datasetId
stringlengths
5
121
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
2.64M
likes
int64
0
6.41k
tags
sequencelengths
1
7.92k
task_categories
sequencelengths
0
40
createdAt
unknown
card
stringlengths
19
1M
Ayush-Singh/skywork-sample
Ayush-Singh
"2024-12-01T17:11:15Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T17:11:12Z"
--- dataset_info: features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: source dtype: string - name: reward_chosen dtype: float64 - name: reward_rejected dtype: float64 splits: - name: train num_bytes: 107247 num_examples: 10 download_size: 57710 dataset_size: 107247 configs: - config_name: default data_files: - split: train path: data/train-* ---
MKJ-TOE/magpie-reasoning-llm-jp-13b-20k
MKJ-TOE
"2024-12-01T17:12:08Z"
3
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T17:11:52Z"
--- license: apache-2.0 ---
taesiri/PhotoshopRequest-DailyDump-December-2024
taesiri
"2024-12-02T17:53:46Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T17:22:48Z"
--- dataset_info: features: - name: post_id dtype: string - name: title dtype: string - name: source_image dtype: image - name: comment_id dtype: string - name: edited_image dtype: image - name: json_data dtype: string - name: permalink dtype: string - name: created_date dtype: timestamp[ns] - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 12727655623.946 num_examples: 1902 download_size: 7611055971 dataset_size: 12727655623.946 configs: - config_name: default data_files: - split: train path: data/train-* ---
ckcl/train_2
ckcl
"2024-12-01T17:28:07Z"
3
0
[ "license:mit", "region:us" ]
null
"2024-12-01T17:28:07Z"
--- license: mit ---
anthracite-org/pixmo-cap-qa-images
anthracite-org
"2024-12-01T18:46:33Z"
3
0
[ "task_categories:visual-question-answering", "license:odc-by", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "visual-question-answering" ]
"2024-12-01T17:58:09Z"
--- license: odc-by task_categories: - visual-question-answering dataset_info: features: - name: image dtype: image - name: image_url dtype: string - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 121905039183.176 num_examples: 268816 download_size: 87966670514 dataset_size: 121905039183.176 configs: - config_name: default data_files: - split: train path: data/train-* --- Big thanks to Ai2 for releasing the original [PixMo-CapQA](https://huggingface.co/datasets/allenai/pixmo-cap-qa) dataset. To preserve the images and simplify usage of the dataset, we are releasing this version, which includes downloaded images. # PixMo-CapQA PixMo-CapQA is a synthetic dataset of question/answer pairs about images. The data was generated by using the [Claude](https://www.anthropic.com/claude) large language model to build Q/A pairs from [dense captions of images](https://huggingface.co/datasets/allenai/pixmo-cap) (the model did not see the actual images). PixMo-CapQA is a part of the [PixMo dataset collection](https://huggingface.co/collections/allenai/pixmo-674746ea613028006285687b) and was used to train the [Molmo family of models](https://huggingface.co/collections/allenai/molmo-66f379e6fe3b8ef090a8ca19) Quick links: - 📃 [Paper](https://molmo.allenai.org/paper.pdf) - 🎥 [Blog with Videos](https://molmo.allenai.org/blog) ## Loading ```python data = datasets.load_dataset("anthracite-org/pixmo-cap-qa-images", split="train") ``` ## Data Format Unlike the original release, images are included in the dataset itself. The `question` and `answer` fields contain the Q/A pairs. The images can be repeated since many of the images have multiple Q/A pairs. ## License This dataset is licensed under ODC-BY-1.0. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use). This dataset includes data generated from Claude which are subject to Anthropic [terms of service](https://www.anthropic.com/legal/commercial-terms) and [usage policy](https://www.anthropic.com/legal/aup).
Kariander1/flux_10k_captions
Kariander1
"2024-12-01T18:12:49Z"
3
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T18:12:46Z"
--- dataset_info: features: - name: prompt dtype: string - name: image_path dtype: string - name: caption dtype: string splits: - name: train num_bytes: 3703339 num_examples: 10000 download_size: 1766621 dataset_size: 3703339 --- # Dataset Card for "flux_10k_captions" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
k4d3/akatan
k4d3
"2024-12-01T18:16:22Z"
3
1
[ "license:wtfpl", "region:us" ]
null
"2024-12-01T18:16:22Z"
--- license: wtfpl ---
sebgrima/britishhland
sebgrima
"2024-12-01T18:28:20Z"
3
0
[ "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us", "created-with-pdfs-to-page-images-converter", "pdf-to-image" ]
null
"2024-12-01T18:26:58Z"
--- size_categories: - n<1K tags: - created-with-pdfs-to-page-images-converter - pdf-to-image --- # Dataset Card for sebgrima/britishhland ## Dataset Description This dataset contains images converted from PDFs using the PDFs to Page Images Converter Space. - **Number of images:** 626 - **Number of PDFs processed:** 4 - **Sample size per PDF:** 100 - **Created on:** 2024-12-01 19:28:20 ## Dataset Creation ### Source Data The images in this dataset were generated from user-uploaded PDF files. ### Processing Steps 1. PDF files were uploaded to the PDFs to Page Images Converter. 2. Each PDF was processed, converting selected pages to images. 3. The resulting images were saved and uploaded to this dataset. ## Dataset Structure The dataset consists of JPEG images, each representing a single page from the source PDFs. ### Data Fields - `images/`: A folder containing all the converted images. ### Data Splits This dataset does not have specific splits. ## Additional Information - **Contributions:** Thanks to the PDFs to Page Images Converter for creating this dataset.
amang1802/lmsys_synthetic_instruction_preferences
amang1802
"2024-12-01T19:09:57Z"
3
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T19:07:10Z"
--- dataset_info: features: - name: conversation_id dtype: string - name: model dtype: string - name: conversation list: - name: content dtype: string - name: role dtype: string - name: turn dtype: int64 - name: language dtype: string - name: openai_moderation list: - name: categories struct: - name: harassment dtype: bool - name: harassment/threatening dtype: bool - name: hate dtype: bool - name: hate/threatening dtype: bool - name: self-harm dtype: bool - name: self-harm/instructions dtype: bool - name: self-harm/intent dtype: bool - name: sexual dtype: bool - name: sexual/minors dtype: bool - name: violence dtype: bool - name: violence/graphic dtype: bool - name: category_scores struct: - name: harassment dtype: float64 - name: harassment/threatening dtype: float64 - name: hate dtype: float64 - name: hate/threatening dtype: float64 - name: self-harm dtype: float64 - name: self-harm/instructions dtype: float64 - name: self-harm/intent dtype: float64 - name: sexual dtype: float64 - name: sexual/minors dtype: float64 - name: violence dtype: float64 - name: violence/graphic dtype: float64 - name: flagged dtype: bool - name: redacted dtype: bool - name: chosen dtype: string - name: rejected dtype: string - name: user_input dtype: string - name: system_prompt dtype: string splits: - name: train num_bytes: 3729227223.0 num_examples: 950000 - name: test num_bytes: 196275117.0 num_examples: 50000 download_size: 2193670140 dataset_size: 3925502340.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
simonycl/Meta-Llama-3-8B-Instruct_ultrafeedback-annotate-judge-mtbench_cot_truth
simonycl
"2024-12-01T19:11:54Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T19:11:52Z"
--- dataset_info: features: - name: prompt_id dtype: string - name: prompt dtype: string - name: all_generated_responses sequence: string - name: scores sequence: float64 - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 84286 num_examples: 6 download_size: 74798 dataset_size: 84286 configs: - config_name: default data_files: - split: train path: data/train-* ---
StephanAkkerman/wikipron-words-ipa
StephanAkkerman
"2024-12-01T19:25:53Z"
3
0
[ "license:apache-2.0", "region:us" ]
null
"2024-12-01T19:21:46Z"
--- license: apache-2.0 --- # Wikipron Words IPA This dataset is a copy of https://github.com/CUNY-CL/wikipron/tree/master/data/scrape ## Description * Languages: 306 * Broad transcription files: 309 * Narrow transcription files: 174 * Dialects: 17 * Broad transcription files: 25 * Narrow transcription files: 22 * Scripts: 42 * Pronunciations: 3,958,916 | Link | ISO 639-3 Code | ISO 639 Language Name | Wiktionary Language Name | Script | Dialect | Filtered | Narrow/Broad | # of entries | | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | ----: | | [TSV](tsv/aar_latn_broad.tsv) | aar | Afar | Afar | Latin | | False | Broad | 1,584 | | [TSV](tsv/aar_latn_narrow.tsv) | aar | Afar | Afar | Latin | | False | Narrow | 1,548 | | [TSV](tsv/abk_cyrl_broad.tsv) | abk | Abkhazian | Abkhaz | Cyrillic | | False | Broad | 198 | | [TSV](tsv/abk_cyrl_narrow.tsv) | abk | Abkhazian | Abkhaz | Cyrillic | | False | Narrow | 841 | | [TSV](tsv/acw_arab_broad.tsv) | acw | Hijazi Arabic | Hijazi Arabic | Arabic | | False | Broad | 2,252 | | [TSV](tsv/acw_arab_narrow.tsv) | acw | Hijazi Arabic | Hijazi Arabic | Arabic | | False | Narrow | 711 | | [TSV](tsv/ady_cyrl_narrow.tsv) | ady | Adyghe | Adyghe | Cyrillic | | False | Narrow | 5,121 | | [TSV](tsv/ady_cyrl_narrow_filtered.tsv) | ady | Adyghe | Adyghe | Cyrillic | | True | Narrow | 4,893 | | [TSV](tsv/afb_arab_broad.tsv) | afb | Gulf Arabic | Gulf Arabic | Arabic | | False | Broad | 719 | | [TSV](tsv/afr_latn_broad.tsv) | afr | Afrikaans | Afrikaans | Latin | | False | Broad | 2,022 | | [TSV](tsv/afr_latn_broad_filtered.tsv) | afr | Afrikaans | Afrikaans | Latin | | True | Broad | 1,982 | | [TSV](tsv/afr_latn_narrow.tsv) | afr | Afrikaans | Afrikaans | Latin | | False | Narrow | 134 | | [TSV](tsv/aii_syrc_narrow.tsv) | aii | Assyrian Neo-Aramaic | Assyrian Neo-Aramaic | Syriac | | False | Narrow | 4,543 | | [TSV](tsv/ajp_arab_broad.tsv) | ajp | South Levantine Arabic | South Levantine Arabic | Arabic | | False | Broad | 3,124 | | [TSV](tsv/ajp_arab_narrow.tsv) | ajp | South Levantine Arabic | South Levantine Arabic | Arabic | | False | Narrow | 3,149 | | [TSV](tsv/akk_latn_broad.tsv) | akk | Akkadian | Akkadian | Latin | | False | Broad | 603 | | [TSV](tsv/ale_latn_broad.tsv) | ale | Aleut | Aleut | Latin | | False | Broad | 119 | | [TSV](tsv/amh_ethi_broad.tsv) | amh | Amharic | Amharic | Ethiopic | | False | Broad | 378 | | [TSV](tsv/ang_latn_broad.tsv) | ang | Old English (ca. 450-1100) | Old English | Latin | | False | Broad | 22,124 | | [TSV](tsv/ang_latn_narrow.tsv) | ang | Old English (ca. 450-1100) | Old English | Latin | | False | Narrow | 11,243 | | [TSV](tsv/aot_latn_broad.tsv) | aot | Atong (India) | Atong (India) | Latin | | False | Broad | 181 | | [TSV](tsv/apw_latn_narrow.tsv) | apw | Western Apache | Western Apache | Latin | | False | Narrow | 147 | | [TSV](tsv/ara_arab_broad.tsv) | ara | Arabic | Arabic | Arabic | | False | Broad | 13,339 | | [TSV](tsv/ara_arab_narrow.tsv) | ara | Arabic | Arabic | Arabic | | False | Narrow | 104 | | [TSV](tsv/arc_hebr_broad.tsv) | arc | Official Aramaic (700-300 BCE) | Aramaic | Hebrew | | False | Broad | 1,167 | | [TSV](tsv/arg_latn_broad.tsv) | arg | Aragonese | Aragonese | Latin | | False | Broad | 298 | | [TSV](tsv/ary_arab_broad.tsv) | ary | Moroccan Arabic | Moroccan Arabic | Arabic | | False | Broad | 2,043 | | [TSV](tsv/arz_arab_broad.tsv) | arz | Egyptian Arabic | Egyptian Arabic | Arabic | | False | Broad | 200 | | [TSV](tsv/asm_beng_broad.tsv) | asm | Assamese | Assamese | Bengali | | False | Broad | 2,925 | | [TSV](tsv/ast_latn_broad.tsv) | ast | Asturian | Asturian | Latin | | False | Broad | 1,018 | | [TSV](tsv/ast_latn_narrow.tsv) | ast | Asturian | Asturian | Latin | | False | Narrow | 986 | | [TSV](tsv/ayl_arab_broad.tsv) | ayl | Libyan Arabic | Libyan Arabic | Arabic | | False | Broad | 163 | | [TSV](tsv/aze_latn_broad.tsv) | aze | Azerbaijani | Azerbaijani | Latin | | False | Broad | 383 | | [TSV](tsv/aze_latn_narrow.tsv) | aze | Azerbaijani | Azerbaijani | Latin | | False | Narrow | 4,226 | | [TSV](tsv/aze_latn_narrow_filtered.tsv) | aze | Azerbaijani | Azerbaijani | Latin | | True | Narrow | 4,011 | | [TSV](tsv/bak_cyrl_broad.tsv) | bak | Bashkir | Bashkir | Cyrillic | | False | Broad | 179 | | [TSV](tsv/bak_cyrl_narrow.tsv) | bak | Bashkir | Bashkir | Cyrillic | | False | Narrow | 2,184 | | [TSV](tsv/ban_bali_broad.tsv) | ban | Balinese | Balinese | Balinese | | False | Broad | 410 | | [TSV](tsv/bar_latn_broad.tsv) | bar | Bavarian | Bavarian | Latin | | False | Broad | 1,542 | | [TSV](tsv/bbl_geor_broad.tsv) | bbl | Bats | Bats | Georgian | | False | Broad | 167 | | [TSV](tsv/bbn_latn_broad.tsv) | bbn | Uneapa | Uneapa | Latin | | False | Broad | 192 | | [TSV](tsv/bcl_latn_broad.tsv) | bcl | Central Bikol | Bikol Central | Latin | | False | Broad | 4,928 | | [TSV](tsv/bcl_latn_narrow.tsv) | bcl | Central Bikol | Bikol Central | Latin | | False | Narrow | 4,936 | | [TSV](tsv/bdq_latn_broad.tsv) | bdq | Bahnar | Bahnar | Latin | | False | Broad | 193 | | [TSV](tsv/bel_cyrl_narrow.tsv) | bel | Belarusian | Belarusian | Cyrillic | | False | Narrow | 5,516 | | [TSV](tsv/ben_beng_broad.tsv) | ben | Bengali | Bengali | Bengali | | False | Broad | 6,666 | | [TSV](tsv/ben_beng_dhaka_broad.tsv) | ben | Bengali | Bengali | Bengali | Dhaka | False | Broad | 7,998 | | [TSV](tsv/ben_beng_dhaka_broad_filtered.tsv) | ben | Bengali | Bengali | Bengali | Dhaka | True | Broad | 6,496 | | [TSV](tsv/ben_beng_dhaka_narrow.tsv) | ben | Bengali | Bengali | Bengali | Dhaka | False | Narrow | 7,821 | | [TSV](tsv/ben_beng_narrow.tsv) | ben | Bengali | Bengali | Bengali | | False | Narrow | 5,933 | | [TSV](tsv/ben_beng_rarh_broad.tsv) | ben | Bengali | Bengali | Bengali | Rarh, Standard Bengali | False | Broad | 4,980 | | [TSV](tsv/ben_beng_rarh_broad_filtered.tsv) | ben | Bengali | Bengali | Bengali | Rarh, Standard Bengali | True | Broad | 4,123 | | [TSV](tsv/ben_beng_rarh_narrow.tsv) | ben | Bengali | Bengali | Bengali | Rarh, Standard Bengali | False | Narrow | 6,474 | | [TSV](tsv/bjb_latn_broad.tsv) | bjb | Banggarla | Barngarla | Latin | | False | Broad | 136 | | [TSV](tsv/blt_tavt_narrow.tsv) | blt | Tai Dam | Tai Dam | Tai Viet | | False | Narrow | 239 | | [TSV](tsv/bod_tibt_broad.tsv) | bod | Tibetan | Tibetan | Tibetan | | False | Broad | 2,699 | | [TSV](tsv/bre_latn_broad.tsv) | bre | Breton | Breton | Latin | | False | Broad | 770 | | [TSV](tsv/bua_cyrl_broad.tsv) | bua | Buriat | Buryat | Cyrillic | | False | Broad | 125 | | [TSV](tsv/bua_cyrl_narrow.tsv) | bua | Buriat | Buryat | Cyrillic | | False | Narrow | 140 | | [TSV](tsv/bul_cyrl_narrow.tsv) | bul | Bulgarian | Bulgarian | Cyrillic | | False | Narrow | 42,309 | | [TSV](tsv/cat_latn_broad.tsv) | cat | Catalan | Catalan | Latin | | False | Broad | 176 | | [TSV](tsv/cat_latn_narrow.tsv) | cat | Catalan | Catalan | Latin | | False | Narrow | 92,225 | | [TSV](tsv/cbn_thai_broad.tsv) | cbn | Nyahkur | Nyah Kur | Thai | | False | Broad | 151 | | [TSV](tsv/ceb_latn_broad.tsv) | ceb | Cebuano | Cebuano | Latin | | False | Broad | 2,953 | | [TSV](tsv/ceb_latn_narrow.tsv) | ceb | Cebuano | Cebuano | Latin | | False | Narrow | 2,822 | | [TSV](tsv/ces_latn_narrow.tsv) | ces | Czech | Czech | Latin | | False | Narrow | 43,717 | | [TSV](tsv/chb_latn_broad.tsv) | chb | Chibcha | Chibcha | Latin | | False | Broad | 122 | | [TSV](tsv/che_cyrl_broad.tsv) | che | Chechen | Chechen | Cyrillic | | False | Broad | 172 | | [TSV](tsv/cho_latn_broad.tsv) | cho | Choctaw | Choctaw | Latin | | False | Broad | 124 | | [TSV](tsv/chr_cher_broad.tsv) | chr | Cherokee | Cherokee | Cherokee | | False | Broad | 103 | | [TSV](tsv/cic_latn_broad.tsv) | cic | Chickasaw | Chickasaw | Latin | | False | Broad | 286 | | [TSV](tsv/ckb_arab_broad.tsv) | ckb | Central Kurdish | Central Kurdish | Arabic | | False | Broad | 288 | | [TSV](tsv/cnk_latn_broad.tsv) | cnk | Khumi Chin | Khumi Chin | Latin | | False | Broad | 350 | | [TSV](tsv/cop_copt_broad.tsv) | cop | Coptic | Coptic | Coptic | | False | Broad | 820 | | [TSV](tsv/cor_latn_broad.tsv) | cor | Cornish | Cornish | Latin | | False | Broad | 174 | | [TSV](tsv/cor_latn_narrow.tsv) | cor | Cornish | Cornish | Latin | | False | Narrow | 706 | | [TSV](tsv/cos_latn_broad.tsv) | cos | Corsican | Corsican | Latin | | False | Broad | 476 | | [TSV](tsv/crk_latn_broad.tsv) | crk | Plains Cree | Plains Cree | Latin | | False | Broad | 108 | | [TSV](tsv/crk_latn_narrow.tsv) | crk | Plains Cree | Plains Cree | Latin | | False | Narrow | 144 | | [TSV](tsv/crx_cans_broad.tsv) | crx | Carrier | Carrier | Canadian Aboriginal | | False | Broad | 175 | | [TSV](tsv/csb_latn_broad.tsv) | csb | Kashubian | Kashubian | Latin | | False | Broad | 818 | | [TSV](tsv/cym_latn_nw_broad.tsv) | cym | Welsh | Welsh | Latin | North Wales | False | Broad | 10,320 | | [TSV](tsv/cym_latn_nw_broad_filtered.tsv) | cym | Welsh | Welsh | Latin | North Wales | True | Broad | 10,248 | | [TSV](tsv/cym_latn_nw_narrow.tsv) | cym | Welsh | Welsh | Latin | North Wales | False | Narrow | 1,006 | | [TSV](tsv/cym_latn_sw_broad.tsv) | cym | Welsh | Welsh | Latin | South Wales | False | Broad | 16,060 | | [TSV](tsv/cym_latn_sw_broad_filtered.tsv) | cym | Welsh | Welsh | Latin | South Wales | True | Broad | 15,880 | | [TSV](tsv/cym_latn_sw_narrow.tsv) | cym | Welsh | Welsh | Latin | South Wales | False | Narrow | 1,049 | | [TSV](tsv/dan_latn_broad.tsv) | dan | Danish | Danish | Latin | | False | Broad | 4,657 | | [TSV](tsv/dan_latn_narrow.tsv) | dan | Danish | Danish | Latin | | False | Narrow | 8,380 | | [TSV](tsv/deu_latn_broad.tsv) | deu | German | German | Latin | | False | Broad | 49,829 | | [TSV](tsv/deu_latn_broad_filtered.tsv) | deu | German | German | Latin | | True | Broad | 47,779 | | [TSV](tsv/deu_latn_narrow.tsv) | deu | German | German | Latin | | False | Narrow | 18,430 | | [TSV](tsv/div_thaa_broad.tsv) | div | Dhivehi | Dhivehi | Thaana | | False | Broad | 1,524 | | [TSV](tsv/div_thaa_narrow.tsv) | div | Dhivehi | Dhivehi | Thaana | | False | Narrow | 1,608 | | [TSV](tsv/dlm_latn_broad.tsv) | dlm | Dalmatian | Dalmatian | Latin | | False | Broad | 176 | | [TSV](tsv/dng_cyrl_broad.tsv) | dng | Dungan | Dungan | Cyrillic | | False | Broad | 255 | | [TSV](tsv/dsb_latn_broad.tsv) | dsb | Lower Sorbian | Lower Sorbian | Latin | | False | Broad | 2,258 | | [TSV](tsv/dsb_latn_narrow.tsv) | dsb | Lower Sorbian | Lower Sorbian | Latin | | False | Narrow | 1,428 | | [TSV](tsv/dum_latn_broad.tsv) | dum | Middle Dutch (ca. 1050-1350) | Middle Dutch | Latin | | False | Broad | 215 | | [TSV](tsv/dzo_tibt_broad.tsv) | dzo | Dzongkha | Dzongkha | Tibetan | | False | Broad | 212 | | [TSV](tsv/egy_latn_broad.tsv) | egy | Egyptian (Ancient) | Egyptian | Latin | | False | Broad | 4,046 | | [TSV](tsv/ell_grek_broad.tsv) | ell | Modern Greek (1453-) | Greek | Greek | | False | Broad | 15,241 | | [TSV](tsv/ell_grek_broad_filtered.tsv) | ell | Modern Greek (1453-) | Greek | Greek | | True | Broad | 14,825 | | [TSV](tsv/ell_grek_narrow.tsv) | ell | Modern Greek (1453-) | Greek | Greek | | False | Narrow | 342 | | [TSV](tsv/eng_latn_uk_broad.tsv) | eng | English | English | Latin | UK, Received Pronunciation | False | Broad | 79,409 | | [TSV](tsv/eng_latn_uk_broad_filtered.tsv) | eng | English | English | Latin | UK, Received Pronunciation | True | Broad | 78,752 | | [TSV](tsv/eng_latn_uk_narrow.tsv) | eng | English | English | Latin | UK, Received Pronunciation | False | Narrow | 1,787 | | [TSV](tsv/eng_latn_us_broad.tsv) | eng | English | English | Latin | US, General American | False | Broad | 78,117 | | [TSV](tsv/eng_latn_us_broad_filtered.tsv) | eng | English | English | Latin | US, General American | True | Broad | 77,566 | | [TSV](tsv/eng_latn_us_narrow.tsv) | eng | English | English | Latin | US, General American | False | Narrow | 2,563 | | [TSV](tsv/enm_latn_broad.tsv) | enm | Middle English (1100-1500) | Middle English | Latin | | False | Broad | 10,525 | | [TSV](tsv/epo_latn_broad.tsv) | epo | Esperanto | Esperanto | Latin | | False | Broad | 3,999 | | [TSV](tsv/epo_latn_narrow.tsv) | epo | Esperanto | Esperanto | Latin | | False | Narrow | 17,209 | | [TSV](tsv/est_latn_broad.tsv) | est | Estonian | Estonian | Latin | | False | Broad | 1,789 | | [TSV](tsv/est_latn_narrow.tsv) | est | Estonian | Estonian | Latin | | False | Narrow | 1,127 | | [TSV](tsv/ett_ital_broad.tsv) | ett | Etruscan | Etruscan | Old Italic | | False | Broad | 207 | | [TSV](tsv/eus_latn_broad.tsv) | eus | Basque | Basque | Latin | | False | Broad | 8,033 | | [TSV](tsv/eus_latn_narrow.tsv) | eus | Basque | Basque | Latin | | False | Narrow | 8,010 | | [TSV](tsv/evn_cyrl_broad.tsv) | evn | Evenki | Evenki | Cyrillic | | False | Broad | 126 | | [TSV](tsv/ewe_latn_broad.tsv) | ewe | Ewe | Ewe | Latin | | False | Broad | 136 | | [TSV](tsv/fao_latn_broad.tsv) | fao | Faroese | Faroese | Latin | | False | Broad | 1,947 | | [TSV](tsv/fao_latn_narrow.tsv) | fao | Faroese | Faroese | Latin | | False | Narrow | 1,175 | | [TSV](tsv/fas_arab_broad.tsv) | fas | Persian | Persian | Arabic | | False | Broad | 554 | | [TSV](tsv/fas_arab_narrow.tsv) | fas | Persian | Persian | Arabic | | False | Narrow | 34,033 | | [TSV](tsv/fax_latn_broad.tsv) | fax | Fala | Fala | Latin | | False | Broad | 538 | | [TSV](tsv/fin_latn_broad.tsv) | fin | Finnish | Finnish | Latin | | False | Broad | 158,880 | | [TSV](tsv/fin_latn_narrow.tsv) | fin | Finnish | Finnish | Latin | | False | Narrow | 158,871 | | [TSV](tsv/fra_latn_broad.tsv) | fra | French | French | Latin | | False | Broad | 80,943 | | [TSV](tsv/fra_latn_broad_filtered.tsv) | fra | French | French | Latin | | True | Broad | 80,690 | | [TSV](tsv/fra_latn_narrow.tsv) | fra | French | French | Latin | | False | Narrow | 254 | | [TSV](tsv/fro_latn_broad.tsv) | fro | Old French (842-ca. 1400) | Old French | Latin | | False | Broad | 929 | | [TSV](tsv/frr_latn_broad.tsv) | frr | Northern Frisian | North Frisian | Latin | | False | Broad | 167 | | [TSV](tsv/fry_latn_broad.tsv) | fry | Western Frisian | West Frisian | Latin | | False | Broad | 1,061 | | [TSV](tsv/gla_latn_broad.tsv) | gla | Scottish Gaelic | Scottish Gaelic | Latin | | False | Broad | 3,131 | | [TSV](tsv/gla_latn_narrow.tsv) | gla | Scottish Gaelic | Scottish Gaelic | Latin | | False | Narrow | 162 | | [TSV](tsv/gle_latn_broad.tsv) | gle | Irish | Irish | Latin | | False | Broad | 14,379 | | [TSV](tsv/gle_latn_narrow.tsv) | gle | Irish | Irish | Latin | | False | Narrow | 1,570 | | [TSV](tsv/glg_latn_broad.tsv) | glg | Galician | Galician | Latin | | False | Broad | 5,076 | | [TSV](tsv/glg_latn_narrow.tsv) | glg | Galician | Galician | Latin | | False | Narrow | 4,248 | | [TSV](tsv/glv_latn_broad.tsv) | glv | Manx | Manx | Latin | | False | Broad | 208 | | [TSV](tsv/glv_latn_narrow.tsv) | glv | Manx | Manx | Latin | | False | Narrow | 131 | | [TSV](tsv/gml_latn_broad.tsv) | gml | Middle Low German | Middle Low German | Latin | | False | Broad | 171 | | [TSV](tsv/goh_latn_broad.tsv) | goh | Old High German (ca. 750-1050) | Old High German | Latin | | False | Broad | 141 | | [TSV](tsv/got_goth_broad.tsv) | got | Gothic | Gothic | Gothic | | False | Broad | 1,785 | | [TSV](tsv/got_goth_narrow.tsv) | got | Gothic | Gothic | Gothic | | False | Narrow | 382 | | [TSV](tsv/grc_grek_broad.tsv) | grc | Ancient Greek (to 1453) | Ancient Greek | Greek | | False | Broad | 120,580 | | [TSV](tsv/grn_latn_broad.tsv) | grn | Guarani | Guaraní | Latin | | False | Broad | 213 | | [TSV](tsv/gsw_latn_broad.tsv) | gsw | Swiss German | Alemannic German | Latin | | False | Broad | 468 | | [TSV](tsv/guj_gujr_broad.tsv) | guj | Gujarati | Gujarati | Gujarati | | False | Broad | 2,058 | | [TSV](tsv/gur_latn_broad.tsv) | gur | Farefare | Farefare | Latin | | False | Broad | 104 | | [TSV](tsv/guw_latn_broad.tsv) | guw | Gun | Gun | Latin | | False | Broad | 682 | | [TSV](tsv/hat_latn_broad.tsv) | hat | Haitian | Haitian Creole | Latin | | False | Broad | 1,456 | | [TSV](tsv/hau_latn_broad.tsv) | hau | Hausa | Hausa | Latin | | False | Broad | 1,937 | | [TSV](tsv/hau_latn_narrow.tsv) | hau | Hausa | Hausa | Latin | | False | Narrow | 1,912 | | [TSV](tsv/haw_latn_broad.tsv) | haw | Hawaiian | Hawaiian | Latin | | False | Broad | 938 | | [TSV](tsv/haw_latn_narrow.tsv) | haw | Hawaiian | Hawaiian | Latin | | False | Narrow | 878 | | [TSV](tsv/hbs_cyrl_broad.tsv) | hbs | Serbo-Croatian | Serbo-Croatian | Cyrillic | | False | Broad | 23,019 | | [TSV](tsv/hbs_cyrl_broad_filtered.tsv) | hbs | Serbo-Croatian | Serbo-Croatian | Cyrillic | | True | Broad | 22,849 | | [TSV](tsv/hbs_latn_broad.tsv) | hbs | Serbo-Croatian | Serbo-Croatian | Latin | | False | Broad | 24,462 | | [TSV](tsv/hbs_latn_broad_filtered.tsv) | hbs | Serbo-Croatian | Serbo-Croatian | Latin | | True | Broad | 24,142 | | [TSV](tsv/heb_hebr_broad.tsv) | heb | Hebrew | Hebrew | Hebrew | | False | Broad | 1,957 | | [TSV](tsv/heb_hebr_narrow.tsv) | heb | Hebrew | Hebrew | Hebrew | | False | Narrow | 212 | | [TSV](tsv/hil_latn_broad.tsv) | hil | Hiligaynon | Hiligaynon | Latin | | False | Broad | 331 | | [TSV](tsv/hil_latn_narrow.tsv) | hil | Hiligaynon | Hiligaynon | Latin | | False | Narrow | 314 | | [TSV](tsv/hin_deva_broad.tsv) | hin | Hindi | Hindi | Devanagari | | False | Broad | 25,269 | | [TSV](tsv/hin_deva_broad_filtered.tsv) | hin | Hindi | Hindi | Devanagari | | True | Broad | 24,640 | | [TSV](tsv/hin_deva_narrow.tsv) | hin | Hindi | Hindi | Devanagari | | False | Narrow | 22,296 | | [TSV](tsv/hrx_latn_broad.tsv) | hrx | Hunsrik | Hunsrik | Latin | | False | Broad | 1,713 | | [TSV](tsv/hsb_latn_broad.tsv) | hsb | Upper Sorbian | Upper Sorbian | Latin | | False | Broad | 357 | | [TSV](tsv/hsb_latn_narrow.tsv) | hsb | Upper Sorbian | Upper Sorbian | Latin | | False | Narrow | 150 | | [TSV](tsv/hts_latn_broad.tsv) | hts | Hadza | Hadza | Latin | | False | Broad | 335 | | [TSV](tsv/hun_latn_narrow.tsv) | hun | Hungarian | Hungarian | Latin | | False | Narrow | 62,497 | | [TSV](tsv/hun_latn_narrow_filtered.tsv) | hun | Hungarian | Hungarian | Latin | | True | Narrow | 62,429 | | [TSV](tsv/huu_latn_narrow.tsv) | huu | Murui Huitoto | Murui Huitoto | Latin | | False | Narrow | 314 | | [TSV](tsv/hye_armn_e_broad.tsv) | hye | Armenian | Armenian | Armenian | Eastern Armenian | False | Broad | 16,826 | | [TSV](tsv/hye_armn_e_narrow.tsv) | hye | Armenian | Armenian | Armenian | Eastern Armenian | False | Narrow | 17,056 | | [TSV](tsv/hye_armn_e_narrow_filtered.tsv) | hye | Armenian | Armenian | Armenian | Eastern Armenian | True | Narrow | 16,979 | | [TSV](tsv/hye_armn_w_broad.tsv) | hye | Armenian | Armenian | Armenian | Western Armenian | False | Broad | 16,364 | | [TSV](tsv/hye_armn_w_narrow.tsv) | hye | Armenian | Armenian | Armenian | Western Armenian | False | Narrow | 16,556 | | [TSV](tsv/hye_armn_w_narrow_filtered.tsv) | hye | Armenian | Armenian | Armenian | Western Armenian | True | Narrow | 16,488 | | [TSV](tsv/iba_latn_broad.tsv) | iba | Iban | Iban | Latin | | False | Broad | 519 | | [TSV](tsv/iba_latn_narrow.tsv) | iba | Iban | Iban | Latin | | False | Narrow | 176 | | [TSV](tsv/ido_latn_broad.tsv) | ido | Ido | Ido | Latin | | False | Broad | 8,012 | | [TSV](tsv/ilo_latn_broad.tsv) | ilo | Iloko | Ilocano | Latin | | False | Broad | 805 | | [TSV](tsv/ilo_latn_narrow.tsv) | ilo | Iloko | Ilocano | Latin | | False | Narrow | 750 | | [TSV](tsv/ina_latn_broad.tsv) | ina | Interlingua (International Auxiliary Language Association) | Interlingua | Latin | | False | Broad | 321 | | [TSV](tsv/ind_latn_broad.tsv) | ind | Indonesian | Indonesian | Latin | | False | Broad | 4,952 | | [TSV](tsv/ind_latn_narrow.tsv) | ind | Indonesian | Indonesian | Latin | | False | Narrow | 6,125 | | [TSV](tsv/inh_cyrl_broad.tsv) | inh | Ingush | Ingush | Cyrillic | | False | Broad | 166 | | [TSV](tsv/isl_latn_broad.tsv) | isl | Icelandic | Icelandic | Latin | | False | Broad | 9,866 | | [TSV](tsv/isl_latn_broad_filtered.tsv) | isl | Icelandic | Icelandic | Latin | | True | Broad | 9,797 | | [TSV](tsv/isl_latn_narrow.tsv) | isl | Icelandic | Icelandic | Latin | | False | Narrow | 376 | | [TSV](tsv/ita_latn_broad.tsv) | ita | Italian | Italian | Latin | | False | Broad | 79,988 | | [TSV](tsv/ita_latn_broad_filtered.tsv) | ita | Italian | Italian | Latin | | True | Broad | 79,865 | | [TSV](tsv/izh_latn_broad.tsv) | izh | Ingrian | Ingrian | Latin | | False | Broad | 7,577 | | [TSV](tsv/izh_latn_narrow.tsv) | izh | Ingrian | Ingrian | Latin | | False | Narrow | 12,334 | | [TSV](tsv/jam_latn_broad.tsv) | jam | Jamaican Creole English | Jamaican Creole | Latin | | False | Broad | 207 | | [TSV](tsv/jav_java_broad.tsv) | jav | Javanese | Javanese | Javanese | | False | Broad | 664 | | [TSV](tsv/jje_hang_broad.tsv) | jje | Jejueo | Jeju | Hangul | | False | Broad | 739 | | [TSV](tsv/jpn_hira_narrow.tsv) | jpn | Japanese | Japanese | Hiragana | | False | Narrow | 26,604 | | [TSV](tsv/jpn_hira_narrow_filtered.tsv) | jpn | Japanese | Japanese | Hiragana | | True | Narrow | 26,460 | | [TSV](tsv/jpn_kana_narrow.tsv) | jpn | Japanese | Japanese | Katakana | | False | Narrow | 6,903 | | [TSV](tsv/jpn_kana_narrow_filtered.tsv) | jpn | Japanese | Japanese | Katakana | | True | Narrow | 6,289 | | [TSV](tsv/kal_latn_broad.tsv) | kal | Kalaallisut | Greenlandic | Latin | | False | Broad | 1,528 | | [TSV](tsv/kal_latn_narrow.tsv) | kal | Kalaallisut | Greenlandic | Latin | | False | Narrow | 1,324 | | [TSV](tsv/kan_knda_broad.tsv) | kan | Kannada | Kannada | Kannada | | False | Broad | 884 | | [TSV](tsv/kas_arab_broad.tsv) | kas | Kashmiri | Kashmiri | Arabic | | False | Broad | 421 | | [TSV](tsv/kas_arab_narrow.tsv) | kas | Kashmiri | Kashmiri | Arabic | | False | Narrow | 253 | | [TSV](tsv/kas_deva_broad.tsv) | kas | Kashmiri | Kashmiri | Devanagari | | False | Broad | 113 | | [TSV](tsv/kat_geor_broad.tsv) | kat | Georgian | Georgian | Georgian | | False | Broad | 17,212 | | [TSV](tsv/kat_geor_broad_filtered.tsv) | kat | Georgian | Georgian | Georgian | | True | Broad | 17,192 | | [TSV](tsv/kat_geor_narrow.tsv) | kat | Georgian | Georgian | Georgian | | False | Narrow | 13,940 | | [TSV](tsv/kaw_latn_broad.tsv) | kaw | Kawi | Old Javanese | Latin | | False | Broad | 593 | | [TSV](tsv/kaz_cyrl_broad.tsv) | kaz | Kazakh | Kazakh | Cyrillic | | False | Broad | 274 | | [TSV](tsv/kaz_cyrl_narrow.tsv) | kaz | Kazakh | Kazakh | Cyrillic | | False | Narrow | 1,396 | | [TSV](tsv/kbd_cyrl_narrow.tsv) | kbd | Kabardian | Kabardian | Cyrillic | | False | Narrow | 859 | | [TSV](tsv/kgp_latn_broad.tsv) | kgp | Kaingang | Kaingang | Latin | | False | Broad | 107 | | [TSV](tsv/khb_talu_broad.tsv) | khb | Lü | Lü | New Tai Lue | | False | Broad | 499 | | [TSV](tsv/khm_khmr_broad.tsv) | khm | Khmer | Khmer | Khmer | | False | Broad | 6,302 | | [TSV](tsv/khm_khmr_broad_filtered.tsv) | khm | Khmer | Khmer | Khmer | | True | Broad | 6,300 | | [TSV](tsv/kik_latn_broad.tsv) | kik | Kikuyu | Kikuyu | Latin | | False | Broad | 1,158 | | [TSV](tsv/kir_cyrl_broad.tsv) | kir | Kirghiz | Kyrgyz | Cyrillic | | False | Broad | 583 | | [TSV](tsv/kir_cyrl_narrow.tsv) | kir | Kirghiz | Kyrgyz | Cyrillic | | False | Narrow | 147 | | [TSV](tsv/kix_latn_broad.tsv) | kix | Khiamniungan Naga | Khiamniungan Naga | Latin | | False | Broad | 181 | | [TSV](tsv/kld_latn_broad.tsv) | kld | Gamilaraay | Gamilaraay | Latin | | False | Broad | 515 | | [TSV](tsv/klj_latn_narrow.tsv) | klj | Khalaj | Khalaj | Latin | | False | Narrow | 2,001 | | [TSV](tsv/kmr_latn_broad.tsv) | kmr | Northern Kurdish | Northern Kurdish | Latin | | False | Broad | 2,140 | | [TSV](tsv/koi_cyrl_broad.tsv) | koi | Komi-Permyak | Komi-Permyak | Cyrillic | | False | Broad | 182 | | [TSV](tsv/koi_cyrl_narrow.tsv) | koi | Komi-Permyak | Komi-Permyak | Cyrillic | | False | Narrow | 180 | | [TSV](tsv/kok_deva_broad.tsv) | kok | Konkani (macrolanguage) | Konkani | Devanagari | | False | Broad | 172 | | [TSV](tsv/kok_deva_narrow.tsv) | kok | Konkani (macrolanguage) | Konkani | Devanagari | | False | Narrow | 537 | | [TSV](tsv/kor_hang_narrow.tsv) | kor | Korean | Korean | Hangul | | False | Narrow | 25,800 | | [TSV](tsv/kor_hang_narrow_filtered.tsv) | kor | Korean | Korean | Hangul | | True | Narrow | 22,072 | | [TSV](tsv/kpv_cyrl_broad.tsv) | kpv | Komi-Zyrian | Komi-Zyrian | Cyrillic | | False | Broad | 834 | | [TSV](tsv/kpv_cyrl_narrow.tsv) | kpv | Komi-Zyrian | Komi-Zyrian | Cyrillic | | False | Narrow | 794 | | [TSV](tsv/krl_latn_broad.tsv) | krl | Karelian | Karelian | Latin | | False | Broad | 419 | | [TSV](tsv/ksw_mymr_broad.tsv) | ksw | S'gaw Karen | S'gaw Karen | Myanmar | | False | Broad | 177 | | [TSV](tsv/ktz_latn_broad.tsv) | ktz | Juǀʼhoan | Juǀ'hoan | Latin | | False | Broad | 132 | | [TSV](tsv/kwk_latn_broad.tsv) | kwk | Kwakiutl | Kwak'wala | Latin | | False | Broad | 107 | | [TSV](tsv/kxd_latn_broad.tsv) | kxd | Brunei | Brunei Malay | Latin | | False | Broad | 351 | | [TSV](tsv/kyu_kali_broad.tsv) | kyu | Western Kayah | Western Kayah | Kayah Li | | False | Broad | 128 | | [TSV](tsv/lad_latn_broad.tsv) | lad | Ladino | Ladino | Latin | | False | Broad | 120 | | [TSV](tsv/lao_laoo_narrow.tsv) | lao | Lao | Lao | Lao | | False | Narrow | 4,180 | | [TSV](tsv/lat_latn_clas_broad.tsv) | lat | Latin | Latin | Latin | Classical | False | Broad | 36,066 | | [TSV](tsv/lat_latn_clas_broad_filtered.tsv) | lat | Latin | Latin | Latin | Classical | True | Broad | 35,200 | | [TSV](tsv/lat_latn_clas_narrow.tsv) | lat | Latin | Latin | Latin | Classical | False | Narrow | 36,068 | | [TSV](tsv/lat_latn_eccl_broad.tsv) | lat | Latin | Latin | Latin | Ecclesiastical | False | Broad | 34,974 | | [TSV](tsv/lat_latn_eccl_narrow.tsv) | lat | Latin | Latin | Latin | Ecclesiastical | False | Narrow | 35,564 | | [TSV](tsv/lav_latn_narrow.tsv) | lav | Latvian | Latvian | Latin | | False | Narrow | 1,355 | | [TSV](tsv/lav_latn_narrow_filtered.tsv) | lav | Latvian | Latvian | Latin | | True | Narrow | 1,255 | | [TSV](tsv/lif_limb_broad.tsv) | lif | Limbu | Limbu | Limbu | | False | Broad | 108 | | [TSV](tsv/lij_latn_broad.tsv) | lij | Ligurian | Ligurian | Latin | | False | Broad | 816 | | [TSV](tsv/lim_latn_broad.tsv) | lim | Limburgan | Limburgish | Latin | | False | Broad | 949 | | [TSV](tsv/lim_latn_narrow.tsv) | lim | Limburgan | Limburgish | Latin | | False | Narrow | 230 | | [TSV](tsv/lit_latn_broad.tsv) | lit | Lithuanian | Lithuanian | Latin | | False | Broad | 370 | | [TSV](tsv/lit_latn_narrow.tsv) | lit | Lithuanian | Lithuanian | Latin | | False | Narrow | 12,831 | | [TSV](tsv/liv_latn_broad.tsv) | liv | Liv | Livonian | Latin | | False | Broad | 393 | | [TSV](tsv/lmo_latn_broad.tsv) | lmo | Lombard | Lombard | Latin | | False | Broad | 486 | | [TSV](tsv/lmo_latn_narrow.tsv) | lmo | Lombard | Lombard | Latin | | False | Narrow | 375 | | [TSV](tsv/lmy_latn_narrow.tsv) | lmy | Lamboya | Laboya | Latin | | False | Narrow | 129 | | [TSV](tsv/lou_latn_broad.tsv) | lou | Louisiana Creole | Louisiana Creole | Latin | | False | Broad | 240 | | [TSV](tsv/lsi_latn_broad.tsv) | lsi | Lashi | Lashi | Latin | | False | Broad | 324 | | [TSV](tsv/ltg_latn_narrow.tsv) | ltg | Latgalian | Latgalian | Latin | | False | Narrow | 444 | | [TSV](tsv/ltz_latn_broad.tsv) | ltz | Luxembourgish | Luxembourgish | Latin | | False | Broad | 4,090 | | [TSV](tsv/ltz_latn_narrow.tsv) | ltz | Luxembourgish | Luxembourgish | Latin | | False | Narrow | 2,654 | | [TSV](tsv/lut_latn_broad.tsv) | lut | Lushootseed | Lushootseed | Latin | | False | Broad | 121 | | [TSV](tsv/lwl_thai_broad.tsv) | lwl | Eastern Lawa | Eastern Lawa | Thai | | False | Broad | 253 | | [TSV](tsv/lzz_geor_broad.tsv) | lzz | Laz | Laz | Georgian | | False | Broad | 305 | | [TSV](tsv/mah_latn_broad.tsv) | mah | Marshallese | Marshallese | Latin | | False | Broad | 943 | | [TSV](tsv/mah_latn_narrow.tsv) | mah | Marshallese | Marshallese | Latin | | False | Narrow | 1,060 | | [TSV](tsv/mai_deva_narrow.tsv) | mai | Maithili | Maithili | Devanagari | | False | Narrow | 164 | | [TSV](tsv/mak_latn_narrow.tsv) | mak | Makasar | Makasar | Latin | | False | Narrow | 432 | | [TSV](tsv/mal_mlym_broad.tsv) | mal | Malayalam | Malayalam | Malayalam | | False | Broad | 7,100 | | [TSV](tsv/mal_mlym_narrow.tsv) | mal | Malayalam | Malayalam | Malayalam | | False | Narrow | 375 | | [TSV](tsv/mar_deva_broad.tsv) | mar | Marathi | Marathi | Devanagari | | False | Broad | 2,681 | | [TSV](tsv/mar_deva_narrow.tsv) | mar | Marathi | Marathi | Devanagari | | False | Narrow | 599 | | [TSV](tsv/mdf_cyrl_broad.tsv) | mdf | Moksha | Moksha | Cyrillic | | False | Broad | 131 | | [TSV](tsv/mfe_latn_broad.tsv) | mfe | Morisyen | Mauritian Creole | Latin | | False | Broad | 205 | | [TSV](tsv/mfe_latn_narrow.tsv) | mfe | Morisyen | Mauritian Creole | Latin | | False | Narrow | 105 | | [TSV](tsv/mga_latn_broad.tsv) | mga | Middle Irish (900-1200) | Middle Irish | Latin | | False | Broad | 317 | | [TSV](tsv/mic_latn_broad.tsv) | mic | Mi'kmaq | Mi'kmaq | Latin | | False | Broad | 203 | | [TSV](tsv/mic_latn_narrow.tsv) | mic | Mi'kmaq | Mi'kmaq | Latin | | False | Narrow | 201 | | [TSV](tsv/mkd_cyrl_narrow.tsv) | mkd | Macedonian | Macedonian | Cyrillic | | False | Narrow | 62,277 | | [TSV](tsv/mlg_latn_broad.tsv) | mlg | Malagasy | Malagasy | Latin | | False | Broad | 185 | | [TSV](tsv/mlt_latn_broad.tsv) | mlt | Maltese | Maltese | Latin | | False | Broad | 18,391 | | [TSV](tsv/mlt_latn_broad_filtered.tsv) | mlt | Maltese | Maltese | Latin | | True | Broad | 18,361 | | [TSV](tsv/mnc_mong_narrow.tsv) | mnc | Manchu | Manchu | Mongolian | | False | Narrow | 1,467 | | [TSV](tsv/mnw_mymr_broad.tsv) | mnw | Mon | Mon | Myanmar | | False | Broad | 1,079 | | [TSV](tsv/mon_cyrl_broad.tsv) | mon | Mongolian | Mongolian | Cyrillic | | False | Broad | 3,477 | | [TSV](tsv/mon_cyrl_narrow.tsv) | mon | Mongolian | Mongolian | Cyrillic | | False | Narrow | 806 | | [TSV](tsv/mqs_latn_broad.tsv) | mqs | West Makian | West Makian | Latin | | False | Broad | 793 | | [TSV](tsv/msa_arab_ara_broad.tsv) | msa | Malay (macrolanguage) | Malay | Arabic | | False | Broad | 628 | | [TSV](tsv/msa_arab_ara_narrow.tsv) | msa | Malay (macrolanguage) | Malay | Arabic | | False | Narrow | 220 | | [TSV](tsv/msa_arab_broad.tsv) | msa | Malay (macrolanguage) | Malay | Arabic | | False | Broad | 653 | | [TSV](tsv/msa_arab_narrow.tsv) | msa | Malay (macrolanguage) | Malay | Arabic | | False | Narrow | 204 | | [TSV](tsv/msa_latn_broad.tsv) | msa | Malay (macrolanguage) | Malay | Latin | | False | Broad | 3,504 | | [TSV](tsv/msa_latn_narrow.tsv) | msa | Malay (macrolanguage) | Malay | Latin | | False | Narrow | 1,246 | | [TSV](tsv/mtq_latn_broad.tsv) | mtq | Muong | Muong | Latin | | False | Broad | 144 | | [TSV](tsv/mww_latn_broad.tsv) | mww | Hmong Daw | White Hmong | Latin | | False | Broad | 419 | | [TSV](tsv/mya_mymr_broad.tsv) | mya | Burmese | Burmese | Myanmar | | False | Broad | 6,075 | | [TSV](tsv/mya_mymr_broad_filtered.tsv) | mya | Burmese | Burmese | Myanmar | | True | Broad | 6,062 | | [TSV](tsv/nap_latn_broad.tsv) | nap | Neapolitan | Neapolitan | Latin | | False | Broad | 201 | | [TSV](tsv/nap_latn_narrow.tsv) | nap | Neapolitan | Neapolitan | Latin | | False | Narrow | 455 | | [TSV](tsv/nav_latn_broad.tsv) | nav | Navajo | Navajo | Latin | | False | Broad | 329 | | [TSV](tsv/nci_latn_broad.tsv) | nci | Classical Nahuatl | Classical Nahuatl | Latin | | False | Broad | 855 | | [TSV](tsv/nci_latn_narrow.tsv) | nci | Classical Nahuatl | Classical Nahuatl | Latin | | False | Narrow | 1,435 | | [TSV](tsv/nds_latn_broad.tsv) | nds | Low German | Low German | Latin | | False | Broad | 210 | | [TSV](tsv/nep_deva_narrow.tsv) | nep | Nepali (macrolanguage) | Nepali | Devanagari | | False | Narrow | 1,926 | | [TSV](tsv/new_deva_narrow.tsv) | new | Newari | Newar | Devanagari | | False | Narrow | 413 | | [TSV](tsv/nhg_latn_narrow.tsv) | nhg | Tetelcingo Nahuatl | Tetelcingo Nahuatl | Latin | | False | Narrow | 305 | | [TSV](tsv/nhn_latn_broad.tsv) | nhn | Central Nahuatl | Central Nahuatl | Latin | | False | Broad | 167 | | [TSV](tsv/nhx_latn_broad.tsv) | nhx | Isthmus-Mecayapan Nahuatl | Mecayapan Nahuatl | Latin | | False | Broad | 146 | | [TSV](tsv/niv_cyrl_broad.tsv) | niv | Gilyak | Nivkh | Cyrillic | | False | Broad | 131 | | [TSV](tsv/nld_latn_broad.tsv) | nld | Dutch | Dutch | Latin | | False | Broad | 40,908 | | [TSV](tsv/nld_latn_broad_filtered.tsv) | nld | Dutch | Dutch | Latin | | True | Broad | 40,831 | | [TSV](tsv/nld_latn_narrow.tsv) | nld | Dutch | Dutch | Latin | | False | Narrow | 693 | | [TSV](tsv/nmy_latn_narrow.tsv) | nmy | Namuyi | Namuyi | Latin | | False | Narrow | 356 | | [TSV](tsv/nno_latn_broad.tsv) | nno | Norwegian Nynorsk | Norwegian Nynorsk | Latin | | False | Broad | 4,693 | | [TSV](tsv/nno_latn_narrow.tsv) | nno | Norwegian Nynorsk | Norwegian Nynorsk | Latin | | False | Narrow | 940 | | [TSV](tsv/nob_latn_broad.tsv) | nob | Norwegian Bokmål | Norwegian Bokmål | Latin | | False | Broad | 3,207 | | [TSV](tsv/nob_latn_broad_filtered.tsv) | nob | Norwegian Bokmål | Norwegian Bokmål | Latin | | True | Broad | 2,703 | | [TSV](tsv/nob_latn_narrow.tsv) | nob | Norwegian Bokmål | Norwegian Bokmål | Latin | | False | Narrow | 692 | | [TSV](tsv/non_latn_broad.tsv) | non | Old Norse | Old Norse | Latin | | False | Broad | 240 | | [TSV](tsv/nor_latn_broad.tsv) | nor | Norwegian | Norwegian | Latin | | False | Broad | 1,397 | | [TSV](tsv/nrf_latn_broad.tsv) | nrf | Jèrriais | Norman | Latin | | False | Broad | 186 | | [TSV](tsv/nup_latn_broad.tsv) | nup | Nupe-Nupe-Tako | Nupe | Latin | | False | Broad | 442 | | [TSV](tsv/nya_latn_broad.tsv) | nya | Nyanja | Chichewa | Latin | | False | Broad | 830 | | [TSV](tsv/oci_latn_broad.tsv) | oci | Occitan (post 1500) | Occitan | Latin | | False | Broad | 580 | | [TSV](tsv/oci_latn_narrow.tsv) | oci | Occitan (post 1500) | Occitan | Latin | | False | Narrow | 349 | | [TSV](tsv/ofs_latn_broad.tsv) | ofs | Old Frisian | Old Frisian | Latin | | False | Broad | 170 | | [TSV](tsv/okm_hang_broad.tsv) | okm | Middle Korean (10th-16th cent.) | Middle Korean | Hangul | | False | Broad | 592 | | [TSV](tsv/okm_hang_narrow.tsv) | okm | Middle Korean (10th-16th cent.) | Middle Korean | Hangul | | False | Narrow | 245 | | [TSV](tsv/olo_latn_broad.tsv) | olo | Livvi | Livvi | Latin | | False | Broad | 263 | | [TSV](tsv/orv_cyrl_broad.tsv) | orv | Old Russian | Old East Slavic | Cyrillic | | False | Broad | 1,064 | | [TSV](tsv/osp_latn_broad.tsv) | osp | Old Spanish | Old Spanish | Latin | | False | Broad | 615 | | [TSV](tsv/osx_latn_broad.tsv) | osx | Old Saxon | Old Saxon | Latin | | False | Broad | 249 | | [TSV](tsv/ota_arab_broad.tsv) | ota | Ottoman Turkish (1500-1928) | Ottoman Turkish | Arabic | | False | Broad | 189 | | [TSV](tsv/ota_arab_narrow.tsv) | ota | Ottoman Turkish (1500-1928) | Ottoman Turkish | Arabic | | False | Narrow | 176 | | [TSV](tsv/pag_latn_broad.tsv) | pag | Pangasinan | Pangasinan | Latin | | False | Broad | 209 | | [TSV](tsv/pag_latn_narrow.tsv) | pag | Pangasinan | Pangasinan | Latin | | False | Narrow | 205 | | [TSV](tsv/pam_latn_broad.tsv) | pam | Pampanga | Kapampangan | Latin | | False | Broad | 553 | | [TSV](tsv/pam_latn_narrow.tsv) | pam | Pampanga | Kapampangan | Latin | | False | Narrow | 555 | | [TSV](tsv/pan_arab_broad.tsv) | pan | Panjabi | Punjabi | Arabic | | False | Broad | 537 | | [TSV](tsv/pan_guru_broad.tsv) | pan | Panjabi | Punjabi | Gurmukhi | | False | Broad | 704 | | [TSV](tsv/pan_guru_narrow.tsv) | pan | Panjabi | Punjabi | Gurmukhi | | False | Narrow | 154 | | [TSV](tsv/pbv_latn_broad.tsv) | pbv | Pnar | Pnar | Latin | | False | Broad | 101 | | [TSV](tsv/pcc_latn_broad.tsv) | pcc | Bouyei | Bouyei | Latin | | False | Broad | 143 | | [TSV](tsv/pdc_latn_broad.tsv) | pdc | Pennsylvania German | Pennsylvania German | Latin | | False | Broad | 166 | | [TSV](tsv/phl_latn_broad.tsv) | phl | Phalura | Phalura | Latin | | False | Broad | 2,144 | | [TSV](tsv/pjt_latn_narrow.tsv) | pjt | Pitjantjatjara | Pitjantjatjara | Latin | | False | Narrow | 124 | | [TSV](tsv/pms_latn_broad.tsv) | pms | Piemontese | Piedmontese | Latin | | False | Broad | 866 | | [TSV](tsv/pol_latn_broad.tsv) | pol | Polish | Polish | Latin | | False | Broad | 132,558 | | [TSV](tsv/por_latn_bz_broad.tsv) | por | Portuguese | Portuguese | Latin | Brazil | False | Broad | 139,198 | | [TSV](tsv/por_latn_bz_broad_filtered.tsv) | por | Portuguese | Portuguese | Latin | Brazil | True | Broad | 139,160 | | [TSV](tsv/por_latn_bz_narrow.tsv) | por | Portuguese | Portuguese | Latin | Brazil | False | Narrow | 72,663 | | [TSV](tsv/por_latn_po_broad.tsv) | por | Portuguese | Portuguese | Latin | Portugal | False | Broad | 73,236 | | [TSV](tsv/por_latn_po_broad_filtered.tsv) | por | Portuguese | Portuguese | Latin | Portugal | True | Broad | 49,149 | | [TSV](tsv/por_latn_po_narrow.tsv) | por | Portuguese | Portuguese | Latin | Portugal | False | Narrow | 27,795 | | [TSV](tsv/pox_latn_broad.tsv) | pox | Polabian | Polabian | Latin | | False | Broad | 307 | | [TSV](tsv/ppl_latn_broad.tsv) | ppl | Pipil | Pipil | Latin | | False | Broad | 264 | | [TSV](tsv/pqm_latn_broad.tsv) | pqm | Malecite-Passamaquoddy | Malecite-Passamaquoddy | Latin | | False | Broad | 151 | | [TSV](tsv/pqm_latn_narrow.tsv) | pqm | Malecite-Passamaquoddy | Malecite-Passamaquoddy | Latin | | False | Narrow | 158 | | [TSV](tsv/pus_arab_broad.tsv) | pus | Pushto | Pashto | Arabic | | False | Broad | 1,252 | | [TSV](tsv/rgn_latn_broad.tsv) | rgn | Romagnol | Romagnol | Latin | | False | Broad | 266 | | [TSV](tsv/rgn_latn_narrow.tsv) | rgn | Romagnol | Romagnol | Latin | | False | Narrow | 617 | | [TSV](tsv/rom_latn_broad.tsv) | rom | Romany | Romani | Latin | | False | Broad | 187 | | [TSV](tsv/ron_latn_broad.tsv) | ron | Romanian | Romanian | Latin | | False | Broad | 6,095 | | [TSV](tsv/ron_latn_narrow.tsv) | ron | Romanian | Romanian | Latin | | False | Narrow | 6,127 | | [TSV](tsv/ron_latn_narrow_filtered.tsv) | ron | Romanian | Romanian | Latin | | True | Narrow | 6,033 | | [TSV](tsv/rup_latn_narrow.tsv) | rup | Macedo-Romanian | Aromanian | Latin | | False | Narrow | 175 | | [TSV](tsv/rus_cyrl_narrow.tsv) | rus | Russian | Russian | Cyrillic | | False | Narrow | 411,651 | | [TSV](tsv/sah_cyrl_broad.tsv) | sah | Yakut | Yakut | Cyrillic | | False | Broad | 213 | | [TSV](tsv/san_deva_broad.tsv) | san | Sanskrit | Sanskrit | Devanagari | | False | Broad | 13,390 | | [TSV](tsv/san_deva_narrow.tsv) | san | Sanskrit | Sanskrit | Devanagari | | False | Narrow | 1,226 | | [TSV](tsv/sce_latn_broad.tsv) | sce | Dongxiang | Dongxiang | Latin | | False | Broad | 125 | | [TSV](tsv/scn_latn_broad.tsv) | scn | Sicilian | Sicilian | Latin | | False | Broad | 1,168 | | [TSV](tsv/scn_latn_narrow.tsv) | scn | Sicilian | Sicilian | Latin | | False | Narrow | 349 | | [TSV](tsv/sco_latn_broad.tsv) | sco | Scots | Scots | Latin | | False | Broad | 1,145 | | [TSV](tsv/sco_latn_narrow.tsv) | sco | Scots | Scots | Latin | | False | Narrow | 463 | | [TSV](tsv/sdc_latn_broad.tsv) | sdc | Sassarese Sardinian | Sassarese | Latin | | False | Broad | 318 | | [TSV](tsv/sga_latn_broad.tsv) | sga | Old Irish (to 900) | Old Irish | Latin | | False | Broad | 2,046 | | [TSV](tsv/sga_latn_narrow.tsv) | sga | Old Irish (to 900) | Old Irish | Latin | | False | Narrow | 1,150 | | [TSV](tsv/shn_mymr_broad.tsv) | shn | Shan | Shan | Myanmar | | False | Broad | 2,455 | | [TSV](tsv/sia_cyrl_broad.tsv) | sia | Akkala Sami | Akkala Sami | Cyrillic | | False | Broad | 180 | | [TSV](tsv/sid_latn_broad.tsv) | sid | Sidamo | Sidamo | Latin | | False | Broad | 296 | | [TSV](tsv/sin_sinh_broad.tsv) | sin | Sinhala | Sinhalese | Sinhala | | False | Broad | 282 | | [TSV](tsv/sin_sinh_narrow.tsv) | sin | Sinhala | Sinhalese | Sinhala | | False | Narrow | 262 | | [TSV](tsv/sjd_cyrl_broad.tsv) | sjd | Kildin Sami | Kildin Sami | Cyrillic | | False | Broad | 328 | | [TSV](tsv/skr_arab_broad.tsv) | skr | Saraiki | Saraiki | Arabic | | False | Broad | 213 | | [TSV](tsv/slk_latn_broad.tsv) | slk | Slovak | Slovak | Latin | | False | Broad | 2,558 | | [TSV](tsv/slk_latn_narrow.tsv) | slk | Slovak | Slovak | Latin | | False | Narrow | 3,904 | | [TSV](tsv/slr_latn_broad.tsv) | slr | Salar | Salar | Latin | | False | Broad | 182 | | [TSV](tsv/slr_latn_narrow.tsv) | slr | Salar | Salar | Latin | | False | Narrow | 888 | | [TSV](tsv/slv_latn_broad.tsv) | slv | Slovenian | Slovene | Latin | | False | Broad | 4,936 | | [TSV](tsv/slv_latn_broad_filtered.tsv) | slv | Slovenian | Slovene | Latin | | True | Broad | 4,861 | | [TSV](tsv/slv_latn_narrow.tsv) | slv | Slovenian | Slovene | Latin | | False | Narrow | 131 | | [TSV](tsv/sme_latn_broad.tsv) | sme | Northern Sami | Northern Sami | Latin | | False | Broad | 4,103 | | [TSV](tsv/sms_latn_broad.tsv) | sms | Skolt Sami | Skolt Sami | Latin | | False | Broad | 113 | | [TSV](tsv/snd_arab_broad.tsv) | snd | Sindhi | Sindhi | Arabic | | False | Broad | 121 | | [TSV](tsv/spa_latn_ca_broad.tsv) | spa | Spanish | Spanish | Latin | Castilian, Spain | False | Broad | 99,056 | | [TSV](tsv/spa_latn_ca_broad_filtered.tsv) | spa | Spanish | Spanish | Latin | Castilian, Spain | True | Broad | 99,043 | | [TSV](tsv/spa_latn_ca_narrow.tsv) | spa | Spanish | Spanish | Latin | Castilian, Spain | False | Narrow | 99,002 | | [TSV](tsv/spa_latn_la_broad.tsv) | spa | Spanish | Spanish | Latin | Latin America | False | Broad | 99,051 | | [TSV](tsv/spa_latn_la_broad_filtered.tsv) | spa | Spanish | Spanish | Latin | Latin America | True | Broad | 99,038 | | [TSV](tsv/spa_latn_la_narrow.tsv) | spa | Spanish | Spanish | Latin | Latin America | False | Narrow | 98,997 | | [TSV](tsv/sqi_latn_broad.tsv) | sqi | Albanian | Albanian | Latin | | False | Broad | 1,997 | | [TSV](tsv/sqi_latn_narrow.tsv) | sqi | Albanian | Albanian | Latin | | False | Narrow | 935 | | [TSV](tsv/srd_latn_broad.tsv) | srd | Sardinian | Sardinian | Latin | | False | Broad | 690 | | [TSV](tsv/srd_latn_narrow.tsv) | srd | Sardinian | Sardinian | Latin | | False | Narrow | 103 | | [TSV](tsv/srn_latn_broad.tsv) | srn | Sranan Tongo | Sranan Tongo | Latin | | False | Broad | 196 | | [TSV](tsv/srs_latn_broad.tsv) | srs | Sarsi | Tsuut'ina | Latin | | False | Broad | 137 | | [TSV](tsv/stq_latn_broad.tsv) | stq | Saterfriesisch | Saterland Frisian | Latin | | False | Broad | 805 | | [TSV](tsv/swa_latn_broad.tsv) | swa | Swahili (macrolanguage) | Swahili | Latin | | False | Broad | 110 | | [TSV](tsv/swe_latn_broad.tsv) | swe | Swedish | Swedish | Latin | | False | Broad | 4,631 | | [TSV](tsv/swe_latn_narrow.tsv) | swe | Swedish | Swedish | Latin | | False | Narrow | 478 | | [TSV](tsv/syc_syrc_narrow.tsv) | syc | Classical Syriac | Classical Syriac | Syriac | | False | Narrow | 6,319 | | [TSV](tsv/syl_sylo_broad.tsv) | syl | Sylheti | Sylheti | Syloti Nagri | | False | Broad | 292 | | [TSV](tsv/szl_latn_broad.tsv) | szl | Silesian | Silesian | Latin | | False | Broad | 1,887 | | [TSV](tsv/tam_taml_broad.tsv) | tam | Tamil | Tamil | Tamil | | False | Broad | 6,903 | | [TSV](tsv/tam_taml_narrow.tsv) | tam | Tamil | Tamil | Tamil | | False | Narrow | 3,309 | | [TSV](tsv/tby_latn_narrow.tsv) | tby | Tabaru | Tabaru | Latin | | False | Narrow | 100 | | [TSV](tsv/tel_telu_broad.tsv) | tel | Telugu | Telugu | Telugu | | False | Broad | 3,295 | | [TSV](tsv/tel_telu_narrow.tsv) | tel | Telugu | Telugu | Telugu | | False | Narrow | 1,146 | | [TSV](tsv/tft_latn_broad.tsv) | tft | Ternate | Ternate | Latin | | False | Broad | 229 | | [TSV](tsv/tft_latn_narrow.tsv) | tft | Ternate | Ternate | Latin | | False | Narrow | 1,017 | | [TSV](tsv/tgk_cyrl_broad.tsv) | tgk | Tajik | Tajik | Cyrillic | | False | Broad | 702 | | [TSV](tsv/tgk_cyrl_narrow.tsv) | tgk | Tajik | Tajik | Cyrillic | | False | Narrow | 652 | | [TSV](tsv/tgl_latn_broad.tsv) | tgl | Tagalog | Tagalog | Latin | | False | Broad | 18,256 | | [TSV](tsv/tgl_latn_narrow.tsv) | tgl | Tagalog | Tagalog | Latin | | False | Narrow | 19,824 | | [TSV](tsv/tha_thai_broad.tsv) | tha | Thai | Thai | Thai | | False | Broad | 16,689 | | [TSV](tsv/tkl_latn_narrow.tsv) | tkl | Tokelau | Tokelauan | Latin | | False | Narrow | 332 | | [TSV](tsv/ton_latn_broad.tsv) | ton | Tonga (Tonga Islands) | Tongan | Latin | | False | Broad | 165 | | [TSV](tsv/tpw_latn_broad.tsv) | tpw | Tupí | Old Tupi | Latin | | False | Broad | 356 | | [TSV](tsv/tru_syrc_broad.tsv) | tru | Turoyo | Turoyo | Syriac | | False | Broad | 163 | | [TSV](tsv/tuk_latn_broad.tsv) | tuk | Turkmen | Turkmen | Latin | | False | Broad | 133 | | [TSV](tsv/tur_latn_broad.tsv) | tur | Turkish | Turkish | Latin | | False | Broad | 7,266 | | [TSV](tsv/tur_latn_narrow.tsv) | tur | Turkish | Turkish | Latin | | False | Narrow | 2,188 | | [TSV](tsv/tur_latn_narrow_filtered.tsv) | tur | Turkish | Turkish | Latin | | True | Narrow | 1,724 | | [TSV](tsv/twf_latn_broad.tsv) | twf | Northern Tiwa | Taos | Latin | | False | Broad | 135 | | [TSV](tsv/tyv_cyrl_broad.tsv) | tyv | Tuvinian | Tuvan | Cyrillic | | False | Broad | 493 | | [TSV](tsv/tzm_tfng_broad.tsv) | tzm | Central Atlas Tamazight | Central Atlas Tamazight | Tifinagh | | False | Broad | 694 | | [TSV](tsv/tzm_tfng_narrow.tsv) | tzm | Central Atlas Tamazight | Central Atlas Tamazight | Tifinagh | | False | Narrow | 728 | | [TSV](tsv/uby_cyrl_narrow.tsv) | uby | Ubykh | Ubykh | Cyrillic | | False | Narrow | 1,315 | | [TSV](tsv/uig_arab_ara_broad.tsv) | uig | Uighur | Uyghur | Arabic | | False | Broad | 260 | | [TSV](tsv/uig_arab_broad.tsv) | uig | Uighur | Uyghur | Arabic | | False | Broad | 1,411 | | [TSV](tsv/ukr_cyrl_narrow.tsv) | ukr | Ukrainian | Ukrainian | Cyrillic | | False | Narrow | 39,641 | | [TSV](tsv/urd_arab_broad.tsv) | urd | Urdu | Urdu | Arabic | | False | Broad | 4,493 | | [TSV](tsv/urd_arab_narrow.tsv) | urd | Urdu | Urdu | Arabic | | False | Narrow | 104 | | [TSV](tsv/urk_thai_broad.tsv) | urk | Urak Lawoi' | Urak Lawoi' | Thai | | False | Broad | 565 | | [TSV](tsv/urk_thai_narrow.tsv) | urk | Urak Lawoi' | Urak Lawoi' | Thai | | False | Narrow | 565 | | [TSV](tsv/vie_latn_hanoi_narrow.tsv) | vie | Vietnamese | Vietnamese | Latin | Hà Nội | False | Narrow | 23,320 | | [TSV](tsv/vie_latn_hanoi_narrow_filtered.tsv) | vie | Vietnamese | Vietnamese | Latin | Hà Nội | True | Narrow | 23,320 | | [TSV](tsv/vie_latn_hue_narrow.tsv) | vie | Vietnamese | Vietnamese | Latin | Huế | False | Narrow | 26,372 | | [TSV](tsv/vie_latn_hue_narrow_filtered.tsv) | vie | Vietnamese | Vietnamese | Latin | Huế | True | Narrow | 26,357 | | [TSV](tsv/vie_latn_saigon_narrow.tsv) | vie | Vietnamese | Vietnamese | Latin | Saigon | False | Narrow | 27,232 | | [TSV](tsv/vie_latn_saigon_narrow_filtered.tsv) | vie | Vietnamese | Vietnamese | Latin | Saigon | True | Narrow | 27,221 | | [TSV](tsv/vol_latn_broad.tsv) | vol | Volapük | Volapük | Latin | | False | Broad | 388 | | [TSV](tsv/vol_latn_narrow.tsv) | vol | Volapük | Volapük | Latin | | False | Narrow | 564 | | [TSV](tsv/vot_latn_broad.tsv) | vot | Votic | Votic | Latin | | False | Broad | 2,118 | | [TSV](tsv/vot_latn_narrow.tsv) | vot | Votic | Votic | Latin | | False | Narrow | 2,124 | | [TSV](tsv/wau_latn_broad.tsv) | wau | Waurá | Wauja | Latin | | False | Broad | 151 | | [TSV](tsv/wbk_latn_broad.tsv) | wbk | Waigali | Waigali | Latin | | False | Broad | 112 | | [TSV](tsv/wiy_latn_broad.tsv) | wiy | Wiyot | Wiyot | Latin | | False | Broad | 152 | | [TSV](tsv/wlm_latn_broad.tsv) | wlm | Middle Welsh | Middle Welsh | Latin | | False | Broad | 151 | | [TSV](tsv/wln_latn_broad.tsv) | wln | Walloon | Walloon | Latin | | False | Broad | 2,545 | | [TSV](tsv/xal_cyrl_broad.tsv) | xal | Kalmyk | Kalmyk | Cyrillic | | False | Broad | 328 | | [TSV](tsv/xho_latn_narrow.tsv) | xho | Xhosa | Xhosa | Latin | | False | Narrow | 876 | | [TSV](tsv/xsl_latn_narrow.tsv) | xsl | South Slavey | South Slavey | Latin | | False | Narrow | 137 | | [TSV](tsv/ybi_deva_broad.tsv) | ybi | Yamphu | Yamphu | Devanagari | | False | Broad | 136 | | [TSV](tsv/ycl_latn_narrow.tsv) | ycl | Lolopo | Lolopo | Latin | | False | Narrow | 110 | | [TSV](tsv/yid_hebr_broad.tsv) | yid | Yiddish | Yiddish | Hebrew | | False | Broad | 3,572 | | [TSV](tsv/yid_hebr_narrow.tsv) | yid | Yiddish | Yiddish | Hebrew | | False | Narrow | 346 | | [TSV](tsv/yor_latn_broad.tsv) | yor | Yoruba | Yoruba | Latin | | False | Broad | 5,199 | | [TSV](tsv/yrk_cyrl_narrow.tsv) | yrk | Nenets | Tundra Nenets | Cyrillic | | False | Narrow | 233 | | [TSV](tsv/yue_hani_broad.tsv) | yue | Yue Chinese | Cantonese | Han | | False | Broad | 102,453 | | [TSV](tsv/yue_latn_broad.tsv) | yue | Yue Chinese | Cantonese | Latin | | False | Broad | 432 | | [TSV](tsv/yux_cyrl_narrow.tsv) | yux | Southern Yukaghir | Southern Yukaghir | Cyrillic | | False | Narrow | 200 | | [TSV](tsv/zha_latn_broad.tsv) | zha | Zhuang | Zhuang | Latin | | False | Broad | 1,405 | | [TSV](tsv/zho_hani_broad.tsv) | zho | Chinese | Chinese | Han | | False | Broad | 158,873 | | [TSV](tsv/zho_latn_broad.tsv) | zho | Chinese | Chinese | Latin | | False | Broad | 174 | | [TSV](tsv/zom_latn_broad.tsv) | zom | Zou | Zou | Latin | | False | Broad | 142 | | [TSV](tsv/zul_latn_broad.tsv) | zul | Zulu | Zulu | Latin | | False | Broad | 1,743 | | [TSV](tsv/zza_latn_narrow.tsv) | zza | Zaza | Zazaki | Latin | | False | Narrow | 199 |
mlfoundations-dev/union-openhermes2.5-source-prompts
mlfoundations-dev
"2024-12-01T19:24:55Z"
3
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T19:22:13Z"
--- dataset_info: features: - name: prompt dtype: string - name: source dtype: string splits: - name: train num_bytes: 1297626642 num_examples: 2832744 download_size: 736711189 dataset_size: 1297626642 configs: - config_name: default data_files: - split: train path: data/train-* ---
DT4LM/albertbasev2_mrpc_pair_clare
DT4LM
"2024-12-01T19:28:23Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T19:28:19Z"
--- dataset_info: features: - name: question1 dtype: string - name: question2 dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 238313 num_examples: 926 download_size: 166354 dataset_size: 238313 configs: - config_name: default data_files: - split: train path: data/train-* ---
DT4LM/albertbasev2_mrpc_pair_clare_original
DT4LM
"2024-12-01T19:28:27Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T19:28:24Z"
--- dataset_info: features: - name: question1 dtype: string - name: question2 dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 230800 num_examples: 926 download_size: 160872 dataset_size: 230800 configs: - config_name: default data_files: - split: train path: data/train-* ---
StephanAkkerman/open-dict-words-ipa
StephanAkkerman
"2024-12-01T19:35:07Z"
3
0
[ "license:mit", "size_categories:1M<n<10M", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2024-12-01T19:30:09Z"
--- license: mit --- # Open-dict Words IPA This dataset is a copy of https://github.com/open-dict-data/ipa-dict ## Languages IPA data is currently available for the following languages: Language | Code -------- | ---- ar | Arabic (Modern Standard) de | German en_UK | English (Received Pronunciation) en_US | English (General American) eo | Esperanto es_ES | Spanish (Spain) es_MX | Spanish (Mexico) fa | Persian fi | Finnish fr_FR | French (France) fr_QC | French (Québec) is | Icelandic ja | Japanese jam | Jamaican Creole km | Khmer ko | Korean ma | Malay (Malaysian and Indonesian) nb | Norwegian Bokmål nl | Dutch or | Odia ro | Romanian sv | Swedish sw | Swahili tts | Isan vi_C | Vietnamese (Central) vi_N | Vietnamese (Northern) vi_S | Vietnamese (Southern) yue | Cantonese zh | Mandarin
Nash-pAnDiTa/Moamn-5N6Rl40Hl_g
Nash-pAnDiTa
"2024-12-01T19:41:57Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T19:41:38Z"
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string splits: - name: train num_bytes: 169832905.0 num_examples: 16 download_size: 169046837 dataset_size: 169832905.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
CodeDPO/rl_dataset_20241201
CodeDPO
"2024-12-01T19:47:04Z"
3
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T19:46:52Z"
--- dataset_info: features: - name: question_id dtype: string - name: sample_id dtype: int64 - name: prompt_pretokenized dtype: string - name: prompt_tokenized sequence: int64 - name: response dtype: string - name: tokenized_response sequence: int64 - name: accuracy dtype: float64 - name: logp dtype: float64 - name: rm_score dtype: float64 splits: - name: train num_bytes: 2286987762 num_examples: 486202 download_size: 213607658 dataset_size: 2286987762 configs: - config_name: default data_files: - split: train path: data/train-* ---
sdiazlor/my-distiset-8e6109
sdiazlor
"2024-12-01T20:12:54Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
null
"2024-12-01T20:12:47Z"
--- size_categories: n<1K dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': negative '1': positive splits: - name: train num_bytes: 279 num_examples: 1 download_size: 3134 dataset_size: 279 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-8e6109 This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/sdiazlor/my-distiset-8e6109/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/sdiazlor/my-distiset-8e6109/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "label": 1, "text": "The incorporation of quantum entanglement into existing quantum field theory has led to a paradigm shift in our understanding of spacetime and its relationship to matter, but further research is needed to fully elucidate its implications on the cosmological constant." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("sdiazlor/my-distiset-8e6109", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("sdiazlor/my-distiset-8e6109") ``` </details>
yobro4619/mistral_7b_rm
yobro4619
"2024-12-01T20:22:36Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T20:22:32Z"
--- dataset_info: features: - name: rejected list: - name: content dtype: string - name: role dtype: string - name: rejected_score dtype: float64 - name: chosen_score dtype: float64 - name: chosen list: - name: content dtype: string - name: role dtype: string - name: reward_chosen dtype: float64 - name: reward_rejected dtype: float64 splits: - name: train num_bytes: 16493427 num_examples: 5000 download_size: 9266184 dataset_size: 16493427 configs: - config_name: default data_files: - split: train path: data/train-* ---
sssssssshhhhhu/movielens_dpo_dataset_2
sssssssshhhhhu
"2024-12-01T21:31:47Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T21:31:44Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 7455876 num_examples: 1000 download_size: 2346699 dataset_size: 7455876 configs: - config_name: default data_files: - split: train path: data/train-* ---
mathreward/8b_llama31_greedy_pass1
mathreward
"2024-12-01T21:32:15Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T21:32:14Z"
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: level dtype: string - name: type dtype: string - name: my_solu dtype: string - name: pred sequence: string splits: - name: train num_bytes: 9844437 num_examples: 5000 download_size: 3476225 dataset_size: 9844437 configs: - config_name: default data_files: - split: train path: data/train-* ---
LLMsForHepth/infer_hep-th_hep-ph_gr-qc
LLMsForHepth
"2024-12-01T21:56:55Z"
3
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T21:56:48Z"
--- dataset_info: features: - name: id dtype: string - name: submitter dtype: string - name: authors dtype: string - name: title dtype: string - name: comments dtype: string - name: journal-ref dtype: string - name: doi dtype: string - name: report-no dtype: string - name: categories dtype: string - name: license dtype: string - name: orig_abstract dtype: string - name: versions list: - name: created dtype: string - name: version dtype: string - name: update_date dtype: string - name: authors_parsed sequence: sequence: string - name: abstract dtype: string - name: prompt dtype: string - name: y_true dtype: string - name: comp_s3-L-3.1-8B-base_v3 dtype: string - name: preds_s3-L-3.1-8B-base_v3 dtype: string splits: - name: test num_bytes: 185022862 num_examples: 45195 download_size: 101502826 dataset_size: 185022862 configs: - config_name: default data_files: - split: test path: data/test-* ---
mathreward/8b_llama31_tmp07_pass2
mathreward
"2024-12-01T21:58:07Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T21:58:06Z"
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: level dtype: string - name: type dtype: string - name: my_solu sequence: string - name: pred sequence: string splits: - name: train num_bytes: 20851450 num_examples: 5000 download_size: 6199760 dataset_size: 20851450 configs: - config_name: default data_files: - split: train path: data/train-* ---
mathreward/8b_llama31_tmp1_pass2
mathreward
"2024-12-01T21:59:53Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T21:59:51Z"
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: level dtype: string - name: type dtype: string - name: my_solu sequence: string - name: pred sequence: string splits: - name: train num_bytes: 23184018 num_examples: 5000 download_size: 8531235 dataset_size: 23184018 configs: - config_name: default data_files: - split: train path: data/train-* ---
mathreward/8b_llama31_tmp03_pass2
mathreward
"2024-12-01T22:11:52Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T22:11:51Z"
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: level dtype: string - name: type dtype: string - name: my_solu sequence: string - name: pred sequence: string splits: - name: train num_bytes: 19752662 num_examples: 5000 download_size: 5319205 dataset_size: 19752662 configs: - config_name: default data_files: - split: train path: data/train-* ---
Erland/NLP701_Assignment2_Subtask3_KTO_Dataset_4
Erland
"2024-12-01T22:12:50Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T22:12:46Z"
--- dataset_info: features: - name: prompt dtype: string - name: completion dtype: string - name: label dtype: bool - name: bertscore_f1 dtype: float64 - name: rank dtype: int64 - name: file_name dtype: string - name: categories dtype: string - name: subcategories dtype: string - name: reference_explanation dtype: string splits: - name: train num_bytes: 1772726 num_examples: 440 download_size: 267579 dataset_size: 1772726 configs: - config_name: default data_files: - split: train path: data/train-* ---
yobro4619/skywork_Llama_3.1
yobro4619
"2024-12-01T22:58:48Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T22:58:46Z"
--- dataset_info: features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: source dtype: string - name: reward_chosen dtype: float64 - name: reward_rejected dtype: float64 splits: - name: train num_bytes: 25019105 num_examples: 5000 download_size: 11754585 dataset_size: 25019105 configs: - config_name: default data_files: - split: train path: data/train-* ---
mathreward/8b_llama31_selfcorr_horizon2_tmp1
mathreward
"2024-12-01T23:00:10Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T23:00:07Z"
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: level dtype: string - name: type dtype: string - name: my_solu dtype: string - name: pred sequence: string splits: - name: train num_bytes: 32584970 num_examples: 5000 download_size: 12630264 dataset_size: 32584970 configs: - config_name: default data_files: - split: train path: data/train-* ---
myyim/yoga_asana_poses
myyim
"2024-12-01T23:30:21Z"
3
0
[ "license:apache-2.0", "region:us" ]
null
"2024-12-01T23:30:21Z"
--- license: apache-2.0 ---
DT4LM/debertav3base_mrpc_pair_clare
DT4LM
"2024-12-01T23:33:07Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T23:33:03Z"
--- dataset_info: features: - name: question1 dtype: string - name: question2 dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 221856 num_examples: 844 download_size: 156502 dataset_size: 221856 configs: - config_name: default data_files: - split: train path: data/train-* ---
DT4LM/debertav3base_mrpc_pair_clare_original
DT4LM
"2024-12-01T23:33:11Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T23:33:08Z"
--- dataset_info: features: - name: question1 dtype: string - name: question2 dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 214638 num_examples: 844 download_size: 150343 dataset_size: 214638 configs: - config_name: default data_files: - split: train path: data/train-* ---
Dddixyy/latino_italiano_traduzioni_DIRETTE
Dddixyy
"2024-12-01T23:56:44Z"
3
0
[ "task_categories:translation", "language:la", "language:it", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ancient", "ancient literature", "translation", "ancient latin", "italian", "italian datasets" ]
[ "translation" ]
"2024-12-01T23:51:16Z"
--- dataset_info: features: - name: id dtype: int64 - name: source dtype: string - name: target dtype: string splits: - name: train num_bytes: 1517821 num_examples: 735 - name: validation num_bytes: 181277 num_examples: 82 - name: test num_bytes: 433785 num_examples: 205 download_size: 1397811 dataset_size: 2132883 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* license: mit task_categories: - translation language: - la - it tags: - ancient - ancient literature - translation - ancient latin - italian - italian datasets ---
nielsr/gemini-results-2024-12-01
nielsr
"2024-12-02T00:06:10Z"
3
0
[ "format:parquet", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T00:06:09Z"
--- dataset_info: features: - name: arxiv_id dtype: 'null' - name: github dtype: 'null' - name: title dtype: 'null' - name: upvotes dtype: int64 - name: num_comments dtype: int64 - name: github_mention_hf dtype: float64 - name: num_models dtype: float64 - name: num_datasets dtype: float64 - name: num_spaces dtype: float64 - name: reached_out_link dtype: 'null' - name: reached_out_success dtype: float64 - name: has_artifact dtype: bool - name: submitted_by dtype: 'null' - name: reached_out_note dtype: 'null' - name: date dtype: 'null' - name: gemini_results dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 0 num_examples: 0 download_size: 4099 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/stf_regex_ner_completo
juliadollis
"2024-12-02T00:24:20Z"
3
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T00:15:09Z"
--- dataset_info: features: - name: inteiro_teor dtype: string - name: url_download dtype: string - name: dataDecisao dtype: timestamp[ns] - name: dataPublicacao dtype: timestamp[ns] - name: decisao dtype: string - name: descricaoClasse dtype: string - name: ementa dtype: string - name: id dtype: string - name: jurisprudenciaCitada dtype: string - name: ministroRelator dtype: string - name: nomeOrgaoJulgador dtype: string - name: numeroProcesso dtype: string - name: referenciasLegislativas sequence: string - name: siglaClasse dtype: string - name: tipoDeDecisao dtype: string - name: titulo dtype: string - name: acordaosSimilares sequence: string - name: partes_lista_texto dtype: string - name: temaProcs sequence: string - name: inteiro_teor_regex dtype: string - name: NER struct: - name: JURISPRUDENCIA sequence: string - name: LEGISLACAO sequence: string - name: LOCAL sequence: string - name: ORGANIZACAO sequence: string - name: PESSOA sequence: string - name: TEMPO sequence: string splits: - name: train num_bytes: 8503837647 num_examples: 78477 download_size: 2333511885 dataset_size: 8503837647 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/stf_regex_ner_1_fuzzy_80
juliadollis
"2024-12-02T00:44:21Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T00:44:10Z"
--- dataset_info: features: - name: inteiro_teor dtype: string - name: url_download dtype: string - name: dataDecisao dtype: timestamp[ns] - name: dataPublicacao dtype: timestamp[ns] - name: decisao dtype: string - name: descricaoClasse dtype: string - name: ementa dtype: string - name: id dtype: string - name: jurisprudenciaCitada dtype: string - name: ministroRelator dtype: string - name: nomeOrgaoJulgador dtype: string - name: numeroProcesso dtype: string - name: referenciasLegislativas sequence: string - name: siglaClasse dtype: string - name: tipoDeDecisao dtype: string - name: titulo dtype: string - name: acordaosSimilares sequence: string - name: partes_lista_texto dtype: string - name: temaProcs sequence: string - name: inteiro_teor_regex dtype: string - name: NER struct: - name: JURISPRUDENCIA sequence: string - name: LEGISLACAO sequence: string - name: LOCAL sequence: string - name: ORGANIZACAO sequence: string - name: PESSOA sequence: string - name: TEMPO sequence: string - name: desambiguacao list: - name: class dtype: string - name: count dtype: int64 - name: elements sequence: string - name: entity dtype: string splits: - name: train num_bytes: 122506511 num_examples: 1000 download_size: 33172345 dataset_size: 122506511 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/stf_regex_ner_1_fuzzy_85
juliadollis
"2024-12-02T00:48:31Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T00:48:21Z"
--- dataset_info: features: - name: inteiro_teor dtype: string - name: url_download dtype: string - name: dataDecisao dtype: timestamp[ns] - name: dataPublicacao dtype: timestamp[ns] - name: decisao dtype: string - name: descricaoClasse dtype: string - name: ementa dtype: string - name: id dtype: string - name: jurisprudenciaCitada dtype: string - name: ministroRelator dtype: string - name: nomeOrgaoJulgador dtype: string - name: numeroProcesso dtype: string - name: referenciasLegislativas sequence: string - name: siglaClasse dtype: string - name: tipoDeDecisao dtype: string - name: titulo dtype: string - name: acordaosSimilares sequence: string - name: partes_lista_texto dtype: string - name: temaProcs sequence: string - name: inteiro_teor_regex dtype: string - name: NER struct: - name: JURISPRUDENCIA sequence: string - name: LEGISLACAO sequence: string - name: LOCAL sequence: string - name: ORGANIZACAO sequence: string - name: PESSOA sequence: string - name: TEMPO sequence: string - name: desambiguacao list: - name: class dtype: string - name: count dtype: int64 - name: elements sequence: string - name: entity dtype: string splits: - name: train num_bytes: 122739508 num_examples: 1000 download_size: 33209135 dataset_size: 122739508 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/stf_regex_ner_1_fuzzy_90
juliadollis
"2024-12-02T00:50:59Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T00:50:49Z"
--- dataset_info: features: - name: inteiro_teor dtype: string - name: url_download dtype: string - name: dataDecisao dtype: timestamp[ns] - name: dataPublicacao dtype: timestamp[ns] - name: decisao dtype: string - name: descricaoClasse dtype: string - name: ementa dtype: string - name: id dtype: string - name: jurisprudenciaCitada dtype: string - name: ministroRelator dtype: string - name: nomeOrgaoJulgador dtype: string - name: numeroProcesso dtype: string - name: referenciasLegislativas sequence: string - name: siglaClasse dtype: string - name: tipoDeDecisao dtype: string - name: titulo dtype: string - name: acordaosSimilares sequence: string - name: partes_lista_texto dtype: string - name: temaProcs sequence: string - name: inteiro_teor_regex dtype: string - name: NER struct: - name: JURISPRUDENCIA sequence: string - name: LEGISLACAO sequence: string - name: LOCAL sequence: string - name: ORGANIZACAO sequence: string - name: PESSOA sequence: string - name: TEMPO sequence: string - name: desambiguacao list: - name: class dtype: string - name: count dtype: int64 - name: elements sequence: string - name: entity dtype: string splits: - name: train num_bytes: 122974029 num_examples: 1000 download_size: 33231007 dataset_size: 122974029 configs: - config_name: default data_files: - split: train path: data/train-* ---
khairi/pubmed-text-06
khairi
"2024-12-02T01:48:21Z"
3
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T01:04:14Z"
--- dataset_info: features: - name: pubMedId dtype: string - name: title dtype: string - name: abstract dtype: string splits: - name: train num_bytes: 2563725779 num_examples: 2498771 - name: test num_bytes: 1008377 num_examples: 1000 - name: valid num_bytes: 496320 num_examples: 501 download_size: 1485477306 dataset_size: 2565230476 --- # Dataset Card for "pubmed-text-06" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
koml/smart-hr-synthetic-data-single-image-multiple-queries
koml
"2024-12-02T01:30:30Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T01:30:05Z"
--- dataset_info: features: - name: index dtype: int64 - name: image dtype: image - name: question_en dtype: string - name: question_jp dtype: string - name: pdf_name dtype: string - name: pdf_page dtype: int64 splits: - name: train num_bytes: 420577824.0 num_examples: 1000 download_size: 165094552 dataset_size: 420577824.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
dogtooth/tulu_8b_diverse_responses_gold_scored_uf
dogtooth
"2024-12-02T01:42:40Z"
3
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T01:42:36Z"
--- dataset_info: features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: reference_completion dtype: string - name: reference_completion_score struct: - name: Skywork/Skywork-Reward-Gemma-2-27B-v0.2 dtype: float64 - name: chosen_score struct: - name: Skywork/Skywork-Reward-Gemma-2-27B-v0.2 dtype: float64 - name: rejected_score struct: - name: Skywork/Skywork-Reward-Gemma-2-27B-v0.2 dtype: float64 splits: - name: train num_bytes: 186053612 num_examples: 37074 download_size: 103375935 dataset_size: 186053612 configs: - config_name: default data_files: - split: train path: data/train-* ---
khairi/pubmed-text-07
khairi
"2024-12-02T02:30:47Z"
3
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T01:48:21Z"
--- dataset_info: features: - name: pubMedId dtype: string - name: title dtype: string - name: abstract dtype: string splits: - name: train num_bytes: 2455422680 num_examples: 2371946 - name: test num_bytes: 1042512 num_examples: 999 - name: valid num_bytes: 503878 num_examples: 500 download_size: 1422858713 dataset_size: 2456969070 --- # Dataset Card for "pubmed-text-07" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mtruong9/gt_smt_grandstaff_random_10percent_max_700_length
mtruong9
"2024-12-02T01:48:58Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T01:48:52Z"
--- dataset_info: features: - name: image dtype: image - name: transcription dtype: string splits: - name: train num_bytes: 32040144.430020433 num_examples: 2857 - name: val num_bytes: 3620965.0439108806 num_examples: 323 - name: test num_bytes: 5979717.989296436 num_examples: 533 download_size: 30972996 dataset_size: 41640827.46322775 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* ---
ashercn97/multi-step-v1-500
ashercn97
"2024-12-02T01:50:23Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "arxiv:2408.02442", "region:us", "synthetic", "distilabel", "rlaif" ]
null
"2024-12-02T01:50:19Z"
--- size_categories: n<1K dataset_info: features: - name: text dtype: string - name: step_labels sequence: string splits: - name: train num_bytes: 74859 num_examples: 50 download_size: 27417 dataset_size: 74859 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for multi-step-v1-500 This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/ashercn97/multi-step-v1-500/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/ashercn97/multi-step-v1-500/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "step_labels": [ "logical", "logical", "logical", "logical", "logical", "illogical", "illogical", "illogical", "illogical", "illogical", "illogical", "illogical", "logical", "logical", "illogical", "logical", "logical", "illogical", "illogical", "logical", "illogical", "illogical", "illogical", "logical", "illogical", "logical", "illogical", "logical", "logical", "logical", "logical", "illogical", "logical", "illogical", "illogical", "logical", "logical", "illogical", "illogical", "illogical", "logical", "illogical", "logical", "illogical", "illogical", "illogical", "illogical", "illogical", "illogical", "illogical", "illogical", "logical", "illogical", "logical", "illogical", "logical", "logical", "logical", "logical", "illogical", "logical", "logical", "logical", "illogical" ], "text": "Your husband enjoys the intense and competitive nature of playing PUBG, which is popular among many gamers. This could indicate his preference for action-packed activities and online interactions. On the other hand, your love for listening to country music suggests that you appreciate lyrical storytelling and perhaps a more laid-back experience. It\u0027s interesting how gaming and music can coexist in relationships, providing both partners with their own forms of entertainment. Maybe you could introduce him to some country songs that highlight themes of resilience and adventure, similar to the experiences in gaming. Or perhaps he could share his PUBG experience with you in a way that aligns with the storytelling of country music. It\u0027s also possible" } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("ashercn97/multi-step-v1-500", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("ashercn97/multi-step-v1-500") ``` </details> ## References ``` @misc{2408.02442, Author = {Zhi Rui Tam and Cheng-Kuang Wu and Yi-Lin Tsai and Chieh-Yen Lin and Hung-yi Lee and Yun-Nung Chen}, Title = {Let Me Speak Freely? A Study on the Impact of Format Restrictions on Performance of Large Language Models}, Year = {2024}, Eprint = {arXiv:2408.02442}, } ```
yguooo/summarize_from_feedback_oai_preprocessing_pythia_scene0_the
yguooo
"2024-12-02T02:04:56Z"
3
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T01:59:15Z"
--- dataset_info: features: - name: info struct: - name: id dtype: string - name: post dtype: string - name: title dtype: string - name: subreddit dtype: string - name: site dtype: string - name: article dtype: string - name: summaries list: - name: text dtype: string - name: policy dtype: string - name: note dtype: string - name: choice dtype: int32 - name: worker dtype: string - name: batch dtype: string - name: split dtype: string - name: extra struct: - name: confidence dtype: int32 - name: query_token sequence: int64 - name: query dtype: string - name: chosen dtype: string - name: chosen_token sequence: int64 - name: chosen_token_len dtype: int64 - name: rejected dtype: string - name: rejected_token sequence: int64 - name: rejected_token_len dtype: int64 - name: chosen_policy dtype: string - name: rejected_policy dtype: string - name: policies dtype: string - name: query_chosen dtype: string - name: query_chosen_token sequence: int64 - name: query_chosen_token_len dtype: int64 - name: query_rejected dtype: string - name: query_rejected_token sequence: int64 - name: query_rejected_token_len dtype: int64 - name: query_token_len dtype: int64 - name: query_chosen_token_response_label sequence: int64 - name: query_rejected_token_response_label sequence: int64 splits: - name: train num_bytes: 3142801508 num_examples: 92858 - name: validation num_bytes: 2844094875 num_examples: 83802 - name: validation_cnndm num_bytes: 225359437 num_examples: 2284 download_size: 288101074 dataset_size: 6212255820 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: validation_cnndm path: data/validation_cnndm-* ---
yguooo/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_pythia_scene0_sheboygan
yguooo
"2024-12-02T02:07:32Z"
3
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T02:04:10Z"
--- dataset_info: features: - name: id dtype: string - name: subreddit dtype: string - name: title dtype: string - name: post dtype: string - name: summary dtype: string - name: query_token sequence: int64 - name: query dtype: string - name: reference_response dtype: string - name: reference_response_token sequence: int64 - name: reference_response_token_len dtype: int64 - name: query_reference_response dtype: string - name: query_reference_response_token sequence: int64 - name: query_reference_response_token_response_label sequence: int64 - name: query_reference_response_token_len dtype: int64 splits: - name: train num_bytes: 2127314487 num_examples: 116722 - name: validation num_bytes: 117534549 num_examples: 6447 - name: test num_bytes: 119507098 num_examples: 6553 download_size: 560959231 dataset_size: 2364356134 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # TL;DR SFT Dataset for OpenAI's [Summarize from Feedback](https://openai.com/blog/summarization/) task The dataset is directly taken from https://github.com/openai/summarize-from-feedback/tree/700967448d10004279f138666442bf1497d0e705#reddit-tldr-dataset These columns are taken directly from the aforementioned dataset: * **id**: unique identifier for the post * **subreddit**: subreddit the post was taken from * **title**: title of the post * **post**: body of the post * **summary**: summary of the post * **reference_response**: reference response for the post These columns are added by this preprocessing script: * **query**: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last ` `. If it's too short it pads the main text ([summarize_from_feedback/tasks.py#L98-L165](https://github.com/openai/summarize-from-feedback/blob/700967448d10004279f138666442bf1497d0e705/summarize_from_feedback/tasks.py#L98-L165)). Padding is either space or `[PAD]` token (see Args below). * **query_token**: tokenized version of `query` * **reference_response_token**: tokenized version of `reference_response` * **reference_response_token_len**: length of `reference_response_token` * **query_reference_response**: concatenation of `query.strip()` and `reference_response` * **query_reference_response_token**: tokenized version of `query_reference_response`, up to `max_sft_query_response_length` tokens * **query_reference_response_token_len**: length of `query_reference_response_token` # Args ```python {'base_model': 'EleutherAI/pythia-1b', 'check_length_correctness': True, 'cnndm_params': TaskQueryHParams(length=1919, format_str='Article:\n{article}\n\nTL;DR:\n', truncate_field='article', truncate_text='\n', padding='pad_token', pad_token=[50277], pad_side='left', max_sft_response_length=None, max_sft_query_response_length=None, max_rm_response_length=155, max_rm_query_response_length=2021), 'debug': False, 'ds_name': 'pythia_scene0_sheboygan', 'hf_entity': 'yguooo', 'push_to_hub': True, 'scenario': 0, 'tldr_params': TaskQueryHParams(length=512, format_str='SUBREDDIT: ' 'r/{subreddit}\\n\\nTITLE: ' '{title}\\n\\nPOST: ' '{post}\\n\\nSheboygan:', truncate_field='post', truncate_text='\n', padding='pad_token', pad_token=[50277], pad_side='left', max_sft_response_length=53, max_sft_query_response_length=562, max_rm_response_length=169, max_rm_query_response_length=634)} ```
yguooo/summarize_from_feedback_oai_preprocessing_pythia_scene0_sheboygan
yguooo
"2024-12-02T02:09:34Z"
3
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T02:05:44Z"
--- dataset_info: features: - name: info struct: - name: id dtype: string - name: post dtype: string - name: title dtype: string - name: subreddit dtype: string - name: site dtype: string - name: article dtype: string - name: summaries list: - name: text dtype: string - name: policy dtype: string - name: note dtype: string - name: choice dtype: int32 - name: worker dtype: string - name: batch dtype: string - name: split dtype: string - name: extra struct: - name: confidence dtype: int32 - name: query_token sequence: int64 - name: query dtype: string - name: chosen dtype: string - name: chosen_token sequence: int64 - name: chosen_token_len dtype: int64 - name: rejected dtype: string - name: rejected_token sequence: int64 - name: rejected_token_len dtype: int64 - name: chosen_policy dtype: string - name: rejected_policy dtype: string - name: policies dtype: string - name: query_chosen dtype: string - name: query_chosen_token sequence: int64 - name: query_chosen_token_len dtype: int64 - name: query_rejected dtype: string - name: query_rejected_token sequence: int64 - name: query_rejected_token_len dtype: int64 - name: query_token_len dtype: int64 - name: query_chosen_token_response_label sequence: int64 - name: query_rejected_token_response_label sequence: int64 splits: - name: train num_bytes: 3150117694 num_examples: 92858 - name: validation num_bytes: 2850640554 num_examples: 83802 - name: validation_cnndm num_bytes: 225359437 num_examples: 2284 download_size: 288565458 dataset_size: 6226117685 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: validation_cnndm path: data/validation_cnndm-* ---
hula1/Appollo_math_V2
hula1
"2024-12-02T02:36:33Z"
3
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T02:18:23Z"
--- license: apache-2.0 ---
rasyosef/2AIRTC-Amharic-Adhoc-Information-Retrieval-Test-Collection
rasyosef
"2024-12-02T02:35:30Z"
3
0
[ "language:am", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T02:21:05Z"
--- dataset_info: features: - name: doc_no dtype: int64 - name: doc_text dtype: string - name: relevant_topic_nos sequence: int64 - name: relevant_topic_titles sequence: string - name: relevant_topic_descriptions sequence: string - name: relevant_topic_narratives sequence: string splits: - name: documents num_bytes: 68777070 num_examples: 12587 download_size: 27722236 dataset_size: 68777070 configs: - config_name: default data_files: - split: documents path: data/documents-* language: - am --- ## Original Dataset and Paper Original dataset: https://www.irit.fr/AmharicResources/airtc-the-amharic-adhoc-information-retrieval-test-collection/ > Evaluation is highly important for designing, developing, and maintaining information retrieval (IR) systems. The IR community has developed shared tasks where evaluation framework, evaluation measures and test collections have been developed for different languages. Although Amharic is the official language of Ethiopia currently having an estimated population of over 110 million, it is one of the under-resourced languages and there is no Amharic adhoc IR test collection to date. In this paper, we promote the monolingual Amharic IR test collection that we build for the IR community. Following the framework of Cranfield project and TREC, the collection that we named 2AIRTC consists of 12,583 documents, 240 topics and the corresponding relevance judgments. ``` @inproceedings{yeshambel20202airtc, title={2AIRTC: The Amharic Adhoc Information Retrieval Test Collection}, author={Yeshambel, Tilahun and Mothe, Josiane and Assabie, Yaregal}, booktitle={International Conference of the Cross-Language Evaluation Forum for European Languages}, pages={55--66}, year={2020}, organization={Springer} } ```
mm-reasoning/EMMA
mm-reasoning
"2024-12-02T02:53:47Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T02:30:33Z"
--- dataset_info: - config_name: Chemistry features: - name: pid dtype: string - name: question dtype: string - name: options sequence: string - name: answer dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: solution dtype: string - name: subject dtype: string - name: task dtype: string - name: category dtype: string - name: source dtype: string - name: type dtype: string - name: context dtype: string splits: - name: test num_bytes: 6216934.0 num_examples: 105 download_size: 6039924 dataset_size: 6216934.0 - config_name: Math features: - name: pid dtype: string - name: question dtype: string - name: options sequence: string - name: answer dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: solution dtype: string - name: subject dtype: string - name: task dtype: string - name: category dtype: string - name: source dtype: string - name: type dtype: string - name: context dtype: string splits: - name: test num_bytes: 55271944.0 num_examples: 892 download_size: 49466220 dataset_size: 55271944.0 configs: - config_name: Chemistry data_files: - split: test path: Chemistry/test-* - config_name: Math data_files: - split: test path: Math/test-* ---
khairi/pubmed-text-08
khairi
"2024-12-02T03:11:49Z"
3
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T02:30:48Z"
--- dataset_info: features: - name: pubMedId dtype: string - name: title dtype: string - name: abstract dtype: string splits: - name: train num_bytes: 2391356165 num_examples: 2290061 - name: test num_bytes: 1050546 num_examples: 1000 - name: valid num_bytes: 535648 num_examples: 500 download_size: 1380379923 dataset_size: 2392942359 --- # Dataset Card for "pubmed-text-08" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mlfoundations-dev/oh-dcft-v2.0_no-curation_gpt-4o-mini
mlfoundations-dev
"2024-12-02T02:35:33Z"
3
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T02:34:07Z"
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: source dtype: string splits: - name: train num_bytes: 5178468768 num_examples: 2832441 download_size: 2768833612 dataset_size: 5178468768 configs: - config_name: default data_files: - split: train path: data/train-* ---
open-llm-leaderboard/sabersaleh__Llama2-7B-CPO-details
open-llm-leaderboard
"2024-12-02T02:52:47Z"
3
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T02:49:44Z"
