|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""JFLEG dataset.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort, |
|
author = {Napoles, Courtney |
|
and Sakaguchi, Keisuke |
|
and Tetreault, Joel}, |
|
title = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction}, |
|
booktitle = {Proceedings of the 15th Conference of the European Chapter of the |
|
Association for Computational Linguistics: Volume 2, Short Papers}, |
|
month = {April}, |
|
year = {2017}, |
|
address = {Valencia, Spain}, |
|
publisher = {Association for Computational Linguistics}, |
|
pages = {229--234}, |
|
url = {http://www.aclweb.org/anthology/E17-2037} |
|
} |
|
@InProceedings{heilman-EtAl:2014:P14-2, |
|
author = {Heilman, Michael |
|
and Cahill, Aoife |
|
and Madnani, Nitin |
|
and Lopez, Melissa |
|
and Mulholland, Matthew |
|
and Tetreault, Joel}, |
|
title = {Predicting Grammaticality on an Ordinal Scale}, |
|
booktitle = {Proceedings of the 52nd Annual Meeting of the |
|
Association for Computational Linguistics (Volume 2: Short Papers)}, |
|
month = {June}, |
|
year = {2014}, |
|
address = {Baltimore, Maryland}, |
|
publisher = {Association for Computational Linguistics}, |
|
pages = {174--180}, |
|
url = {http://www.aclweb.org/anthology/P14-2029} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus. |
|
It is a gold standard benchmark for developing and evaluating GEC systems with respect to |
|
fluency (extent to which a text is native-sounding) as well as grammaticality. |
|
|
|
For each source document, there are four human-written corrections (ref0 to ref3). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/keisks/jfleg" |
|
|
|
_LICENSE = "CC BY-NC-SA 4.0" |
|
|
|
_URLs = { |
|
"dev": { |
|
"src": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.src", |
|
"ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref0", |
|
"ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref1", |
|
"ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref2", |
|
"ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref3", |
|
}, |
|
"test": { |
|
"src": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.src", |
|
"ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref0", |
|
"ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref1", |
|
"ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref2", |
|
"ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref3", |
|
}, |
|
} |
|
|
|
|
|
class Jfleg(datasets.GeneratorBasedBuilder): |
|
"""JFLEG (JHU FLuency-Extended GUG) grammatical error correction dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"sentence": datasets.Value("string"), "corrections": datasets.Sequence(datasets.Value("string"))} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
downloaded_dev = dl_manager.download_and_extract(_URLs["dev"]) |
|
downloaded_test = dl_manager.download_and_extract(_URLs["test"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": downloaded_dev, |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": downloaded_test, "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
""" Yields examples. """ |
|
|
|
source_file = filepath["src"] |
|
with open(source_file, encoding="utf-8") as f: |
|
source_sentences = f.read().split("\n") |
|
num_source = len(source_sentences) |
|
|
|
corrections = [] |
|
for n in range(0, 4): |
|
correction_file = filepath["ref{n}".format(n=n)] |
|
with open(correction_file, encoding="utf-8") as f: |
|
correction_sentences = f.read().split("\n") |
|
num_correction = len(correction_sentences) |
|
|
|
assert len(correction_sentences) == len( |
|
source_sentences |
|
), "Sizes do not match: {ns} vs {nr} for {sf} vs {cf}.".format( |
|
ns=num_source, nr=num_correction, sf=source_file, cf=correction_file |
|
) |
|
corrections.append(correction_sentences) |
|
|
|
corrected_sentences = list(zip(*corrections)) |
|
for id_, source_sentence in enumerate(source_sentences): |
|
yield id_, {"sentence": source_sentence, "corrections": corrected_sentences[id_]} |
|
|