.predictions.transform.dense.{w}']
__UpperCamelCase : Optional[Any] = state_dict[F'cls.predictions.transform.LayerNorm.{w}']
print(F'N layers selected for distillation: {std_idx}')
print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}')
print(F'Save transferred checkpoint to {args.dump_checkpoint}.')
torch.save(compressed_sd, args.dump_checkpoint) | 362 |
def __A ( __lowerCamelCase ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
__UpperCamelCase : Union[str, Any] = {
0: "0",
1: "1",
2: "2",
3: "3",
4: "4",
5: "5",
6: "6",
7: "7",
8: "8",
9: "9",
10: "a",
11: "b",
12: "c",
13: "d",
14: "e",
15: "f",
}
def __A ( __lowerCamelCase ) -> str:
assert type(__lowerCamelCase ) in (int, float) and decimal == int(__lowerCamelCase )
a = int(__lowerCamelCase )
a = """"""
a = False
if decimal < 0:
a = True
decimal *= -1
while decimal > 0:
a , a = divmod(__lowerCamelCase , 16 )
a = values[remainder] + hexadecimal
a = """0x""" + hexadecimal
if negative:
a = """-""" + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 363 |
def __A ( __lowerCamelCase ) -> int:
if not numbers:
return 0
if not isinstance(__lowerCamelCase , (list, tuple) ) or not all(
isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
a = a = a = numbers[0]
for i in range(1 , len(__lowerCamelCase ) ):
# update the maximum and minimum subarray products
a = numbers[i]
if number < 0:
a , a = min_till_now, max_till_now
a = max(__lowerCamelCase , max_till_now * number )
a = min(__lowerCamelCase , min_till_now * number )
# update the maximum product found till now
a = max(__lowerCamelCase , __lowerCamelCase )
return max_prod
| 347 | 0 |
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
assert x is not None
assert y is not None
a = len(__lowerCamelCase )
a = len(__lowerCamelCase )
# declaring the array for storing the dp values
a = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 , m + 1 ):
for j in range(1 , n + 1 ):
a = 1 if x[i - 1] == y[j - 1] else 0
a = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match )
a = """"""
a , a = m, n
while i > 0 and j > 0:
a = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
a = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
__UpperCamelCase : Tuple = "AGGTAB"
__UpperCamelCase : Dict = "GXTXAYB"
__UpperCamelCase : List[str] = 4
__UpperCamelCase : Union[str, Any] = "GTAB"
__UpperCamelCase : Optional[Any] = longest_common_subsequence(a, b)
print("len =", ln, ", sub-sequence =", subseq)
import doctest
doctest.testmod()
| 364 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase : Optional[Any] = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = KandinskyVaaPriorPipeline
UpperCamelCase__ = ['''prompt''']
UpperCamelCase__ = ['''prompt''', '''negative_prompt''']
UpperCamelCase__ = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
UpperCamelCase__ = False
@property
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
return 32
@property
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
return 32
@property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
return 100
@property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(__magic_name__ )
@property
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
a = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 12,
"""embedding_dim""": self.text_embedder_hidden_size,
"""num_layers""": 1,
}
a = PriorTransformer(**__magic_name__ )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__magic_name__ )
return model
@property
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__magic_name__ , do_normalize=__magic_name__ , do_resize=__magic_name__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__magic_name__ , clip_sample_range=10.0 , )
a = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""scheduler""": scheduler,
"""image_processor""": image_processor,
}
return components
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :List[Any]=0 ):
'''simple docstring'''
if str(__magic_name__ ).startswith("""mps""" ):
a = torch.manual_seed(__magic_name__ )
else:
a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
a = {
"""prompt""": """horse""",
"""generator""": generator,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = """cpu"""
a = self.get_dummy_components()
a = self.pipeline_class(**__magic_name__ )
a = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
a = pipe(**self.get_dummy_inputs(__magic_name__ ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = torch_device == """cpu"""
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , test_mean_pixel_difference=__magic_name__ , )
@skip_mps
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = torch_device == """cpu"""
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__magic_name__ , test_mean_pixel_difference=__magic_name__ , )
| 365 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase )
a = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
a = dataset_size < in_memory_max_size
else:
a = False
a = is_small_dataset(__lowerCamelCase )
assert result == expected
| 347 | 0 |
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
a = (boundary[1] - boundary[0]) / steps
a = boundary[0]
a = boundary[1]
a = make_points(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
a = 0.0
y += (h / 2.0) * f(__lowerCamelCase )
for i in x_i:
# print(i)
y += h * f(__lowerCamelCase )
y += (h / 2.0) * f(__lowerCamelCase )
return y
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = a + h
while x < (b - h):
yield x
a = x + h
def __A ( __lowerCamelCase ) -> Dict: # enter your function here
a = (x - 0) * (x - 0)
return y
def __A ( ) -> Optional[Any]:
a = 0.0 # Lower bound of integration
a = 1.0 # Upper bound of integration
a = 10.0 # define number of steps or resolution
a = [a, b] # define boundary of integration
a = method_a(__lowerCamelCase , __lowerCamelCase )
print(f'y = {y}' )
if __name__ == "__main__":
main()
| 366 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( __lowerCamelCase ) -> bool:
a = int(number**0.5 )
return number == sq * sq
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]:
a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
a = x_den * y_den * z_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( __lowerCamelCase = 35 ) -> int:
a = set()
a = 42
a = Fraction(0 )
a = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
a = x_num * y_den + x_den * y_num
a = x_den * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
a = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
a = x_num * y_num
a = x_den * y_num + x_num * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = x_num * x_num * y_num * y_num
a = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }')
| 347 | 0 |
from collections import Counter
from timeit import timeit
def __A ( __lowerCamelCase = "" , ) -> bool:
return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2
def __A ( __lowerCamelCase = "" ) -> bool:
if len(__lowerCamelCase ) == 0:
return True
a = input_str.replace(""" """ , """""" ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
a = {}
for character in lower_case_input_str:
a = character_freq_dict.get(__lowerCamelCase , 0 ) + 1
a = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def __A ( __lowerCamelCase = "" ) -> None:
print("""\nFor string = """ , __lowerCamelCase , """:""" )
print(
"""> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(__lowerCamelCase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
print(
"""> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(__lowerCamelCase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
if __name__ == "__main__":
__UpperCamelCase : Tuple = input(
"Enter string to determine if it can be rearranged as a palindrome or not: "
).strip()
benchmark(check_str)
__UpperCamelCase : str = can_string_be_rearranged_as_palindrome_counter(check_str)
print(F'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
| 367 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = FlaxRoFormerModelTester(self )
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
a = jnp.array([[0, 1, 2, 3, 4, 5]] )
a = model(__magic_name__ )[0]
a = 5_0000
a = (1, 6, vocab_size)
self.assertEqual(output.shape , __magic_name__ )
a = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 0 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class __lowerCAmelCase :
def __init__( self :Any , __magic_name__ :Union[str, Any] , __magic_name__ :List[str]=2 , __magic_name__ :Dict=True , __magic_name__ :Optional[int]=False , __magic_name__ :Any=10 , __magic_name__ :int=3 , __magic_name__ :Optional[Any]=32 * 4 , __magic_name__ :int=32 * 6 , __magic_name__ :int=4 , __magic_name__ :Union[str, Any]=32 , ):