--- pretty_name: Evaluation run of sabersaleh/Llama2-7B-CPO dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [sabersaleh/Llama2-7B-CPO](https://huggingface.co/sabersaleh/Llama2-7B-CPO)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/sabersaleh__Llama2-7B-CPO-details\"\ ,\n\tname=\"sabersaleh__Llama2-7B-CPO__leaderboard_bbh_boolean_expressions\",\n\t\ split=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results from\ \ run 2024-12-02T02-49-44.267310](https://huggingface.co/datasets/open-llm-leaderboard/sabersaleh__Llama2-7B-CPO-details/blob/main/sabersaleh__Llama2-7B-CPO/results_2024-12-02T02-49-44.267310.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"prompt_level_strict_acc,none\": 0.10166358595194085,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.013004849611340378,\n \"\ inst_level_strict_acc,none\": 0.20743405275779375,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.006797583081570997,\n \ \ \"exact_match_stderr,none\": 0.002262169974437948,\n \"acc_norm,none\"\ : 0.3370086911402257,\n \"acc_norm_stderr,none\": 0.00511348077103276,\n\ \ \"inst_level_loose_acc,none\": 0.2182254196642686,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.11090573012939002,\n \"prompt_level_loose_acc_stderr,none\": 0.01351306974704948,\n\ \ \"acc,none\": 0.1605718085106383,\n \"acc_stderr,none\"\ : 0.0033471529742732163,\n \"alias\": \"leaderboard\"\n },\n \ \ \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.34264884568651277,\n\ \ \"acc_norm_stderr,none\": 0.00588596195329697,\n \"alias\"\ : \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \ \ \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\"\ : \" - leaderboard_bbh_causal_judgement\",\n \"acc_norm,none\": 0.5187165775401069,\n\ \ \"acc_norm_stderr,none\": 0.03663608375537843\n },\n \ \ \"leaderboard_bbh_date_understanding\": {\n \"alias\": \" - leaderboard_bbh_date_understanding\"\ ,\n \"acc_norm,none\": 0.372,\n \"acc_norm_stderr,none\":\ \ 0.03063032594455827\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \ \ \"acc_norm,none\": 0.46,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\"\ : \" - leaderboard_bbh_formal_fallacies\",\n \"acc_norm,none\": 0.532,\n\ \ \"acc_norm_stderr,none\": 0.031621252575725574\n },\n \ \ \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.044,\n \"acc_norm_stderr,none\":\ \ 0.012997373846574952\n },\n \"leaderboard_bbh_hyperbaton\": {\n\ \ \"alias\": \" - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\"\ : 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n },\n\ \ \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.268,\n \"acc_norm_stderr,none\": 0.02806876238252672\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.184,\n \"acc_norm_stderr,none\": 0.02455581299422255\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.388,\n \"acc_norm_stderr,none\": 0.030881038748993974\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.668,\n \"acc_norm_stderr,none\": 0.029844039047465857\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\"\ : \" - leaderboard_bbh_object_counting\",\n \"acc_norm,none\": 0.256,\n\ \ \"acc_norm_stderr,none\": 0.027657108718204846\n },\n \ \ \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" - leaderboard_bbh_penguins_in_a_table\"\ ,\n \"acc_norm,none\": 0.3356164383561644,\n \"acc_norm_stderr,none\"\ : 0.039214533254314086\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.232,\n \"acc_norm_stderr,none\":\ \ 0.026750070374865202\n },\n \"leaderboard_bbh_ruin_names\": {\n\ \ \"alias\": \" - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\"\ : 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n },\n\ \ \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.22,\n \"acc_norm_stderr,none\": 0.026251792824605793\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.4606741573033708,\n\ \ \"acc_norm_stderr,none\": 0.03746587736387869\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.504,\n \"acc_norm_stderr,none\":\ \ 0.0316851985511992\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \ \ \"acc_norm,none\": 0.152,\n \"acc_norm_stderr,none\": 0.022752024491765464\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\":\ \ 0.022249407735450245\n },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\":\ \ 0.021723342617052086\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.332,\n \"acc_norm_stderr,none\":\ \ 0.029844039047465857\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2676174496644295,\n\ \ \"acc_norm_stderr,none\": 0.01282512448593109,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.22727272727272727,\n \"acc_norm_stderr,none\": 0.029857515673386438\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.2857142857142857,\n\ \ \"acc_norm_stderr,none\": 0.019351013185102753\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.26339285714285715,\n \"acc_norm_stderr,none\"\ : 0.02083369001657866\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.10166358595194085,\n \"prompt_level_strict_acc_stderr,none\": 0.013004849611340378,\n\ \ \"inst_level_strict_acc,none\": 0.20743405275779375,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.11090573012939002,\n \"prompt_level_loose_acc_stderr,none\": 0.01351306974704948,\n\ \ \"inst_level_loose_acc,none\": 0.2182254196642686,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.006797583081570997,\n \"exact_match_stderr,none\"\ : 0.002262169974437948,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.009771986970684038,\n\ \ \"exact_match_stderr,none\": 0.005623391633915856\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.007575757575757576,\n\ \ \"exact_match_stderr,none\": 0.007575757575757577\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\":\ \ \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.0035714285714285713,\n \"exact_match_stderr,none\": 0.0035714285714285713\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.0,\n\ \ \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \ \ \"exact_match,none\": 0.010362694300518135,\n \"exact_match_stderr,none\"\ : 0.007308424386792209\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.007407407407407408,\n \"exact_match_stderr,none\"\ : 0.007407407407407408\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.1605718085106383,\n\ \ \"acc_stderr,none\": 0.0033471529742732163\n },\n \"\ leaderboard_musr\": {\n \"acc_norm,none\": 0.40343915343915343,\n \ \ \"acc_norm_stderr,none\": 0.017266770806898563,\n \"alias\"\ : \" - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\"\ : {\n \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \ \ \"acc_norm,none\": 0.528,\n \"acc_norm_stderr,none\": 0.031636489531544396\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\"\ : \" - leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.23046875,\n\ \ \"acc_norm_stderr,none\": 0.026372364120563745\n },\n \ \ \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\":\ \ 0.031563285061213475\n }\n },\n \"leaderboard\": {\n \"prompt_level_strict_acc,none\"\ : 0.10166358595194085,\n \"prompt_level_strict_acc_stderr,none\": 0.013004849611340378,\n\ \ \"inst_level_strict_acc,none\": 0.20743405275779375,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.006797583081570997,\n \"exact_match_stderr,none\"\ : 0.002262169974437948,\n \"acc_norm,none\": 0.3370086911402257,\n \ \ \"acc_norm_stderr,none\": 0.00511348077103276,\n \"inst_level_loose_acc,none\"\ : 0.2182254196642686,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"prompt_level_loose_acc,none\": 0.11090573012939002,\n \"prompt_level_loose_acc_stderr,none\"\ : 0.01351306974704948,\n \"acc,none\": 0.1605718085106383,\n \"acc_stderr,none\"\ : 0.0033471529742732163,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.34264884568651277,\n \"acc_norm_stderr,none\"\ : 0.00588596195329697,\n \"alias\": \" - leaderboard_bbh\"\n },\n \"\ leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\"\ ,\n \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5187165775401069,\n \"acc_norm_stderr,none\"\ : 0.03663608375537843\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.372,\n \"acc_norm_stderr,none\": 0.03063032594455827\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.46,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.532,\n \"acc_norm_stderr,none\": 0.031621252575725574\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.044,\n \"acc_norm_stderr,none\": 0.012997373846574952\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.268,\n \"acc_norm_stderr,none\": 0.02806876238252672\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.184,\n \"acc_norm_stderr,none\": 0.02455581299422255\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.388,\n \"acc_norm_stderr,none\": 0.030881038748993974\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.668,\n \"acc_norm_stderr,none\": 0.029844039047465857\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.256,\n \"acc_norm_stderr,none\": 0.027657108718204846\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.3356164383561644,\n\ \ \"acc_norm_stderr,none\": 0.039214533254314086\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.232,\n \"acc_norm_stderr,none\": 0.026750070374865202\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.22,\n \"acc_norm_stderr,none\": 0.026251792824605793\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.4606741573033708,\n \"acc_norm_stderr,none\"\ : 0.03746587736387869\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.504,\n \"acc_norm_stderr,none\": 0.0316851985511992\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \"\ acc_norm,none\": 0.152,\n \"acc_norm_stderr,none\": 0.022752024491765464\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\": 0.022249407735450245\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\": 0.021723342617052086\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.332,\n \"acc_norm_stderr,none\": 0.029844039047465857\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2676174496644295,\n\ \ \"acc_norm_stderr,none\": 0.01282512448593109,\n \"alias\": \" -\ \ leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"alias\"\ : \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.22727272727272727,\n\ \ \"acc_norm_stderr,none\": 0.029857515673386438\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.2857142857142857,\n \"acc_norm_stderr,none\": 0.019351013185102753\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.26339285714285715,\n \"acc_norm_stderr,none\"\ : 0.02083369001657866\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.10166358595194085,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.013004849611340378,\n \ \ \"inst_level_strict_acc,none\": 0.20743405275779375,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.11090573012939002,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.01351306974704948,\n \"inst_level_loose_acc,none\"\ : 0.2182254196642686,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.006797583081570997,\n\ \ \"exact_match_stderr,none\": 0.002262169974437948,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.009771986970684038,\n \"exact_match_stderr,none\": 0.005623391633915856\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.007575757575757576,\n \"exact_match_stderr,none\"\ : 0.007575757575757577\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.0035714285714285713,\n \"exact_match_stderr,none\"\ : 0.0035714285714285713\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \"exact_match,none\"\ : 0.010362694300518135,\n \"exact_match_stderr,none\": 0.007308424386792209\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" -\ \ leaderboard_math_precalculus_hard\",\n \"exact_match,none\": 0.007407407407407408,\n\ \ \"exact_match_stderr,none\": 0.007407407407407408\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.1605718085106383,\n\ \ \"acc_stderr,none\": 0.0033471529742732163\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.40343915343915343,\n \"acc_norm_stderr,none\"\ : 0.017266770806898563,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.528,\n \"acc_norm_stderr,none\": 0.031636489531544396\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.23046875,\n\ \ \"acc_norm_stderr,none\": 0.026372364120563745\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n }\n}\n```" repo_url: https://huggingface.co/sabersaleh/Llama2-7B-CPO leaderboard_url: '' point_of_contact: '' configs: - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_boolean_expressions data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_causal_judgement data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_date_understanding data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_formal_fallacies data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_geometric_shapes data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_hyperbaton data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_movie_recommendation data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_navigate data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_object_counting data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_ruin_names data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_snarks data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_sports_understanding data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_temporal_sequences data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_bbh_web_of_lies data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_gpqa_diamond data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_gpqa_extended data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_gpqa_main data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_gpqa_main_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_ifeval data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_ifeval_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_math_algebra_hard data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_math_geometry_hard data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_math_num_theory_hard data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_math_prealgebra_hard data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_math_precalculus_hard data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_mmlu_pro data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_musr_murder_mysteries data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_musr_object_placements data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T02-49-44.267310.jsonl' - config_name: sabersaleh__Llama2-7B-CPO__leaderboard_musr_team_allocation data_files: - split: 2024_12_02T02_49_44.267310 path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T02-49-44.267310.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T02-49-44.267310.jsonl' --- # Dataset Card for Evaluation run of sabersaleh/Llama2-7B-CPO <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [sabersaleh/Llama2-7B-CPO](https://huggingface.co/sabersaleh/Llama2-7B-CPO) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/sabersaleh__Llama2-7B-CPO-details", name="sabersaleh__Llama2-7B-CPO__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T02-49-44.267310](https://huggingface.co/datasets/open-llm-leaderboard/sabersaleh__Llama2-7B-CPO-details/blob/main/sabersaleh__Llama2-7B-CPO/results_2024-12-02T02-49-44.267310.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "prompt_level_strict_acc,none": 0.10166358595194085, "prompt_level_strict_acc_stderr,none": 0.013004849611340378, "inst_level_strict_acc,none": 0.20743405275779375, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.006797583081570997, "exact_match_stderr,none": 0.002262169974437948, "acc_norm,none": 0.3370086911402257, "acc_norm_stderr,none": 0.00511348077103276, "inst_level_loose_acc,none": 0.2182254196642686, "inst_level_loose_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.11090573012939002, "prompt_level_loose_acc_stderr,none": 0.01351306974704948, "acc,none": 0.1605718085106383, "acc_stderr,none": 0.0033471529742732163, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.34264884568651277, "acc_norm_stderr,none": 0.00588596195329697, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5187165775401069, "acc_norm_stderr,none": 0.03663608375537843 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.372, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.46, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.044, "acc_norm_stderr,none": 0.012997373846574952 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.268, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.184, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.388, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.668, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.256, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3356164383561644, "acc_norm_stderr,none": 0.039214533254314086 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.232, "acc_norm_stderr,none": 0.026750070374865202 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.22, "acc_norm_stderr,none": 0.026251792824605793 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.4606741573033708, "acc_norm_stderr,none": 0.03746587736387869 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.504, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.152, "acc_norm_stderr,none": 0.022752024491765464 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.332, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2676174496644295, "acc_norm_stderr,none": 0.01282512448593109, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.22727272727272727, "acc_norm_stderr,none": 0.029857515673386438 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2857142857142857, "acc_norm_stderr,none": 0.019351013185102753 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.26339285714285715, "acc_norm_stderr,none": 0.02083369001657866 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.10166358595194085, "prompt_level_strict_acc_stderr,none": 0.013004849611340378, "inst_level_strict_acc,none": 0.20743405275779375, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.11090573012939002, "prompt_level_loose_acc_stderr,none": 0.01351306974704948, "inst_level_loose_acc,none": 0.2182254196642686, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.006797583081570997, "exact_match_stderr,none": 0.002262169974437948, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.009771986970684038, "exact_match_stderr,none": 0.005623391633915856 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.007575757575757576, "exact_match_stderr,none": 0.007575757575757577 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0035714285714285713, "exact_match_stderr,none": 0.0035714285714285713 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.010362694300518135, "exact_match_stderr,none": 0.007308424386792209 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.1605718085106383, "acc_stderr,none": 0.0033471529742732163 }, "leaderboard_musr": { "acc_norm,none": 0.40343915343915343, "acc_norm_stderr,none": 0.017266770806898563, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.23046875, "acc_norm_stderr,none": 0.026372364120563745 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 } }, "leaderboard": { "prompt_level_strict_acc,none": 0.10166358595194085, "prompt_level_strict_acc_stderr,none": 0.013004849611340378, "inst_level_strict_acc,none": 0.20743405275779375, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.006797583081570997, "exact_match_stderr,none": 0.002262169974437948, "acc_norm,none": 0.3370086911402257, "acc_norm_stderr,none": 0.00511348077103276, "inst_level_loose_acc,none": 0.2182254196642686, "inst_level_loose_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.11090573012939002, "prompt_level_loose_acc_stderr,none": 0.01351306974704948, "acc,none": 0.1605718085106383, "acc_stderr,none": 0.0033471529742732163, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.34264884568651277, "acc_norm_stderr,none": 0.00588596195329697, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5187165775401069, "acc_norm_stderr,none": 0.03663608375537843 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.372, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.46, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.044, "acc_norm_stderr,none": 0.012997373846574952 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.268, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.184, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.388, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.668, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.256, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3356164383561644, "acc_norm_stderr,none": 0.039214533254314086 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.232, "acc_norm_stderr,none": 0.026750070374865202 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.22, "acc_norm_stderr,none": 0.026251792824605793 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.4606741573033708, "acc_norm_stderr,none": 0.03746587736387869 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.504, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.152, "acc_norm_stderr,none": 0.022752024491765464 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.332, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2676174496644295, "acc_norm_stderr,none": 0.01282512448593109, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.22727272727272727, "acc_norm_stderr,none": 0.029857515673386438 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2857142857142857, "acc_norm_stderr,none": 0.019351013185102753 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.26339285714285715, "acc_norm_stderr,none": 0.02083369001657866 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.10166358595194085, "prompt_level_strict_acc_stderr,none": 0.013004849611340378, "inst_level_strict_acc,none": 0.20743405275779375, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.11090573012939002, "prompt_level_loose_acc_stderr,none": 0.01351306974704948, "inst_level_loose_acc,none": 0.2182254196642686, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.006797583081570997, "exact_match_stderr,none": 0.002262169974437948, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.009771986970684038, "exact_match_stderr,none": 0.005623391633915856 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.007575757575757576, "exact_match_stderr,none": 0.007575757575757577 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0035714285714285713, "exact_match_stderr,none": 0.0035714285714285713 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.010362694300518135, "exact_match_stderr,none": 0.007308424386792209 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.1605718085106383, "acc_stderr,none": 0.0033471529742732163 }, "leaderboard_musr": { "acc_norm,none": 0.40343915343915343, "acc_norm_stderr,none": 0.017266770806898563, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.23046875, "acc_norm_stderr,none": 0.026372364120563745 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/sabersaleh__Llama2-7B-IPO-details
open-llm-leaderboard
"2024-12-02T02:52:59Z"
3
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T02:49:58Z"
--- pretty_name: Evaluation run of sabersaleh/Llama2-7B-IPO dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [sabersaleh/Llama2-7B-IPO](https://huggingface.co/sabersaleh/Llama2-7B-IPO)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/sabersaleh__Llama2-7B-IPO-details\"\ ,\n\tname=\"sabersaleh__Llama2-7B-IPO__leaderboard_bbh_boolean_expressions\",\n\t\ split=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results from\ \ run 2024-12-02T02-49-58.344530](https://huggingface.co/datasets/open-llm-leaderboard/sabersaleh__Llama2-7B-IPO-details/blob/main/sabersaleh__Llama2-7B-IPO/results_2024-12-02T02-49-58.344530.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"acc_norm,none\": 0.3384355947593722,\n \"acc_norm_stderr,none\"\ : 0.0051477738332105305,\n \"acc,none\": 0.16173537234042554,\n \ \ \"acc_stderr,none\": 0.003356929443211976,\n \"inst_level_strict_acc,none\"\ : 0.22062350119904076,\n \"inst_level_strict_acc_stderr,none\": \"N/A\"\ ,\n \"exact_match,none\": 0.005287009063444109,\n \"exact_match_stderr,none\"\ : 0.0019919658841467073,\n \"prompt_level_loose_acc,none\": 0.14048059149722736,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.014953371656822667,\n \ \ \"prompt_level_strict_acc,none\": 0.133086876155268,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.014617009342904459,\n \"inst_level_loose_acc,none\": 0.2314148681055156,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"alias\"\ : \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.34455823641728867,\n \"acc_norm_stderr,none\": 0.005936889218956276,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \ \ \"acc_norm,none\": 0.552,\n \"acc_norm_stderr,none\": 0.03151438761115348\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\"\ : \" - leaderboard_bbh_causal_judgement\",\n \"acc_norm,none\": 0.5187165775401069,\n\ \ \"acc_norm_stderr,none\": 0.03663608375537843\n },\n \ \ \"leaderboard_bbh_date_understanding\": {\n \"alias\": \" - leaderboard_bbh_date_understanding\"\ ,\n \"acc_norm,none\": 0.368,\n \"acc_norm_stderr,none\":\ \ 0.03056207062099311\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \ \ \"acc_norm,none\": 0.52,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\"\ : \" - leaderboard_bbh_formal_fallacies\",\n \"acc_norm,none\": 0.532,\n\ \ \"acc_norm_stderr,none\": 0.031621252575725574\n },\n \ \ \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.112,\n \"acc_norm_stderr,none\":\ \ 0.019985536939171485\n },\n \"leaderboard_bbh_hyperbaton\": {\n\ \ \"alias\": \" - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\"\ : 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n },\n\ \ \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.264,\n \"acc_norm_stderr,none\": 0.027934518957690866\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.184,\n \"acc_norm_stderr,none\": 0.02455581299422255\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.376,\n \"acc_norm_stderr,none\": 0.03069633626739458\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\"\ : \" - leaderboard_bbh_object_counting\",\n \"acc_norm,none\": 0.3,\n\ \ \"acc_norm_stderr,none\": 0.029040893477575783\n },\n \ \ \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" - leaderboard_bbh_penguins_in_a_table\"\ ,\n \"acc_norm,none\": 0.3219178082191781,\n \"acc_norm_stderr,none\"\ : 0.038799816296271356\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.208,\n \"acc_norm_stderr,none\":\ \ 0.02572139890141637\n },\n \"leaderboard_bbh_ruin_names\": {\n \ \ \"alias\": \" - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\"\ : 0.196,\n \"acc_norm_stderr,none\": 0.025156857313255926\n },\n\ \ \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.22,\n \"acc_norm_stderr,none\": 0.026251792824605793\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.46629213483146065,\n\ \ \"acc_norm_stderr,none\": 0.0374968006036899\n },\n \"\ leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.556,\n \"acc_norm_stderr,none\":\ \ 0.03148684942554571\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \ \ \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\": 0.021723342617052086\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.12,\n \"acc_norm_stderr,none\": 0.020593600596839998\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\":\ \ 0.021723342617052086\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.348,\n \"acc_norm_stderr,none\":\ \ 0.030186568464511673\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2676174496644295,\n\ \ \"acc_norm_stderr,none\": 0.012836462594431608,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.25252525252525254,\n \"acc_norm_stderr,none\": 0.03095405547036587\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.2765567765567766,\n\ \ \"acc_norm_stderr,none\": 0.019160027479692504\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.26339285714285715,\n \"acc_norm_stderr,none\"\ : 0.02083369001657866\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.133086876155268,\n \"prompt_level_strict_acc_stderr,none\": 0.014617009342904457,\n\ \ \"inst_level_strict_acc,none\": 0.22062350119904076,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.14048059149722736,\n \"prompt_level_loose_acc_stderr,none\": 0.014953371656822667,\n\ \ \"inst_level_loose_acc,none\": 0.2314148681055156,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.005287009063444109,\n \"exact_match_stderr,none\"\ : 0.0019919658841467073,\n \"alias\": \" - leaderboard_math_hard\"\n\ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.006514657980456026,\n\ \ \"exact_match_stderr,none\": 0.004599025618546258\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.015151515151515152,\n\ \ \"exact_match_stderr,none\": 0.01067276863717474\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\": \"\ \ - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_num_theory_hard\"\ : {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_prealgebra_hard\",\n \"exact_match,none\": 0.0,\n\ \ \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.014814814814814815,\n \"exact_match_stderr,none\"\ : 0.010436494549594376\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.16173537234042554,\n\ \ \"acc_stderr,none\": 0.0033569294432119765\n },\n \"\ leaderboard_musr\": {\n \"acc_norm,none\": 0.40343915343915343,\n \ \ \"acc_norm_stderr,none\": 0.01729312559671818,\n \"alias\"\ : \" - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\"\ : {\n \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \ \ \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\"\ : \" - leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.23828125,\n\ \ \"acc_norm_stderr,none\": 0.026679160987075002\n },\n \ \ \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.44,\n \"acc_norm_stderr,none\": 0.03145724452223569\n\ \ }\n },\n \"leaderboard\": {\n \"acc_norm,none\": 0.3384355947593722,\n\ \ \"acc_norm_stderr,none\": 0.0051477738332105305,\n \"acc,none\"\ : 0.16173537234042554,\n \"acc_stderr,none\": 0.003356929443211976,\n \ \ \"inst_level_strict_acc,none\": 0.22062350119904076,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.005287009063444109,\n \"exact_match_stderr,none\"\ : 0.0019919658841467073,\n \"prompt_level_loose_acc,none\": 0.14048059149722736,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.014953371656822667,\n \ \ \"prompt_level_strict_acc,none\": 0.133086876155268,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.014617009342904459,\n \"inst_level_loose_acc,none\": 0.2314148681055156,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"alias\": \"leaderboard\"\ \n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.34455823641728867,\n\ \ \"acc_norm_stderr,none\": 0.005936889218956276,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.552,\n \"acc_norm_stderr,none\": 0.03151438761115348\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5187165775401069,\n \"acc_norm_stderr,none\"\ : 0.03663608375537843\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.368,\n \"acc_norm_stderr,none\": 0.03056207062099311\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.52,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.532,\n \"acc_norm_stderr,none\": 0.031621252575725574\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.112,\n \"acc_norm_stderr,none\": 0.019985536939171485\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.264,\n \"acc_norm_stderr,none\": 0.027934518957690866\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.184,\n \"acc_norm_stderr,none\": 0.02455581299422255\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.376,\n \"acc_norm_stderr,none\": 0.03069633626739458\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.3,\n \"acc_norm_stderr,none\": 0.029040893477575783\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.3219178082191781,\n\ \ \"acc_norm_stderr,none\": 0.038799816296271356\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.208,\n \"acc_norm_stderr,none\": 0.02572139890141637\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.196,\n \"acc_norm_stderr,none\": 0.025156857313255926\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.22,\n \"acc_norm_stderr,none\": 0.026251792824605793\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.46629213483146065,\n \"acc_norm_stderr,none\"\ : 0.0374968006036899\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.556,\n \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\": 0.021723342617052086\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.12,\n \"acc_norm_stderr,none\": 0.020593600596839998\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\": 0.021723342617052086\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.348,\n \"acc_norm_stderr,none\": 0.030186568464511673\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2676174496644295,\n\ \ \"acc_norm_stderr,none\": 0.012836462594431608,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.25252525252525254,\n\ \ \"acc_norm_stderr,none\": 0.03095405547036587\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.2765567765567766,\n \"acc_norm_stderr,none\": 0.019160027479692504\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.26339285714285715,\n \"acc_norm_stderr,none\"\ : 0.02083369001657866\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.133086876155268,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.014617009342904457,\n \ \ \"inst_level_strict_acc,none\": 0.22062350119904076,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.14048059149722736,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.014953371656822667,\n \"inst_level_loose_acc,none\"\ : 0.2314148681055156,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.005287009063444109,\n\ \ \"exact_match_stderr,none\": 0.0019919658841467073,\n \"alias\"\ : \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.006514657980456026,\n \"exact_match_stderr,none\": 0.004599025618546258\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.015151515151515152,\n \"exact_match_stderr,none\"\ : 0.01067276863717474\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n \ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\": \" - leaderboard_math_num_theory_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" -\ \ leaderboard_math_precalculus_hard\",\n \"exact_match,none\": 0.014814814814814815,\n\ \ \"exact_match_stderr,none\": 0.010436494549594376\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.16173537234042554,\n\ \ \"acc_stderr,none\": 0.0033569294432119765\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.40343915343915343,\n \"acc_norm_stderr,none\"\ : 0.01729312559671818,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.23828125,\n\ \ \"acc_norm_stderr,none\": 0.026679160987075002\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.44,\n \"acc_norm_stderr,none\": 0.03145724452223569\n }\n}\n```" repo_url: https://huggingface.co/sabersaleh/Llama2-7B-IPO leaderboard_url: '' point_of_contact: '' configs: - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_boolean_expressions data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_causal_judgement data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_date_understanding data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_formal_fallacies data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_geometric_shapes data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_hyperbaton data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_movie_recommendation data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_navigate data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_object_counting data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_ruin_names data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_snarks data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_sports_understanding data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_temporal_sequences data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_bbh_web_of_lies data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_gpqa_diamond data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_gpqa_extended data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_gpqa_main data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_gpqa_main_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_ifeval data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_ifeval_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_math_algebra_hard data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_math_geometry_hard data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_math_num_theory_hard data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_math_prealgebra_hard data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_math_precalculus_hard data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_mmlu_pro data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_musr_murder_mysteries data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_musr_object_placements data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T02-49-58.344530.jsonl' - config_name: sabersaleh__Llama2-7B-IPO__leaderboard_musr_team_allocation data_files: - split: 2024_12_02T02_49_58.344530 path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T02-49-58.344530.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T02-49-58.344530.jsonl' --- # Dataset Card for Evaluation run of sabersaleh/Llama2-7B-IPO <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [sabersaleh/Llama2-7B-IPO](https://huggingface.co/sabersaleh/Llama2-7B-IPO) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/sabersaleh__Llama2-7B-IPO-details", name="sabersaleh__Llama2-7B-IPO__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T02-49-58.344530](https://huggingface.co/datasets/open-llm-leaderboard/sabersaleh__Llama2-7B-IPO-details/blob/main/sabersaleh__Llama2-7B-IPO/results_2024-12-02T02-49-58.344530.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "acc_norm,none": 0.3384355947593722, "acc_norm_stderr,none": 0.0051477738332105305, "acc,none": 0.16173537234042554, "acc_stderr,none": 0.003356929443211976, "inst_level_strict_acc,none": 0.22062350119904076, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.005287009063444109, "exact_match_stderr,none": 0.0019919658841467073, "prompt_level_loose_acc,none": 0.14048059149722736, "prompt_level_loose_acc_stderr,none": 0.014953371656822667, "prompt_level_strict_acc,none": 0.133086876155268, "prompt_level_strict_acc_stderr,none": 0.014617009342904459, "inst_level_loose_acc,none": 0.2314148681055156, "inst_level_loose_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.34455823641728867, "acc_norm_stderr,none": 0.005936889218956276, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5187165775401069, "acc_norm_stderr,none": 0.03663608375537843 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.368, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.112, "acc_norm_stderr,none": 0.019985536939171485 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.264, "acc_norm_stderr,none": 0.027934518957690866 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.184, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.376, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.3, "acc_norm_stderr,none": 0.029040893477575783 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3219178082191781, "acc_norm_stderr,none": 0.038799816296271356 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.208, "acc_norm_stderr,none": 0.02572139890141637 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.196, "acc_norm_stderr,none": 0.025156857313255926 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.22, "acc_norm_stderr,none": 0.026251792824605793 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.46629213483146065, "acc_norm_stderr,none": 0.0374968006036899 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.12, "acc_norm_stderr,none": 0.020593600596839998 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.348, "acc_norm_stderr,none": 0.030186568464511673 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2676174496644295, "acc_norm_stderr,none": 0.012836462594431608, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.25252525252525254, "acc_norm_stderr,none": 0.03095405547036587 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2765567765567766, "acc_norm_stderr,none": 0.019160027479692504 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.26339285714285715, "acc_norm_stderr,none": 0.02083369001657866 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.133086876155268, "prompt_level_strict_acc_stderr,none": 0.014617009342904457, "inst_level_strict_acc,none": 0.22062350119904076, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.14048059149722736, "prompt_level_loose_acc_stderr,none": 0.014953371656822667, "inst_level_loose_acc,none": 0.2314148681055156, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.005287009063444109, "exact_match_stderr,none": 0.0019919658841467073, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.006514657980456026, "exact_match_stderr,none": 0.004599025618546258 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.015151515151515152, "exact_match_stderr,none": 0.01067276863717474 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.014814814814814815, "exact_match_stderr,none": 0.010436494549594376 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.16173537234042554, "acc_stderr,none": 0.0033569294432119765 }, "leaderboard_musr": { "acc_norm,none": 0.40343915343915343, "acc_norm_stderr,none": 0.01729312559671818, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.23828125, "acc_norm_stderr,none": 0.026679160987075002 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.44, "acc_norm_stderr,none": 0.03145724452223569 } }, "leaderboard": { "acc_norm,none": 0.3384355947593722, "acc_norm_stderr,none": 0.0051477738332105305, "acc,none": 0.16173537234042554, "acc_stderr,none": 0.003356929443211976, "inst_level_strict_acc,none": 0.22062350119904076, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.005287009063444109, "exact_match_stderr,none": 0.0019919658841467073, "prompt_level_loose_acc,none": 0.14048059149722736, "prompt_level_loose_acc_stderr,none": 0.014953371656822667, "prompt_level_strict_acc,none": 0.133086876155268, "prompt_level_strict_acc_stderr,none": 0.014617009342904459, "inst_level_loose_acc,none": 0.2314148681055156, "inst_level_loose_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.34455823641728867, "acc_norm_stderr,none": 0.005936889218956276, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5187165775401069, "acc_norm_stderr,none": 0.03663608375537843 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.368, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.112, "acc_norm_stderr,none": 0.019985536939171485 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.264, "acc_norm_stderr,none": 0.027934518957690866 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.184, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.376, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.3, "acc_norm_stderr,none": 0.029040893477575783 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3219178082191781, "acc_norm_stderr,none": 0.038799816296271356 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.208, "acc_norm_stderr,none": 0.02572139890141637 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.196, "acc_norm_stderr,none": 0.025156857313255926 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.22, "acc_norm_stderr,none": 0.026251792824605793 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.46629213483146065, "acc_norm_stderr,none": 0.0374968006036899 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.12, "acc_norm_stderr,none": 0.020593600596839998 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.348, "acc_norm_stderr,none": 0.030186568464511673 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2676174496644295, "acc_norm_stderr,none": 0.012836462594431608, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.25252525252525254, "acc_norm_stderr,none": 0.03095405547036587 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2765567765567766, "acc_norm_stderr,none": 0.019160027479692504 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.26339285714285715, "acc_norm_stderr,none": 0.02083369001657866 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.133086876155268, "prompt_level_strict_acc_stderr,none": 0.014617009342904457, "inst_level_strict_acc,none": 0.22062350119904076, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.14048059149722736, "prompt_level_loose_acc_stderr,none": 0.014953371656822667, "inst_level_loose_acc,none": 0.2314148681055156, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.005287009063444109, "exact_match_stderr,none": 0.0019919658841467073, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.006514657980456026, "exact_match_stderr,none": 0.004599025618546258 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.015151515151515152, "exact_match_stderr,none": 0.01067276863717474 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.014814814814814815, "exact_match_stderr,none": 0.010436494549594376 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.16173537234042554, "acc_stderr,none": 0.0033569294432119765 }, "leaderboard_musr": { "acc_norm,none": 0.40343915343915343, "acc_norm_stderr,none": 0.01729312559671818, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.23828125, "acc_norm_stderr,none": 0.026679160987075002 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.44, "acc_norm_stderr,none": 0.03145724452223569 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
dgambettaphd/D_gen5_run1_llama2-7b_wiki_doc1000_real64_synt64
dgambettaphd
"2024-12-02T03:11:51Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T03:11:48Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 584258 num_examples: 1000 download_size: 352003 dataset_size: 584258 configs: - config_name: default data_files: - split: train path: data/train-* ---
open-llm-leaderboard/sabersaleh__Llama2-7B-SPO-details
open-llm-leaderboard
"2024-12-02T03:38:36Z"
3
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T03:35:44Z"
