Datasets:

Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Russian
ArXiv:
Libraries:
Datasets
pandas
License:
sberquad / README.md
julien-c's picture
julien-c HF staff
Align more metadata with other repo types (models,spaces) (#4607)
64f4dc3
|
raw
history blame
4.56 kB
---
pretty_name: SberQuAD
annotations_creators:
- crowdsourced
language_creators:
- found
- crowdsourced
language:
- ru
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: sberquad
---
# Dataset Card for sberquad
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Needs More Information]
- **Repository:** https://github.com/sberbank-ai/data-science-journey-2017
- **Paper:** https://arxiv.org/abs/1912.09723
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
Sber Question Answering Dataset (SberQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
Russian original analogue presented in Sberbank Data Science Journey 2017.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
Russian
## Dataset Structure
### Data Instances
```
{
"context": "Первые упоминания о строении человеческого тела встречаются в Древнем Египте...",
"id": 14754,
"qas": [
{
"id": 60544,
"question": "Где встречаются первые упоминания о строении человеческого тела?",
"answers": [{"answer_start": 60, "text": "в Древнем Египте"}],
}
]
}
```
### Data Fields
- id: a int32 feature
- title: a string feature
- context: a string feature
- question: a string feature
- answers: a dictionary feature containing:
- text: a string feature
- answer_start: a int32 feature
### Data Splits
| name |train |validation|test |
|----------|-----:|---------:|-----|
|plain_text|45328 | 5036 |23936|
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
```
@article{DBLP:journals/corr/abs-1912-09723,
author = {Pavel Efimov and
Leonid Boytsov and
Pavel Braslavski},
title = {SberQuAD - Russian Reading Comprehension Dataset: Description and
Analysis},
journal = {CoRR},
volume = {abs/1912.09723},
year = {2019},
url = {http://arxiv.org/abs/1912.09723},
eprinttype = {arXiv},
eprint = {1912.09723},
timestamp = {Fri, 03 Jan 2020 16:10:45 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1912-09723.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@alenusch](https://github.com/Alenush) for adding this dataset.