'''simple docstring'''
a = parent
a = batch_size
a = is_training
a = use_auxiliary_loss
a = num_queries
a = num_channels
a = min_size
a = max_size
a = num_labels
a = mask_feature_size
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__magic_name__ )
a = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__magic_name__ )
a = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__magic_name__ ) > 0.5
).float()
a = (torch.rand((self.batch_size, self.num_labels) , device=__magic_name__ ) > 0.5).long()
a = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a , a , a , a , a = self.prepare_config_and_inputs()
a = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :str , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = output.encoder_hidden_states
a = output.pixel_decoder_hidden_states
a = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__magic_name__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__magic_name__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__magic_name__ ) , config.decoder_config.decoder_layers )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :List[Any]=False ):
'''simple docstring'''
with torch.no_grad():
a = MaskFormerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(pixel_values=__magic_name__ , pixel_mask=__magic_name__ )
a = model(__magic_name__ , output_hidden_states=__magic_name__ )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[Any] , __magic_name__ :str , __magic_name__ :Dict , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = MaskFormerForInstanceSegmentation(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
def comm_check_on_output(__magic_name__ :List[Any] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
a = model(pixel_values=__magic_name__ , pixel_mask=__magic_name__ )
a = model(__magic_name__ )
comm_check_on_output(__magic_name__ )
a = model(
pixel_values=__magic_name__ , pixel_mask=__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ )
comm_check_on_output(__magic_name__ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
UpperCamelCase__ = (
{'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = MaskFormerModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(__magic_name__ , **__magic_name__ , output_hidden_states=__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__magic_name__ )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
@slow
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
for model_name in ["facebook/maskformer-swin-small-coco"]:
a = MaskFormerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = (self.model_tester.min_size,) * 2
a = {
"""pixel_values""": torch.randn((2, 3, *size) , device=__magic_name__ ),
"""mask_labels""": torch.randn((2, 10, *size) , device=__magic_name__ ),
"""class_labels""": torch.zeros(2 , 10 , device=__magic_name__ ).long(),
}
a = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__magic_name__ )
a = model(**__magic_name__ )
self.assertTrue(outputs.loss is not None )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(__magic_name__ , **__magic_name__ , output_hidden_states=__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ ).to(__magic_name__ )
a = model(**__magic_name__ , output_attentions=__magic_name__ )
self.assertTrue(outputs.attentions is not None )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
a = self.all_model_classes[1]
a , a , a , a , a = self.model_tester.prepare_config_and_inputs()
a = model_class(__magic_name__ )
model.to(__magic_name__ )
model.train()
a = model(__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ ).loss
loss.backward()
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.all_model_classes[1]
a , a , a , a , a = self.model_tester.prepare_config_and_inputs()
a = True
a = True
a = model_class(__magic_name__ )
model.to(__magic_name__ )
model.train()
a = model(__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ )
a = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
a = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
a = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
a = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__magic_name__ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__UpperCamelCase : Union[str, Any] = 1E-4
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
a = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__magic_name__ , (1, 3, 800, 1088) )
with torch.no_grad():
a = model(**__magic_name__ )
a = torch.tensor(
[[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(__magic_name__ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
a = torch.tensor(
[[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(__magic_name__ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
a = torch.tensor(
[[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(__magic_name__ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(__magic_name__ )
.eval()
)
a = self.default_image_processor
a = prepare_img()
a = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
a = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__magic_name__ , (1, 3, 800, 1088) )
with torch.no_grad():
a = model(**__magic_name__ )
# masks_queries_logits
a = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
a = [
[-1.3737124, -1.7724937, -1.9364233],
[-1.5977281, -1.9867939, -2.1523695],
[-1.5795398, -1.9269832, -2.093942],
]
a = torch.tensor(__magic_name__ ).to(__magic_name__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
# class_queries_logits
a = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
a = torch.tensor(
[
[1.6_5_1_2E0_0, -5.2_5_7_2E0_0, -3.3_5_1_9E0_0],
[3.6_1_6_9E-0_2, -5.9_0_2_5E0_0, -2.9_3_1_3E0_0],
[1.0_7_6_6E-0_4, -7.7_6_3_0E0_0, -5.1_2_6_3E0_0],
] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(__magic_name__ )
.eval()
)
a = self.default_image_processor
a = prepare_img()
a = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
a = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__magic_name__ , (1, 3, 800, 1088) )
with torch.no_grad():
a = model(**__magic_name__ )
# masks_queries_logits
a = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
a = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]]
a = torch.tensor(__magic_name__ ).to(__magic_name__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
# class_queries_logits
a = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
a = torch.tensor(
[[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(__magic_name__ )
.eval()
)
a = self.default_image_processor
a = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , )
a = inputs["""pixel_values"""].to(__magic_name__ )
a = [el.to(__magic_name__ ) for el in inputs["""mask_labels"""]]
a = [el.to(__magic_name__ ) for el in inputs["""class_labels"""]]
with torch.no_grad():
a = model(**__magic_name__ )
self.assertTrue(outputs.loss is not None )
| 368 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCamelCase : List[Any] = logging.get_logger(__name__)
__UpperCamelCase : Optional[Any] = {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''roformer'''
def __init__( self :Optional[int] , __magic_name__ :Optional[int]=5_0000 , __magic_name__ :Optional[Any]=None , __magic_name__ :int=768 , __magic_name__ :List[Any]=12 , __magic_name__ :Any=12 , __magic_name__ :Any=3072 , __magic_name__ :Any="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Any=0.1 , __magic_name__ :int=1536 , __magic_name__ :Optional[Any]=2 , __magic_name__ :Any=0.02 , __magic_name__ :Tuple=1E-1_2 , __magic_name__ :Tuple=0 , __magic_name__ :List[Any]=False , __magic_name__ :int=True , **__magic_name__ :List[str] , ):
'''simple docstring'''
super().__init__(pad_token_id=__magic_name__ , **__magic_name__ )
a = vocab_size
a = hidden_size if embedding_size is None else embedding_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = hidden_act
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = initializer_range
a = layer_norm_eps
a = rotary_value
a = use_cache
class __lowerCAmelCase ( __magic_name__ ):
@property
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
if self.task == "multiple-choice":
a = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
a = {0: """batch""", 1: """sequence"""}
a = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 369 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = (IPNDMScheduler,)
UpperCamelCase__ = (('''num_inference_steps''', 50),)
def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {"""num_train_timesteps""": 1000}