--- pretty_name: Evaluation run of sabersaleh/Llama2-7B-SPO dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [sabersaleh/Llama2-7B-SPO](https://huggingface.co/sabersaleh/Llama2-7B-SPO)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/sabersaleh__Llama2-7B-SPO-details\"\ ,\n\tname=\"sabersaleh__Llama2-7B-SPO__leaderboard_bbh_boolean_expressions\",\n\t\ split=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results from\ \ run 2024-12-02T03-35-43.412546](https://huggingface.co/datasets/open-llm-leaderboard/sabersaleh__Llama2-7B-SPO-details/blob/main/sabersaleh__Llama2-7B-SPO/results_2024-12-02T03-35-43.412546.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"exact_match,none\": 0.014350453172205438,\n \"exact_match_stderr,none\"\ : 0.0032717098633934637,\n \"acc,none\": 0.17569813829787234,\n \ \ \"acc_stderr,none\": 0.003469571620440863,\n \"prompt_level_strict_acc,none\"\ : 0.10351201478743069,\n \"prompt_level_strict_acc_stderr,none\": 0.013109035446484243,\n\ \ \"inst_level_loose_acc,none\": 0.2158273381294964,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\",\n \"inst_level_strict_acc,none\"\ : 0.20983213429256595,\n \"inst_level_strict_acc_stderr,none\": \"N/A\"\ ,\n \"prompt_level_loose_acc,none\": 0.10905730129390019,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.013413909746312102,\n \"\ acc_norm,none\": 0.3309119211311454,\n \"acc_norm_stderr,none\": 0.005128975300894813,\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.334837701787884,\n \"acc_norm_stderr,none\"\ : 0.005901746897666035,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.576,\n\ \ \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5187165775401069,\n \"acc_norm_stderr,none\"\ : 0.03663608375537843\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.388,\n \"acc_norm_stderr,none\": 0.030881038748993974\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.376,\n\ \ \"acc_norm_stderr,none\": 0.03069633626739458\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.532,\n \"acc_norm_stderr,none\":\ \ 0.031621252575725574\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.156,\n \"acc_norm_stderr,none\": 0.022995023034068682\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.484,\n \ \ \"acc_norm_stderr,none\": 0.03166998503010743\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.244,\n \"acc_norm_stderr,none\":\ \ 0.02721799546455311\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.18,\n \"acc_norm_stderr,none\": 0.02434689065029351\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.496,\n \"acc_norm_stderr,none\": 0.0316851985511992\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\"\ : \" - leaderboard_bbh_object_counting\",\n \"acc_norm,none\": 0.248,\n\ \ \"acc_norm_stderr,none\": 0.027367497504863593\n },\n \ \ \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" - leaderboard_bbh_penguins_in_a_table\"\ ,\n \"acc_norm,none\": 0.3150684931506849,\n \"acc_norm_stderr,none\"\ : 0.03857820876541411\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.212,\n \"acc_norm_stderr,none\":\ \ 0.025901884690541117\n },\n \"leaderboard_bbh_ruin_names\": {\n\ \ \"alias\": \" - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\"\ : 0.156,\n \"acc_norm_stderr,none\": 0.022995023034068682\n },\n\ \ \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.22,\n \"acc_norm_stderr,none\": 0.026251792824605793\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.4943820224719101,\n\ \ \"acc_norm_stderr,none\": 0.03757992900475984\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\":\ \ 0.03153986449255664\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \ \ \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\": 0.021723342617052086\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.128,\n \"acc_norm_stderr,none\":\ \ 0.021172081336336534\n },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.128,\n \"acc_norm_stderr,none\":\ \ 0.021172081336336534\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.316,\n \"acc_norm_stderr,none\":\ \ 0.029462657598578648\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.27684563758389263,\n\ \ \"acc_norm_stderr,none\": 0.012960912249614355,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.25757575757575757,\n \"acc_norm_stderr,none\": 0.031156269519646826\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.30036630036630035,\n\ \ \"acc_norm_stderr,none\": 0.019636438043304946\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.25669642857142855,\n \"acc_norm_stderr,none\"\ : 0.020660425491724744\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.10351201478743069,\n \"prompt_level_strict_acc_stderr,none\": 0.013109035446484243,\n\ \ \"inst_level_strict_acc,none\": 0.20983213429256595,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.10905730129390019,\n \"prompt_level_loose_acc_stderr,none\": 0.013413909746312102,\n\ \ \"inst_level_loose_acc,none\": 0.2158273381294964,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.014350453172205438,\n \"exact_match_stderr,none\"\ : 0.0032717098633934637,\n \"alias\": \" - leaderboard_math_hard\"\n\ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.019543973941368076,\n\ \ \"exact_match_stderr,none\": 0.007913339243755165\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.015151515151515152,\n\ \ \"exact_match_stderr,none\": 0.01067276863717474\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\": \"\ \ - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.007142857142857143,\n \"exact_match_stderr,none\": 0.005041703051390571\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.012987012987012988,\n\ \ \"exact_match_stderr,none\": 0.009153145279150204\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.010362694300518135,\n \"exact_match_stderr,none\"\ : 0.007308424386792209\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.02962962962962963,\n \"exact_match_stderr,none\"\ : 0.014648038602753809\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.17569813829787234,\n\ \ \"acc_stderr,none\": 0.003469571620440863\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.3862433862433862,\n \"acc_norm_stderr,none\"\ : 0.017179183382758968,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.536,\n\ \ \"acc_norm_stderr,none\": 0.031603975145223735\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.23828125,\n \"acc_norm_stderr,none\"\ : 0.026679160987075002\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.388,\n \"acc_norm_stderr,none\": 0.030881038748993974\n\ \ }\n },\n \"leaderboard\": {\n \"exact_match,none\": 0.014350453172205438,\n\ \ \"exact_match_stderr,none\": 0.0032717098633934637,\n \"acc,none\"\ : 0.17569813829787234,\n \"acc_stderr,none\": 0.003469571620440863,\n \ \ \"prompt_level_strict_acc,none\": 0.10351201478743069,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.013109035446484243,\n \"inst_level_loose_acc,none\": 0.2158273381294964,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"inst_level_strict_acc,none\"\ : 0.20983213429256595,\n \"inst_level_strict_acc_stderr,none\": \"N/A\",\n\ \ \"prompt_level_loose_acc,none\": 0.10905730129390019,\n \"prompt_level_loose_acc_stderr,none\"\ : 0.013413909746312102,\n \"acc_norm,none\": 0.3309119211311454,\n \ \ \"acc_norm_stderr,none\": 0.005128975300894813,\n \"alias\": \"leaderboard\"\ \n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.334837701787884,\n\ \ \"acc_norm_stderr,none\": 0.005901746897666035,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5187165775401069,\n \"acc_norm_stderr,none\"\ : 0.03663608375537843\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.388,\n \"acc_norm_stderr,none\": 0.030881038748993974\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.376,\n \"acc_norm_stderr,none\": 0.03069633626739458\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.532,\n \"acc_norm_stderr,none\": 0.031621252575725574\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.156,\n \"acc_norm_stderr,none\": 0.022995023034068682\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.244,\n \"acc_norm_stderr,none\": 0.02721799546455311\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.18,\n \"acc_norm_stderr,none\": 0.02434689065029351\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"\ acc_norm,none\": 0.496,\n \"acc_norm_stderr,none\": 0.0316851985511992\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.248,\n \"acc_norm_stderr,none\": 0.027367497504863593\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.3150684931506849,\n\ \ \"acc_norm_stderr,none\": 0.03857820876541411\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.212,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.156,\n \"acc_norm_stderr,none\": 0.022995023034068682\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.22,\n \"acc_norm_stderr,none\": 0.026251792824605793\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.4943820224719101,\n \"acc_norm_stderr,none\"\ : 0.03757992900475984\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\": 0.021723342617052086\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.128,\n \"acc_norm_stderr,none\": 0.021172081336336534\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.128,\n \"acc_norm_stderr,none\": 0.021172081336336534\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.316,\n \"acc_norm_stderr,none\": 0.029462657598578648\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.27684563758389263,\n\ \ \"acc_norm_stderr,none\": 0.012960912249614355,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.25757575757575757,\n\ \ \"acc_norm_stderr,none\": 0.031156269519646826\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.30036630036630035,\n \"acc_norm_stderr,none\": 0.019636438043304946\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.25669642857142855,\n \"acc_norm_stderr,none\"\ : 0.020660425491724744\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.10351201478743069,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.013109035446484243,\n \ \ \"inst_level_strict_acc,none\": 0.20983213429256595,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.10905730129390019,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.013413909746312102,\n \"inst_level_loose_acc,none\"\ : 0.2158273381294964,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.014350453172205438,\n\ \ \"exact_match_stderr,none\": 0.0032717098633934637,\n \"alias\"\ : \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.019543973941368076,\n \"exact_match_stderr,none\": 0.007913339243755165\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.015151515151515152,\n \"exact_match_stderr,none\"\ : 0.01067276863717474\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.007142857142857143,\n \"exact_match_stderr,none\"\ : 0.005041703051390571\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.012987012987012988,\n \"exact_match_stderr,none\": 0.009153145279150204\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.010362694300518135,\n \"exact_match_stderr,none\"\ : 0.007308424386792209\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.02962962962962963,\n \"exact_match_stderr,none\": 0.014648038602753809\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.17569813829787234,\n \"acc_stderr,none\": 0.003469571620440863\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.3862433862433862,\n\ \ \"acc_norm_stderr,none\": 0.017179183382758968,\n \"alias\": \"\ \ - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.23828125,\n \"acc_norm_stderr,none\": 0.026679160987075002\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.388,\n \"acc_norm_stderr,none\": 0.030881038748993974\n\ \ }\n}\n```" repo_url: https://huggingface.co/sabersaleh/Llama2-7B-SPO leaderboard_url: '' point_of_contact: '' configs: - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_boolean_expressions data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_causal_judgement data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_date_understanding data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_formal_fallacies data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_geometric_shapes data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_hyperbaton data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_movie_recommendation data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_navigate data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_object_counting data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_ruin_names data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_snarks data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_sports_understanding data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_temporal_sequences data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_bbh_web_of_lies data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_gpqa_diamond data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_gpqa_extended data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_gpqa_main data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_gpqa_main_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_ifeval data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_ifeval_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_math_algebra_hard data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_math_geometry_hard data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_math_num_theory_hard data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_math_prealgebra_hard data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_math_precalculus_hard data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_mmlu_pro data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_musr_murder_mysteries data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_musr_object_placements data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T03-35-43.412546.jsonl' - config_name: sabersaleh__Llama2-7B-SPO__leaderboard_musr_team_allocation data_files: - split: 2024_12_02T03_35_43.412546 path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T03-35-43.412546.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T03-35-43.412546.jsonl' --- # Dataset Card for Evaluation run of sabersaleh/Llama2-7B-SPO <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [sabersaleh/Llama2-7B-SPO](https://huggingface.co/sabersaleh/Llama2-7B-SPO) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/sabersaleh__Llama2-7B-SPO-details", name="sabersaleh__Llama2-7B-SPO__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T03-35-43.412546](https://huggingface.co/datasets/open-llm-leaderboard/sabersaleh__Llama2-7B-SPO-details/blob/main/sabersaleh__Llama2-7B-SPO/results_2024-12-02T03-35-43.412546.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "exact_match,none": 0.014350453172205438, "exact_match_stderr,none": 0.0032717098633934637, "acc,none": 0.17569813829787234, "acc_stderr,none": 0.003469571620440863, "prompt_level_strict_acc,none": 0.10351201478743069, "prompt_level_strict_acc_stderr,none": 0.013109035446484243, "inst_level_loose_acc,none": 0.2158273381294964, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.20983213429256595, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.10905730129390019, "prompt_level_loose_acc_stderr,none": 0.013413909746312102, "acc_norm,none": 0.3309119211311454, "acc_norm_stderr,none": 0.005128975300894813, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.334837701787884, "acc_norm_stderr,none": 0.005901746897666035, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5187165775401069, "acc_norm_stderr,none": 0.03663608375537843 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.388, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.376, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.156, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.244, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.18, "acc_norm_stderr,none": 0.02434689065029351 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.496, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3150684931506849, "acc_norm_stderr,none": 0.03857820876541411 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.212, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.156, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.22, "acc_norm_stderr,none": 0.026251792824605793 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.4943820224719101, "acc_norm_stderr,none": 0.03757992900475984 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.128, "acc_norm_stderr,none": 0.021172081336336534 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.128, "acc_norm_stderr,none": 0.021172081336336534 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.27684563758389263, "acc_norm_stderr,none": 0.012960912249614355, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.25757575757575757, "acc_norm_stderr,none": 0.031156269519646826 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.30036630036630035, "acc_norm_stderr,none": 0.019636438043304946 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.25669642857142855, "acc_norm_stderr,none": 0.020660425491724744 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.10351201478743069, "prompt_level_strict_acc_stderr,none": 0.013109035446484243, "inst_level_strict_acc,none": 0.20983213429256595, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.10905730129390019, "prompt_level_loose_acc_stderr,none": 0.013413909746312102, "inst_level_loose_acc,none": 0.2158273381294964, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.014350453172205438, "exact_match_stderr,none": 0.0032717098633934637, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.019543973941368076, "exact_match_stderr,none": 0.007913339243755165 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.015151515151515152, "exact_match_stderr,none": 0.01067276863717474 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.007142857142857143, "exact_match_stderr,none": 0.005041703051390571 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.012987012987012988, "exact_match_stderr,none": 0.009153145279150204 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.010362694300518135, "exact_match_stderr,none": 0.007308424386792209 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.02962962962962963, "exact_match_stderr,none": 0.014648038602753809 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.17569813829787234, "acc_stderr,none": 0.003469571620440863 }, "leaderboard_musr": { "acc_norm,none": 0.3862433862433862, "acc_norm_stderr,none": 0.017179183382758968, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.23828125, "acc_norm_stderr,none": 0.026679160987075002 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.388, "acc_norm_stderr,none": 0.030881038748993974 } }, "leaderboard": { "exact_match,none": 0.014350453172205438, "exact_match_stderr,none": 0.0032717098633934637, "acc,none": 0.17569813829787234, "acc_stderr,none": 0.003469571620440863, "prompt_level_strict_acc,none": 0.10351201478743069, "prompt_level_strict_acc_stderr,none": 0.013109035446484243, "inst_level_loose_acc,none": 0.2158273381294964, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.20983213429256595, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.10905730129390019, "prompt_level_loose_acc_stderr,none": 0.013413909746312102, "acc_norm,none": 0.3309119211311454, "acc_norm_stderr,none": 0.005128975300894813, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.334837701787884, "acc_norm_stderr,none": 0.005901746897666035, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5187165775401069, "acc_norm_stderr,none": 0.03663608375537843 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.388, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.376, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.156, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.244, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.18, "acc_norm_stderr,none": 0.02434689065029351 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.496, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3150684931506849, "acc_norm_stderr,none": 0.03857820876541411 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.212, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.156, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.22, "acc_norm_stderr,none": 0.026251792824605793 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.4943820224719101, "acc_norm_stderr,none": 0.03757992900475984 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.128, "acc_norm_stderr,none": 0.021172081336336534 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.128, "acc_norm_stderr,none": 0.021172081336336534 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.27684563758389263, "acc_norm_stderr,none": 0.012960912249614355, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.25757575757575757, "acc_norm_stderr,none": 0.031156269519646826 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.30036630036630035, "acc_norm_stderr,none": 0.019636438043304946 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.25669642857142855, "acc_norm_stderr,none": 0.020660425491724744 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.10351201478743069, "prompt_level_strict_acc_stderr,none": 0.013109035446484243, "inst_level_strict_acc,none": 0.20983213429256595, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.10905730129390019, "prompt_level_loose_acc_stderr,none": 0.013413909746312102, "inst_level_loose_acc,none": 0.2158273381294964, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.014350453172205438, "exact_match_stderr,none": 0.0032717098633934637, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.019543973941368076, "exact_match_stderr,none": 0.007913339243755165 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.015151515151515152, "exact_match_stderr,none": 0.01067276863717474 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.007142857142857143, "exact_match_stderr,none": 0.005041703051390571 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.012987012987012988, "exact_match_stderr,none": 0.009153145279150204 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.010362694300518135, "exact_match_stderr,none": 0.007308424386792209 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.02962962962962963, "exact_match_stderr,none": 0.014648038602753809 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.17569813829787234, "acc_stderr,none": 0.003469571620440863 }, "leaderboard_musr": { "acc_norm,none": 0.3862433862433862, "acc_norm_stderr,none": 0.017179183382758968, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.23828125, "acc_norm_stderr,none": 0.026679160987075002 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.388, "acc_norm_stderr,none": 0.030881038748993974 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/sabersaleh__Llama2-7B-SimPO-details
open-llm-leaderboard
"2024-12-02T04:13:06Z"
3
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T04:10:11Z"
--- pretty_name: Evaluation run of sabersaleh/Llama2-7B-SimPO dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [sabersaleh/Llama2-7B-SimPO](https://huggingface.co/sabersaleh/Llama2-7B-SimPO)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/sabersaleh__Llama2-7B-SimPO-details\"\ ,\n\tname=\"sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_boolean_expressions\",\n\ \tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-12-02T04-10-10.920662](https://huggingface.co/datasets/open-llm-leaderboard/sabersaleh__Llama2-7B-SimPO-details/blob/main/sabersaleh__Llama2-7B-SimPO/results_2024-12-02T04-10-10.920662.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"inst_level_strict_acc,none\": 0.21342925659472423,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"exact_match,none\"\ : 0.0075528700906344415,\n \"exact_match_stderr,none\": 0.0023779536000938383,\n\ \ \"inst_level_loose_acc,none\": 0.22422062350119903,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\",\n \"acc,none\": 0.16414561170212766,\n\ \ \"acc_stderr,none\": 0.0033769846642746843,\n \"prompt_level_strict_acc,none\"\ : 0.11829944547134935,\n \"prompt_level_strict_acc_stderr,none\": 0.013898087176706528,\n\ \ \"prompt_level_loose_acc,none\": 0.12384473197781885,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.014175305492766679,\n \"\ acc_norm,none\": 0.33947334284602415,\n \"acc_norm_stderr,none\": 0.0051545867942471195,\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.3457733032459642,\n \"acc_norm_stderr,none\"\ : 0.005941764797774342,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.548,\n\ \ \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5240641711229946,\n \"acc_norm_stderr,none\"\ : 0.03661929361528698\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.356,\n \"acc_norm_stderr,none\": 0.0303436806571532\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.544,\n\ \ \"acc_norm_stderr,none\": 0.031563285061213475\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.532,\n \"acc_norm_stderr,none\":\ \ 0.031621252575725574\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.084,\n \"acc_norm_stderr,none\": 0.017578738526776348\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.484,\n \ \ \"acc_norm_stderr,none\": 0.03166998503010743\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.268,\n \"acc_norm_stderr,none\":\ \ 0.02806876238252672\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\":\ \ 0.024760377727750513\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.4,\n \"acc_norm_stderr,none\": 0.031046021028253316\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.52,\n \"acc_norm_stderr,none\": 0.03166085340849512\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\"\ : \" - leaderboard_bbh_object_counting\",\n \"acc_norm,none\": 0.284,\n\ \ \"acc_norm_stderr,none\": 0.02857695873043744\n },\n \ \ \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" - leaderboard_bbh_penguins_in_a_table\"\ ,\n \"acc_norm,none\": 0.3356164383561644,\n \"acc_norm_stderr,none\"\ : 0.039214533254314086\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.224,\n \"acc_norm_stderr,none\":\ \ 0.026421361687347884\n },\n \"leaderboard_bbh_ruin_names\": {\n\ \ \"alias\": \" - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\"\ : 0.172,\n \"acc_norm_stderr,none\": 0.02391551394448624\n },\n\ \ \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.22,\n \"acc_norm_stderr,none\": 0.026251792824605793\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.46629213483146065,\n\ \ \"acc_norm_stderr,none\": 0.0374968006036899\n },\n \"\ leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.532,\n \"acc_norm_stderr,none\":\ \ 0.031621252575725574\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \ \ \"acc_norm,none\": 0.164,\n \"acc_norm_stderr,none\": 0.02346526100207671\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.14,\n \"acc_norm_stderr,none\": 0.021989409645240245\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\":\ \ 0.021723342617052086\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.344,\n \"acc_norm_stderr,none\":\ \ 0.03010450339231644\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2709731543624161,\n\ \ \"acc_norm_stderr,none\": 0.01288270601869643,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.24242424242424243,\n \"acc_norm_stderr,none\": 0.030532892233932022\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.2838827838827839,\n\ \ \"acc_norm_stderr,none\": 0.01931360450766325\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.26785714285714285,\n \"acc_norm_stderr,none\"\ : 0.02094574294163546\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.11829944547134935,\n \"prompt_level_strict_acc_stderr,none\": 0.013898087176706528,\n\ \ \"inst_level_strict_acc,none\": 0.21342925659472423,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.12384473197781885,\n \"prompt_level_loose_acc_stderr,none\": 0.014175305492766679,\n\ \ \"inst_level_loose_acc,none\": 0.22422062350119903,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.0075528700906344415,\n \"exact_match_stderr,none\"\ : 0.0023779536000938383,\n \"alias\": \" - leaderboard_math_hard\"\n\ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.016286644951140065,\n\ \ \"exact_match_stderr,none\": 0.007235847161303936\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.0,\n\ \ \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n\ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \ \ \"exact_match,none\": 0.010362694300518135,\n \"exact_match_stderr,none\"\ : 0.007308424386792209\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.014814814814814815,\n \"exact_match_stderr,none\"\ : 0.010436494549594376\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.16414561170212766,\n\ \ \"acc_stderr,none\": 0.0033769846642746843\n },\n \"\ leaderboard_musr\": {\n \"acc_norm,none\": 0.3994708994708995,\n \ \ \"acc_norm_stderr,none\": 0.01732130388562696,\n \"alias\":\ \ \" - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\"\ : {\n \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \ \ \"acc_norm,none\": 0.532,\n \"acc_norm_stderr,none\": 0.031621252575725574\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\"\ : \" - leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.24609375,\n\ \ \"acc_norm_stderr,none\": 0.026973597563786113\n },\n \ \ \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.424,\n \"acc_norm_stderr,none\":\ \ 0.03131803437491622\n }\n },\n \"leaderboard\": {\n \"inst_level_strict_acc,none\"\ : 0.21342925659472423,\n \"inst_level_strict_acc_stderr,none\": \"N/A\",\n\ \ \"exact_match,none\": 0.0075528700906344415,\n \"exact_match_stderr,none\"\ : 0.0023779536000938383,\n \"inst_level_loose_acc,none\": 0.22422062350119903,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"acc,none\": 0.16414561170212766,\n\ \ \"acc_stderr,none\": 0.0033769846642746843,\n \"prompt_level_strict_acc,none\"\ : 0.11829944547134935,\n \"prompt_level_strict_acc_stderr,none\": 0.013898087176706528,\n\ \ \"prompt_level_loose_acc,none\": 0.12384473197781885,\n \"prompt_level_loose_acc_stderr,none\"\ : 0.014175305492766679,\n \"acc_norm,none\": 0.33947334284602415,\n \ \ \"acc_norm_stderr,none\": 0.0051545867942471195,\n \"alias\": \"leaderboard\"\ \n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.3457733032459642,\n\ \ \"acc_norm_stderr,none\": 0.005941764797774342,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5240641711229946,\n \"acc_norm_stderr,none\"\ : 0.03661929361528698\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.356,\n \"acc_norm_stderr,none\": 0.0303436806571532\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\"\ : 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n },\n \"\ leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.532,\n \"acc_norm_stderr,none\": 0.031621252575725574\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.084,\n \"acc_norm_stderr,none\": 0.017578738526776348\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.268,\n \"acc_norm_stderr,none\": 0.02806876238252672\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.4,\n \"acc_norm_stderr,none\": 0.031046021028253316\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"\ acc_norm,none\": 0.52,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.284,\n \"acc_norm_stderr,none\": 0.02857695873043744\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.3356164383561644,\n\ \ \"acc_norm_stderr,none\": 0.039214533254314086\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.224,\n \"acc_norm_stderr,none\": 0.026421361687347884\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.172,\n \"acc_norm_stderr,none\": 0.02391551394448624\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.22,\n \"acc_norm_stderr,none\": 0.026251792824605793\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.46629213483146065,\n \"acc_norm_stderr,none\"\ : 0.0374968006036899\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.532,\n \"acc_norm_stderr,none\": 0.031621252575725574\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.164,\n \"acc_norm_stderr,none\": 0.02346526100207671\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.14,\n \"acc_norm_stderr,none\": 0.021989409645240245\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\": 0.021723342617052086\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.344,\n \"acc_norm_stderr,none\": 0.03010450339231644\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2709731543624161,\n\ \ \"acc_norm_stderr,none\": 0.01288270601869643,\n \"alias\": \" -\ \ leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"alias\"\ : \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.24242424242424243,\n\ \ \"acc_norm_stderr,none\": 0.030532892233932022\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.2838827838827839,\n \"acc_norm_stderr,none\": 0.01931360450766325\n \ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.26785714285714285,\n \"acc_norm_stderr,none\"\ : 0.02094574294163546\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.11829944547134935,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.013898087176706528,\n \ \ \"inst_level_strict_acc,none\": 0.21342925659472423,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.12384473197781885,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.014175305492766679,\n \"inst_level_loose_acc,none\"\ : 0.22422062350119903,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n\ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.0075528700906344415,\n\ \ \"exact_match_stderr,none\": 0.0023779536000938383,\n \"alias\"\ : \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.016286644951140065,\n \"exact_match_stderr,none\": 0.007235847161303936\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_num_theory_hard\"\ : {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \"exact_match,none\"\ : 0.010362694300518135,\n \"exact_match_stderr,none\": 0.007308424386792209\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" -\ \ leaderboard_math_precalculus_hard\",\n \"exact_match,none\": 0.014814814814814815,\n\ \ \"exact_match_stderr,none\": 0.010436494549594376\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.16414561170212766,\n\ \ \"acc_stderr,none\": 0.0033769846642746843\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.3994708994708995,\n \"acc_norm_stderr,none\"\ : 0.01732130388562696,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.532,\n \"acc_norm_stderr,none\": 0.031621252575725574\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.24609375,\n\ \ \"acc_norm_stderr,none\": 0.026973597563786113\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.424,\n \"acc_norm_stderr,none\": 0.03131803437491622\n }\n}\n```" repo_url: https://huggingface.co/sabersaleh/Llama2-7B-SimPO leaderboard_url: '' point_of_contact: '' configs: - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_boolean_expressions data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_causal_judgement data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_date_understanding data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_formal_fallacies data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_geometric_shapes data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_hyperbaton data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_movie_recommendation data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_navigate data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_object_counting data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_ruin_names data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_snarks data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_sports_understanding data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_temporal_sequences data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_web_of_lies data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_gpqa_diamond data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_gpqa_extended data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_gpqa_main data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_ifeval data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_ifeval_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_math_algebra_hard data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_math_geometry_hard data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_math_num_theory_hard data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_math_prealgebra_hard data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_math_precalculus_hard data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_mmlu_pro data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_musr_murder_mysteries data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_musr_object_placements data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-10-10.920662.jsonl' - config_name: sabersaleh__Llama2-7B-SimPO__leaderboard_musr_team_allocation data_files: - split: 2024_12_02T04_10_10.920662 path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-10-10.920662.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-10-10.920662.jsonl' --- # Dataset Card for Evaluation run of sabersaleh/Llama2-7B-SimPO <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [sabersaleh/Llama2-7B-SimPO](https://huggingface.co/sabersaleh/Llama2-7B-SimPO) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/sabersaleh__Llama2-7B-SimPO-details", name="sabersaleh__Llama2-7B-SimPO__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T04-10-10.920662](https://huggingface.co/datasets/open-llm-leaderboard/sabersaleh__Llama2-7B-SimPO-details/blob/main/sabersaleh__Llama2-7B-SimPO/results_2024-12-02T04-10-10.920662.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "inst_level_strict_acc,none": 0.21342925659472423, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.0075528700906344415, "exact_match_stderr,none": 0.0023779536000938383, "inst_level_loose_acc,none": 0.22422062350119903, "inst_level_loose_acc_stderr,none": "N/A", "acc,none": 0.16414561170212766, "acc_stderr,none": 0.0033769846642746843, "prompt_level_strict_acc,none": 0.11829944547134935, "prompt_level_strict_acc_stderr,none": 0.013898087176706528, "prompt_level_loose_acc,none": 0.12384473197781885, "prompt_level_loose_acc_stderr,none": 0.014175305492766679, "acc_norm,none": 0.33947334284602415, "acc_norm_stderr,none": 0.0051545867942471195, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.3457733032459642, "acc_norm_stderr,none": 0.005941764797774342, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5240641711229946, "acc_norm_stderr,none": 0.03661929361528698 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.356, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.084, "acc_norm_stderr,none": 0.017578738526776348 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.268, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.4, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.284, "acc_norm_stderr,none": 0.02857695873043744 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3356164383561644, "acc_norm_stderr,none": 0.039214533254314086 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.224, "acc_norm_stderr,none": 0.026421361687347884 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.172, "acc_norm_stderr,none": 0.02391551394448624 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.22, "acc_norm_stderr,none": 0.026251792824605793 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.46629213483146065, "acc_norm_stderr,none": 0.0374968006036899 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.164, "acc_norm_stderr,none": 0.02346526100207671 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.14, "acc_norm_stderr,none": 0.021989409645240245 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.344, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2709731543624161, "acc_norm_stderr,none": 0.01288270601869643, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.24242424242424243, "acc_norm_stderr,none": 0.030532892233932022 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2838827838827839, "acc_norm_stderr,none": 0.01931360450766325 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.26785714285714285, "acc_norm_stderr,none": 0.02094574294163546 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.11829944547134935, "prompt_level_strict_acc_stderr,none": 0.013898087176706528, "inst_level_strict_acc,none": 0.21342925659472423, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.12384473197781885, "prompt_level_loose_acc_stderr,none": 0.014175305492766679, "inst_level_loose_acc,none": 0.22422062350119903, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.0075528700906344415, "exact_match_stderr,none": 0.0023779536000938383, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.016286644951140065, "exact_match_stderr,none": 0.007235847161303936 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.010362694300518135, "exact_match_stderr,none": 0.007308424386792209 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.014814814814814815, "exact_match_stderr,none": 0.010436494549594376 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.16414561170212766, "acc_stderr,none": 0.0033769846642746843 }, "leaderboard_musr": { "acc_norm,none": 0.3994708994708995, "acc_norm_stderr,none": 0.01732130388562696, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.24609375, "acc_norm_stderr,none": 0.026973597563786113 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 } }, "leaderboard": { "inst_level_strict_acc,none": 0.21342925659472423, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.0075528700906344415, "exact_match_stderr,none": 0.0023779536000938383, "inst_level_loose_acc,none": 0.22422062350119903, "inst_level_loose_acc_stderr,none": "N/A", "acc,none": 0.16414561170212766, "acc_stderr,none": 0.0033769846642746843, "prompt_level_strict_acc,none": 0.11829944547134935, "prompt_level_strict_acc_stderr,none": 0.013898087176706528, "prompt_level_loose_acc,none": 0.12384473197781885, "prompt_level_loose_acc_stderr,none": 0.014175305492766679, "acc_norm,none": 0.33947334284602415, "acc_norm_stderr,none": 0.0051545867942471195, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.3457733032459642, "acc_norm_stderr,none": 0.005941764797774342, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5240641711229946, "acc_norm_stderr,none": 0.03661929361528698 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.356, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.084, "acc_norm_stderr,none": 0.017578738526776348 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.268, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.4, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.284, "acc_norm_stderr,none": 0.02857695873043744 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3356164383561644, "acc_norm_stderr,none": 0.039214533254314086 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.224, "acc_norm_stderr,none": 0.026421361687347884 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.172, "acc_norm_stderr,none": 0.02391551394448624 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.22, "acc_norm_stderr,none": 0.026251792824605793 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.46629213483146065, "acc_norm_stderr,none": 0.0374968006036899 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.164, "acc_norm_stderr,none": 0.02346526100207671 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.14, "acc_norm_stderr,none": 0.021989409645240245 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.344, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2709731543624161, "acc_norm_stderr,none": 0.01288270601869643, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.24242424242424243, "acc_norm_stderr,none": 0.030532892233932022 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2838827838827839, "acc_norm_stderr,none": 0.01931360450766325 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.26785714285714285, "acc_norm_stderr,none": 0.02094574294163546 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.11829944547134935, "prompt_level_strict_acc_stderr,none": 0.013898087176706528, "inst_level_strict_acc,none": 0.21342925659472423, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.12384473197781885, "prompt_level_loose_acc_stderr,none": 0.014175305492766679, "inst_level_loose_acc,none": 0.22422062350119903, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.0075528700906344415, "exact_match_stderr,none": 0.0023779536000938383, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.016286644951140065, "exact_match_stderr,none": 0.007235847161303936 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.010362694300518135, "exact_match_stderr,none": 0.007308424386792209 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.014814814814814815, "exact_match_stderr,none": 0.010436494549594376 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.16414561170212766, "acc_stderr,none": 0.0033769846642746843 }, "leaderboard_musr": { "acc_norm,none": 0.3994708994708995, "acc_norm_stderr,none": 0.01732130388562696, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.24609375, "acc_norm_stderr,none": 0.026973597563786113 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
haukur/enwik9
haukur
"2024-12-02T04:18:39Z"
3
0
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T04:18:15Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 1039441079 num_examples: 13147026 download_size: 550864096 dataset_size: 1039441079 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_gen6_run1_llama2-7b_wiki_doc1000_real64_synt64
dgambettaphd
"2024-12-02T04:18:57Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T04:18:54Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 584256 num_examples: 1000 download_size: 351933 dataset_size: 584256 configs: - config_name: default data_files: - split: train path: data/train-* ---
gswamy/pythia-1.4B-tldr-vllm-pair-iter-1
gswamy
"2024-12-02T20:48:45Z"
3
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T04:23:48Z"
--- dataset_info: features: - name: info struct: - name: id dtype: string - name: post dtype: string - name: title dtype: string - name: subreddit dtype: string - name: site dtype: string - name: article dtype: string - name: summaries list: - name: text dtype: string - name: policy dtype: string - name: note dtype: string - name: choice dtype: int32 - name: worker dtype: string - name: batch dtype: string - name: split dtype: string - name: extra struct: - name: confidence dtype: int32 - name: query_token sequence: int64 - name: query dtype: string - name: response0 dtype: string - name: response0_token sequence: int64 - name: response0_token_len dtype: int64 - name: response0_policy dtype: string - name: query_response0 dtype: string - name: query_response0_token sequence: int64 - name: query_response0_token_len dtype: int64 - name: query_response0_token_response_label sequence: int64 - name: response1 dtype: string - name: response1_token sequence: int64 - name: response1_token_len dtype: int64 - name: response1_policy dtype: string - name: query_response1 dtype: string - name: query_response1_token sequence: int64 - name: query_response1_token_len dtype: int64 - name: query_response1_token_response_label sequence: int64 - name: query_token_len dtype: int64 - name: policies dtype: string - name: iter_1_best_query_response sequence: int64 - name: iter_1_worst_query_response sequence: int64 - name: iter_1_best_mask sequence: int64 - name: iter_1_worst_mask sequence: int64 - name: iter_1_best_reward dtype: float64 - name: iter_1_worst_reward dtype: float64 splits: - name: train num_bytes: 4841788931 num_examples: 92858 download_size: 180270073 dataset_size: 4841788931 configs: - config_name: default data_files: - split: train path: data/train-* ---
open-llm-leaderboard/SultanR__SmolTulu-1.7b-it-v0-details
open-llm-leaderboard
"2024-12-02T04:27:57Z"
3
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T04:24:30Z"