config.update(**__magic_name__ )
return config
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
return sample
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ):
scheduler.set_timesteps(__magic_name__ )
elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
a = dummy_past_residuals[:]
a = scheduler.timesteps[5]
a = scheduler.timesteps[6]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.full_loop()
a = torch.mean(torch.abs(__magic_name__ ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 347 | 0 |
def __A ( __lowerCamelCase ) -> float:
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
a = sum(__lowerCamelCase ) / len(__lowerCamelCase ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 370 |
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def __A ( ) -> None:
a = input("""Enter message: """ )
a = input("""Enter key [alphanumeric]: """ )
a = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
a = """encrypt"""
a = encrypt_message(__lowerCamelCase , __lowerCamelCase )
elif mode.lower().startswith("""d""" ):
a = """decrypt"""
a = decrypt_message(__lowerCamelCase , __lowerCamelCase )
print(f'\n{mode.title()}ed message:' )
print(__lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = []
a = 0
a = key.upper()
for symbol in message:
a = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(__lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(__lowerCamelCase ):
a = 0
else:
translated.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
if __name__ == "__main__":
main()
| 347 | 0 |
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = DebertaTokenizer
UpperCamelCase__ = True
UpperCamelCase__ = DebertaTokenizerFast
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
a = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""[UNK]""",
]
a = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
a = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
a = {"""unk_token""": """[UNK]"""}
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__magic_name__ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__magic_name__ ) )
def lowerCamelCase__ ( self :str , **__magic_name__ :Any ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
def lowerCamelCase__ ( self :str , __magic_name__ :int ):
'''simple docstring'''
a = """lower newer"""
a = """lower newer"""
return input_text, output_text
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.get_tokenizer()
a = """lower newer"""
a = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
a = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
a = tokens + [tokenizer.unk_token]
a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizer()
a = tokenizer("""Hello""" , """World""" )
a = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd["""token_type_ids"""] , __magic_name__ )
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" )
a = tokenizer.encode("""sequence builders""" , add_special_tokens=__magic_name__ )
a = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__magic_name__ )
a = tokenizer.encode(
"""sequence builders""" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
a = tokenizer.encode(
"""sequence builders""" , """multi-sequence build""" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
a = tokenizer.build_inputs_with_special_tokens(__magic_name__ )
a = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
a = tokenizer_class.from_pretrained("""microsoft/deberta-base""" )
a = [
"""ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""",
"""ALBERT incorporates two parameter reduction techniques""",
"""The first one is a factorized embedding parameterization. By decomposing the large vocabulary"""
""" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"""
""" vocabulary embedding.""",
]
a = tokenizer(__magic_name__ , padding=__magic_name__ )
a = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding["""input_ids"""]]
# fmt: off
a = {
"""input_ids""": [
[1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2]
],
"""token_type_ids""": [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
"""attention_mask""": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
a = [
"""ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""",
"""ALBERT incorporates two parameter reduction techniques""",
"""The first one is a factorized embedding parameterization. By decomposing the large vocabulary"""
""" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"""
""" vocabulary embedding.""",
]
self.assertDictEqual(encoding.data , __magic_name__ )
for expected, decoded in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(__magic_name__ , __magic_name__ )
| 371 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = True
a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = FlaxRobertaModelTester(self )
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 347 | 0 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = (IPNDMScheduler,)
UpperCamelCase__ = (('''num_inference_steps''', 50),)
def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {"""num_train_timesteps""": 1000}
config.update(**__magic_name__ )
return config
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
return sample
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ):
scheduler.set_timesteps(__magic_name__ )
elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
a = dummy_past_residuals[:]
a = scheduler.timesteps[5]
a = scheduler.timesteps[6]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.full_loop()
a = torch.mean(torch.abs(__magic_name__ ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 350 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
UpperCamelCase__ = None
UpperCamelCase__ = "utf-8"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True # deprecated
UpperCamelCase__ = None # deprecated
UpperCamelCase__ = 10 << 20 # 10MB
UpperCamelCase__ = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
UpperCamelCase__ = JsonConfig
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
a = data_files
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
a = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
a = self.config.features.arrow_schema.field(__magic_name__ ).type
a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
a = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
# We keep only the field we are interested in
a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
a = dataset
a = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , """rb""" ) as f:
a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
a = max(self.config.chunksize // 32 , 16 << 10 )
a = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" )
try:
while True:
try:
a = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
a = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 347 | 0 |
from functools import reduce
__UpperCamelCase : Union[str, Any] = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def __A ( __lowerCamelCase = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda __lowerCamelCase , __lowerCamelCase : str(int(__lowerCamelCase ) * int(__lowerCamelCase ) ) , n[i : i + 13] ) )
for i in range(len(__lowerCamelCase ) - 12 ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 351 |
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :List[str] , __magic_name__ :int="</s>" , __magic_name__ :List[Any]="<unk>" , __magic_name__ :Optional[Any]="<pad>" , __magic_name__ :Optional[int]=125 , __magic_name__ :List[str]=None , **__magic_name__ :List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"""
""" extra_ids tokens""" )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
super().__init__(
eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
a = extra_ids
a = 2**8 # utf is 8 bits
# define special tokens dict
a = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
a = len(self.special_tokens_encoder )
a = len(__magic_name__ )
for i, token in enumerate(__magic_name__ ):
a = self.vocab_size + i - n
a = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__magic_name__ )) + [1]
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def lowerCamelCase__ ( self :str , __magic_name__ :List[int] ):
'''simple docstring'''
if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = self._add_eos_if_not_present(__magic_name__ )
if token_ids_a is None:
return token_ids_a
else:
a = self._add_eos_if_not_present(__magic_name__ )
return token_ids_a + token_ids_a
def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ):
'''simple docstring'''
a = [chr(__magic_name__ ) for i in text.encode("""utf-8""" )]
return tokens
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if token in self.special_tokens_encoder:
a = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
a = self.added_tokens_encoder[token]
elif len(__magic_name__ ) != 1:
a = self.unk_token_id
else:
a = ord(__magic_name__ ) + self._num_special_tokens
return token_id
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ):
'''simple docstring'''
if index in self.special_tokens_decoder:
a = self.special_tokens_decoder[index]
else:
a = chr(index - self._num_special_tokens )
return token
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = b""""""
for token in tokens:
if token in self.special_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.added_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.special_tokens_encoder:
a = token.encode("""utf-8""" )
elif token in self.added_tokens_encoder:
a = token.encode("""utf-8""" )
else:
a = bytes([ord(__magic_name__ )] )
bstring += tok_string
a = bstring.decode("""utf-8""" , errors="""ignore""" )
return string
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
return ()
| 347 | 0 |
__UpperCamelCase : str = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
__UpperCamelCase : List[str] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
__UpperCamelCase : List[str] = {
0: "Sunday",
1: "Monday",
2: "Tuesday",
3: "Wednesday",
4: "Thursday",
5: "Friday",
6: "Saturday",
}
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
assert len(str(__lowerCamelCase ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
a = year // 100
a = (5 * (century % 4) + 2) % 7
a = year % 100
a = centurian % 12
a = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
a = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
a = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 352 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self :Optional[int] , __magic_name__ :str , __magic_name__ :int=2 , __magic_name__ :List[str]=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :str=2 , __magic_name__ :Any=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=True , __magic_name__ :List[Any]=99 , __magic_name__ :Dict=36 , __magic_name__ :Optional[Any]=3 , __magic_name__ :str=4 , __magic_name__ :Optional[Any]=37 , __magic_name__ :Dict="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Dict=512 , __magic_name__ :str=16 , __magic_name__ :List[Any]=2 , __magic_name__ :Tuple=0.02 , __magic_name__ :Any=6 , __magic_name__ :Optional[int]=6 , __magic_name__ :Tuple=3 , __magic_name__ :str=4 , __magic_name__ :List[str]=None , __magic_name__ :str=1000 , ):
'''simple docstring'''
a = parent
a = batch_size
a = num_channels
a = image_size
a = patch_size
a = text_seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = coordinate_size
a = shape_size
a = num_labels
a = num_choices
a = scope
a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
a = text_seq_length
a = (image_size // patch_size) ** 2 + 1
a = self.text_seq_length + self.image_seq_length
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a = bbox[i, j, 3]
a = bbox[i, j, 1]
a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a = bbox[i, j, 2]
a = bbox[i, j, 0]
a = t
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.text_seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase__ ( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int ):
'''simple docstring'''
a = LayoutLMvaModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# text + image
a = model(__magic_name__ , pixel_values=__magic_name__ )
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
a = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
a = model(pixel_values=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :List[str] ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ):
'''simple docstring'''
return True
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = LayoutLMvaModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :Any=False ):
'''simple docstring'''
a = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__magic_name__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in get_values(__magic_name__ ):
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__magic_name__ , )
return inputs_dict
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = LayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""pt""" ).pixel_values.to(__magic_name__ )
a = torch.tensor([[1, 2]] )
a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
a = model(
input_ids=input_ids.to(__magic_name__ ) , bbox=bbox.to(__magic_name__ ) , pixel_values=pixel_values.to(__magic_name__ ) , )
# verify the logits
a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 0 |
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {"vocab_file": "spiece.model"}
__UpperCamelCase : Optional[int] = {
"vocab_file": {
"t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model",
"t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model",
"t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model",
}
}
# TODO(PVP) - this should be removed in Transformers v5
__UpperCamelCase : Optional[int] = {
"t5-small": 512,
"t5-base": 512,
"t5-large": 512,
"t5-3b": 512,
"t5-11b": 512,
}
__UpperCamelCase : Tuple = "▁"
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = VOCAB_FILES_NAMES
UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Tuple="</s>" , __magic_name__ :Any="<unk>" , __magic_name__ :Dict="<pad>" , __magic_name__ :Optional[Any]=100 , __magic_name__ :str=None , __magic_name__ :Optional[Dict[str, Any]] = None , __magic_name__ :Optional[Any]=True , **__magic_name__ :Optional[int] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"""
""" tokens""" )
if legacy:
logger.warning_once(
F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'
""" read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" )
a = legacy
a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , legacy=__magic_name__ , **__magic_name__ , )
a = vocab_file
a = extra_ids
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
@staticmethod
def lowerCamelCase__ ( __magic_name__ :Dict , __magic_name__ :List[Any] , __magic_name__ :Any ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
a = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"""This tokenizer was incorrectly instantiated with a model max length of"""
F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'
""" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"""
""" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"""
F' {pretrained_model_name_or_path} automatically truncating your input to'
F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'
F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'
""" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"""
""" instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __magic_name__ , )
return max_model_length
@property
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
return self.sp_model.get_piece_size() + self._extra_ids
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__magic_name__ )) + [1]
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return list(
set(filter(lambda __magic_name__ : bool(re.search(r"""<extra_id_\d+>""" , __magic_name__ ) ) is not None , self.additional_special_tokens ) ) )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
return [self._convert_token_to_id(__magic_name__ ) for token in self.get_sentinel_tokens()]
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[int] ):
'''simple docstring'''
if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :str , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = self._add_eos_if_not_present(__magic_name__ )
if token_ids_a is None:
return token_ids_a
else:
a = self._add_eos_if_not_present(__magic_name__ )
return token_ids_a + token_ids_a
def __getstate__( self :Dict ):
'''simple docstring'''
a = self.__dict__.copy()
a = None
return state
def __setstate__( self :str , __magic_name__ :List[str] ):
'''simple docstring'''
a = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
a = {}
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCamelCase__ ( self :Any , __magic_name__ :"TextInput" , **__magic_name__ :int ):
'''simple docstring'''
if not self.legacy:
a = SPIECE_UNDERLINE + text.replace(__magic_name__ , """ """ )
return super().tokenize(__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Any , **__magic_name__ :Any ):
'''simple docstring'''
if not self.legacy:
a = text.startswith(__magic_name__ )
if is_first:
a = text[1:]
a = self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(__magic_name__ ):
a = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def lowerCamelCase__ ( self :str , __magic_name__ :Tuple ):
'''simple docstring'''
if token.startswith("""<extra_id_""" ):
a = re.match(r"""<extra_id_(\d+)>""" , __magic_name__ )
a = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Any ):
'''simple docstring'''
if index < self.sp_model.get_piece_size():
a = self.sp_model.IdToPiece(__magic_name__ )
else:
a = F'<extra_id_{self.vocab_size - 1 - index}>'
return token
def lowerCamelCase__ ( self :Dict , __magic_name__ :Tuple ):
'''simple docstring'''
a = []
a = """"""
a = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__magic_name__ ) + token
a = True
a = []
else:
current_sub_tokens.append(__magic_name__ )
a = False
out_string += self.sp_model.decode(__magic_name__ )
return out_string.strip()
def lowerCamelCase__ ( self :Any , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__magic_name__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
a = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , """wb""" ) as fi:
a = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
| 353 |
from copy import deepcopy
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :list[int] | None = None , __magic_name__ :int | None = None ):
'''simple docstring'''
if arr is None and size is not None:
a = size
a = [0] * size
elif arr is not None:
self.init(__magic_name__ )
else:
raise ValueError("""Either arr or size must be specified""" )
def lowerCamelCase__ ( self :Dict , __magic_name__ :list[int] ):
'''simple docstring'''
a = len(__magic_name__ )
a = deepcopy(__magic_name__ )
for i in range(1 , self.size ):
a = self.next_(__magic_name__ )
if j < self.size:
self.tree[j] += self.tree[i]
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
a = self.next_(__magic_name__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index - (index & (-index))
def lowerCamelCase__ ( self :Any , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
a = self.next_(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
self.add(__magic_name__ , value - self.get(__magic_name__ ) )
def lowerCamelCase__ ( self :int , __magic_name__ :int ):
'''simple docstring'''
if right == 0:
return 0
a = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
a = self.prev(__magic_name__ )
return result
def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :int ):
'''simple docstring'''
return self.query(__magic_name__ , index + 1 )
def lowerCamelCase__ ( self :Dict , __magic_name__ :int ):
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
a = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
a = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class __lowerCAmelCase :
def __init__( self :Optional[int] , __magic_name__ :List[Any] , __magic_name__ :Optional[int]=13 , __magic_name__ :Union[str, Any]=7 , __magic_name__ :str=False , __magic_name__ :Optional[Any]=True , __magic_name__ :Optional[Any]=False , __magic_name__ :Dict=False , __magic_name__ :List[Any]=19 , __magic_name__ :List[str]=32 , __magic_name__ :Any=5 , __magic_name__ :str=4 , __magic_name__ :Union[str, Any]=37 , __magic_name__ :List[Any]="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :str=0.1 , __magic_name__ :Union[str, Any]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Optional[Any]=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :List[Any]=3 , __magic_name__ :Tuple=4 , __magic_name__ :Any=None , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_labels
a = num_choices
a = scope
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
a = ids_tensor([self.batch_size] , self.num_choices )
a = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = EsmConfig(
vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__magic_name__ , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , )
return config
def lowerCamelCase__ ( self :int , __magic_name__ :List[Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :str ):
'''simple docstring'''
a = EsmForProteinFolding(config=__magic_name__ ).float()
model.to(__magic_name__ )
model.eval()
a = model(__magic_name__ , attention_mask=__magic_name__ )
a = model(__magic_name__ )
a = model(__magic_name__ )
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) )
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = False
UpperCamelCase__ = (EsmForProteinFolding,) if is_torch_available() else ()
UpperCamelCase__ = ()
UpperCamelCase__ = {} if is_torch_available() else {}
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = EsmFoldModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
@unittest.skip("""Does not support attention outputs""" )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
pass
@unittest.skip
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
@unittest.skip("""Esm does not support embedding resizing""" )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
@unittest.skip("""Esm does not support embedding resizing""" )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold does not support passing input embeds!""" )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold does not output hidden states in the normal way.""" )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
pass
@unittest.skip("""ESMfold does not output hidden states in the normal way.""" )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold only has one output format.""" )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
@unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold does not support input chunking.""" )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""" )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""" )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""" )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
@unittest.skip("""ESMFold doesn't support data parallel.""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
@require_torch
class __lowerCAmelCase ( __magic_name__ ):
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float()
model.eval()
a = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
a = model(__magic_name__ )["""positions"""]
a = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa )
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __magic_name__ , atol=1E-4 ) )
| 354 |
from __future__ import annotations
from typing import Generic, TypeVar
__UpperCamelCase : Union[str, Any] = TypeVar("T")
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple , __magic_name__ :T ):
'''simple docstring'''
a = data
a = self
a = 0
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T ):
'''simple docstring'''
a = DisjointSetTreeNode(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :T ):
'''simple docstring'''
a = self.map[data]
if elem_ref != elem_ref.parent:
a = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :DisjointSetTreeNode[T] , __magic_name__ :DisjointSetTreeNode[T] ):
'''simple docstring'''
if nodea.rank > nodea.rank:
a = nodea
else:
a = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T , __magic_name__ :T ):
'''simple docstring'''
self.link(self.find_set(__magic_name__ ) , self.find_set(__magic_name__ ) )
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Union[str, Any] ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :T ):
'''simple docstring'''
if node not in self.connections:
a = {}
def lowerCamelCase__ ( self :Any , __magic_name__ :T , __magic_name__ :T , __magic_name__ :int ):
'''simple docstring'''
self.add_node(__magic_name__ )
self.add_node(__magic_name__ )
a = weight
a = weight
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
a = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __magic_name__ : x[2] )
# creating the disjoint set
a = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__magic_name__ )
# MST generation
a = 0
a = 0
a = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
a , a , a = edges[index]
index += 1
a = disjoint_set.find_set(__magic_name__ )
a = disjoint_set.find_set(__magic_name__ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__magic_name__ , __magic_name__ , __magic_name__ )
disjoint_set.union(__magic_name__ , __magic_name__ )
return graph
| 347 | 0 |
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase : Tuple = logging.get_logger(__name__)
def lowercase__ ( __lowerCamelCase ) -> str:
a = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
a = 128
elif "12-12" in model_name:
a = 12
a = 12
elif "14-14" in model_name:
a = 14
a = 14
elif "16-16" in model_name:
a = 16
a = 16
else:
raise ValueError("""Model not supported""" )