--- pretty_name: Evaluation run of SultanR/SmolTulu-1.7b-it-v0 dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [SultanR/SmolTulu-1.7b-it-v0](https://huggingface.co/SultanR/SmolTulu-1.7b-it-v0)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/SultanR__SmolTulu-1.7b-it-v0-details\"\ ,\n\tname=\"SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-12-02T04-24-29.671146](https://huggingface.co/datasets/open-llm-leaderboard/SultanR__SmolTulu-1.7b-it-v0-details/blob/main/SultanR__SmolTulu-1.7b-it-v0/results_2024-12-02T04-24-29.671146.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"exact_match,none\": 0.026435045317220542,\n \"exact_match_stderr,none\"\ : 0.004359122520460206,\n \"prompt_level_loose_acc,none\": 0.6358595194085028,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n \ \ \"acc,none\": 0.17104388297872342,\n \"acc_stderr,none\": 0.0034329595047432816,\n\ \ \"acc_norm,none\": 0.3514074458425217,\n \"acc_norm_stderr,none\"\ : 0.005165884234442981,\n \"inst_level_loose_acc,none\": 0.7386091127098321,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"inst_level_strict_acc,none\"\ : 0.7074340527577938,\n \"inst_level_strict_acc_stderr,none\": \"N/A\"\ ,\n \"prompt_level_strict_acc,none\": 0.600739371534196,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.021075331332701255,\n \"\ alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \ \ \"acc_norm,none\": 0.36816524908869985,\n \"acc_norm_stderr,none\"\ : 0.005979183471724429,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.572,\n\ \ \"acc_norm_stderr,none\": 0.031355968923772626\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5668449197860963,\n \"acc_norm_stderr,none\"\ : 0.03633267411102591\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.368,\n \"acc_norm_stderr,none\": 0.03056207062099311\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.448,\n\ \ \"acc_norm_stderr,none\": 0.03151438761115349\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.504,\n \"acc_norm_stderr,none\":\ \ 0.0316851985511992\n },\n \"leaderboard_bbh_geometric_shapes\":\ \ {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.248,\n \"acc_norm_stderr,none\": 0.027367497504863593\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.512,\n \ \ \"acc_norm_stderr,none\": 0.03167708558254714\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.244,\n \"acc_norm_stderr,none\":\ \ 0.02721799546455311\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.216,\n \"acc_norm_stderr,none\":\ \ 0.02607865766373279\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.364,\n \"acc_norm_stderr,none\":\ \ 0.030491555220405475\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \ \ \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \"\ \ - leaderboard_bbh_navigate\",\n \"acc_norm,none\": 0.576,\n \ \ \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.284,\n \"acc_norm_stderr,none\": 0.02857695873043744\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.2328767123287671,\n \"acc_norm_stderr,none\": 0.03510036341139227\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.28,\n \"acc_norm_stderr,none\": 0.02845414827783231\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.108,\n \ \ \"acc_norm_stderr,none\": 0.019669559381568776\n },\n \"\ leaderboard_bbh_salient_translation_error_detection\": {\n \"alias\"\ : \" - leaderboard_bbh_salient_translation_error_detection\",\n \"acc_norm,none\"\ : 0.288,\n \"acc_norm_stderr,none\": 0.028697004587398253\n },\n\ \ \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.651685393258427,\n \"acc_norm_stderr,none\"\ : 0.035811144737534356\n },\n \"leaderboard_bbh_sports_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \ \ \"acc_norm,none\": 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ },\n \"leaderboard_bbh_temporal_sequences\": {\n \"alias\"\ : \" - leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.132,\n\ \ \"acc_norm_stderr,none\": 0.021450980824038166\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.12,\n \"acc_norm_stderr,none\": 0.020593600596839998\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.324,\n \"acc_norm_stderr,none\":\ \ 0.029658294924545567\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.26929530201342283,\n\ \ \"acc_norm_stderr,none\": 0.01285318594753383,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.23737373737373738,\n \"acc_norm_stderr,none\": 0.030313710538198924\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.26373626373626374,\n\ \ \"acc_norm_stderr,none\": 0.018875713580372433\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.29017857142857145,\n \"acc_norm_stderr,none\"\ : 0.021466115440571226\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.600739371534196,\n \"prompt_level_strict_acc_stderr,none\": 0.021075331332701255,\n\ \ \"inst_level_strict_acc,none\": 0.7074340527577938,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.6358595194085028,\n \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n\ \ \"inst_level_loose_acc,none\": 0.7386091127098321,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.026435045317220542,\n \"exact_match_stderr,none\"\ : 0.004359122520460206,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.06514657980456026,\n\ \ \"exact_match_stderr,none\": 0.014107720843558174\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.0,\n\ \ \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n\ \ \"exact_match,none\": 0.0035714285714285713,\n \"exact_match_stderr,none\"\ : 0.0035714285714285713\n },\n \"leaderboard_math_num_theory_hard\"\ : {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \ \ \"exact_match,none\": 0.012987012987012988,\n \"exact_match_stderr,none\"\ : 0.009153145279150204\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \ \ \"exact_match,none\": 0.05181347150259067,\n \"exact_match_stderr,none\"\ : 0.015996229320244134\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.007407407407407408,\n \"exact_match_stderr,none\"\ : 0.007407407407407408\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.17104388297872342,\n\ \ \"acc_stderr,none\": 0.003432959504743281\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.3531746031746032,\n \"acc_norm_stderr,none\"\ : 0.01697485324642576,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \"\ \ - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.5,\n\ \ \"acc_norm_stderr,none\": 0.031686212526223896\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.24609375,\n \"acc_norm_stderr,none\"\ : 0.026973597563786113\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.316,\n \"acc_norm_stderr,none\": 0.029462657598578648\n\ \ }\n },\n \"leaderboard\": {\n \"exact_match,none\": 0.026435045317220542,\n\ \ \"exact_match_stderr,none\": 0.004359122520460206,\n \"prompt_level_loose_acc,none\"\ : 0.6358595194085028,\n \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n\ \ \"acc,none\": 0.17104388297872342,\n \"acc_stderr,none\": 0.0034329595047432816,\n\ \ \"acc_norm,none\": 0.3514074458425217,\n \"acc_norm_stderr,none\"\ : 0.005165884234442981,\n \"inst_level_loose_acc,none\": 0.7386091127098321,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"inst_level_strict_acc,none\"\ : 0.7074340527577938,\n \"inst_level_strict_acc_stderr,none\": \"N/A\",\n\ \ \"prompt_level_strict_acc,none\": 0.600739371534196,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.021075331332701255,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.36816524908869985,\n \"acc_norm_stderr,none\"\ : 0.005979183471724429,\n \"alias\": \" - leaderboard_bbh\"\n },\n \ \ \"leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\"\ ,\n \"acc_norm,none\": 0.572,\n \"acc_norm_stderr,none\": 0.031355968923772626\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5668449197860963,\n \"acc_norm_stderr,none\"\ : 0.03633267411102591\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.368,\n \"acc_norm_stderr,none\": 0.03056207062099311\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.504,\n \"acc_norm_stderr,none\": 0.0316851985511992\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.248,\n \"acc_norm_stderr,none\": 0.027367497504863593\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.244,\n \"acc_norm_stderr,none\": 0.02721799546455311\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.216,\n \"acc_norm_stderr,none\": 0.02607865766373279\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.364,\n \"acc_norm_stderr,none\": 0.030491555220405475\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.284,\n \"acc_norm_stderr,none\": 0.02857695873043744\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.2328767123287671,\n\ \ \"acc_norm_stderr,none\": 0.03510036341139227\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.28,\n \"acc_norm_stderr,none\": 0.02845414827783231\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.108,\n \"acc_norm_stderr,none\": 0.019669559381568776\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.288,\n \"acc_norm_stderr,none\": 0.028697004587398253\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.651685393258427,\n \"acc_norm_stderr,none\"\ : 0.035811144737534356\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.132,\n \"acc_norm_stderr,none\": 0.021450980824038166\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.12,\n \"acc_norm_stderr,none\": 0.020593600596839998\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.324,\n \"acc_norm_stderr,none\": 0.029658294924545567\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.26929530201342283,\n\ \ \"acc_norm_stderr,none\": 0.01285318594753383,\n \"alias\": \" -\ \ leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"alias\"\ : \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.23737373737373738,\n\ \ \"acc_norm_stderr,none\": 0.030313710538198924\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.26373626373626374,\n \"acc_norm_stderr,none\": 0.018875713580372433\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.29017857142857145,\n \"acc_norm_stderr,none\"\ : 0.021466115440571226\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.600739371534196,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.021075331332701255,\n \ \ \"inst_level_strict_acc,none\": 0.7074340527577938,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.6358595194085028,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n \"inst_level_loose_acc,none\"\ : 0.7386091127098321,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.026435045317220542,\n\ \ \"exact_match_stderr,none\": 0.004359122520460206,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.06514657980456026,\n \"exact_match_stderr,none\": 0.014107720843558174\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.0035714285714285713,\n \"exact_match_stderr,none\": 0.0035714285714285713\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\": \" - leaderboard_math_num_theory_hard\"\ ,\n \"exact_match,none\": 0.012987012987012988,\n \"exact_match_stderr,none\"\ : 0.009153145279150204\n },\n \"leaderboard_math_prealgebra_hard\": {\n \ \ \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \"exact_match,none\"\ : 0.05181347150259067,\n \"exact_match_stderr,none\": 0.015996229320244134\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" -\ \ leaderboard_math_precalculus_hard\",\n \"exact_match,none\": 0.007407407407407408,\n\ \ \"exact_match_stderr,none\": 0.007407407407407408\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.17104388297872342,\n\ \ \"acc_stderr,none\": 0.003432959504743281\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.3531746031746032,\n \"acc_norm_stderr,none\"\ : 0.01697485324642576,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.5,\n \"acc_norm_stderr,none\": 0.031686212526223896\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.24609375,\n\ \ \"acc_norm_stderr,none\": 0.026973597563786113\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.316,\n \"acc_norm_stderr,none\": 0.029462657598578648\n }\n}\n```" repo_url: https://huggingface.co/SultanR/SmolTulu-1.7b-it-v0 leaderboard_url: '' point_of_contact: '' configs: - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_boolean_expressions data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_causal_judgement data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_date_understanding data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_formal_fallacies data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_geometric_shapes data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_hyperbaton data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_movie_recommendation data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_navigate data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_object_counting data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_ruin_names data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_snarks data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_sports_understanding data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_temporal_sequences data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_web_of_lies data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_gpqa_diamond data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_gpqa_extended data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_gpqa_main data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_ifeval data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_ifeval_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_math_algebra_hard data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_math_geometry_hard data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_math_num_theory_hard data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_math_prealgebra_hard data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_math_precalculus_hard data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_mmlu_pro data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_musr_murder_mysteries data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_musr_object_placements data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-24-29.671146.jsonl' - config_name: SultanR__SmolTulu-1.7b-it-v0__leaderboard_musr_team_allocation data_files: - split: 2024_12_02T04_24_29.671146 path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-24-29.671146.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-24-29.671146.jsonl' --- # Dataset Card for Evaluation run of SultanR/SmolTulu-1.7b-it-v0 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [SultanR/SmolTulu-1.7b-it-v0](https://huggingface.co/SultanR/SmolTulu-1.7b-it-v0) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/SultanR__SmolTulu-1.7b-it-v0-details", name="SultanR__SmolTulu-1.7b-it-v0__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T04-24-29.671146](https://huggingface.co/datasets/open-llm-leaderboard/SultanR__SmolTulu-1.7b-it-v0-details/blob/main/SultanR__SmolTulu-1.7b-it-v0/results_2024-12-02T04-24-29.671146.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "exact_match,none": 0.026435045317220542, "exact_match_stderr,none": 0.004359122520460206, "prompt_level_loose_acc,none": 0.6358595194085028, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "acc,none": 0.17104388297872342, "acc_stderr,none": 0.0034329595047432816, "acc_norm,none": 0.3514074458425217, "acc_norm_stderr,none": 0.005165884234442981, "inst_level_loose_acc,none": 0.7386091127098321, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.7074340527577938, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.600739371534196, "prompt_level_strict_acc_stderr,none": 0.021075331332701255, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.36816524908869985, "acc_norm_stderr,none": 0.005979183471724429, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5668449197860963, "acc_norm_stderr,none": 0.03633267411102591 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.368, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.504, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.244, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.216, "acc_norm_stderr,none": 0.02607865766373279 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.284, "acc_norm_stderr,none": 0.02857695873043744 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.2328767123287671, "acc_norm_stderr,none": 0.03510036341139227 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.28, "acc_norm_stderr,none": 0.02845414827783231 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.108, "acc_norm_stderr,none": 0.019669559381568776 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.651685393258427, "acc_norm_stderr,none": 0.035811144737534356 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.132, "acc_norm_stderr,none": 0.021450980824038166 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.12, "acc_norm_stderr,none": 0.020593600596839998 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.324, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_gpqa": { "acc_norm,none": 0.26929530201342283, "acc_norm_stderr,none": 0.01285318594753383, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.23737373737373738, "acc_norm_stderr,none": 0.030313710538198924 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.26373626373626374, "acc_norm_stderr,none": 0.018875713580372433 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.29017857142857145, "acc_norm_stderr,none": 0.021466115440571226 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.600739371534196, "prompt_level_strict_acc_stderr,none": 0.021075331332701255, "inst_level_strict_acc,none": 0.7074340527577938, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.6358595194085028, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "inst_level_loose_acc,none": 0.7386091127098321, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.026435045317220542, "exact_match_stderr,none": 0.004359122520460206, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.06514657980456026, "exact_match_stderr,none": 0.014107720843558174 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0035714285714285713, "exact_match_stderr,none": 0.0035714285714285713 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.012987012987012988, "exact_match_stderr,none": 0.009153145279150204 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.05181347150259067, "exact_match_stderr,none": 0.015996229320244134 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.17104388297872342, "acc_stderr,none": 0.003432959504743281 }, "leaderboard_musr": { "acc_norm,none": 0.3531746031746032, "acc_norm_stderr,none": 0.01697485324642576, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.5, "acc_norm_stderr,none": 0.031686212526223896 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.24609375, "acc_norm_stderr,none": 0.026973597563786113 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 } }, "leaderboard": { "exact_match,none": 0.026435045317220542, "exact_match_stderr,none": 0.004359122520460206, "prompt_level_loose_acc,none": 0.6358595194085028, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "acc,none": 0.17104388297872342, "acc_stderr,none": 0.0034329595047432816, "acc_norm,none": 0.3514074458425217, "acc_norm_stderr,none": 0.005165884234442981, "inst_level_loose_acc,none": 0.7386091127098321, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.7074340527577938, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.600739371534196, "prompt_level_strict_acc_stderr,none": 0.021075331332701255, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.36816524908869985, "acc_norm_stderr,none": 0.005979183471724429, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5668449197860963, "acc_norm_stderr,none": 0.03633267411102591 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.368, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.504, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.244, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.216, "acc_norm_stderr,none": 0.02607865766373279 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.284, "acc_norm_stderr,none": 0.02857695873043744 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.2328767123287671, "acc_norm_stderr,none": 0.03510036341139227 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.28, "acc_norm_stderr,none": 0.02845414827783231 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.108, "acc_norm_stderr,none": 0.019669559381568776 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.651685393258427, "acc_norm_stderr,none": 0.035811144737534356 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.132, "acc_norm_stderr,none": 0.021450980824038166 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.12, "acc_norm_stderr,none": 0.020593600596839998 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.324, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_gpqa": { "acc_norm,none": 0.26929530201342283, "acc_norm_stderr,none": 0.01285318594753383, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.23737373737373738, "acc_norm_stderr,none": 0.030313710538198924 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.26373626373626374, "acc_norm_stderr,none": 0.018875713580372433 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.29017857142857145, "acc_norm_stderr,none": 0.021466115440571226 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.600739371534196, "prompt_level_strict_acc_stderr,none": 0.021075331332701255, "inst_level_strict_acc,none": 0.7074340527577938, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.6358595194085028, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "inst_level_loose_acc,none": 0.7386091127098321, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.026435045317220542, "exact_match_stderr,none": 0.004359122520460206, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.06514657980456026, "exact_match_stderr,none": 0.014107720843558174 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0035714285714285713, "exact_match_stderr,none": 0.0035714285714285713 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.012987012987012988, "exact_match_stderr,none": 0.009153145279150204 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.05181347150259067, "exact_match_stderr,none": 0.015996229320244134 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.17104388297872342, "acc_stderr,none": 0.003432959504743281 }, "leaderboard_musr": { "acc_norm,none": 0.3531746031746032, "acc_norm_stderr,none": 0.01697485324642576, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.5, "acc_norm_stderr,none": 0.031686212526223896 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.24609375, "acc_norm_stderr,none": 0.026973597563786113 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/synergetic__FrankenQwen2.5-14B-details
open-llm-leaderboard
"2024-12-02T04:28:28Z"
3
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T04:24:32Z"
--- pretty_name: Evaluation run of synergetic/FrankenQwen2.5-14B dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [synergetic/FrankenQwen2.5-14B](https://huggingface.co/synergetic/FrankenQwen2.5-14B)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/synergetic__FrankenQwen2.5-14B-details\"\ ,\n\tname=\"synergetic__FrankenQwen2.5-14B__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-12-02T04-24-32.113248](https://huggingface.co/datasets/open-llm-leaderboard/synergetic__FrankenQwen2.5-14B-details/blob/main/synergetic__FrankenQwen2.5-14B/results_2024-12-02T04-24-32.113248.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"inst_level_loose_acc,none\": 0.2529976019184652,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\",\n \"inst_level_strict_acc,none\"\ : 0.2482014388489209,\n \"inst_level_strict_acc_stderr,none\": \"N/A\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0,\n \"prompt_level_loose_acc,none\": 0.12939001848428835,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.014443263302194753,\n \ \ \"prompt_level_strict_acc,none\": 0.1256931608133087,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.014265627567173898,\n \"acc_norm,none\": 0.5296406797249967,\n \ \ \"acc_norm_stderr,none\": 0.005187639459014372,\n \"acc,none\"\ : 0.43816489361702127,\n \"acc_stderr,none\": 0.004523476746563679,\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.6024995660475612,\n \"acc_norm_stderr,none\"\ : 0.005986317228384322,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.892,\n\ \ \"acc_norm_stderr,none\": 0.019669559381568776\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6577540106951871,\n \"acc_norm_stderr,none\"\ : 0.03478920176906822\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.516,\n \"acc_norm_stderr,none\": 0.03166998503010743\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.56,\n\ \ \"acc_norm_stderr,none\": 0.03145724452223569\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\"\ : \" - leaderboard_bbh_geometric_shapes\",\n \"acc_norm,none\": 0.524,\n\ \ \"acc_norm_stderr,none\": 0.03164968895968774\n },\n \ \ \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.808,\n \"acc_norm_stderr,none\":\ \ 0.02496069198917196\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.552,\n \"acc_norm_stderr,none\":\ \ 0.03151438761115348\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.504,\n \"acc_norm_stderr,none\":\ \ 0.0316851985511992\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.92,\n \"acc_norm_stderr,none\": 0.017192507941463025\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.72,\n \"acc_norm_stderr,none\": 0.02845414827783231\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.792,\n \"acc_norm_stderr,none\":\ \ 0.025721398901416368\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.352,\n \"acc_norm_stderr,none\": 0.030266288057359866\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.6506849315068494,\n \"acc_norm_stderr,none\": 0.039592236387765004\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.676,\n \"acc_norm_stderr,none\": 0.029658294924545567\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.756,\n \ \ \"acc_norm_stderr,none\": 0.02721799546455311\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.572,\n \"acc_norm_stderr,none\":\ \ 0.031355968923772626\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.6741573033707865,\n \"acc_norm_stderr,none\": 0.03522881089181037\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.684,\n \"acc_norm_stderr,none\": 0.02946265759857865\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.668,\n\ \ \"acc_norm_stderr,none\": 0.029844039047465857\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.252,\n \"acc_norm_stderr,none\": 0.027513851933031318\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.26,\n \"acc_norm_stderr,none\": 0.027797315752644335\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.296,\n \"acc_norm_stderr,none\":\ \ 0.028928939388379694\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2701342281879195,\n\ \ \"acc_norm_stderr,none\": 0.012870216178521153,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.26262626262626265,\n \"acc_norm_stderr,none\": 0.031353050095330834\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.2857142857142857,\n\ \ \"acc_norm_stderr,none\": 0.019351013185102753\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.2544642857142857,\n \"acc_norm_stderr,none\"\ : 0.02060126475832284\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.1256931608133087,\n \"prompt_level_strict_acc_stderr,none\": 0.014265627567173898,\n\ \ \"inst_level_strict_acc,none\": 0.24820143884892087,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.12939001848428835,\n \"prompt_level_loose_acc_stderr,none\": 0.014443263302194753,\n\ \ \"inst_level_loose_acc,none\": 0.2529976019184652,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0,\n \"alias\": \" - leaderboard_math_hard\"\n },\n \ \ \"leaderboard_math_algebra_hard\": {\n \"alias\": \" - leaderboard_math_algebra_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0\n },\n \"leaderboard_math_counting_and_prob_hard\": {\n \ \ \"alias\": \" - leaderboard_math_counting_and_prob_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n \ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.0,\n\ \ \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n\ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\"\ : \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\":\ \ 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\"\ : 0.43816489361702127,\n \"acc_stderr,none\": 0.004523476746563679\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.3835978835978836,\n\ \ \"acc_norm_stderr,none\": 0.01747918490333201,\n \"alias\"\ : \" - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\"\ : {\n \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \ \ \"acc_norm,none\": 0.492,\n \"acc_norm_stderr,none\": 0.03168215643141386\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\"\ : \" - leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.30078125,\n\ \ \"acc_norm_stderr,none\": 0.02871850463421181\n },\n \ \ \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ }\n },\n \"leaderboard\": {\n \"inst_level_loose_acc,none\"\ : 0.2529976019184652,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"inst_level_strict_acc,none\": 0.2482014388489209,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\ : 0.0,\n \"prompt_level_loose_acc,none\": 0.12939001848428835,\n \"\ prompt_level_loose_acc_stderr,none\": 0.014443263302194753,\n \"prompt_level_strict_acc,none\"\ : 0.1256931608133087,\n \"prompt_level_strict_acc_stderr,none\": 0.014265627567173898,\n\ \ \"acc_norm,none\": 0.5296406797249967,\n \"acc_norm_stderr,none\"\ : 0.005187639459014372,\n \"acc,none\": 0.43816489361702127,\n \"\ acc_stderr,none\": 0.004523476746563679,\n \"alias\": \"leaderboard\"\n \ \ },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.6024995660475612,\n\ \ \"acc_norm_stderr,none\": 0.005986317228384322,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.892,\n \"acc_norm_stderr,none\": 0.019669559381568776\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6577540106951871,\n \"acc_norm_stderr,none\"\ : 0.03478920176906822\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.516,\n \"acc_norm_stderr,none\": 0.03166998503010743\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.56,\n \"acc_norm_stderr,none\": 0.03145724452223569\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.524,\n \"acc_norm_stderr,none\": 0.03164968895968774\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.808,\n \"acc_norm_stderr,none\": 0.02496069198917196\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.552,\n \"acc_norm_stderr,none\": 0.03151438761115348\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.504,\n \"acc_norm_stderr,none\": 0.0316851985511992\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.92,\n \"acc_norm_stderr,none\": 0.017192507941463025\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.72,\n \"acc_norm_stderr,none\": 0.02845414827783231\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.792,\n \"acc_norm_stderr,none\": 0.025721398901416368\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.352,\n \"acc_norm_stderr,none\": 0.030266288057359866\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.6506849315068494,\n\ \ \"acc_norm_stderr,none\": 0.039592236387765004\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.676,\n \"acc_norm_stderr,none\": 0.029658294924545567\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.756,\n \"acc_norm_stderr,none\": 0.02721799546455311\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.572,\n \"acc_norm_stderr,none\": 0.031355968923772626\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6741573033707865,\n \"acc_norm_stderr,none\"\ : 0.03522881089181037\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.684,\n \"acc_norm_stderr,none\": 0.02946265759857865\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.668,\n \"acc_norm_stderr,none\": 0.029844039047465857\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.252,\n \"acc_norm_stderr,none\": 0.027513851933031318\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.26,\n \"acc_norm_stderr,none\": 0.027797315752644335\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.296,\n \"acc_norm_stderr,none\": 0.028928939388379694\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2701342281879195,\n\ \ \"acc_norm_stderr,none\": 0.012870216178521153,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.26262626262626265,\n\ \ \"acc_norm_stderr,none\": 0.031353050095330834\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.2857142857142857,\n \"acc_norm_stderr,none\": 0.019351013185102753\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.2544642857142857,\n \"acc_norm_stderr,none\"\ : 0.02060126475832284\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.1256931608133087,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.014265627567173898,\n \ \ \"inst_level_strict_acc,none\": 0.24820143884892087,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.12939001848428835,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.014443263302194753,\n \"inst_level_loose_acc,none\"\ : 0.2529976019184652,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.0,\n \ \ \"exact_match_stderr,none\": 0.0,\n \"alias\": \" - leaderboard_math_hard\"\ \n },\n \"leaderboard_math_algebra_hard\": {\n \"alias\": \" - leaderboard_math_algebra_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_geometry_hard\"\ : {\n \"alias\": \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\"\ : 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n \ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\": \" - leaderboard_math_num_theory_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" -\ \ leaderboard_math_precalculus_hard\",\n \"exact_match,none\": 0.0,\n \ \ \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_mmlu_pro\": {\n\ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.43816489361702127,\n\ \ \"acc_stderr,none\": 0.004523476746563679\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.3835978835978836,\n \"acc_norm_stderr,none\"\ : 0.01747918490333201,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.492,\n \"acc_norm_stderr,none\": 0.03168215643141386\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.30078125,\n\ \ \"acc_norm_stderr,none\": 0.02871850463421181\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n }\n}\n```" repo_url: https://huggingface.co/synergetic/FrankenQwen2.5-14B leaderboard_url: '' point_of_contact: '' configs: - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_boolean_expressions data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_causal_judgement data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_date_understanding data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_formal_fallacies data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_geometric_shapes data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_hyperbaton data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_movie_recommendation data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_navigate data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_object_counting data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_ruin_names data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_snarks data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_sports_understanding data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_temporal_sequences data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_bbh_web_of_lies data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_gpqa_diamond data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_gpqa_extended data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_gpqa_main data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_ifeval data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_ifeval_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_math_algebra_hard data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_math_geometry_hard data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_math_num_theory_hard data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_math_prealgebra_hard data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_math_precalculus_hard data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_mmlu_pro data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_musr_murder_mysteries data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_musr_object_placements data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-24-32.113248.jsonl' - config_name: synergetic__FrankenQwen2.5-14B__leaderboard_musr_team_allocation data_files: - split: 2024_12_02T04_24_32.113248 path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-24-32.113248.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-24-32.113248.jsonl' --- # Dataset Card for Evaluation run of synergetic/FrankenQwen2.5-14B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [synergetic/FrankenQwen2.5-14B](https://huggingface.co/synergetic/FrankenQwen2.5-14B) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/synergetic__FrankenQwen2.5-14B-details", name="synergetic__FrankenQwen2.5-14B__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T04-24-32.113248](https://huggingface.co/datasets/open-llm-leaderboard/synergetic__FrankenQwen2.5-14B-details/blob/main/synergetic__FrankenQwen2.5-14B/results_2024-12-02T04-24-32.113248.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "inst_level_loose_acc,none": 0.2529976019184652, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.2482014388489209, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0, "prompt_level_loose_acc,none": 0.12939001848428835, "prompt_level_loose_acc_stderr,none": 0.014443263302194753, "prompt_level_strict_acc,none": 0.1256931608133087, "prompt_level_strict_acc_stderr,none": 0.014265627567173898, "acc_norm,none": 0.5296406797249967, "acc_norm_stderr,none": 0.005187639459014372, "acc,none": 0.43816489361702127, "acc_stderr,none": 0.004523476746563679, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6024995660475612, "acc_norm_stderr,none": 0.005986317228384322, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.892, "acc_norm_stderr,none": 0.019669559381568776 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6577540106951871, "acc_norm_stderr,none": 0.03478920176906822 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.516, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.524, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.808, "acc_norm_stderr,none": 0.02496069198917196 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.504, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.92, "acc_norm_stderr,none": 0.017192507941463025 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.72, "acc_norm_stderr,none": 0.02845414827783231 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.792, "acc_norm_stderr,none": 0.025721398901416368 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.352, "acc_norm_stderr,none": 0.030266288057359866 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.6506849315068494, "acc_norm_stderr,none": 0.039592236387765004 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.676, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.756, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6741573033707865, "acc_norm_stderr,none": 0.03522881089181037 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.684, "acc_norm_stderr,none": 0.02946265759857865 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.668, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.252, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.26, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.296, "acc_norm_stderr,none": 0.028928939388379694 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2701342281879195, "acc_norm_stderr,none": 0.012870216178521153, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.26262626262626265, "acc_norm_stderr,none": 0.031353050095330834 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2857142857142857, "acc_norm_stderr,none": 0.019351013185102753 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.2544642857142857, "acc_norm_stderr,none": 0.02060126475832284 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.1256931608133087, "prompt_level_strict_acc_stderr,none": 0.014265627567173898, "inst_level_strict_acc,none": 0.24820143884892087, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.12939001848428835, "prompt_level_loose_acc_stderr,none": 0.014443263302194753, "inst_level_loose_acc,none": 0.2529976019184652, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.0, "exact_match_stderr,none": 0.0, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.43816489361702127, "acc_stderr,none": 0.004523476746563679 }, "leaderboard_musr": { "acc_norm,none": 0.3835978835978836, "acc_norm_stderr,none": 0.01747918490333201, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.492, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.30078125, "acc_norm_stderr,none": 0.02871850463421181 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 } }, "leaderboard": { "inst_level_loose_acc,none": 0.2529976019184652, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.2482014388489209, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0, "prompt_level_loose_acc,none": 0.12939001848428835, "prompt_level_loose_acc_stderr,none": 0.014443263302194753, "prompt_level_strict_acc,none": 0.1256931608133087, "prompt_level_strict_acc_stderr,none": 0.014265627567173898, "acc_norm,none": 0.5296406797249967, "acc_norm_stderr,none": 0.005187639459014372, "acc,none": 0.43816489361702127, "acc_stderr,none": 0.004523476746563679, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6024995660475612, "acc_norm_stderr,none": 0.005986317228384322, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.892, "acc_norm_stderr,none": 0.019669559381568776 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6577540106951871, "acc_norm_stderr,none": 0.03478920176906822 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.516, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.524, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.808, "acc_norm_stderr,none": 0.02496069198917196 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.504, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.92, "acc_norm_stderr,none": 0.017192507941463025 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.72, "acc_norm_stderr,none": 0.02845414827783231 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.792, "acc_norm_stderr,none": 0.025721398901416368 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.352, "acc_norm_stderr,none": 0.030266288057359866 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.6506849315068494, "acc_norm_stderr,none": 0.039592236387765004 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.676, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.756, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6741573033707865, "acc_norm_stderr,none": 0.03522881089181037 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.684, "acc_norm_stderr,none": 0.02946265759857865 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.668, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.252, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.26, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.296, "acc_norm_stderr,none": 0.028928939388379694 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2701342281879195, "acc_norm_stderr,none": 0.012870216178521153, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.26262626262626265, "acc_norm_stderr,none": 0.031353050095330834 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2857142857142857, "acc_norm_stderr,none": 0.019351013185102753 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.2544642857142857, "acc_norm_stderr,none": 0.02060126475832284 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.1256931608133087, "prompt_level_strict_acc_stderr,none": 0.014265627567173898, "inst_level_strict_acc,none": 0.24820143884892087, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.12939001848428835, "prompt_level_loose_acc_stderr,none": 0.014443263302194753, "inst_level_loose_acc,none": 0.2529976019184652, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.0, "exact_match_stderr,none": 0.0, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.43816489361702127, "acc_stderr,none": 0.004523476746563679 }, "leaderboard_musr": { "acc_norm,none": 0.3835978835978836, "acc_norm_stderr,none": 0.01747918490333201, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.492, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.30078125, "acc_norm_stderr,none": 0.02871850463421181 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/MTSAIR__Cotype-Nano-details
open-llm-leaderboard
"2024-12-02T04:30:13Z"
3
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T04:26:41Z"
--- pretty_name: Evaluation run of MTSAIR/Cotype-Nano dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [MTSAIR/Cotype-Nano](https://huggingface.co/MTSAIR/Cotype-Nano)\nThe dataset is\ \ composed of 38 configuration(s), each one corresponding to one of the evaluated\ \ task.\n\nThe dataset has been created from 1 run(s). Each run can be found as\ \ a specific split in each configuration, the split being named using the timestamp\ \ of the run.The \"train\" split is always pointing to the latest results.\n\nAn\ \ additional configuration \"results\" store all the aggregated results of the run.\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/MTSAIR__Cotype-Nano-details\"\ ,\n\tname=\"MTSAIR__Cotype-Nano__leaderboard_bbh_boolean_expressions\",\n\tsplit=\"\ latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results from run\ \ 2024-12-02T04-26-40.216058](https://huggingface.co/datasets/open-llm-leaderboard/MTSAIR__Cotype-Nano-details/blob/main/MTSAIR__Cotype-Nano/results_2024-12-02T04-26-40.216058.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"prompt_level_loose_acc,none\": 0.36414048059149723,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n \"prompt_level_strict_acc,none\"\ : 0.3179297597042514,\n \"prompt_level_strict_acc_stderr,none\": 0.02003933297102034,\n\ \ \"acc,none\": 0.24767287234042554,\n \"acc_stderr,none\"\ : 0.003935425705552356,\n \"acc_norm,none\": 0.36061746011155793,\n \ \ \"acc_norm_stderr,none\": 0.005169325806483379,\n \"inst_level_loose_acc,none\"\ : 0.47601918465227816,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\ ,\n \"exact_match,none\": 0.06419939577039276,\n \"exact_match_stderr,none\"\ : 0.006530898429299409,\n \"inst_level_strict_acc,none\": 0.4316546762589928,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"alias\"\ : \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.38361395591043224,\n \"acc_norm_stderr,none\": 0.006010807277181961,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \ \ \"acc_norm,none\": 0.792,\n \"acc_norm_stderr,none\": 0.025721398901416368\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\"\ : \" - leaderboard_bbh_causal_judgement\",\n \"acc_norm,none\": 0.5347593582887701,\n\ \ \"acc_norm_stderr,none\": 0.036573080985189216\n },\n \ \ \"leaderboard_bbh_date_understanding\": {\n \"alias\": \" - leaderboard_bbh_date_understanding\"\ ,\n \"acc_norm,none\": 0.264,\n \"acc_norm_stderr,none\":\ \ 0.027934518957690866\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \ \ \"acc_norm,none\": 0.492,\n \"acc_norm_stderr,none\": 0.03168215643141386\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\"\ : \" - leaderboard_bbh_formal_fallacies\",\n \"acc_norm,none\": 0.512,\n\ \ \"acc_norm_stderr,none\": 0.03167708558254714\n },\n \ \ \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.336,\n \"acc_norm_stderr,none\":\ \ 0.02993325909419153\n },\n \"leaderboard_bbh_hyperbaton\": {\n \ \ \"alias\": \" - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\"\ : 0.596,\n \"acc_norm_stderr,none\": 0.03109668818482536\n },\n\ \ \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.316,\n \"acc_norm_stderr,none\": 0.029462657598578648\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.252,\n \"acc_norm_stderr,none\": 0.027513851933031318\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.432,\n \"acc_norm_stderr,none\": 0.03139181076542942\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.424,\n \"acc_norm_stderr,none\": 0.03131803437491622\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\"\ : \" - leaderboard_bbh_object_counting\",\n \"acc_norm,none\": 0.256,\n\ \ \"acc_norm_stderr,none\": 0.027657108718204846\n },\n \ \ \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" - leaderboard_bbh_penguins_in_a_table\"\ ,\n \"acc_norm,none\": 0.3698630136986301,\n \"acc_norm_stderr,none\"\ : 0.04009165058801775\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.312,\n \"acc_norm_stderr,none\":\ \ 0.02936106757521985\n },\n \"leaderboard_bbh_ruin_names\": {\n \ \ \"alias\": \" - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\"\ : 0.152,\n \"acc_norm_stderr,none\": 0.022752024491765464\n },\n\ \ \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.316,\n \"acc_norm_stderr,none\": 0.029462657598578648\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.5112359550561798,\n\ \ \"acc_norm_stderr,none\": 0.03757281091983857\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\":\ \ 0.03153986449255664\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \ \ \"acc_norm,none\": 0.156,\n \"acc_norm_stderr,none\": 0.022995023034068682\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\":\ \ 0.022249407735450245\n },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.104,\n \"acc_norm_stderr,none\":\ \ 0.019345100974843932\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.332,\n \"acc_norm_stderr,none\":\ \ 0.029844039047465857\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2701342281879195,\n\ \ \"acc_norm_stderr,none\": 0.012875997640285002,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.25757575757575757,\n \"acc_norm_stderr,none\": 0.031156269519646826\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.27472527472527475,\n\ \ \"acc_norm_stderr,none\": 0.019120635768881563\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.2700892857142857,\n \"acc_norm_stderr,none\"\ : 0.021000749078822437\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.3179297597042514,\n \"prompt_level_strict_acc_stderr,none\": 0.02003933297102034,\n\ \ \"inst_level_strict_acc,none\": 0.4316546762589928,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.36414048059149723,\n \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n\ \ \"inst_level_loose_acc,none\": 0.47601918465227816,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.06419939577039276,\n \"exact_match_stderr,none\"\ : 0.006530898429299409,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.14006514657980457,\n\ \ \"exact_match_stderr,none\": 0.019839791442658312\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.024390243902439025,\n \"exact_match_stderr,none\": 0.013965813032045565\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.015151515151515152,\n\ \ \"exact_match_stderr,none\": 0.01067276863717474\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\": \"\ \ - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.02142857142857143,\n \"exact_match_stderr,none\": 0.008669434577665551\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.006493506493506494,\n\ \ \"exact_match_stderr,none\": 0.006493506493506494\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.15025906735751296,\n \"exact_match_stderr,none\"\ : 0.025787723180723855\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.007407407407407408,\n \"exact_match_stderr,none\"\ : 0.007407407407407408\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.24767287234042554,\n\ \ \"acc_stderr,none\": 0.003935425705552356\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.328042328042328,\n \"acc_norm_stderr,none\"\ : 0.016381978023430912,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.52,\n\ \ \"acc_norm_stderr,none\": 0.03166085340849512\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.21875,\n \"acc_norm_stderr,none\"\ : 0.025888027174359812\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.248,\n \"acc_norm_stderr,none\": 0.027367497504863593\n\ \ }\n },\n \"leaderboard\": {\n \"prompt_level_loose_acc,none\"\ : 0.36414048059149723,\n \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n\ \ \"prompt_level_strict_acc,none\": 0.3179297597042514,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.02003933297102034,\n \"acc,none\": 0.24767287234042554,\n \"acc_stderr,none\"\ : 0.003935425705552356,\n \"acc_norm,none\": 0.36061746011155793,\n \ \ \"acc_norm_stderr,none\": 0.005169325806483379,\n \"inst_level_loose_acc,none\"\ : 0.47601918465227816,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"exact_match,none\": 0.06419939577039276,\n \"exact_match_stderr,none\"\ : 0.006530898429299409,\n \"inst_level_strict_acc,none\": 0.4316546762589928,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"alias\": \"\ leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.38361395591043224,\n\ \ \"acc_norm_stderr,none\": 0.006010807277181961,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.792,\n \"acc_norm_stderr,none\": 0.025721398901416368\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5347593582887701,\n \"acc_norm_stderr,none\"\ : 0.036573080985189216\n },\n \"leaderboard_bbh_date_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.264,\n \"acc_norm_stderr,none\": 0.027934518957690866\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.492,\n \"acc_norm_stderr,none\": 0.03168215643141386\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.336,\n \"acc_norm_stderr,none\": 0.02993325909419153\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.596,\n \"acc_norm_stderr,none\": 0.03109668818482536\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.316,\n \"acc_norm_stderr,none\": 0.029462657598578648\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.252,\n \"acc_norm_stderr,none\": 0.027513851933031318\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.432,\n \"acc_norm_stderr,none\": 0.03139181076542942\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.424,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.256,\n \"acc_norm_stderr,none\": 0.027657108718204846\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.3698630136986301,\n\ \ \"acc_norm_stderr,none\": 0.04009165058801775\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.312,\n \"acc_norm_stderr,none\": 0.02936106757521985\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.152,\n \"acc_norm_stderr,none\": 0.022752024491765464\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.316,\n \"acc_norm_stderr,none\": 0.029462657598578648\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.5112359550561798,\n \"acc_norm_stderr,none\"\ : 0.03757281091983857\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.156,\n \"acc_norm_stderr,none\": 0.022995023034068682\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\": 0.022249407735450245\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.104,\n \"acc_norm_stderr,none\": 0.019345100974843932\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.332,\n \"acc_norm_stderr,none\": 0.029844039047465857\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2701342281879195,\n\ \ \"acc_norm_stderr,none\": 0.012875997640285002,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.25757575757575757,\n\ \ \"acc_norm_stderr,none\": 0.031156269519646826\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.27472527472527475,\n \"acc_norm_stderr,none\": 0.019120635768881563\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.2700892857142857,\n \"acc_norm_stderr,none\"\ : 0.021000749078822437\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.3179297597042514,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.02003933297102034,\n \ \ \"inst_level_strict_acc,none\": 0.4316546762589928,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.36414048059149723,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n \"inst_level_loose_acc,none\"\ : 0.47601918465227816,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n\ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.06419939577039276,\n\ \ \"exact_match_stderr,none\": 0.006530898429299409,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.14006514657980457,\n \"exact_match_stderr,none\": 0.019839791442658312\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.024390243902439025,\n \"exact_match_stderr,none\": 0.013965813032045565\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.015151515151515152,\n \"exact_match_stderr,none\"\ : 0.01067276863717474\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.02142857142857143,\n \"exact_match_stderr,none\"\ : 0.008669434577665551\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.006493506493506494,\n \"exact_match_stderr,none\": 0.006493506493506494\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.15025906735751296,\n \"exact_match_stderr,none\"\ : 0.025787723180723855\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.007407407407407408,\n \"exact_match_stderr,none\": 0.007407407407407408\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.24767287234042554,\n \"acc_stderr,none\": 0.003935425705552356\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.328042328042328,\n\ \ \"acc_norm_stderr,none\": 0.016381978023430912,\n \"alias\": \"\ \ - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.52,\n \"acc_norm_stderr,none\": 0.03166085340849512\n },\n \"leaderboard_musr_object_placements\"\ : {\n \"alias\": \" - leaderboard_musr_object_placements\",\n \"\ acc_norm,none\": 0.21875,\n \"acc_norm_stderr,none\": 0.025888027174359812\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.248,\n \"acc_norm_stderr,none\": 0.027367497504863593\n\ \ }\n}\n```" repo_url: https://huggingface.co/MTSAIR/Cotype-Nano leaderboard_url: '' point_of_contact: '' configs: - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_boolean_expressions data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_causal_judgement data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_date_understanding data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_formal_fallacies data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_geometric_shapes data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_hyperbaton data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_movie_recommendation data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_navigate data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_object_counting data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_ruin_names data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_snarks data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_sports_understanding data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_temporal_sequences data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_bbh_web_of_lies data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_gpqa_diamond data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_gpqa_extended data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_gpqa_main data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_ifeval data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_ifeval_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_math_algebra_hard data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_math_geometry_hard data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_math_num_theory_hard data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_math_prealgebra_hard data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_math_precalculus_hard data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_mmlu_pro data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_musr_murder_mysteries data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_musr_object_placements data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-26-40.216058.jsonl' - config_name: MTSAIR__Cotype-Nano__leaderboard_musr_team_allocation data_files: - split: 2024_12_02T04_26_40.216058 path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-26-40.216058.