a = """huggingface/label-files"""
if "speech-commands" in model_name:
a = 35
a = """speech-commands-v2-id2label.json"""
else:
a = 527
a = """audioset-id2label.json"""
a = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
a = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
return config
def lowercase__ ( __lowerCamelCase ) -> int:
if "module.v" in name:
a = name.replace("""module.v""" , """audio_spectrogram_transformer""" )
if "cls_token" in name:
a = name.replace("""cls_token""" , """embeddings.cls_token""" )
if "dist_token" in name:
a = name.replace("""dist_token""" , """embeddings.distillation_token""" )
if "pos_embed" in name:
a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
# transformer blocks
if "blocks" in name:
a = name.replace("""blocks""" , """encoder.layer""" )
if "attn.proj" in name:
a = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
a = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
a = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
a = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
a = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
a = name.replace("""mlp.fc2""" , """output.dense""" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" )
# classifier head
if "module.mlp_head.0" in name:
a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" )
if "module.mlp_head.1" in name:
a = name.replace("""module.mlp_head.1""" , """classifier.dense""" )
return name
def lowercase__ ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
for key in orig_state_dict.copy().keys():
a = orig_state_dict.pop(__lowerCamelCase )
if "qkv" in key:
a = key.split(""".""" )
a = int(key_split[3] )
a = config.hidden_size
if "weight" in key:
a = val[:dim, :]
a = val[dim : dim * 2, :]
a = val[-dim:, :]
else:
a = val[:dim]
a = val[dim : dim * 2]
a = val[-dim:]
else:
a = val
return orig_state_dict
def lowercase__ ( __lowerCamelCase ) -> str:
a = [
"""module.v.head.weight""",
"""module.v.head.bias""",
"""module.v.head_dist.weight""",
"""module.v.head_dist.bias""",
]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase , __lowerCamelCase )
@torch.no_grad()
def lowercase__ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Union[str, Any]:
a = get_audio_spectrogram_transformer_config(__lowerCamelCase )
a = {
"""ast-finetuned-audioset-10-10-0.4593""": (
"""https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.450""": (
"""https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448""": (
"""https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448-v2""": (
"""https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"""
),
"""ast-finetuned-audioset-12-12-0.447""": (
"""https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"""
),
"""ast-finetuned-audioset-14-14-0.443""": (
"""https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"""
),
"""ast-finetuned-audioset-16-16-0.442""": (
"""https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"""
),
"""ast-finetuned-speech-commands-v2""": (
"""https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"""
),
}
# load original state_dict
a = model_name_to_url[model_name]
a = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )
# remove some keys
remove_keys(__lowerCamelCase )
# rename some keys
a = convert_state_dict(__lowerCamelCase , __lowerCamelCase )
# load 🤗 model
a = ASTForAudioClassification(__lowerCamelCase )
model.eval()
model.load_state_dict(__lowerCamelCase )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
a = -4.2677393 if """speech-commands""" not in model_name else -6.845978
a = 4.5689974 if """speech-commands""" not in model_name else 5.5654526
a = 1024 if """speech-commands""" not in model_name else 128
a = ASTFeatureExtractor(mean=__lowerCamelCase , std=__lowerCamelCase , max_length=__lowerCamelCase )
if "speech-commands" in model_name:
a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" )
a = dataset[0]["""audio"""]["""array"""]
else:
a = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , )
a , a = torchaudio.load(__lowerCamelCase )
a = waveform.squeeze().numpy()
a = feature_extractor(__lowerCamelCase , sampling_rate=1_6000 , return_tensors="""pt""" )
# forward pass
a = model(**__lowerCamelCase )
a = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
a = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
a = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
a = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
a = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
a = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
a = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
a = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
a = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError("""Unknown model name""" )
if not torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-4 ):
raise ValueError("""Logits don't match""" )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(f'Saving feature extractor to {pytorch_dump_folder_path}' )
feature_extractor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print("""Pushing model and feature extractor to the hub...""" )
model.push_to_hub(f'MIT/{model_name}' )
feature_extractor.push_to_hub(f'MIT/{model_name}' )
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="ast-finetuned-audioset-10-10-0.4593",
type=str,
help="Name of the Audio Spectrogram Transformer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__UpperCamelCase : Any = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 355 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = tempfile.mkdtemp()
a = BlipImageProcessor()
a = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
a = BlipProcessor(__magic_name__ , __magic_name__ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :List[Any] , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer
def lowerCamelCase__ ( self :str , **__magic_name__ :List[str] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
a = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
a = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = self.prepare_image_inputs()
a = image_processor(__magic_name__ , return_tensors="""np""" )
a = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = processor(text=__magic_name__ )
a = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__magic_name__ )
a = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 347 | 0 |
"""simple docstring"""
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
__UpperCamelCase : Optional[int] = sys.version_info >= (3, 10)
def __A ( __lowerCamelCase=None , __lowerCamelCase=None ) -> List[str]:
return field(default_factory=lambda: default , metadata=__lowerCamelCase )
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = 42
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = 42
UpperCamelCase__ = field(default='''toto''' , metadata={'''help''': '''help message'''} )
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = False
UpperCamelCase__ = True
UpperCamelCase__ = None
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''titi'''
UpperCamelCase__ = '''toto'''
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''titi'''
UpperCamelCase__ = '''toto'''
UpperCamelCase__ = 42
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = '''toto'''
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = BasicEnum(self.foo )
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = '''toto'''
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = MixedTypeEnum(self.foo )
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = None
UpperCamelCase__ = field(default=__magic_name__ , metadata={'''help''': '''help message'''} )
UpperCamelCase__ = None
UpperCamelCase__ = list_field(default=[] )
UpperCamelCase__ = list_field(default=[] )
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = list_field(default=[] )
UpperCamelCase__ = list_field(default=[1, 2, 3] )
UpperCamelCase__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] )
UpperCamelCase__ = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = field()
UpperCamelCase__ = field()
UpperCamelCase__ = field()
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = BasicEnum(self.required_enum )
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = 42
UpperCamelCase__ = field()
UpperCamelCase__ = None
UpperCamelCase__ = field(default='''toto''' , metadata={'''help''': '''help message'''} )
UpperCamelCase__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] )
if is_python_no_less_than_3_10:
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = False
UpperCamelCase__ = True
UpperCamelCase__ = None
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = None
UpperCamelCase__ = field(default=__magic_name__ , metadata={'''help''': '''help message'''} )
UpperCamelCase__ = None
UpperCamelCase__ = list_field(default=[] )
UpperCamelCase__ = list_field(default=[] )
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :List[str] , __magic_name__ :argparse.ArgumentParser , __magic_name__ :argparse.ArgumentParser ):
'''simple docstring'''
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
a = {k: v for k, v in vars(__magic_name__ ).items() if k != """container"""}
a = {k: v for k, v in vars(__magic_name__ ).items() if k != """container"""}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("""choices""" , __magic_name__ ) and yy.get("""choices""" , __magic_name__ ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["""type"""](__magic_name__ ) , yy["""type"""](__magic_name__ ) )
del xx["type"], yy["type"]
self.assertEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = HfArgumentParser(__magic_name__ )
a = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("""--bar""" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("""--baz""" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("""--flag""" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="""?""" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
a = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""]
((a ) , ) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ )
self.assertFalse(example.flag )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = HfArgumentParser(__magic_name__ )
a = argparse.ArgumentParser()
expected.add_argument("""--foo""" , default=42 , type=__magic_name__ )
expected.add_argument("""--baz""" , default="""toto""" , type=__magic_name__ , help="""help message""" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="""?""" )
expected.add_argument("""--baz""" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="""?""" )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument("""--no_baz""" , action="""store_false""" , default=__magic_name__ , dest="""baz""" )
expected.add_argument("""--opt""" , type=__magic_name__ , default=__magic_name__ )
a = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
a = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
a = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
a = parser.parse_args(["""--foo""", """--no_baz"""] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
a = parser.parse_args(["""--foo""", """--baz"""] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
a = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
a = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = HfArgumentParser(__magic_name__ )
a = argparse.ArgumentParser()
expected.add_argument(
"""--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
a = parser.parse_args([] )
self.assertEqual(args.foo , """toto""" )
a = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
a = parser.parse_args(["""--foo""", """titi"""] )
self.assertEqual(args.foo , """titi""" )
a = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
a = parser.parse_args(["""--foo""", """42"""] )
self.assertEqual(args.foo , 42 )
a = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
@dataclass
class __lowerCAmelCase :
UpperCamelCase__ = '''toto'''
a = HfArgumentParser(__magic_name__ )
a = argparse.ArgumentParser()
expected.add_argument(
"""--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
a = parser.parse_args([] )
self.assertEqual(args.foo , """toto""" )
a = parser.parse_args(["""--foo""", """titi"""] )
self.assertEqual(args.foo , """titi""" )
a = parser.parse_args(["""--foo""", """42"""] )
self.assertEqual(args.foo , 42 )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = HfArgumentParser(__magic_name__ )
a = argparse.ArgumentParser()
expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=__magic_name__ )
expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=__magic_name__ )
expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__magic_name__ )
expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
a = parser.parse_args([] )
self.assertEqual(
__magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , )
a = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() )
self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = argparse.ArgumentParser()
expected.add_argument("""--foo""" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("""--bar""" , default=__magic_name__ , type=__magic_name__ , help="""help message""" )
expected.add_argument("""--baz""" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=__magic_name__ )
expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=__magic_name__ )
a = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
a = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
a = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) )
a = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() )
self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = HfArgumentParser(__magic_name__ )
a = argparse.ArgumentParser()
expected.add_argument("""--required_list""" , nargs="""+""" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("""--required_str""" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"""--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__magic_name__ , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = HfArgumentParser(__magic_name__ )
a = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"""--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__magic_name__ , )
expected.add_argument("""--opt""" , type=__magic_name__ , default=__magic_name__ )
expected.add_argument("""--baz""" , default="""toto""" , type=__magic_name__ , help="""help message""" )
expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = HfArgumentParser(__magic_name__ )
a = {
"""foo""": 12,
"""bar""": 3.14,
"""baz""": """42""",
"""flag""": True,
}
a = parser.parse_dict(__magic_name__ )[0]
a = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = HfArgumentParser(__magic_name__ )
a = {
"""foo""": 12,
"""bar""": 3.14,
"""baz""": """42""",
"""flag""": True,
"""extra""": 42,
}
self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = HfArgumentParser(__magic_name__ )
a = {
"""foo""": 12,
"""bar""": 3.14,
"""baz""": """42""",
"""flag""": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
a = os.path.join(__magic_name__ , """temp_json""" )
os.mkdir(__magic_name__ )
with open(temp_local_path + """.json""" , """w+""" ) as f:
json.dump(__magic_name__ , __magic_name__ )
a = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0]
a = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = HfArgumentParser(__magic_name__ )
a = {
"""foo""": 12,
"""bar""": 3.14,
"""baz""": """42""",
"""flag""": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
a = os.path.join(__magic_name__ , """temp_yaml""" )
os.mkdir(__magic_name__ )
with open(temp_local_path + """.yaml""" , """w+""" ) as f:
yaml.dump(__magic_name__ , __magic_name__ )
a = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0]
a = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = HfArgumentParser(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
| 356 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
UpperCamelCase__ = '''nat'''
UpperCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__magic_name__ )
a = num_heads
a = kernel_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) )
a = layer_scale_init_value
a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 347 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__UpperCamelCase : Optional[int] = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 357 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 347 | 0 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( __lowerCamelCase ) -> bool:
a = int(number**0.5 )
return number == sq * sq
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]:
a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
a = x_den * y_den * z_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( __lowerCamelCase = 35 ) -> int:
a = set()
a = 42
a = Fraction(0 )
a = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
a = x_num * y_den + x_den * y_num
a = x_den * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
a = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
a = x_num * y_num
a = x_den * y_num + x_num * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = x_num * x_num * y_num * y_num
a = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }')