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-26-40.216058.jsonl' --- # Dataset Card for Evaluation run of MTSAIR/Cotype-Nano <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [MTSAIR/Cotype-Nano](https://huggingface.co/MTSAIR/Cotype-Nano) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/MTSAIR__Cotype-Nano-details", name="MTSAIR__Cotype-Nano__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T04-26-40.216058](https://huggingface.co/datasets/open-llm-leaderboard/MTSAIR__Cotype-Nano-details/blob/main/MTSAIR__Cotype-Nano/results_2024-12-02T04-26-40.216058.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "prompt_level_loose_acc,none": 0.36414048059149723, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "prompt_level_strict_acc,none": 0.3179297597042514, "prompt_level_strict_acc_stderr,none": 0.02003933297102034, "acc,none": 0.24767287234042554, "acc_stderr,none": 0.003935425705552356, "acc_norm,none": 0.36061746011155793, "acc_norm_stderr,none": 0.005169325806483379, "inst_level_loose_acc,none": 0.47601918465227816, "inst_level_loose_acc_stderr,none": "N/A", "exact_match,none": 0.06419939577039276, "exact_match_stderr,none": 0.006530898429299409, "inst_level_strict_acc,none": 0.4316546762589928, "inst_level_strict_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.38361395591043224, "acc_norm_stderr,none": 0.006010807277181961, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.792, "acc_norm_stderr,none": 0.025721398901416368 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5347593582887701, "acc_norm_stderr,none": 0.036573080985189216 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.264, "acc_norm_stderr,none": 0.027934518957690866 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.492, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.336, "acc_norm_stderr,none": 0.02993325909419153 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.252, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.432, "acc_norm_stderr,none": 0.03139181076542942 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.256, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3698630136986301, "acc_norm_stderr,none": 0.04009165058801775 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.312, "acc_norm_stderr,none": 0.02936106757521985 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.152, "acc_norm_stderr,none": 0.022752024491765464 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.5112359550561798, "acc_norm_stderr,none": 0.03757281091983857 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.156, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.104, "acc_norm_stderr,none": 0.019345100974843932 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.332, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_gpqa": { "acc_norm,none": 0.2701342281879195, "acc_norm_stderr,none": 0.012875997640285002, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.25757575757575757, "acc_norm_stderr,none": 0.031156269519646826 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.27472527472527475, "acc_norm_stderr,none": 0.019120635768881563 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.2700892857142857, "acc_norm_stderr,none": 0.021000749078822437 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.3179297597042514, "prompt_level_strict_acc_stderr,none": 0.02003933297102034, "inst_level_strict_acc,none": 0.4316546762589928, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.36414048059149723, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "inst_level_loose_acc,none": 0.47601918465227816, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.06419939577039276, "exact_match_stderr,none": 0.006530898429299409, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.14006514657980457, "exact_match_stderr,none": 0.019839791442658312 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.024390243902439025, "exact_match_stderr,none": 0.013965813032045565 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.015151515151515152, "exact_match_stderr,none": 0.01067276863717474 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.02142857142857143, "exact_match_stderr,none": 0.008669434577665551 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.006493506493506494, "exact_match_stderr,none": 0.006493506493506494 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.15025906735751296, "exact_match_stderr,none": 0.025787723180723855 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.24767287234042554, "acc_stderr,none": 0.003935425705552356 }, "leaderboard_musr": { "acc_norm,none": 0.328042328042328, "acc_norm_stderr,none": 0.016381978023430912, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.21875, "acc_norm_stderr,none": 0.025888027174359812 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 } }, "leaderboard": { "prompt_level_loose_acc,none": 0.36414048059149723, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "prompt_level_strict_acc,none": 0.3179297597042514, "prompt_level_strict_acc_stderr,none": 0.02003933297102034, "acc,none": 0.24767287234042554, "acc_stderr,none": 0.003935425705552356, "acc_norm,none": 0.36061746011155793, "acc_norm_stderr,none": 0.005169325806483379, "inst_level_loose_acc,none": 0.47601918465227816, "inst_level_loose_acc_stderr,none": "N/A", "exact_match,none": 0.06419939577039276, "exact_match_stderr,none": 0.006530898429299409, "inst_level_strict_acc,none": 0.4316546762589928, "inst_level_strict_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.38361395591043224, "acc_norm_stderr,none": 0.006010807277181961, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.792, "acc_norm_stderr,none": 0.025721398901416368 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5347593582887701, "acc_norm_stderr,none": 0.036573080985189216 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.264, "acc_norm_stderr,none": 0.027934518957690866 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.492, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.336, "acc_norm_stderr,none": 0.02993325909419153 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.252, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.432, "acc_norm_stderr,none": 0.03139181076542942 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.256, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3698630136986301, "acc_norm_stderr,none": 0.04009165058801775 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.312, "acc_norm_stderr,none": 0.02936106757521985 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.152, "acc_norm_stderr,none": 0.022752024491765464 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.5112359550561798, "acc_norm_stderr,none": 0.03757281091983857 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.156, "acc_norm_stderr,none": 0.022995023034068682 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.104, "acc_norm_stderr,none": 0.019345100974843932 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.332, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_gpqa": { "acc_norm,none": 0.2701342281879195, "acc_norm_stderr,none": 0.012875997640285002, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.25757575757575757, "acc_norm_stderr,none": 0.031156269519646826 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.27472527472527475, "acc_norm_stderr,none": 0.019120635768881563 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.2700892857142857, "acc_norm_stderr,none": 0.021000749078822437 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.3179297597042514, "prompt_level_strict_acc_stderr,none": 0.02003933297102034, "inst_level_strict_acc,none": 0.4316546762589928, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.36414048059149723, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "inst_level_loose_acc,none": 0.47601918465227816, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.06419939577039276, "exact_match_stderr,none": 0.006530898429299409, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.14006514657980457, "exact_match_stderr,none": 0.019839791442658312 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.024390243902439025, "exact_match_stderr,none": 0.013965813032045565 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.015151515151515152, "exact_match_stderr,none": 0.01067276863717474 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.02142857142857143, "exact_match_stderr,none": 0.008669434577665551 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.006493506493506494, "exact_match_stderr,none": 0.006493506493506494 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.15025906735751296, "exact_match_stderr,none": 0.025787723180723855 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.24767287234042554, "acc_stderr,none": 0.003935425705552356 }, "leaderboard_musr": { "acc_norm,none": 0.328042328042328, "acc_norm_stderr,none": 0.016381978023430912, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.52, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.21875, "acc_norm_stderr,none": 0.025888027174359812 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/SultanR__SmolTulu-1.7b-Instruct-details
open-llm-leaderboard
"2024-12-02T04:31:08Z"
3
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T04:27:40Z"
--- pretty_name: Evaluation run of SultanR/SmolTulu-1.7b-Instruct dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [SultanR/SmolTulu-1.7b-Instruct](https://huggingface.co/SultanR/SmolTulu-1.7b-Instruct)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/SultanR__SmolTulu-1.7b-Instruct-details\"\ ,\n\tname=\"SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-12-02T04-27-39.293748](https://huggingface.co/datasets/open-llm-leaderboard/SultanR__SmolTulu-1.7b-Instruct-details/blob/main/SultanR__SmolTulu-1.7b-Instruct/results_2024-12-02T04-27-39.293748.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"acc_norm,none\": 0.3514074458425217,\n \"acc_norm_stderr,none\"\ : 0.005165884234442981,\n \"prompt_level_loose_acc,none\": 0.6358595194085028,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n \ \ \"inst_level_strict_acc,none\": 0.7074340527577938,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_strict_acc,none\": 0.600739371534196,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.021075331332701255,\n \ \ \"inst_level_loose_acc,none\": 0.7386091127098321,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.026435045317220542,\n \ \ \"exact_match_stderr,none\": 0.004359122520460206,\n \"acc,none\"\ : 0.17104388297872342,\n \"acc_stderr,none\": 0.0034329595047432816,\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.36816524908869985,\n \"acc_norm_stderr,none\"\ : 0.005979183471724429,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.572,\n\ \ \"acc_norm_stderr,none\": 0.031355968923772626\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5668449197860963,\n \"acc_norm_stderr,none\"\ : 0.03633267411102591\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.368,\n \"acc_norm_stderr,none\": 0.03056207062099311\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.448,\n\ \ \"acc_norm_stderr,none\": 0.03151438761115349\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.504,\n \"acc_norm_stderr,none\":\ \ 0.0316851985511992\n },\n \"leaderboard_bbh_geometric_shapes\":\ \ {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.248,\n \"acc_norm_stderr,none\": 0.027367497504863593\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.512,\n \ \ \"acc_norm_stderr,none\": 0.03167708558254714\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.244,\n \"acc_norm_stderr,none\":\ \ 0.02721799546455311\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.216,\n \"acc_norm_stderr,none\":\ \ 0.02607865766373279\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.364,\n \"acc_norm_stderr,none\":\ \ 0.030491555220405475\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \ \ \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \"\ \ - leaderboard_bbh_navigate\",\n \"acc_norm,none\": 0.576,\n \ \ \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.284,\n \"acc_norm_stderr,none\": 0.02857695873043744\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.2328767123287671,\n \"acc_norm_stderr,none\": 0.03510036341139227\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.28,\n \"acc_norm_stderr,none\": 0.02845414827783231\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.108,\n \ \ \"acc_norm_stderr,none\": 0.019669559381568776\n },\n \"\ leaderboard_bbh_salient_translation_error_detection\": {\n \"alias\"\ : \" - leaderboard_bbh_salient_translation_error_detection\",\n \"acc_norm,none\"\ : 0.288,\n \"acc_norm_stderr,none\": 0.028697004587398253\n },\n\ \ \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.651685393258427,\n \"acc_norm_stderr,none\"\ : 0.035811144737534356\n },\n \"leaderboard_bbh_sports_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \ \ \"acc_norm,none\": 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ },\n \"leaderboard_bbh_temporal_sequences\": {\n \"alias\"\ : \" - leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.132,\n\ \ \"acc_norm_stderr,none\": 0.021450980824038166\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.12,\n \"acc_norm_stderr,none\": 0.020593600596839998\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.324,\n \"acc_norm_stderr,none\":\ \ 0.029658294924545567\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.26929530201342283,\n\ \ \"acc_norm_stderr,none\": 0.01285318594753383,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.23737373737373738,\n \"acc_norm_stderr,none\": 0.030313710538198924\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.26373626373626374,\n\ \ \"acc_norm_stderr,none\": 0.018875713580372433\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.29017857142857145,\n \"acc_norm_stderr,none\"\ : 0.021466115440571226\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.600739371534196,\n \"prompt_level_strict_acc_stderr,none\": 0.021075331332701255,\n\ \ \"inst_level_strict_acc,none\": 0.7074340527577938,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.6358595194085028,\n \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n\ \ \"inst_level_loose_acc,none\": 0.7386091127098321,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.026435045317220542,\n \"exact_match_stderr,none\"\ : 0.004359122520460206,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.06514657980456026,\n\ \ \"exact_match_stderr,none\": 0.014107720843558174\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.0,\n\ \ \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n\ \ \"exact_match,none\": 0.0035714285714285713,\n \"exact_match_stderr,none\"\ : 0.0035714285714285713\n },\n \"leaderboard_math_num_theory_hard\"\ : {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \ \ \"exact_match,none\": 0.012987012987012988,\n \"exact_match_stderr,none\"\ : 0.009153145279150204\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \ \ \"exact_match,none\": 0.05181347150259067,\n \"exact_match_stderr,none\"\ : 0.015996229320244134\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.007407407407407408,\n \"exact_match_stderr,none\"\ : 0.007407407407407408\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.17104388297872342,\n\ \ \"acc_stderr,none\": 0.003432959504743281\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.3531746031746032,\n \"acc_norm_stderr,none\"\ : 0.01697485324642576,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \"\ \ - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.5,\n\ \ \"acc_norm_stderr,none\": 0.031686212526223896\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.24609375,\n \"acc_norm_stderr,none\"\ : 0.026973597563786113\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.316,\n \"acc_norm_stderr,none\": 0.029462657598578648\n\ \ }\n },\n \"leaderboard\": {\n \"acc_norm,none\": 0.3514074458425217,\n\ \ \"acc_norm_stderr,none\": 0.005165884234442981,\n \"prompt_level_loose_acc,none\"\ : 0.6358595194085028,\n \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n\ \ \"inst_level_strict_acc,none\": 0.7074340527577938,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_strict_acc,none\": 0.600739371534196,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.021075331332701255,\n \"inst_level_loose_acc,none\"\ : 0.7386091127098321,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"exact_match,none\": 0.026435045317220542,\n \"exact_match_stderr,none\"\ : 0.004359122520460206,\n \"acc,none\": 0.17104388297872342,\n \"\ acc_stderr,none\": 0.0034329595047432816,\n \"alias\": \"leaderboard\"\n\ \ },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.36816524908869985,\n\ \ \"acc_norm_stderr,none\": 0.005979183471724429,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.572,\n \"acc_norm_stderr,none\": 0.031355968923772626\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5668449197860963,\n \"acc_norm_stderr,none\"\ : 0.03633267411102591\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.368,\n \"acc_norm_stderr,none\": 0.03056207062099311\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.504,\n \"acc_norm_stderr,none\": 0.0316851985511992\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.248,\n \"acc_norm_stderr,none\": 0.027367497504863593\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.244,\n \"acc_norm_stderr,none\": 0.02721799546455311\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.216,\n \"acc_norm_stderr,none\": 0.02607865766373279\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.364,\n \"acc_norm_stderr,none\": 0.030491555220405475\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.284,\n \"acc_norm_stderr,none\": 0.02857695873043744\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.2328767123287671,\n\ \ \"acc_norm_stderr,none\": 0.03510036341139227\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.28,\n \"acc_norm_stderr,none\": 0.02845414827783231\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.108,\n \"acc_norm_stderr,none\": 0.019669559381568776\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.288,\n \"acc_norm_stderr,none\": 0.028697004587398253\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.651685393258427,\n \"acc_norm_stderr,none\"\ : 0.035811144737534356\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.132,\n \"acc_norm_stderr,none\": 0.021450980824038166\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.12,\n \"acc_norm_stderr,none\": 0.020593600596839998\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.324,\n \"acc_norm_stderr,none\": 0.029658294924545567\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.26929530201342283,\n\ \ \"acc_norm_stderr,none\": 0.01285318594753383,\n \"alias\": \" -\ \ leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"alias\"\ : \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.23737373737373738,\n\ \ \"acc_norm_stderr,none\": 0.030313710538198924\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.26373626373626374,\n \"acc_norm_stderr,none\": 0.018875713580372433\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.29017857142857145,\n \"acc_norm_stderr,none\"\ : 0.021466115440571226\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.600739371534196,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.021075331332701255,\n \ \ \"inst_level_strict_acc,none\": 0.7074340527577938,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.6358595194085028,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.02070704795859195,\n \"inst_level_loose_acc,none\"\ : 0.7386091127098321,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.026435045317220542,\n\ \ \"exact_match_stderr,none\": 0.004359122520460206,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.06514657980456026,\n \"exact_match_stderr,none\": 0.014107720843558174\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.008130081300813009,\n \"exact_match_stderr,none\": 0.008130081300813007\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\ \ },\n \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.0035714285714285713,\n \"exact_match_stderr,none\": 0.0035714285714285713\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\": \" - leaderboard_math_num_theory_hard\"\ ,\n \"exact_match,none\": 0.012987012987012988,\n \"exact_match_stderr,none\"\ : 0.009153145279150204\n },\n \"leaderboard_math_prealgebra_hard\": {\n \ \ \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \"exact_match,none\"\ : 0.05181347150259067,\n \"exact_match_stderr,none\": 0.015996229320244134\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" -\ \ leaderboard_math_precalculus_hard\",\n \"exact_match,none\": 0.007407407407407408,\n\ \ \"exact_match_stderr,none\": 0.007407407407407408\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.17104388297872342,\n\ \ \"acc_stderr,none\": 0.003432959504743281\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.3531746031746032,\n \"acc_norm_stderr,none\"\ : 0.01697485324642576,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.5,\n \"acc_norm_stderr,none\": 0.031686212526223896\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.24609375,\n\ \ \"acc_norm_stderr,none\": 0.026973597563786113\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.316,\n \"acc_norm_stderr,none\": 0.029462657598578648\n }\n}\n```" repo_url: https://huggingface.co/SultanR/SmolTulu-1.7b-Instruct leaderboard_url: '' point_of_contact: '' configs: - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_boolean_expressions data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_causal_judgement data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_date_understanding data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_formal_fallacies data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_geometric_shapes data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_hyperbaton data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_movie_recommendation data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_navigate data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_object_counting data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_ruin_names data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_snarks data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_sports_understanding data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_temporal_sequences data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_web_of_lies data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_gpqa_diamond data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_gpqa_extended data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_gpqa_main data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_ifeval data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_ifeval_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_math_algebra_hard data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_math_geometry_hard data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_math_num_theory_hard data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_math_prealgebra_hard data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_math_precalculus_hard data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_mmlu_pro data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_musr_murder_mysteries data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_musr_object_placements data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-27-39.293748.jsonl' - config_name: SultanR__SmolTulu-1.7b-Instruct__leaderboard_musr_team_allocation data_files: - split: 2024_12_02T04_27_39.293748 path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-27-39.293748.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-27-39.293748.jsonl' --- # Dataset Card for Evaluation run of SultanR/SmolTulu-1.7b-Instruct <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [SultanR/SmolTulu-1.7b-Instruct](https://huggingface.co/SultanR/SmolTulu-1.7b-Instruct) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/SultanR__SmolTulu-1.7b-Instruct-details", name="SultanR__SmolTulu-1.7b-Instruct__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T04-27-39.293748](https://huggingface.co/datasets/open-llm-leaderboard/SultanR__SmolTulu-1.7b-Instruct-details/blob/main/SultanR__SmolTulu-1.7b-Instruct/results_2024-12-02T04-27-39.293748.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "acc_norm,none": 0.3514074458425217, "acc_norm_stderr,none": 0.005165884234442981, "prompt_level_loose_acc,none": 0.6358595194085028, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "inst_level_strict_acc,none": 0.7074340527577938, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.600739371534196, "prompt_level_strict_acc_stderr,none": 0.021075331332701255, "inst_level_loose_acc,none": 0.7386091127098321, "inst_level_loose_acc_stderr,none": "N/A", "exact_match,none": 0.026435045317220542, "exact_match_stderr,none": 0.004359122520460206, "acc,none": 0.17104388297872342, "acc_stderr,none": 0.0034329595047432816, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.36816524908869985, "acc_norm_stderr,none": 0.005979183471724429, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5668449197860963, "acc_norm_stderr,none": 0.03633267411102591 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.368, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.504, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.244, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.216, "acc_norm_stderr,none": 0.02607865766373279 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.284, "acc_norm_stderr,none": 0.02857695873043744 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.2328767123287671, "acc_norm_stderr,none": 0.03510036341139227 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.28, "acc_norm_stderr,none": 0.02845414827783231 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.108, "acc_norm_stderr,none": 0.019669559381568776 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.651685393258427, "acc_norm_stderr,none": 0.035811144737534356 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.132, "acc_norm_stderr,none": 0.021450980824038166 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.12, "acc_norm_stderr,none": 0.020593600596839998 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.324, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_gpqa": { "acc_norm,none": 0.26929530201342283, "acc_norm_stderr,none": 0.01285318594753383, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.23737373737373738, "acc_norm_stderr,none": 0.030313710538198924 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.26373626373626374, "acc_norm_stderr,none": 0.018875713580372433 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.29017857142857145, "acc_norm_stderr,none": 0.021466115440571226 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.600739371534196, "prompt_level_strict_acc_stderr,none": 0.021075331332701255, "inst_level_strict_acc,none": 0.7074340527577938, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.6358595194085028, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "inst_level_loose_acc,none": 0.7386091127098321, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.026435045317220542, "exact_match_stderr,none": 0.004359122520460206, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.06514657980456026, "exact_match_stderr,none": 0.014107720843558174 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0035714285714285713, "exact_match_stderr,none": 0.0035714285714285713 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.012987012987012988, "exact_match_stderr,none": 0.009153145279150204 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.05181347150259067, "exact_match_stderr,none": 0.015996229320244134 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.17104388297872342, "acc_stderr,none": 0.003432959504743281 }, "leaderboard_musr": { "acc_norm,none": 0.3531746031746032, "acc_norm_stderr,none": 0.01697485324642576, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.5, "acc_norm_stderr,none": 0.031686212526223896 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.24609375, "acc_norm_stderr,none": 0.026973597563786113 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 } }, "leaderboard": { "acc_norm,none": 0.3514074458425217, "acc_norm_stderr,none": 0.005165884234442981, "prompt_level_loose_acc,none": 0.6358595194085028, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "inst_level_strict_acc,none": 0.7074340527577938, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.600739371534196, "prompt_level_strict_acc_stderr,none": 0.021075331332701255, "inst_level_loose_acc,none": 0.7386091127098321, "inst_level_loose_acc_stderr,none": "N/A", "exact_match,none": 0.026435045317220542, "exact_match_stderr,none": 0.004359122520460206, "acc,none": 0.17104388297872342, "acc_stderr,none": 0.0034329595047432816, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.36816524908869985, "acc_norm_stderr,none": 0.005979183471724429, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5668449197860963, "acc_norm_stderr,none": 0.03633267411102591 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.368, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.504, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.244, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.216, "acc_norm_stderr,none": 0.02607865766373279 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.284, "acc_norm_stderr,none": 0.02857695873043744 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.2328767123287671, "acc_norm_stderr,none": 0.03510036341139227 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.28, "acc_norm_stderr,none": 0.02845414827783231 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.108, "acc_norm_stderr,none": 0.019669559381568776 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.651685393258427, "acc_norm_stderr,none": 0.035811144737534356 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.132, "acc_norm_stderr,none": 0.021450980824038166 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.12, "acc_norm_stderr,none": 0.020593600596839998 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.324, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_gpqa": { "acc_norm,none": 0.26929530201342283, "acc_norm_stderr,none": 0.01285318594753383, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.23737373737373738, "acc_norm_stderr,none": 0.030313710538198924 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.26373626373626374, "acc_norm_stderr,none": 0.018875713580372433 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.29017857142857145, "acc_norm_stderr,none": 0.021466115440571226 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.600739371534196, "prompt_level_strict_acc_stderr,none": 0.021075331332701255, "inst_level_strict_acc,none": 0.7074340527577938, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.6358595194085028, "prompt_level_loose_acc_stderr,none": 0.02070704795859195, "inst_level_loose_acc,none": 0.7386091127098321, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.026435045317220542, "exact_match_stderr,none": 0.004359122520460206, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.06514657980456026, "exact_match_stderr,none": 0.014107720843558174 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.008130081300813009, "exact_match_stderr,none": 0.008130081300813007 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.0, "exact_match_stderr,none": 0.0 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0035714285714285713, "exact_match_stderr,none": 0.0035714285714285713 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.012987012987012988, "exact_match_stderr,none": 0.009153145279150204 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.05181347150259067, "exact_match_stderr,none": 0.015996229320244134 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.17104388297872342, "acc_stderr,none": 0.003432959504743281 }, "leaderboard_musr": { "acc_norm,none": 0.3531746031746032, "acc_norm_stderr,none": 0.01697485324642576, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.5, "acc_norm_stderr,none": 0.031686212526223896 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.24609375, "acc_norm_stderr,none": 0.026973597563786113 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.316, "acc_norm_stderr,none": 0.029462657598578648 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
mlfoundations-dev/unnatural_instructions_gpt-4o-mini_scale_x4
mlfoundations-dev
"2024-12-02T04:49:35Z"
3
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T04:49:28Z"
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: constraints dtype: string - name: output dtype: string - name: alternative_formulation dtype: string - name: alternative_formulation_inlined dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 370037851 num_examples: 227604 download_size: 143079298 dataset_size: 370037851 configs: - config_name: default data_files: - split: train path: data/train-* ---
open-llm-leaderboard/asharsha30__LLAMA_Harsha_8_B_ORDP_10k-details
open-llm-leaderboard
"2024-12-02T05:03:31Z"
3
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T04:58:39Z"
--- pretty_name: Evaluation run of asharsha30/LLAMA_Harsha_8_B_ORDP_10k dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [asharsha30/LLAMA_Harsha_8_B_ORDP_10k](https://huggingface.co/asharsha30/LLAMA_Harsha_8_B_ORDP_10k)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/asharsha30__LLAMA_Harsha_8_B_ORDP_10k-details\"\ ,\n\tname=\"asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-12-02T04-58-31.780769](https://huggingface.co/datasets/open-llm-leaderboard/asharsha30__LLAMA_Harsha_8_B_ORDP_10k-details/blob/main/asharsha30__LLAMA_Harsha_8_B_ORDP_10k/results_2024-12-02T04-58-31.780769.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"inst_level_loose_acc,none\": 0.434052757793765,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.05211480362537765,\n \ \ \"exact_match_stderr,none\": 0.0060252620719431545,\n \"acc,none\"\ : 0.281000664893617,\n \"acc_stderr,none\": 0.004097953770325976,\n \ \ \"inst_level_strict_acc,none\": 0.4136690647482014,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.29944547134935307,\n \"prompt_level_loose_acc_stderr,none\": 0.019709834029672937,\n\ \ \"prompt_level_strict_acc,none\": 0.27911275415896486,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.019303080958497275,\n \"\ acc_norm,none\": 0.42729277467894666,\n \"acc_norm_stderr,none\": 0.005252183131190879,\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.4667592431869467,\n \"acc_norm_stderr,none\"\ : 0.006106218522241726,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.684,\n\ \ \"acc_norm_stderr,none\": 0.02946265759857865\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6149732620320856,\n \"acc_norm_stderr,none\"\ : 0.03567936280544673\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.496,\n \"acc_norm_stderr,none\": 0.0316851985511992\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.576,\n\ \ \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.584,\n \"acc_norm_stderr,none\":\ \ 0.031235856237014505\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.352,\n \"acc_norm_stderr,none\": 0.030266288057359866\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.732,\n \ \ \"acc_norm_stderr,none\": 0.02806876238252672\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.344,\n \"acc_norm_stderr,none\":\ \ 0.03010450339231644\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.34,\n \"acc_norm_stderr,none\": 0.030020073605457873\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.788,\n \"acc_norm_stderr,none\": 0.025901884690541117\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.608,\n \"acc_norm_stderr,none\":\ \ 0.030938207620401222\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.4,\n \"acc_norm_stderr,none\": 0.031046021028253316\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.410958904109589,\n \"acc_norm_stderr,none\": 0.04085902451640228\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.424,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.54,\n \ \ \"acc_norm_stderr,none\": 0.031584653891499004\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.392,\n \"acc_norm_stderr,none\":\ \ 0.030938207620401222\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.42696629213483145,\n \"acc_norm_stderr,none\": 0.03717921762559315\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.796,\n \"acc_norm_stderr,none\": 0.025537121574548162\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.076,\n\ \ \"acc_norm_stderr,none\": 0.01679357306785969\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\":\ \ 0.022249407735450245\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.348,\n \"acc_norm_stderr,none\":\ \ 0.030186568464511673\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.492,\n \"acc_norm_stderr,none\": 0.03168215643141386\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.27348993288590606,\n\ \ \"acc_norm_stderr,none\": 0.012922093286405052,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.25252525252525254,\n \"acc_norm_stderr,none\": 0.03095405547036587\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.2857142857142857,\n\ \ \"acc_norm_stderr,none\": 0.019351013185102753\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.26785714285714285,\n \"acc_norm_stderr,none\"\ : 0.02094574294163546\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.27911275415896486,\n \"prompt_level_strict_acc_stderr,none\": 0.019303080958497275,\n\ \ \"inst_level_strict_acc,none\": 0.4136690647482014,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.29944547134935307,\n \"prompt_level_loose_acc_stderr,none\": 0.019709834029672937,\n\ \ \"inst_level_loose_acc,none\": 0.434052757793765,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\"\n },\n \"leaderboard_math_hard\": {\n \"exact_match,none\"\ : 0.05211480362537765,\n \"exact_match_stderr,none\": 0.0060252620719431545,\n\ \ \"alias\": \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_algebra_hard\",\n \ \ \"exact_match,none\": 0.08143322475570032,\n \"exact_match_stderr,none\"\ : 0.015634913029180107\n },\n \"leaderboard_math_counting_and_prob_hard\"\ : {\n \"alias\": \" - leaderboard_math_counting_and_prob_hard\",\n \ \ \"exact_match,none\": 0.04878048780487805,\n \"exact_match_stderr,none\"\ : 0.01950219655858808\n },\n \"leaderboard_math_geometry_hard\": {\n\ \ \"alias\": \" - leaderboard_math_geometry_hard\",\n \"\ exact_match,none\": 0.022727272727272728,\n \"exact_match_stderr,none\"\ : 0.0130210469090637\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n\ \ \"exact_match,none\": 0.0035714285714285713,\n \"exact_match_stderr,none\"\ : 0.0035714285714285713\n },\n \"leaderboard_math_num_theory_hard\"\ : {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \ \ \"exact_match,none\": 0.05844155844155844,\n \"exact_match_stderr,none\"\ : 0.018964387451957845\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \ \ \"exact_match,none\": 0.11917098445595854,\n \"exact_match_stderr,none\"\ : 0.02338193534812143\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.014814814814814815,\n \"exact_match_stderr,none\"\ : 0.010436494549594376\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.281000664893617,\n\ \ \"acc_stderr,none\": 0.004097953770325976\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.36904761904761907,\n \"acc_norm_stderr,none\"\ : 0.016972951603926475,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.548,\n\ \ \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.29296875,\n \"acc_norm_stderr,none\"\ : 0.028500984607927556\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.268,\n \"acc_norm_stderr,none\": 0.02806876238252672\n\ \ }\n },\n \"leaderboard\": {\n \"inst_level_loose_acc,none\"\ : 0.434052757793765,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \ \ \"exact_match,none\": 0.05211480362537765,\n \"exact_match_stderr,none\"\ : 0.0060252620719431545,\n \"acc,none\": 0.281000664893617,\n \"acc_stderr,none\"\ : 0.004097953770325976,\n \"inst_level_strict_acc,none\": 0.4136690647482014,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.29944547134935307,\n \"prompt_level_loose_acc_stderr,none\": 0.019709834029672937,\n\ \ \"prompt_level_strict_acc,none\": 0.27911275415896486,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.019303080958497275,\n \"acc_norm,none\": 0.42729277467894666,\n \ \ \"acc_norm_stderr,none\": 0.005252183131190879,\n \"alias\": \"leaderboard\"\ \n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.4667592431869467,\n\ \ \"acc_norm_stderr,none\": 0.006106218522241726,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.684,\n \"acc_norm_stderr,none\": 0.02946265759857865\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6149732620320856,\n \"acc_norm_stderr,none\"\ : 0.03567936280544673\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.496,\n \"acc_norm_stderr,none\": 0.0316851985511992\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\"\ : 0.576,\n \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \"\ leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.584,\n \"acc_norm_stderr,none\": 0.031235856237014505\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.352,\n \"acc_norm_stderr,none\": 0.030266288057359866\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.732,\n \"acc_norm_stderr,none\": 0.02806876238252672\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.344,\n \"acc_norm_stderr,none\": 0.03010450339231644\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.34,\n \"acc_norm_stderr,none\": 0.030020073605457873\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.788,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.4,\n \"acc_norm_stderr,none\": 0.031046021028253316\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.410958904109589,\n\ \ \"acc_norm_stderr,none\": 0.04085902451640228\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.424,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.392,\n \"acc_norm_stderr,none\": 0.030938207620401222\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.42696629213483145,\n \"acc_norm_stderr,none\"\ : 0.03717921762559315\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.796,\n \"acc_norm_stderr,none\": 0.025537121574548162\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.076,\n \"acc_norm_stderr,none\": 0.01679357306785969\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.188,\n \"acc_norm_stderr,none\": 0.024760377727750513\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\": 0.022249407735450245\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.348,\n \"acc_norm_stderr,none\": 0.030186568464511673\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.492,\n \"acc_norm_stderr,none\": 0.03168215643141386\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.27348993288590606,\n\ \ \"acc_norm_stderr,none\": 0.012922093286405052,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.25252525252525254,\n\ \ \"acc_norm_stderr,none\": 0.03095405547036587\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.2857142857142857,\n \"acc_norm_stderr,none\": 0.019351013185102753\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.26785714285714285,\n \"acc_norm_stderr,none\"\ : 0.02094574294163546\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.27911275415896486,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.019303080958497275,\n \ \ \"inst_level_strict_acc,none\": 0.4136690647482014,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.29944547134935307,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.019709834029672937,\n \"inst_level_loose_acc,none\"\ : 0.434052757793765,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.05211480362537765,\n\ \ \"exact_match_stderr,none\": 0.0060252620719431545,\n \"alias\"\ : \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.08143322475570032,\n \"exact_match_stderr,none\": 0.015634913029180107\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.04878048780487805,\n \"exact_match_stderr,none\": 0.01950219655858808\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.022727272727272728,\n \"exact_match_stderr,none\"\ : 0.0130210469090637\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.0035714285714285713,\n \"exact_match_stderr,none\"\ : 0.0035714285714285713\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.05844155844155844,\n \"exact_match_stderr,none\": 0.018964387451957845\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.11917098445595854,\n \"exact_match_stderr,none\"\ : 0.02338193534812143\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.014814814814814815,\n \"exact_match_stderr,none\": 0.010436494549594376\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.281000664893617,\n \"acc_stderr,none\": 0.004097953770325976\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.36904761904761907,\n\ \ \"acc_norm_stderr,none\": 0.016972951603926475,\n \"alias\": \"\ \ - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.29296875,\n \"acc_norm_stderr,none\": 0.028500984607927556\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.268,\n \"acc_norm_stderr,none\": 0.02806876238252672\n\ \ }\n}\n```" repo_url: https://huggingface.co/asharsha30/LLAMA_Harsha_8_B_ORDP_10k leaderboard_url: '' point_of_contact: '' configs: - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_boolean_expressions data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_causal_judgement data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_date_understanding data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_formal_fallacies data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_geometric_shapes data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_hyperbaton data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_movie_recommendation data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_navigate data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_object_counting data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_ruin_names data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_snarks data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_sports_understanding data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_temporal_sequences data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_web_of_lies data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_gpqa_diamond data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_gpqa_extended data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_gpqa_main data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_ifeval data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_ifeval_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_math_algebra_hard data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_math_geometry_hard data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_math_num_theory_hard data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_math_prealgebra_hard data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_math_precalculus_hard data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_mmlu_pro data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_musr_murder_mysteries data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_musr_object_placements data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T04-58-31.780769.jsonl' - config_name: asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_musr_team_allocation data_files: - split: 2024_12_02T04_58_31.780769 path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-58-31.780769.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T04-58-31.780769.jsonl' --- # Dataset Card for Evaluation run of asharsha30/LLAMA_Harsha_8_B_ORDP_10k <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [asharsha30/LLAMA_Harsha_8_B_ORDP_10k](https://huggingface.co/asharsha30/LLAMA_Harsha_8_B_ORDP_10k) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/asharsha30__LLAMA_Harsha_8_B_ORDP_10k-details", name="asharsha30__LLAMA_Harsha_8_B_ORDP_10k__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T04-58-31.780769](https://huggingface.co/datasets/open-llm-leaderboard/asharsha30__LLAMA_Harsha_8_B_ORDP_10k-details/blob/main/asharsha30__LLAMA_Harsha_8_B_ORDP_10k/results_2024-12-02T04-58-31.780769.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "inst_level_loose_acc,none": 0.434052757793765, "inst_level_loose_acc_stderr,none": "N/A", "exact_match,none": 0.05211480362537765, "exact_match_stderr,none": 0.0060252620719431545, "acc,none": 0.281000664893617, "acc_stderr,none": 0.004097953770325976, "inst_level_strict_acc,none": 0.4136690647482014, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.29944547134935307, "prompt_level_loose_acc_stderr,none": 0.019709834029672937, "prompt_level_strict_acc,none": 0.27911275415896486, "prompt_level_strict_acc_stderr,none": 0.019303080958497275, "acc_norm,none": 0.42729277467894666, "acc_norm_stderr,none": 0.005252183131190879, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.4667592431869467, "acc_norm_stderr,none": 0.006106218522241726, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.684, "acc_norm_stderr,none": 0.02946265759857865 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6149732620320856, "acc_norm_stderr,none": 0.03567936280544673 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.496, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.584, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.352, "acc_norm_stderr,none": 0.030266288057359866 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.732, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.344, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.34, "acc_norm_stderr,none": 0.030020073605457873 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.788, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.4, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.410958904109589, "acc_norm_stderr,none": 0.04085902451640228 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.392, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.42696629213483145, "acc_norm_stderr,none": 0.03717921762559315 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.796, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.076, "acc_norm_stderr,none": 0.01679357306785969 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.348, "acc_norm_stderr,none": 0.030186568464511673 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.492, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_gpqa": { "acc_norm,none": 0.27348993288590606, "acc_norm_stderr,none": 0.012922093286405052, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.25252525252525254, "acc_norm_stderr,none": 0.03095405547036587 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2857142857142857, "acc_norm_stderr,none": 0.019351013185102753 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.26785714285714285, "acc_norm_stderr,none": 0.02094574294163546 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.27911275415896486, "prompt_level_strict_acc_stderr,none": 0.019303080958497275, "inst_level_strict_acc,none": 0.4136690647482014, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.29944547134935307, "prompt_level_loose_acc_stderr,none": 0.019709834029672937, "inst_level_loose_acc,none": 0.434052757793765, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.05211480362537765, "exact_match_stderr,none": 0.0060252620719431545, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.08143322475570032, "exact_match_stderr,none": 0.015634913029180107 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.04878048780487805, "exact_match_stderr,none": 0.01950219655858808 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.022727272727272728, "exact_match_stderr,none": 0.0130210469090637 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0035714285714285713, "exact_match_stderr,none": 0.0035714285714285713 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.05844155844155844, "exact_match_stderr,none": 0.018964387451957845 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.11917098445595854, "exact_match_stderr,none": 0.02338193534812143 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.014814814814814815, "exact_match_stderr,none": 0.010436494549594376 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.281000664893617, "acc_stderr,none": 0.004097953770325976 }, "leaderboard_musr": { "acc_norm,none": 0.36904761904761907, "acc_norm_stderr,none": 0.016972951603926475, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.29296875, "acc_norm_stderr,none": 0.028500984607927556 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.268, "acc_norm_stderr,none": 0.02806876238252672 } }, "leaderboard": { "inst_level_loose_acc,none": 0.434052757793765, "inst_level_loose_acc_stderr,none": "N/A", "exact_match,none": 0.05211480362537765, "exact_match_stderr,none": 0.0060252620719431545, "acc,none": 0.281000664893617, "acc_stderr,none": 0.004097953770325976, "inst_level_strict_acc,none": 0.4136690647482014, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.29944547134935307, "prompt_level_loose_acc_stderr,none": 0.019709834029672937, "prompt_level_strict_acc,none": 0.27911275415896486, "prompt_level_strict_acc_stderr,none": 0.019303080958497275, "acc_norm,none": 0.42729277467894666, "acc_norm_stderr,none": 0.005252183131190879, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.4667592431869467, "acc_norm_stderr,none": 0.006106218522241726, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.684, "acc_norm_stderr,none": 0.02946265759857865 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6149732620320856, "acc_norm_stderr,none": 0.03567936280544673 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.496, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.576, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.584, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.352, "acc_norm_stderr,none": 0.030266288057359866 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.732, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.344, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.34, "acc_norm_stderr,none": 0.030020073605457873 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.788, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.4, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.410958904109589, "acc_norm_stderr,none": 0.04085902451640228 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.392, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.42696629213483145, "acc_norm_stderr,none": 0.03717921762559315 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.796, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.076, "acc_norm_stderr,none": 0.01679357306785969 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.188, "acc_norm_stderr,none": 0.024760377727750513 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.348, "acc_norm_stderr,none": 0.030186568464511673 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.492, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_gpqa": { "acc_norm,none": 0.27348993288590606, "acc_norm_stderr,none": 0.012922093286405052, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.25252525252525254, "acc_norm_stderr,none": 0.03095405547036587 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2857142857142857, "acc_norm_stderr,none": 0.019351013185102753 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.26785714285714285, "acc_norm_stderr,none": 0.02094574294163546 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.27911275415896486, "prompt_level_strict_acc_stderr,none": 0.019303080958497275, "inst_level_strict_acc,none": 0.4136690647482014, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.29944547134935307, "prompt_level_loose_acc_stderr,none": 0.019709834029672937, "inst_level_loose_acc,none": 0.434052757793765, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.05211480362537765, "exact_match_stderr,none": 0.0060252620719431545, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.08143322475570032, "exact_match_stderr,none": 0.015634913029180107 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.04878048780487805, "exact_match_stderr,none": 0.01950219655858808 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.022727272727272728, "exact_match_stderr,none": 0.0130210469090637 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.0035714285714285713, "exact_match_stderr,none": 0.0035714285714285713 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.05844155844155844, "exact_match_stderr,none": 0.018964387451957845 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.11917098445595854, "exact_match_stderr,none": 0.02338193534812143 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.014814814814814815, "exact_match_stderr,none": 0.010436494549594376 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.281000664893617, "acc_stderr,none": 0.004097953770325976 }, "leaderboard_musr": { "acc_norm,none": 0.36904761904761907, "acc_norm_stderr,none": 0.016972951603926475, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.29296875, "acc_norm_stderr,none": 0.028500984607927556 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.268, "acc_norm_stderr,none": 0.02806876238252672 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
keikhosrotav/Pen-data-1
keikhosrotav
"2024-12-02T06:02:19Z"
3
0
[ "task_categories:image-classification", "task_categories:image-segmentation", "task_categories:image-feature-extraction", "task_categories:feature-extraction", "language:en", "license:mit", "size_categories:n<1K", "format:csv", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
[ "image-classification", "image-segmentation", "image-feature-extraction", "feature-extraction" ]
"2024-12-02T05:01:23Z"
--- license: mit task_categories: - image-classification - image-segmentation - image-feature-extraction - feature-extraction language: - en tags: - code pretty_name: keikhosro tavakoli size_categories: - 100K<n<1M ---
open-llm-leaderboard/qingy2019__Qwen2.5-Math-14B-Instruct-details
open-llm-leaderboard
"2024-12-02T05:17:54Z"
3
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T05:07:12Z"
--- pretty_name: Evaluation run of qingy2019/Qwen2.5-Math-14B-Instruct dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [qingy2019/Qwen2.5-Math-14B-Instruct](https://huggingface.co/qingy2019/Qwen2.5-Math-14B-Instruct)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/qingy2019__Qwen2.5-Math-14B-Instruct-details\"\ ,\n\tname=\"qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-12-02T05-08-40.315655](https://huggingface.co/datasets/open-llm-leaderboard/qingy2019__Qwen2.5-Math-14B-Instruct-details/blob/main/qingy2019__Qwen2.5-Math-14B-Instruct/results_2024-12-02T05-08-40.315655.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"inst_level_loose_acc,none\": 0.737410071942446,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_strict_acc,none\": 0.5415896487985212,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.021442010560476468,\n \ \ \"acc_norm,none\": 0.5764690621351667,\n \"acc_norm_stderr,none\"\ : 0.005208747427765323,\n \"exact_match,none\": 0.2764350453172205,\n\ \ \"exact_match_stderr,none\": 0.011708266026998851,\n \"\ inst_level_strict_acc,none\": 0.6594724220623501,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"acc,none\": 0.5339095744680851,\n \"acc_stderr,none\"\ : 0.004547975138689626,\n \"prompt_level_loose_acc,none\": 0.6414048059149723,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.020638182918873173,\n \ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n\ \ \"acc_norm,none\": 0.6327026557889255,\n \"acc_norm_stderr,none\"\ : 0.005886473721108874,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.884,\n\ \ \"acc_norm_stderr,none\": 0.020293429803083823\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6042780748663101,\n \"acc_norm_stderr,none\"\ : 0.035855600715925424\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.716,\n \"acc_norm_stderr,none\": 0.028576958730437443\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.612,\n\ \ \"acc_norm_stderr,none\": 0.030881038748993974\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.684,\n \"acc_norm_stderr,none\":\ \ 0.02946265759857865\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.508,\n \"acc_norm_stderr,none\": 0.03168215643141386\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.788,\n \ \ \"acc_norm_stderr,none\": 0.025901884690541117\n },\n \"\ leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\": \" \ \ - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.6,\n \"acc_norm_stderr,none\": 0.031046021028253316\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.616,\n \"acc_norm_stderr,none\": 0.030821679117375447\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.896,\n \"acc_norm_stderr,none\": 0.019345100974843932\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.732,\n \"acc_norm_stderr,none\": 0.02806876238252672\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.7,\n \"acc_norm_stderr,none\": 0.029040893477575786\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\"\ : \" - leaderboard_bbh_object_counting\",\n \"acc_norm,none\": 0.484,\n\ \ \"acc_norm_stderr,none\": 0.03166998503010743\n },\n \ \ \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" - leaderboard_bbh_penguins_in_a_table\"\ ,\n \"acc_norm,none\": 0.7328767123287672,\n \"acc_norm_stderr,none\"\ : 0.03674407640319397\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.792,\n \"acc_norm_stderr,none\":\ \ 0.025721398901416368\n },\n \"leaderboard_bbh_ruin_names\": {\n\ \ \"alias\": \" - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\"\ : 0.804,\n \"acc_norm_stderr,none\": 0.025156857313255922\n },\n\ \ \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.588,\n \"acc_norm_stderr,none\": 0.031191596026022818\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.7584269662921348,\n\ \ \"acc_norm_stderr,none\": 0.032173216138332565\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.568,\n \"acc_norm_stderr,none\":\ \ 0.03139181076542941\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \ \ \"acc_norm,none\": 0.848,\n \"acc_norm_stderr,none\": 0.022752024491765464\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.236,\n \"acc_norm_stderr,none\":\ \ 0.026909337594953852\n },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.208,\n \"acc_norm_stderr,none\":\ \ 0.02572139890141637\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.34,\n \"acc_norm_stderr,none\": 0.030020073605457873\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\":\ \ \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\": 0.556,\n\ \ \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3691275167785235,\n\ \ \"acc_norm_stderr,none\": 0.013986495045275629,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.37373737373737376,\n \"acc_norm_stderr,none\": 0.03446897738659336\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.38461538461538464,\n\ \ \"acc_norm_stderr,none\": 0.02083955266087989\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3482142857142857,\n \"acc_norm_stderr,none\"\ : 0.022533152157915175\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.5415896487985212,\n \"prompt_level_strict_acc_stderr,none\": 0.021442010560476468,\n\ \ \"inst_level_strict_acc,none\": 0.6594724220623501,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.6414048059149723,\n \"prompt_level_loose_acc_stderr,none\": 0.020638182918873173,\n\ \ \"inst_level_loose_acc,none\": 0.737410071942446,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\"\n },\n \"leaderboard_math_hard\": {\n \"exact_match,none\"\ : 0.2764350453172205,\n \"exact_match_stderr,none\": 0.011708266026998851,\n\ \ \"alias\": \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_algebra_hard\",\n \ \ \"exact_match,none\": 0.43322475570032576,\n \"exact_match_stderr,none\"\ : 0.028327050442298423\n },\n \"leaderboard_math_counting_and_prob_hard\"\ : {\n \"alias\": \" - leaderboard_math_counting_and_prob_hard\",\n \ \ \"exact_match,none\": 0.2926829268292683,\n \"exact_match_stderr,none\"\ : 0.04119323030208565\n },\n \"leaderboard_math_geometry_hard\": {\n\ \ \"alias\": \" - leaderboard_math_geometry_hard\",\n \"\ exact_match,none\": 0.17424242424242425,\n \"exact_match_stderr,none\"\ : 0.03314115103435667\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n\ \ \"exact_match,none\": 0.09642857142857143,\n \"exact_match_stderr,none\"\ : 0.017671849720607317\n },\n \"leaderboard_math_num_theory_hard\"\ : {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \ \ \"exact_match,none\": 0.2662337662337662,\n \"exact_match_stderr,none\"\ : 0.03573260790443323\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \ \ \"exact_match,none\": 0.44559585492227977,\n \"exact_match_stderr,none\"\ : 0.03587014986075661\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.14814814814814814,\n \"exact_match_stderr,none\"\ : 0.030688647610352705\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.5339095744680851,\n\ \ \"acc_stderr,none\": 0.004547975138689626\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.4748677248677249,\n \"acc_norm_stderr,none\"\ : 0.017959022038877108,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.572,\n\ \ \"acc_norm_stderr,none\": 0.031355968923772626\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.375,\n \"acc_norm_stderr,none\":\ \ 0.03031695312954162\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.48,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ }\n },\n \"leaderboard\": {\n \"inst_level_loose_acc,none\"\ : 0.737410071942446,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \ \ \"prompt_level_strict_acc,none\": 0.5415896487985212,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.021442010560476468,\n \"acc_norm,none\": 0.5764690621351667,\n \ \ \"acc_norm_stderr,none\": 0.005208747427765323,\n \"exact_match,none\"\ : 0.2764350453172205,\n \"exact_match_stderr,none\": 0.011708266026998851,\n\ \ \"inst_level_strict_acc,none\": 0.6594724220623501,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"acc,none\": 0.5339095744680851,\n \"acc_stderr,none\"\ : 0.004547975138689626,\n \"prompt_level_loose_acc,none\": 0.6414048059149723,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.020638182918873173,\n \ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.6327026557889255,\n \"acc_norm_stderr,none\": 0.005886473721108874,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"\ acc_norm,none\": 0.884,\n \"acc_norm_stderr,none\": 0.020293429803083823\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6042780748663101,\n \"acc_norm_stderr,none\"\ : 0.035855600715925424\n },\n \"leaderboard_bbh_date_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.716,\n \"acc_norm_stderr,none\": 0.028576958730437443\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.612,\n \"acc_norm_stderr,none\": 0.030881038748993974\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.684,\n \"acc_norm_stderr,none\": 0.02946265759857865\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.508,\n \"acc_norm_stderr,none\": 0.03168215643141386\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.788,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.6,\n \"acc_norm_stderr,none\": 0.031046021028253316\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.616,\n \"acc_norm_stderr,none\": 0.030821679117375447\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.896,\n \"acc_norm_stderr,none\": 0.019345100974843932\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.732,\n \"acc_norm_stderr,none\": 0.02806876238252672\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.7,\n \"acc_norm_stderr,none\": 0.029040893477575786\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.7328767123287672,\n\ \ \"acc_norm_stderr,none\": 0.03674407640319397\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.792,\n \"acc_norm_stderr,none\": 0.025721398901416368\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.804,\n \"acc_norm_stderr,none\": 0.025156857313255922\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.588,\n \"acc_norm_stderr,none\": 0.031191596026022818\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.7584269662921348,\n \"acc_norm_stderr,none\"\ : 0.032173216138332565\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.848,\n \"acc_norm_stderr,none\": 0.022752024491765464\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.236,\n \"acc_norm_stderr,none\": 0.026909337594953852\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.208,\n \"acc_norm_stderr,none\": 0.02572139890141637\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.34,\n \"acc_norm_stderr,none\": 0.030020073605457873\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.556,\n \"acc_norm_stderr,none\": 0.03148684942554571\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3691275167785235,\n\ \ \"acc_norm_stderr,none\": 0.013986495045275629,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.37373737373737376,\n\ \ \"acc_norm_stderr,none\": 0.03446897738659336\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.38461538461538464,\n \"acc_norm_stderr,none\": 0.02083955266087989\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3482142857142857,\n \"acc_norm_stderr,none\"\ : 0.022533152157915175\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.5415896487985212,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.021442010560476468,\n \ \ \"inst_level_strict_acc,none\": 0.6594724220623501,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.6414048059149723,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.020638182918873173,\n \"inst_level_loose_acc,none\"\ : 0.737410071942446,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.2764350453172205,\n\ \ \"exact_match_stderr,none\": 0.011708266026998851,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.43322475570032576,\n \"exact_match_stderr,none\": 0.028327050442298423\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.2926829268292683,\n \"exact_match_stderr,none\": 0.04119323030208565\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.17424242424242425,\n \"exact_match_stderr,none\"\ : 0.03314115103435667\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.09642857142857143,\n \"exact_match_stderr,none\"\ : 0.017671849720607317\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.2662337662337662,\n \"exact_match_stderr,none\": 0.03573260790443323\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.44559585492227977,\n \"exact_match_stderr,none\"\ : 0.03587014986075661\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.14814814814814814,\n \"exact_match_stderr,none\": 0.030688647610352705\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.5339095744680851,\n \"acc_stderr,none\": 0.004547975138689626\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.4748677248677249,\n\ \ \"acc_norm_stderr,none\": 0.017959022038877108,\n \"alias\": \"\ \ - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.572,\n \"acc_norm_stderr,none\": 0.031355968923772626\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.375,\n \"acc_norm_stderr,none\": 0.03031695312954162\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.48,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ }\n}\n```" repo_url: https://huggingface.co/qingy2019/Qwen2.5-Math-14B-Instruct leaderboard_url: '' point_of_contact: '' configs: - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_boolean_expressions data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_causal_judgement data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_date_understanding data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_formal_fallacies data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_geometric_shapes data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_hyperbaton data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_movie_recommendation data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_navigate data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_object_counting data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_ruin_names data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_snarks data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_sports_understanding data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_temporal_sequences data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_web_of_lies data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_gpqa_diamond data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_gpqa_extended data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_gpqa_main data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_gpqa_main_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_ifeval data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_ifeval_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_math_algebra_hard data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_math_geometry_hard data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_math_num_theory_hard data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_math_prealgebra_hard data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_math_precalculus_hard data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_mmlu_pro data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_musr_murder_mysteries data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_musr_object_placements data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T05-08-40.315655.jsonl' - config_name: qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_musr_team_allocation data_files: - split: 2024_12_02T05_08_40.315655 path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T05-08-40.315655.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T05-08-40.315655.jsonl' --- # Dataset Card for Evaluation run of qingy2019/Qwen2.5-Math-14B-Instruct <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [qingy2019/Qwen2.5-Math-14B-Instruct](https://huggingface.co/qingy2019/Qwen2.5-Math-14B-Instruct) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/qingy2019__Qwen2.5-Math-14B-Instruct-details", name="qingy2019__Qwen2.5-Math-14B-Instruct__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T05-08-40.315655](https://huggingface.co/datasets/open-llm-leaderboard/qingy2019__Qwen2.5-Math-14B-Instruct-details/blob/main/qingy2019__Qwen2.5-Math-14B-Instruct/results_2024-12-02T05-08-40.315655.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "inst_level_loose_acc,none": 0.737410071942446, "inst_level_loose_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.5415896487985212, "prompt_level_strict_acc_stderr,none": 0.021442010560476468, "acc_norm,none": 0.5764690621351667, "acc_norm_stderr,none": 0.005208747427765323, "exact_match,none": 0.2764350453172205, "exact_match_stderr,none": 0.011708266026998851, "inst_level_strict_acc,none": 0.6594724220623501, "inst_level_strict_acc_stderr,none": "N/A", "acc,none": 0.5339095744680851, "acc_stderr,none": 0.004547975138689626, "prompt_level_loose_acc,none": 0.6414048059149723, "prompt_level_loose_acc_stderr,none": 0.020638182918873173, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6327026557889255, "acc_norm_stderr,none": 0.005886473721108874, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.884, "acc_norm_stderr,none": 0.020293429803083823 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6042780748663101, "acc_norm_stderr,none": 0.035855600715925424 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.716, "acc_norm_stderr,none": 0.028576958730437443 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.612, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.684, "acc_norm_stderr,none": 0.02946265759857865 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.508, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.788, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.6, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.616, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.896, "acc_norm_stderr,none": 0.019345100974843932 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.732, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.7328767123287672, "acc_norm_stderr,none": 0.03674407640319397 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.792, "acc_norm_stderr,none": 0.025721398901416368 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.804, "acc_norm_stderr,none": 0.025156857313255922 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.588, "acc_norm_stderr,none": 0.031191596026022818 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.7584269662921348, "acc_norm_stderr,none": 0.032173216138332565 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.848, "acc_norm_stderr,none": 0.022752024491765464 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.236, "acc_norm_stderr,none": 0.026909337594953852 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.208, "acc_norm_stderr,none": 0.02572139890141637 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.34, "acc_norm_stderr,none": 0.030020073605457873 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_gpqa": { "acc_norm,none": 0.3691275167785235, "acc_norm_stderr,none": 0.013986495045275629, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.37373737373737376, "acc_norm_stderr,none": 0.03446897738659336 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.38461538461538464, "acc_norm_stderr,none": 0.02083955266087989 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3482142857142857, "acc_norm_stderr,none": 0.022533152157915175 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.5415896487985212, "prompt_level_strict_acc_stderr,none": 0.021442010560476468, "inst_level_strict_acc,none": 0.6594724220623501, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.6414048059149723, "prompt_level_loose_acc_stderr,none": 0.020638182918873173, "inst_level_loose_acc,none": 0.737410071942446, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.2764350453172205, "exact_match_stderr,none": 0.011708266026998851, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.43322475570032576, "exact_match_stderr,none": 0.028327050442298423 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.2926829268292683, "exact_match_stderr,none": 0.04119323030208565 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.17424242424242425, "exact_match_stderr,none": 0.03314115103435667 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.09642857142857143, "exact_match_stderr,none": 0.017671849720607317 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.2662337662337662, "exact_match_stderr,none": 0.03573260790443323 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.44559585492227977, "exact_match_stderr,none": 0.03587014986075661 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.14814814814814814, "exact_match_stderr,none": 0.030688647610352705 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.5339095744680851, "acc_stderr,none": 0.004547975138689626 }, "leaderboard_musr": { "acc_norm,none": 0.4748677248677249, "acc_norm_stderr,none": 0.017959022038877108, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.375, "acc_norm_stderr,none": 0.03031695312954162 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 } }, "leaderboard": { "inst_level_loose_acc,none": 0.737410071942446, "inst_level_loose_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.5415896487985212, "prompt_level_strict_acc_stderr,none": 0.021442010560476468, "acc_norm,none": 0.5764690621351667, "acc_norm_stderr,none": 0.005208747427765323, "exact_match,none": 0.2764350453172205, "exact_match_stderr,none": 0.011708266026998851, "inst_level_strict_acc,none": 0.6594724220623501, "inst_level_strict_acc_stderr,none": "N/A", "acc,none": 0.5339095744680851, "acc_stderr,none": 0.004547975138689626, "prompt_level_loose_acc,none": 0.6414048059149723, "prompt_level_loose_acc_stderr,none": 0.020638182918873173, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6327026557889255, "acc_norm_stderr,none": 0.005886473721108874, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.884, "acc_norm_stderr,none": 0.020293429803083823 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6042780748663101, "acc_norm_stderr,none": 0.035855600715925424 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.716, "acc_norm_stderr,none": 0.028576958730437443 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.612, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.684, "acc_norm_stderr,none": 0.02946265759857865 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.508, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.788, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.6, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.616, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.896, "acc_norm_stderr,none": 0.019345100974843932 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.732, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.7328767123287672, "acc_norm_stderr,none": 0.03674407640319397 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.792, "acc_norm_stderr,none": 0.025721398901416368 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.804, "acc_norm_stderr,none": 0.025156857313255922 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.588, "acc_norm_stderr,none": 0.031191596026022818 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.7584269662921348, "acc_norm_stderr,none": 0.032173216138332565 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.848, "acc_norm_stderr,none": 0.022752024491765464 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.236, "acc_norm_stderr,none": 0.026909337594953852 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.208, "acc_norm_stderr,none": 0.02572139890141637 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.34, "acc_norm_stderr,none": 0.030020073605457873 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_gpqa": { "acc_norm,none": 0.3691275167785235, "acc_norm_stderr,none": 0.013986495045275629, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.37373737373737376, "acc_norm_stderr,none": 0.03446897738659336 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.38461538461538464, "acc_norm_stderr,none": 0.02083955266087989 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3482142857142857, "acc_norm_stderr,none": 0.022533152157915175 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.5415896487985212, "prompt_level_strict_acc_stderr,none": 0.021442010560476468, "inst_level_strict_acc,none": 0.6594724220623501, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.6414048059149723, "prompt_level_loose_acc_stderr,none": 0.020638182918873173, "inst_level_loose_acc,none": 0.737410071942446, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.2764350453172205, "exact_match_stderr,none": 0.011708266026998851, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.43322475570032576, "exact_match_stderr,none": 0.028327050442298423 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.2926829268292683, "exact_match_stderr,none": 0.04119323030208565 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.17424242424242425, "exact_match_stderr,none": 0.03314115103435667 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.09642857142857143, "exact_match_stderr,none": 0.017671849720607317 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.2662337662337662, "exact_match_stderr,none": 0.03573260790443323 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.44559585492227977, "exact_match_stderr,none": 0.03587014986075661 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.14814814814814814, "exact_match_stderr,none": 0.030688647610352705 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.5339095744680851, "acc_stderr,none": 0.004547975138689626 }, "leaderboard_musr": { "acc_norm,none": 0.4748677248677249, "acc_norm_stderr,none": 0.017959022038877108, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.375, "acc_norm_stderr,none": 0.03031695312954162 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
Adelante/Query_Augmentation_by_re-explain
Adelante
"2024-12-02T05:23:17Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T05:14:25Z"
--- dataset_info: features: - name: ID dtype: string - name: Informal name dtype: string - name: Gen result dtype: string - name: Informal statement dtype: string splits: - name: train num_bytes: 1172824 num_examples: 2000 download_size: 552066 dataset_size: 1172824 configs: - config_name: default data_files: - split: train path: data/train-* ---
open-llm-leaderboard/zelk12__MT1-Gen3-gemma-2-9B-details
open-llm-leaderboard
"2024-12-02T05:29:32Z"
3
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T05:25:24Z"