| 358 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width
__UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it.
__UpperCamelCase : str = 1 / 100
__UpperCamelCase : Optional[int] = ""
__UpperCamelCase : List[Any] = ""
__UpperCamelCase : Union[str, Any] = ""
__UpperCamelCase : Tuple = 250
def __A ( ) -> None:
a , a = get_dataset(__lowerCamelCase , __lowerCamelCase )
for index in range(__lowerCamelCase ):
a = random.sample(range(len(__lowerCamelCase ) ) , 4 )
a , a , a = update_image_and_anno(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
a = random_chars(32 )
a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
a = []
for anno in new_annos:
a = anno[3] - anno[1]
a = anno[4] - anno[2]
a = anno[1] + width / 2
a = anno[2] + height / 2
a = f'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(__lowerCamelCase )
with open(f'{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]:
a = []
a = []
for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ):
a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(__lowerCamelCase ) as in_file:
a = in_file.readlines()
a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' )
a = []
for obj_list in obj_lists:
a = obj_list.rstrip("""\n""" ).split(""" """ )
a = float(obj[1] ) - float(obj[3] ) / 2
a = float(obj[2] ) - float(obj[4] ) / 2
a = float(obj[1] ) + float(obj[3] ) / 2
a = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(__lowerCamelCase )
labels.append(__lowerCamelCase )
return img_paths, labels
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]:
a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = int(scale_x * output_size[1] )
a = int(scale_y * output_size[0] )
a = []
a = []
for i, index in enumerate(__lowerCamelCase ):
a = all_img_list[index]
path_list.append(__lowerCamelCase )
a = all_annos[index]
a = cva.imread(__lowerCamelCase )
if i == 0: # top-left
a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = bbox[2] * scale_y
a = bbox[3] * scale_x
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = bbox[2] * scale_y
a = scale_x + bbox[3] * (1 - scale_x)
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = scale_y + bbox[2] * (1 - scale_y)
a = bbox[3] * scale_x
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
a = cva.resize(
__lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = scale_y + bbox[2] * (1 - scale_y)
a = scale_x + bbox[3] * (1 - scale_x)
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
a = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __A ( __lowerCamelCase ) -> str:
assert number_char > 1, "The number of character should greater than 1"
a = ascii_lowercase + digits
return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 347 | 0 |
from PIL import Image
def __A ( __lowerCamelCase ) -> Image:
a , a : Any = image.size
a : List[str] = 0
a : str = image.load()
for i in range(__lowerCamelCase ):
for j in range(__lowerCamelCase ):
a : List[Any] = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(__lowerCamelCase ):
for i in range(__lowerCamelCase ):
a : str = 255 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
__UpperCamelCase : str = mean_threshold(Image.open("path_to_image").convert("L"))
image.save("output_image_path")
| 359 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Optional[Any] = {
"configuration_mobilenet_v2": [
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileNetV2Config",
"MobileNetV2OnnxConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ["MobileNetV2FeatureExtractor"]
__UpperCamelCase : Tuple = ["MobileNetV2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileNetV2ForImageClassification",
"MobileNetV2ForSemanticSegmentation",
"MobileNetV2Model",
"MobileNetV2PreTrainedModel",
"load_tf_weights_in_mobilenet_v2",
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 0 |
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
__UpperCamelCase : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
__UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase]
__UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS}
__UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str | None:
a = """"""
a = 42
a = 42
a = 42
for keychar, cipherchar in zip(cycle(__lowerCamelCase ) , __lowerCamelCase ):
a = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(__lowerCamelCase )
return decoded
def __A ( __lowerCamelCase ) -> list[str]:
a = []
for key in product(__lowerCamelCase , repeat=3 ):
a = try_key(__lowerCamelCase , __lowerCamelCase )
if encoded is not None:
possibles.append(__lowerCamelCase )
return possibles
def __A ( __lowerCamelCase , __lowerCamelCase ) -> list[str]:
return [possible for possible in possibles if common_word in possible.lower()]
def __A ( __lowerCamelCase = "p059_cipher.txt" ) -> int:
a = 42
a = 42
a = 42
a = 42
a = Path(__lowerCamelCase ).parent.joinpath(__lowerCamelCase ).read_text(encoding="""utf-8""" )
a = [int(__lowerCamelCase ) for number in data.strip().split(""",""" )]
a = filter_valid_chars(__lowerCamelCase )
for common_word in COMMON_WORDS:
a = filter_common_word(__lowerCamelCase , __lowerCamelCase )
if len(__lowerCamelCase ) == 1:
break
a = possibles[0]
return sum(ord(__lowerCamelCase ) for char in decoded_text )
if __name__ == "__main__":
print(F'{solution() = }')
| 360 |
def __A ( __lowerCamelCase ) -> bool:
if num < 0:
return False
a = num
a = 0
while num > 0:
a = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 0 |
Subsets and Splits