--- pretty_name: Evaluation run of zelk12/MT1-Gen3-gemma-2-9B dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [zelk12/MT1-Gen3-gemma-2-9B](https://huggingface.co/zelk12/MT1-Gen3-gemma-2-9B)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/zelk12__MT1-Gen3-gemma-2-9B-details\"\ ,\n\tname=\"zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_boolean_expressions\",\n\ \tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-12-02T05-25-21.661198](https://huggingface.co/datasets/open-llm-leaderboard/zelk12__MT1-Gen3-gemma-2-9B-details/blob/main/zelk12__MT1-Gen3-gemma-2-9B/results_2024-12-02T05-25-21.661198.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"prompt_level_loose_acc,none\": 0.789279112754159,\n \"\ prompt_level_loose_acc_stderr,none\": 0.017549801883664215,\n \"exact_match,none\"\ : 0.11782477341389729,\n \"exact_match_stderr,none\": 0.008505757757465697,\n\ \ \"inst_level_strict_acc,none\": 0.8285371702637889,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"acc_norm,none\": 0.5506550784796991,\n\ \ \"acc_norm_stderr,none\": 0.005283406997706799,\n \"prompt_level_strict_acc,none\"\ : 0.7634011090573013,\n \"prompt_level_strict_acc_stderr,none\": 0.018288827582625598,\n\ \ \"acc,none\": 0.43492353723404253,\n \"acc_stderr,none\"\ : 0.004519695757201688,\n \"inst_level_loose_acc,none\": 0.8501199040767387,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"alias\"\ : \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.6090956431175143,\n \"acc_norm_stderr,none\": 0.006039109302546755,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \ \ \"acc_norm,none\": 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\"\ : \" - leaderboard_bbh_causal_judgement\",\n \"acc_norm,none\": 0.6363636363636364,\n\ \ \"acc_norm_stderr,none\": 0.03527198153014412\n },\n \ \ \"leaderboard_bbh_date_understanding\": {\n \"alias\": \" - leaderboard_bbh_date_understanding\"\ ,\n \"acc_norm,none\": 0.6,\n \"acc_norm_stderr,none\": 0.031046021028253316\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.636,\n\ \ \"acc_norm_stderr,none\": 0.030491555220405475\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\":\ \ 0.030491555220405475\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.712,\n \ \ \"acc_norm_stderr,none\": 0.028697004587398257\n },\n \"\ leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\": \" \ \ - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.552,\n \"acc_norm_stderr,none\": 0.03151438761115348\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.572,\n \"acc_norm_stderr,none\": 0.031355968923772626\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.816,\n \"acc_norm_stderr,none\": 0.02455581299422255\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.592,\n \"acc_norm_stderr,none\": 0.03114520984654851\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.664,\n \"acc_norm_stderr,none\":\ \ 0.029933259094191533\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.308,\n \"acc_norm_stderr,none\": 0.02925692860650181\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.6164383561643836,\n \"acc_norm_stderr,none\": 0.04038112474853568\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.728,\n \"acc_norm_stderr,none\": 0.028200088296309975\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.812,\n \ \ \"acc_norm_stderr,none\": 0.02476037772775051\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.6629213483146067,\n\ \ \"acc_norm_stderr,none\": 0.03553120966481325\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.84,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_temporal_sequences\": {\n \"alias\"\ : \" - leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.856,\n\ \ \"acc_norm_stderr,none\": 0.022249407735450245\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.3,\n \"acc_norm_stderr,none\": 0.029040893477575783\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.288,\n \"acc_norm_stderr,none\":\ \ 0.028697004587398253\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\":\ \ \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\": 0.512,\n\ \ \"acc_norm_stderr,none\": 0.03167708558254714\n },\n \ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.348993288590604,\n \ \ \"acc_norm_stderr,none\": 0.013822053559016792,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.35858585858585856,\n \"acc_norm_stderr,none\": 0.034169036403915276\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.3516483516483517,\n\ \ \"acc_norm_stderr,none\": 0.02045320407062836\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.34151785714285715,\n \"acc_norm_stderr,none\"\ : 0.022429776589214533\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.7634011090573013,\n \"prompt_level_strict_acc_stderr,none\": 0.018288827582625598,\n\ \ \"inst_level_strict_acc,none\": 0.8285371702637889,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.789279112754159,\n \"prompt_level_loose_acc_stderr,none\": 0.017549801883664215,\n\ \ \"inst_level_loose_acc,none\": 0.8501199040767387,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.11782477341389729,\n \"exact_match_stderr,none\"\ : 0.008505757757465697,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.247557003257329,\n\ \ \"exact_match_stderr,none\": 0.024672530661985218\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.07317073170731707,\n \"exact_match_stderr,none\": 0.023577005978097667\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.045454545454545456,\n\ \ \"exact_match_stderr,none\": 0.018199158975632696\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\":\ \ \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.025,\n \"exact_match_stderr,none\": 0.009346956263824575\n \ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\": \"\ \ - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.08441558441558442,\n\ \ \"exact_match_stderr,none\": 0.022475781231866967\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.21243523316062177,\n \"exact_match_stderr,none\"\ : 0.02951928261681729\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.02962962962962963,\n \"exact_match_stderr,none\"\ : 0.014648038602753809\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.43492353723404253,\n\ \ \"acc_stderr,none\": 0.004519695757201688\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.42328042328042326,\n \"acc_norm_stderr,none\"\ : 0.01759794820604658,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \"\ \ - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.548,\n\ \ \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.29296875,\n \"acc_norm_stderr,none\"\ : 0.028500984607927556\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.432,\n \"acc_norm_stderr,none\": 0.03139181076542942\n\ \ }\n },\n \"leaderboard\": {\n \"prompt_level_loose_acc,none\"\ : 0.789279112754159,\n \"prompt_level_loose_acc_stderr,none\": 0.017549801883664215,\n\ \ \"exact_match,none\": 0.11782477341389729,\n \"exact_match_stderr,none\"\ : 0.008505757757465697,\n \"inst_level_strict_acc,none\": 0.8285371702637889,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"acc_norm,none\"\ : 0.5506550784796991,\n \"acc_norm_stderr,none\": 0.005283406997706799,\n\ \ \"prompt_level_strict_acc,none\": 0.7634011090573013,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.018288827582625598,\n \"acc,none\": 0.43492353723404253,\n \"\ acc_stderr,none\": 0.004519695757201688,\n \"inst_level_loose_acc,none\"\ : 0.8501199040767387,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \ \ \"acc_norm,none\": 0.6090956431175143,\n \"acc_norm_stderr,none\": 0.006039109302546755,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"\ acc_norm,none\": 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6363636363636364,\n \"acc_norm_stderr,none\"\ : 0.03527198153014412\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.6,\n \"acc_norm_stderr,none\": 0.031046021028253316\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\"\ : 0.636,\n \"acc_norm_stderr,none\": 0.030491555220405475\n },\n \"\ leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.712,\n \"acc_norm_stderr,none\": 0.028697004587398257\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.552,\n \"acc_norm_stderr,none\": 0.03151438761115348\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.572,\n \"acc_norm_stderr,none\": 0.031355968923772626\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.816,\n \"acc_norm_stderr,none\": 0.02455581299422255\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.592,\n \"acc_norm_stderr,none\": 0.03114520984654851\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.664,\n \"acc_norm_stderr,none\": 0.029933259094191533\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.308,\n \"acc_norm_stderr,none\": 0.02925692860650181\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.6164383561643836,\n\ \ \"acc_norm_stderr,none\": 0.04038112474853568\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.728,\n \"acc_norm_stderr,none\": 0.028200088296309975\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.812,\n \"acc_norm_stderr,none\": 0.02476037772775051\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6629213483146067,\n \"acc_norm_stderr,none\"\ : 0.03553120966481325\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.84,\n \"acc_norm_stderr,none\": 0.023232714782060626\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.856,\n \"acc_norm_stderr,none\": 0.022249407735450245\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.3,\n \"acc_norm_stderr,none\": 0.029040893477575783\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.288,\n \"acc_norm_stderr,none\": 0.028697004587398253\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.348993288590604,\n\ \ \"acc_norm_stderr,none\": 0.013822053559016792,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.35858585858585856,\n\ \ \"acc_norm_stderr,none\": 0.034169036403915276\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.3516483516483517,\n \"acc_norm_stderr,none\": 0.02045320407062836\n \ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.34151785714285715,\n \"acc_norm_stderr,none\"\ : 0.022429776589214533\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.7634011090573013,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.018288827582625598,\n \ \ \"inst_level_strict_acc,none\": 0.8285371702637889,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.789279112754159,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.017549801883664215,\n \"inst_level_loose_acc,none\"\ : 0.8501199040767387,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.11782477341389729,\n\ \ \"exact_match_stderr,none\": 0.008505757757465697,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.247557003257329,\n \"exact_match_stderr,none\": 0.024672530661985218\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.07317073170731707,\n \"exact_match_stderr,none\": 0.023577005978097667\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.045454545454545456,\n \"exact_match_stderr,none\"\ : 0.018199158975632696\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.025,\n \"exact_match_stderr,none\": 0.009346956263824575\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\": \" - leaderboard_math_num_theory_hard\"\ ,\n \"exact_match,none\": 0.08441558441558442,\n \"exact_match_stderr,none\"\ : 0.022475781231866967\n },\n \"leaderboard_math_prealgebra_hard\": {\n \ \ \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \"exact_match,none\"\ : 0.21243523316062177,\n \"exact_match_stderr,none\": 0.02951928261681729\n\ \ },\n \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" -\ \ leaderboard_math_precalculus_hard\",\n \"exact_match,none\": 0.02962962962962963,\n\ \ \"exact_match_stderr,none\": 0.014648038602753809\n },\n \"leaderboard_mmlu_pro\"\ : {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.43492353723404253,\n\ \ \"acc_stderr,none\": 0.004519695757201688\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.42328042328042326,\n \"acc_norm_stderr,none\"\ : 0.01759794820604658,\n \"alias\": \" - leaderboard_musr\"\n },\n \ \ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\ ,\n \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\ \ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.29296875,\n\ \ \"acc_norm_stderr,none\": 0.028500984607927556\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\ : 0.432,\n \"acc_norm_stderr,none\": 0.03139181076542942\n }\n}\n```" repo_url: https://huggingface.co/zelk12/MT1-Gen3-gemma-2-9B leaderboard_url: '' point_of_contact: '' configs: - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_boolean_expressions data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_causal_judgement data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_date_understanding data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_formal_fallacies data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_geometric_shapes data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_hyperbaton data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_movie_recommendation data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_navigate data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_object_counting data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_ruin_names data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_snarks data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_sports_understanding data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_temporal_sequences data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_web_of_lies data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_gpqa_diamond data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_gpqa_extended data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_gpqa_main data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_gpqa_main_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_ifeval data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_ifeval_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_math_algebra_hard data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_math_geometry_hard data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_math_num_theory_hard data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_math_prealgebra_hard data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_math_precalculus_hard data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_mmlu_pro data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_musr_murder_mysteries data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_musr_object_placements data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-12-02T05-25-21.661198.jsonl' - config_name: zelk12__MT1-Gen3-gemma-2-9B__leaderboard_musr_team_allocation data_files: - split: 2024_12_02T05_25_21.661198 path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T05-25-21.661198.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-12-02T05-25-21.661198.jsonl' --- # Dataset Card for Evaluation run of zelk12/MT1-Gen3-gemma-2-9B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [zelk12/MT1-Gen3-gemma-2-9B](https://huggingface.co/zelk12/MT1-Gen3-gemma-2-9B) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/zelk12__MT1-Gen3-gemma-2-9B-details", name="zelk12__MT1-Gen3-gemma-2-9B__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T05-25-21.661198](https://huggingface.co/datasets/open-llm-leaderboard/zelk12__MT1-Gen3-gemma-2-9B-details/blob/main/zelk12__MT1-Gen3-gemma-2-9B/results_2024-12-02T05-25-21.661198.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "prompt_level_loose_acc,none": 0.789279112754159, "prompt_level_loose_acc_stderr,none": 0.017549801883664215, "exact_match,none": 0.11782477341389729, "exact_match_stderr,none": 0.008505757757465697, "inst_level_strict_acc,none": 0.8285371702637889, "inst_level_strict_acc_stderr,none": "N/A", "acc_norm,none": 0.5506550784796991, "acc_norm_stderr,none": 0.005283406997706799, "prompt_level_strict_acc,none": 0.7634011090573013, "prompt_level_strict_acc_stderr,none": 0.018288827582625598, "acc,none": 0.43492353723404253, "acc_stderr,none": 0.004519695757201688, "inst_level_loose_acc,none": 0.8501199040767387, "inst_level_loose_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6090956431175143, "acc_norm_stderr,none": 0.006039109302546755, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6363636363636364, "acc_norm_stderr,none": 0.03527198153014412 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.6, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.712, "acc_norm_stderr,none": 0.028697004587398257 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.816, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.592, "acc_norm_stderr,none": 0.03114520984654851 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.664, "acc_norm_stderr,none": 0.029933259094191533 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.308, "acc_norm_stderr,none": 0.02925692860650181 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.6164383561643836, "acc_norm_stderr,none": 0.04038112474853568 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.728, "acc_norm_stderr,none": 0.028200088296309975 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.812, "acc_norm_stderr,none": 0.02476037772775051 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6629213483146067, "acc_norm_stderr,none": 0.03553120966481325 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.84, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.856, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.3, "acc_norm_stderr,none": 0.029040893477575783 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.348993288590604, "acc_norm_stderr,none": 0.013822053559016792, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.35858585858585856, "acc_norm_stderr,none": 0.034169036403915276 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3516483516483517, "acc_norm_stderr,none": 0.02045320407062836 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.34151785714285715, "acc_norm_stderr,none": 0.022429776589214533 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7634011090573013, "prompt_level_strict_acc_stderr,none": 0.018288827582625598, "inst_level_strict_acc,none": 0.8285371702637889, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.789279112754159, "prompt_level_loose_acc_stderr,none": 0.017549801883664215, "inst_level_loose_acc,none": 0.8501199040767387, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.11782477341389729, "exact_match_stderr,none": 0.008505757757465697, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.247557003257329, "exact_match_stderr,none": 0.024672530661985218 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.07317073170731707, "exact_match_stderr,none": 0.023577005978097667 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.045454545454545456, "exact_match_stderr,none": 0.018199158975632696 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.025, "exact_match_stderr,none": 0.009346956263824575 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.08441558441558442, "exact_match_stderr,none": 0.022475781231866967 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.21243523316062177, "exact_match_stderr,none": 0.02951928261681729 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.02962962962962963, "exact_match_stderr,none": 0.014648038602753809 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.43492353723404253, "acc_stderr,none": 0.004519695757201688 }, "leaderboard_musr": { "acc_norm,none": 0.42328042328042326, "acc_norm_stderr,none": 0.01759794820604658, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.29296875, "acc_norm_stderr,none": 0.028500984607927556 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.432, "acc_norm_stderr,none": 0.03139181076542942 } }, "leaderboard": { "prompt_level_loose_acc,none": 0.789279112754159, "prompt_level_loose_acc_stderr,none": 0.017549801883664215, "exact_match,none": 0.11782477341389729, "exact_match_stderr,none": 0.008505757757465697, "inst_level_strict_acc,none": 0.8285371702637889, "inst_level_strict_acc_stderr,none": "N/A", "acc_norm,none": 0.5506550784796991, "acc_norm_stderr,none": 0.005283406997706799, "prompt_level_strict_acc,none": 0.7634011090573013, "prompt_level_strict_acc_stderr,none": 0.018288827582625598, "acc,none": 0.43492353723404253, "acc_stderr,none": 0.004519695757201688, "inst_level_loose_acc,none": 0.8501199040767387, "inst_level_loose_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6090956431175143, "acc_norm_stderr,none": 0.006039109302546755, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6363636363636364, "acc_norm_stderr,none": 0.03527198153014412 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.6, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.712, "acc_norm_stderr,none": 0.028697004587398257 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.816, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.592, "acc_norm_stderr,none": 0.03114520984654851 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.664, "acc_norm_stderr,none": 0.029933259094191533 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.308, "acc_norm_stderr,none": 0.02925692860650181 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.6164383561643836, "acc_norm_stderr,none": 0.04038112474853568 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.728, "acc_norm_stderr,none": 0.028200088296309975 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.812, "acc_norm_stderr,none": 0.02476037772775051 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6629213483146067, "acc_norm_stderr,none": 0.03553120966481325 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.84, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.856, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.3, "acc_norm_stderr,none": 0.029040893477575783 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.348993288590604, "acc_norm_stderr,none": 0.013822053559016792, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.35858585858585856, "acc_norm_stderr,none": 0.034169036403915276 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3516483516483517, "acc_norm_stderr,none": 0.02045320407062836 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.34151785714285715, "acc_norm_stderr,none": 0.022429776589214533 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7634011090573013, "prompt_level_strict_acc_stderr,none": 0.018288827582625598, "inst_level_strict_acc,none": 0.8285371702637889, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.789279112754159, "prompt_level_loose_acc_stderr,none": 0.017549801883664215, "inst_level_loose_acc,none": 0.8501199040767387, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.11782477341389729, "exact_match_stderr,none": 0.008505757757465697, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.247557003257329, "exact_match_stderr,none": 0.024672530661985218 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.07317073170731707, "exact_match_stderr,none": 0.023577005978097667 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.045454545454545456, "exact_match_stderr,none": 0.018199158975632696 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.025, "exact_match_stderr,none": 0.009346956263824575 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.08441558441558442, "exact_match_stderr,none": 0.022475781231866967 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.21243523316062177, "exact_match_stderr,none": 0.02951928261681729 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.02962962962962963, "exact_match_stderr,none": 0.014648038602753809 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.43492353723404253, "acc_stderr,none": 0.004519695757201688 }, "leaderboard_musr": { "acc_norm,none": 0.42328042328042326, "acc_norm_stderr,none": 0.01759794820604658, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.29296875, "acc_norm_stderr,none": 0.028500984607927556 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.432, "acc_norm_stderr,none": 0.03139181076542942 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
dgambettaphd/D_gen7_run1_llama2-7b_wiki_doc1000_real64_synt64
dgambettaphd
"2024-12-02T05:25:53Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T05:25:50Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 584248 num_examples: 1000 download_size: 351952 dataset_size: 584248 configs: - config_name: default data_files: - split: train path: data/train-* ---
Bruece/domainnet-126-edge-image-painting
Bruece
"2024-12-02T05:59:04Z"
3
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T05:33:08Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string - name: edge_image dtype: image splits: - name: train num_bytes: 2018430048.984 num_examples: 24032 download_size: 2029006402 dataset_size: 2018430048.984 configs: - config_name: default data_files: - split: train path: data/train-* ---
Bruece/domainnet-126-edge-image-real
Bruece
"2024-12-02T06:02:42Z"
3
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T05:35:57Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string - name: edge_image dtype: image splits: - name: train num_bytes: 3089508693.173 num_examples: 55697 download_size: 3766376456 dataset_size: 3089508693.173 configs: - config_name: default data_files: - split: train path: data/train-* ---
richmondsin/truthfulqa_en_mc1_results
richmondsin
"2024-12-02T05:40:08Z"
3
0
[ "region:us" ]
null
"2024-12-02T05:39:57Z"
--- pretty_name: Evaluation run of google/gemma-2-2b dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b)\nThe dataset is\ \ composed of 0 configuration(s), each one corresponding to one of the evaluated\ \ task.\n\nThe dataset has been created from 3 run(s). Each run can be found as\ \ a specific split in each configuration, the split being named using the timestamp\ \ of the run.The \"train\" split is always pointing to the latest results.\n\nAn\ \ additional configuration \"results\" store all the aggregated results of the run.\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\n\t\"richmondsin/truthfulqa_en_mc1_results\"\ ,\n\tname=\"google__gemma-2-2b__truthfulqa_en_mc1\",\n\tsplit=\"latest\"\n)\n```\n\ \n## Latest results\n\nThese are the [latest results from run 2024-12-02T00-39-57.674643](https://huggingface.co/datasets/richmondsin/truthfulqa_en_mc1_results/blob/main/google/gemma-2-2b/results_2024-12-02T00-39-57.674643.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"truthfulqa_en_mc1\"\ : {\n \"alias\": \"truthfulqa_en_mc1\",\n \"acc,none\": 0.2579250720461095,\n\ \ \"acc_stderr,none\": 0.016618967642626447,\n \"acc_norm,none\"\ : 0.27521613832853026,\n \"acc_norm_stderr,none\": 0.016965809584321628\n\ \ }\n },\n \"truthfulqa_en_mc1\": {\n \"alias\": \"truthfulqa_en_mc1\"\ ,\n \"acc,none\": 0.2579250720461095,\n \"acc_stderr,none\": 0.016618967642626447,\n\ \ \"acc_norm,none\": 0.27521613832853026,\n \"acc_norm_stderr,none\"\ : 0.016965809584321628\n }\n}\n```" repo_url: https://huggingface.co/google/gemma-2-2b leaderboard_url: '' point_of_contact: '' configs: - config_name: google__gemma-2-2b__truthfulqa_en_mc1 data_files: - split: 2024_12_02T00_39_57.674643 path: - '**/samples_truthfulqa_en_mc1_2024-12-02T00-39-57.674643.jsonl' - split: latest path: - '**/samples_truthfulqa_en_mc1_2024-12-02T00-39-57.674643.jsonl' --- # Dataset Card for Evaluation run of google/gemma-2-2b <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) The dataset is composed of 0 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 3 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "richmondsin/truthfulqa_en_mc1_results", name="google__gemma-2-2b__truthfulqa_en_mc1", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-12-02T00-39-57.674643](https://huggingface.co/datasets/richmondsin/truthfulqa_en_mc1_results/blob/main/google/gemma-2-2b/results_2024-12-02T00-39-57.674643.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "truthfulqa_en_mc1": { "alias": "truthfulqa_en_mc1", "acc,none": 0.2579250720461095, "acc_stderr,none": 0.016618967642626447, "acc_norm,none": 0.27521613832853026, "acc_norm_stderr,none": 0.016965809584321628 } }, "truthfulqa_en_mc1": { "alias": "truthfulqa_en_mc1", "acc,none": 0.2579250720461095, "acc_stderr,none": 0.016618967642626447, "acc_norm,none": 0.27521613832853026, "acc_norm_stderr,none": 0.016965809584321628 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
Harold328/OmniBench-99
Harold328
"2024-12-02T08:08:11Z"
3
0
[ "license:apache-2.0", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2024-12-02T05:41:53Z"
--- license: apache-2.0 --- <!-- # OmniBench-99 --> ## Overview OmniBench-99 benchmark is published in [OmniCreator](https://haroldchen19.github.io/OmniCreator-Page/), containing 99 videos with varied contents (*i.e.*, Environment, Human/Animal, and Object), designed to offer a comprehensive platform for evaluating generative video editing, focusing on both editing **types** and **scenarios**. [Paper Link](https://haroldchen19.github.io/OmniCreator-Page/) [Project Page](https://haroldchen19.github.io/OmniCreator-Page/) ## Dataset Structure Unlike previous benchmarks that evaluate only four editing types, **OmniBench-99** expands the scope to include both editing types and scenarios. Specifically: * *Environment*: Scenarios are developed for **Background**, **Weather**, and **Time** edits. * *Object*: Scenarios are created for **Addition**, **Removal**, and **Replacement** edits. * *Human/Animal*: Scenarios are designed for **Appearance** and **Motion/Pose** edits.
Sin2pi/Whisper_like_model
Sin2pi
"2024-12-02T06:22:53Z"
3
0
[ "license:mit", "region:us" ]
null
"2024-12-02T05:42:40Z"
--- license: mit --- Openais original implimentation of their Whisper model integrated with HF trainer and datasets. Experiment with openais original version without the need for openai to HF conversion. REady to go script just install dependencies. Also a copy of a training loop in pure pytorch that includes dataset dataloaders collators etc. The other two scripts include experimental models that I've been working on.
akhooli/mmarco_111k_test_qs
akhooli
"2024-12-02T05:56:41Z"
3
0
[ "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T05:54:45Z"
--- license: mit dataset_info: features: - name: query_id dtype: int64 - name: text dtype: string - name: document_ids sequence: string - name: scores sequence: float64 - name: means dtype: float64 - name: stds dtype: float64 - name: maxmins dtype: float64 - name: includes dtype: string splits: - name: train num_bytes: 79143903 num_examples: 111869 download_size: 44316635 dataset_size: 79143903 configs: - config_name: default data_files: - split: train path: data/train-* ---
dogtooth/tulu_8b_generated_uf_gold_scored_iter2
dogtooth
"2024-12-02T06:52:47Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T06:52:45Z"
--- dataset_info: features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: reference_completion dtype: string - name: reference_completion_score struct: - name: Skywork/Skywork-Reward-Gemma-2-27B-v0.2 dtype: float64 - name: chosen_score struct: - name: Skywork/Skywork-Reward-Gemma-2-27B-v0.2 dtype: float64 - name: rejected_score struct: - name: Skywork/Skywork-Reward-Gemma-2-27B-v0.2 dtype: float64 splits: - name: train num_bytes: 28411723 num_examples: 5678 download_size: 15737941 dataset_size: 28411723 configs: - config_name: default data_files: - split: train path: data/train-* ---
siqi00/llama3_gsm8k_question_0.8_0.95_-1_256
siqi00
"2024-12-02T07:07:59Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-02T07:07:55Z"
--- dataset_info: features: - name: real list: - name: content dtype: string - name: role dtype: string - name: generated_0 list: - name: content dtype: string - name: role dtype: string - name: generated_1 list: - name: content dtype: string - name: role dtype: string - name: generated_2 list: - name: content dtype: string - name: role dtype: string - name: generated_3 list: - name: content dtype: string - name: role dtype: string - name: generated_4 list: - name: content dtype: string - name: role dtype: string - name: generated_5 list: - name: content dtype: string - name: role dtype: string - name: generated_6 list: - name: content dtype: string - name: role dtype: string - name: generated_7 list: - name: content dtype: string - name: role dtype: string - name: generated_8 list: - name: content dtype: string - name: role dtype: string - name: generated_9 list: - name: content dtype: string - name: role dtype: string - name: generated_10 list: - name: content dtype: string - name: role dtype: string - name: generated_11 list: - name: content dtype: string - name: role dtype: string - name: generated_12 list: - name: content dtype: string - name: role dtype: string - name: generated_13 list: - name: content dtype: string - name: role dtype: string - name: generated_14 list: - name: content dtype: string - name: role dtype: string - name: generated_15 list: - name: content dtype: string - name: role dtype: string - name: generated_16 list: - name: content dtype: string - name: role dtype: string - name: generated_17 list: - name: content dtype: string - name: role dtype: string - name: generated_18 list: - name: content dtype: string - name: role dtype: string - name: generated_19 list: - name: content dtype: string - name: role dtype: string - name: generated_20 list: - name: content dtype: string - name: role dtype: string - name: generated_21 list: - name: content dtype: string - name: role dtype: string - name: generated_22 list: - name: content dtype: string - name: role dtype: string - name: generated_23 list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 154728513 num_examples: 7473 download_size: 69082303 dataset_size: 154728513 configs: - config_name: default data_files: - split: train path: data/train-* ---
krigeta/dragonballonly
krigeta
"2024-12-02T07:47:02Z"
3
1
[ "license:mit", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us", "art" ]
null
"2024-12-02T07:11:02Z"
--- license: mit tags: - art size_categories: - n<1K --- # Bangumi Image Base of Dragon_ball_only This is the image base of bangumi dragon_ball_only, we detected 6 characters, 353 images in total. The full dataset is [here](all.zip). **Please note that these image bases are not guaranteed to be 100% cleaned, they may be noisy actual.** If you intend to manually train models using this dataset, we recommend performing necessary preprocessing on the downloaded dataset to eliminate potential noisy samples (approximately 1% probability). Here is the characters' preview: | # | Images | Download | Preview 1 | Preview 2 | Preview 3 | Preview 4 | Preview 5 | Preview 6 | Preview 7 | Preview 8 | |:------|---------:|:---------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------|:-------------------------------| | 0 | 169 | [Download](0\dataset.zip) | ![preview 1](0\preview_1.png) | ![preview 2](0\preview_2.png) | ![preview 3](0\preview_3.png) | ![preview 4](0\preview_4.png) | ![preview 5](0\preview_5.png) | ![preview 6](0\preview_6.png) | ![preview 7](0\preview_7.png) | ![preview 8](0\preview_8.png) | | 1 | 10 | [Download](1\dataset.zip) | ![preview 1](1\preview_1.png) | ![preview 2](1\preview_2.png) | ![preview 3](1\preview_3.png) | ![preview 4](1\preview_4.png) | ![preview 5](1\preview_5.png) | ![preview 6](1\preview_6.png) | ![preview 7](1\preview_7.png) | ![preview 8](1\preview_8.png) | | 2 | 134 | [Download](2\dataset.zip) | ![preview 1](2\preview_1.png) | ![preview 2](2\preview_2.png) | ![preview 3](2\preview_3.png) | ![preview 4](2\preview_4.png) | ![preview 5](2\preview_5.png) | ![preview 6](2\preview_6.png) | ![preview 7](2\preview_7.png) | ![preview 8](2\preview_8.png) | | 3 | 12 | [Download](3\dataset.zip) | ![preview 1](3\preview_1.png) | ![preview 2](3\preview_2.png) | ![preview 3](3\preview_3.png) | ![preview 4](3\preview_4.png) | ![preview 5](3\preview_5.png) | ![preview 6](3\preview_6.png) | ![preview 7](3\preview_7.png) | ![preview 8](3\preview_8.png) | | 4 | 7 | [Download](4\dataset.zip) | ![preview 1](4\preview_1.png) | ![preview 2](4\preview_2.png) | ![preview 3](4\preview_3.png) | ![preview 4](4\preview_4.png) | ![preview 5](4\preview_5.png) | ![preview 6](4\preview_6.png) | ![preview 7](4\preview_7.png) | N/A | | noise | 21 | [Download](-1\dataset.zip) | ![preview 1](-1\preview_1.png) | ![preview 2](-1\preview_2.png) | ![preview 3](-1\preview_3.png) | ![preview 4](-1\preview_4.png) | ![preview 5](-1\preview_5.png) | ![preview 6](-1\preview_6.png) | ![preview 7](-1\preview_7.png) | ![preview 8](-1\preview_8.png) |
mesolitica/Malaysian-STT-Whisper
mesolitica
"2024-12-01T06:11:20Z"
2
1
[ "task_categories:automatic-speech-recognition", "language:ms", "language:en", "language:zh", "language:ta", "language:id", "region:us" ]
[ "automatic-speech-recognition" ]
"2024-08-28T16:10:17Z"
--- task_categories: - automatic-speech-recognition language: - ms - en - zh - ta - id --- # Malaysian STT Whisper format Up to 15k hours annotated, we done heavy postfilter, postprocessing and post-translation to improve pseudolabeled Whisper Large V3. Source code at https://github.com/mesolitica/malaysian-dataset/tree/master/speech-to-text-semisupervised/distilled-malaysian-whisper ## Dataset involved 1. Malaysian context, https://huggingface.co/datasets/mesolitica/pseudolabel-malaya-speech-stt-train-whisper-large-v3-timestamp 2. Malaysian context, https://huggingface.co/datasets/mesolitica/pseudolabel-malaysian-youtube-whisper-large-v3-timestamp 3. Malay audiobook, https://huggingface.co/datasets/mesolitica/pseudolabel-nusantara-large-v3-timestamp 4. Singaporean context, https://huggingface.co/datasets/mesolitica/pseudolabel-imda-large-v3-timestamp 5. Indonesian context, https://huggingface.co/datasets/mesolitica/pseudolabel-indonesian-large-v3-timestamp 6. Mandarin audio, https://huggingface.co/datasets/mesolitica/pseudolabel-mandarin-large-v3-timestamp 7. Tamil audio, https://huggingface.co/datasets/mesolitica/pseudolabel-tamil-large-v3-timestamp 8. Science context, https://huggingface.co/datasets/mesolitica/pseudolabel-science-large-v3-timestamp 9. Malay sarawak, https://huggingface.co/datasets/malaysia-ai/sarawakmalay-whisper-format 10. Scripted Malay Daily Use Speech Corpus, https://huggingface.co/datasets/malaysia-ai/scripted-malay-daily-use-speech-corpus-whisper-format 11. Malay Conversational Speech Corpus, https://huggingface.co/datasets/malaysia-ai/malay-conversational-speech-corpus-whisper-format 12. Iban, https://huggingface.co/datasets/malaysia-ai/iban-whisper-format 13. Malay dialects, https://huggingface.co/datasets/mesolitica/pseudolabel-malay-dialects-large-v3-timestamp
BACKENDAPI2024/radarpoliticaldatasetredditscrap11272024
BACKENDAPI2024
"2024-11-28T05:26:38Z"
2
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-28T01:52:06Z"
--- license: mit ---
Turbo-AI/data-cross
Turbo-AI
"2024-11-28T04:02:53Z"
2
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-28T04:02:20Z"
--- dataset_info: features: - name: query dtype: string - name: context dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1845906517 num_examples: 1059592 download_size: 599220748 dataset_size: 1845906517 configs: - config_name: default data_files: - split: train path: data/train-* ---
Babelscape/LLM-Oasis_unfactual_text_generation
Babelscape
"2024-12-02T13:58:58Z"
2
0
[ "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2411.19655", "region:us" ]
null
"2024-11-28T11:19:53Z"
--- dataset_info: features: - name: title dtype: string - name: text dtype: string - name: unfactual_claims sequence: string - name: paraphrase dtype: string - name: unfactual_text dtype: string splits: - name: validation num_bytes: 29003066 num_examples: 13838 - name: train num_bytes: 139294158 num_examples: 67385 download_size: 113033236 dataset_size: 168297224 configs: - config_name: default data_files: - split: validation path: data/validation-* - split: train path: data/train-* language: en license: - cc-by-nc-sa-4.0 --- # Babelscape/LLM-Oasis_unfactual_text_generation ## Dataset Description **LLM-Oasis_unfactual_text_generation** is part of the LLM-Oasis suite and contains unfactual texts generated from a set of falsified claims extracted from a Wikipedia passage and its paraphrase. This dataset corresponds to the unfactual text generation step described in Section 3.4 of the [LLM-Oasis paper](https://arxiv.org/abs/2411.19655). Please refer to our [GitHub repository](https://github.com/Babelscape/LLM-Oasis) for more information on the overall data generation pipeline of LLM-Oasis. ### Features - **title**: The title of the Wikipedia page. - **text**: A passage of 5 sentences from the Wikipedia page. - **unfactual_claims**: A sequence of claims (including one unfactual claim) extracted from the text. - **paraphrase**: A paraphrased version of the original text. - **unfactual_text**: The final unfactual text generated from the unfactual claims and paraphrase. ### Dataset Statistics - **Train Split**: - Number of examples: 67,385 - **Validation Split**: - Number of examples: 13,838 ## License This work is under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license](https://creativecommons.org/licenses/by-nc-sa/4.0/). ## Citation If you use LLM-Oasis in your work, please cite our [paper](https://arxiv.org/abs/2411.19655): ``` @misc{scirè2024truthmirageendtoendfactuality, title={Truth or Mirage? Towards End-to-End Factuality Evaluation with LLM-OASIS}, author={Alessandro Scirè and Andrei Stefan Bejgu and Simone Tedeschi and Karim Ghonim and Federico Martelli and Roberto Navigli}, year={2024}, eprint={2411.19655}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2411.19655}, }
RawrWoofMeow/Scenes
RawrWoofMeow
"2024-11-30T23:01:49Z"
2
0
[ "license:unlicense", "region:us" ]
null
"2024-11-29T00:22:49Z"
--- license: unlicense ---
kojikubota/Advanced-Code-Review-Agent
kojikubota
"2024-11-30T03:39:00Z"
2
0
[ "license:mit", "region:us" ]
null
"2024-11-30T03:38:31Z"
--- license: mit --- # Advanced Code Review Support Agent A uniquely innovative AI agent specialized in code review, capable of handling any task related to code. This agent provides comprehensive support for code analysis, improvement suggestions, and optimization across various programming languages and development environments. ![Status: Experimental](https://img.shields.io/badge/Status-Experimental-orange) ## Overview The Advanced Code Review Support Agent is designed to enhance code quality and maintainability by offering detailed analysis and suggestions. It supports multi-language environments and adapts to different coding styles and project scales. ### Key Features - **Multi-language Support**: Handles all programming languages, considering specific syntax and conventions. - **Project Scale Adaptability**: Suitable for small scripts to large-scale applications. - **Diverse Environment Compatibility**: Works across desktop, web, and mobile platforms. - **Style Adaptation**: Learns and aligns with user or team coding styles. ## Core Components ### 1. Code Analysis - **Code Review**: Identifies issues in readability, maintainability, and naming conventions. - **Bug Detection**: Finds syntax and logic errors, and suggests corrections. - **Performance Optimization**: Proposes efficient algorithms and data structures. ### 2. Security and Style - **Security Review**: Detects vulnerabilities and suggests mitigations. - **Style Consistency**: Aligns with common style guides like PEP 8. ### 3. Documentation and Testing - **Documentation Generation**: Adds descriptions to functions and classes. - **Test Case Generation**: Proposes unit and integration tests. ## Implementation Process 1. **Input Analysis**: Detailed code analysis to identify potential issues. 2. **Issue Identification**: Enumerates issues from various perspectives. 3. **Improvement Suggestions**: Provides corrected code and proposals. 4. **Additional Comments**: Explains benefits and best practices. ## Limitations and Considerations - **Non-Support for External Tools**: Relies solely on text analysis. - **Knowledge Cutoff**: Limited to the knowledge scope of the GPT model. - **Non-Provision of Legal Advice**: Does not provide legal interpretations. ## Future Development - **Enhanced Pattern Recognition**: Advanced emergent learning. - **Improved Knowledge Synthesis**: Deeper conceptual integration. - **Extended Context Management**: More sophisticated session handling. ## License This project is licensed under the [MIT License](LICENSE).
chiyuanhsiao/Magpie_rank0_chunk1_interleaf
chiyuanhsiao
"2024-11-30T05:18:18Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T05:08:08Z"
--- dataset_info: features: - name: uuid dtype: string - name: model dtype: string - name: gen_input_config struct: - name: temperature dtype: float64 - name: top_p dtype: float64 - name: input dtype: string - name: output dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: task_category dtype: string - name: difficulty dtype: string - name: intent dtype: string - name: knowledge dtype: string - name: input_quality dtype: string - name: quality_explanation dtype: string - name: llama_guard_2 dtype: string - name: reward_model dtype: string - name: instruct_reward dtype: float64 - name: base_output dtype: string - name: base_reward dtype: float64 - name: reward_difference dtype: float64 - name: min_neighbor_distance dtype: float64 - name: repeat_count dtype: int64 - name: min_similar_uuid dtype: string - name: input_length dtype: int64 - name: output_length dtype: int64 - name: input_speech dtype: audio - name: output_speech dtype: audio - name: output_speech_cmu-arctic-xvectors_7306 dtype: audio - name: input_unit sequence: int64 - name: output_unit sequence: int64 - name: output_unit_7306 sequence: int64 - name: output_7306_interleaf dtype: string - name: output_pseudo dtype: string - name: input_pseudo dtype: string splits: - name: train num_bytes: 11294661417.0 num_examples: 10024 download_size: 11030126549 dataset_size: 11294661417.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
chiyuanhsiao/Magpie_rank0_chunk2_interleaf
chiyuanhsiao
"2024-11-30T07:48:10Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T07:37:46Z"
--- dataset_info: features: - name: uuid dtype: string - name: model dtype: string - name: gen_input_config struct: - name: temperature dtype: float64 - name: top_p dtype: float64 - name: input dtype: string - name: output dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: task_category dtype: string - name: difficulty dtype: string - name: intent dtype: string - name: knowledge dtype: string - name: input_quality dtype: string - name: quality_explanation dtype: string - name: llama_guard_2 dtype: string - name: reward_model dtype: string - name: instruct_reward dtype: float64 - name: base_output dtype: string - name: base_reward dtype: float64 - name: reward_difference dtype: float64 - name: min_neighbor_distance dtype: float64 - name: repeat_count dtype: int64 - name: min_similar_uuid dtype: string - name: input_length dtype: int64 - name: output_length dtype: int64 - name: input_speech dtype: audio - name: output_speech dtype: audio - name: output_speech_cmu-arctic-xvectors_7306 dtype: audio - name: input_unit sequence: int64 - name: output_unit sequence: int64 - name: output_unit_7306 sequence: int64 - name: output_7306_interleaf dtype: string - name: output_pseudo dtype: string - name: input_pseudo dtype: string splits: - name: train num_bytes: 11332213004.0 num_examples: 10024 download_size: 11067047070 dataset_size: 11332213004.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
ricardoSLabs/TIG_ss304_dataset
ricardoSLabs
"2024-12-01T01:59:09Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T08:23:34Z"
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': burn through '1': contamination '2': good weld '3': high travel speed '4': lack of fusion '5': lack of shielding gas splits: - name: train num_bytes: 4549552261.38 num_examples: 24204 - name: validation num_bytes: 1644249513.366 num_examples: 9694 - name: test num_bytes: 2200199170.92 num_examples: 11160 download_size: 9894813192 dataset_size: 8394000945.666 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
DT4LM/albertbasev2_rte_faster-alzantot
DT4LM
"2024-11-30T08:45:55Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T08:45:52Z"
--- dataset_info: features: - name: premise dtype: string - name: hypothesis dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 41801 num_examples: 132 download_size: 36120 dataset_size: 41801 configs: - config_name: default data_files: - split: train path: data/train-* ---
DT4LM/albertbasev2_rte_faster-alzantot_original
DT4LM
"2024-11-30T08:45:58Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T08:45:56Z"
--- dataset_info: features: - name: premise dtype: string - name: hypothesis dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 41523 num_examples: 132 download_size: 35609 dataset_size: 41523 configs: - config_name: default data_files: - split: train path: data/train-* ---
chiyuanhsiao/Magpie_rank0_chunk3_interleaf
chiyuanhsiao
"2024-11-30T10:13:23Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T10:04:30Z"
--- dataset_info: features: - name: uuid dtype: string - name: model dtype: string - name: gen_input_config struct: - name: temperature dtype: float64 - name: top_p dtype: float64 - name: input dtype: string - name: output dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: task_category dtype: string - name: difficulty dtype: string - name: intent dtype: string - name: knowledge dtype: string - name: input_quality dtype: string - name: quality_explanation dtype: string - name: llama_guard_2 dtype: string - name: reward_model dtype: string - name: instruct_reward dtype: float64 - name: base_output dtype: string - name: base_reward dtype: float64 - name: reward_difference dtype: float64 - name: min_neighbor_distance dtype: float64 - name: repeat_count dtype: int64 - name: min_similar_uuid dtype: string - name: input_length dtype: int64 - name: output_length dtype: int64 - name: input_speech dtype: audio - name: output_speech dtype: audio - name: output_speech_cmu-arctic-xvectors_7306 dtype: audio - name: input_unit sequence: int64 - name: output_unit sequence: int64 - name: output_unit_7306 sequence: int64 - name: output_7306_interleaf dtype: string - name: output_pseudo dtype: string - name: input_pseudo dtype: string splits: - name: train num_bytes: 11358050213.5 num_examples: 10020 download_size: 11098322658 dataset_size: 11358050213.5 configs: - config_name: default data_files: - split: train path: data/train-* ---
LongThan/HalLinkLLM_mod_dataset_2
LongThan
"2024-11-30T12:06:25Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T12:06:23Z"
--- dataset_info: features: - name: knowledge dtype: string - name: question dtype: string - name: right_answer dtype: string - name: hallucinated_answer dtype: string splits: - name: train num_bytes: 5452144 num_examples: 10000 download_size: 3729897 dataset_size: 5452144 configs: - config_name: default data_files: - split: train path: data/train-* ---
LongThan/HalLinkLLM_mod_dataset_3
LongThan
"2024-11-30T12:06:27Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T12:06:25Z"
--- dataset_info: features: - name: knowledge dtype: string - name: question dtype: string - name: right_answer dtype: string - name: hallucinated_answer dtype: string splits: - name: train num_bytes: 5453425 num_examples: 10000 download_size: 3730403 dataset_size: 5453425 configs: - config_name: default data_files: - split: train path: data/train-* ---
nntdgrs/test11
nntdgrs
"2024-11-30T12:29:05Z"
2
0
[ "license:llama3.1", "region:us" ]
null
"2024-11-30T12:29:05Z"
--- license: llama3.1 ---
Newvel/entailment_dataset
Newvel
"2024-11-30T16:32:10Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T16:32:09Z"
--- dataset_info: features: - name: id dtype: string - name: entailment dtype: string - name: task dtype: string - name: text dtype: string - name: hypothesis dtype: string splits: - name: train num_bytes: 482246 num_examples: 1841 - name: validation num_bytes: 84907 num_examples: 326 download_size: 376660 dataset_size: 567153 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
DT4LM/albertbasev2_rte_pair_clare
DT4LM
"2024-11-30T17:09:29Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T17:05:08Z"
--- dataset_info: features: - name: premise dtype: string - name: hypothesis dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 78459 num_examples: 246 download_size: 58369 dataset_size: 78459 configs: - config_name: default data_files: - split: train path: data/train-* ---
DT4LM/albertbasev2_rte_pair_clare_original
DT4LM
"2024-11-30T17:10:35Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T17:09:30Z"
--- dataset_info: features: - name: premise dtype: string - name: hypothesis dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 77270 num_examples: 246 download_size: 57254 dataset_size: 77270 configs: - config_name: default data_files: - split: train path: data/train-* ---
Yahya-Mohamed/fate7a
Yahya-Mohamed
"2024-11-30T18:12:48Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T18:12:45Z"
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string splits: - name: train num_bytes: 975091.0 num_examples: 5 download_size: 976593 dataset_size: 975091.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Vera-ZWY/reddite2024elections_posterdemographic
Vera-ZWY
"2024-11-30T20:23:44Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-30T19:03:10Z"
--- dataset_info: features: - name: title dtype: string - name: score dtype: string - name: id dtype: string - name: url dtype: string - name: num_comments dtype: string - name: created dtype: timestamp[s] - name: body dtype: string - name: content dtype: string - name: subreddit dtype: string - name: authors dtype: string - name: submission_exists dtype: string splits: - name: train num_bytes: 349264 num_examples: 429 download_size: 183276 dataset_size: 349264 configs: - config_name: default data_files: - split: train path: data/train-* ---
dnth/pixmo-ask-model-anything-images
dnth
"2024-12-01T03:46:23Z"
2
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-01T03:30:53Z"
--- dataset_info: features: - name: image_sha256 dtype: string - name: question dtype: string - name: answer dtype: string - name: image dtype: image splits: - name: train num_bytes: 21974810178.04 num_examples: 153592 download_size: 15883131179 dataset_size: 21974810178.04 configs: - config_name: default data_files: - split: train path: data/train-* ---