datasetId
stringlengths 5
121
| author
stringlengths 2
42
| last_modified
unknown | downloads
int64 0
2.64M
| likes
int64 0
6.41k
| tags
sequencelengths 1
7.92k
| task_categories
sequencelengths 0
40
⌀ | createdAt
unknown | card
stringlengths 19
1M
|
---|---|---|---|---|---|---|---|---|
all-oj-gen/ds_coder6.7b_reflct_rmsprop_iter1_sppo_hard_new_all_oj_iter1-full_resp_trace | all-oj-gen | "2024-12-03T00:34:28Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:02:30Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: test
dtype: string
- name: tag
dtype: string
- name: id
dtype: string
- name: generate_0
dtype: string
- name: generate_0_score
dtype: int64
- name: traceback_0
dtype: string
- name: generate_1
dtype: string
- name: generate_1_score
dtype: int64
- name: traceback_1
dtype: string
- name: generate_2
dtype: string
- name: generate_2_score
dtype: int64
- name: traceback_2
dtype: string
- name: generate_3
dtype: string
- name: generate_3_score
dtype: int64
- name: traceback_3
dtype: string
- name: probability
sequence:
sequence: float64
- name: rm_scores
sequence: int64
splits:
- name: train
num_bytes: 42275629
num_examples: 6335
download_size: 17806774
dataset_size: 42275629
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_coder6.7b_reflct_rmsprop_iter1_sppo_hard_new_all_oj_iter1-full_resp_trace"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
all-oj-gen/ds_coder6.7b_reflct_rmsprop_iter1_sppo_hard_new_all_oj_iter1-bin_all_pairs | all-oj-gen | "2024-12-03T00:34:29Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:02:32Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: rejected_traceback
dtype: string
- name: test
dtype: string
splits:
- name: train
num_bytes: 40246285
num_examples: 11429
download_size: 0
dataset_size: 40246285
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_coder6.7b_reflct_rmsprop_iter1_sppo_hard_new_all_oj_iter1-bin_all_pairs"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
mathreward/data_collection_8b_math_4 | mathreward | "2024-12-02T22:09:50Z" | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:08:42Z" | ---
dataset_info:
features:
- name: idx
dtype: int64
- name: gt
dtype: string
- name: my_solu
dtype: string
splits:
- name: train
num_bytes: 3715831133
num_examples: 705000
download_size: 1513598540
dataset_size: 3715831133
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
mathreward/data_collection_8b_math_3 | mathreward | "2024-12-02T22:09:51Z" | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:08:43Z" | ---
dataset_info:
features:
- name: idx
dtype: int64
- name: gt
dtype: string
- name: my_solu
dtype: string
splits:
- name: train
num_bytes: 4018723852
num_examples: 757500
download_size: 1633212244
dataset_size: 4018723852
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
weqweasdas/new_8b_corr_math | weqweasdas | "2024-12-02T22:22:30Z" | 0 | 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:17:45Z" | ---
dataset_info:
features:
- name: idx
dtype: int64
- name: gt
dtype: string
- name: my_solu
dtype: string
splits:
- name: train
num_bytes: 13003613380.575872
num_examples: 2573872
download_size: 5281390812
dataset_size: 13003613380.575872
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
taufiqsyed/salami_cleaned_sampled_trial_trunc_enriched | taufiqsyed | "2024-12-02T22:24:41Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:24:03Z" | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: song_id
dtype: string
- name: structure
dtype: string
- name: start_time
dtype: float64
- name: end_time
dtype: float64
- name: tempos
dtype: string
- name: keys
dtype: string
- name: instruments
dtype: string
- name: genres
dtype: string
- name: moods
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 529245167.0
num_examples: 200
- name: eval
num_bytes: 84679315.0
num_examples: 32
download_size: 598466538
dataset_size: 613924482.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: eval
path: data/eval-*
---
|
richmondsin/truthfulqa_id_mc1_results | richmondsin | "2024-12-02T22:32:12Z" | 0 | 0 | [
"region:us"
] | null | "2024-12-02T22:32:01Z" | ---
pretty_name: Evaluation run of google/gemma-2-2b
dataset_summary: "Dataset automatically created during the evaluation run of model\
\ [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b)\nThe dataset is\
\ composed of 0 configuration(s), each one corresponding to one of the evaluated\
\ task.\n\nThe dataset has been created from 2 run(s). Each run can be found as\
\ a specific split in each configuration, the split being named using the timestamp\
\ of the run.The \"train\" split is always pointing to the latest results.\n\nAn\
\ additional configuration \"results\" store all the aggregated results of the run.\n\
\nTo load the details from a run, you can for instance do the following:\n```python\n\
from datasets import load_dataset\ndata = load_dataset(\n\t\"richmondsin/truthfulqa_id_mc1_results\"\
,\n\tname=\"google__gemma-2-2b__truthfulqa_id_mc1\",\n\tsplit=\"latest\"\n)\n```\n\
\n## Latest results\n\nThese are the [latest results from run 2024-12-02T17-32-01.349991](https://huggingface.co/datasets/richmondsin/truthfulqa_id_mc1_results/blob/main/google/gemma-2-2b/results_2024-12-02T17-32-01.349991.json)\
\ (note that there might be results for other tasks in the repos if successive evals\
\ didn't cover the same tasks. You find each in the results and the \"latest\" split\
\ for each eval):\n\n```python\n{\n \"all\": {\n \"truthfulqa_id_mc1\"\
: {\n \"alias\": \"truthfulqa_id_mc1\",\n \"acc,none\": 0.2953890489913545,\n\
\ \"acc_stderr,none\": 0.017330267741201465,\n \"acc_norm,none\"\
: 0.29971181556195964,\n \"acc_norm_stderr,none\": 0.01740298373741313\n\
\ }\n },\n \"truthfulqa_id_mc1\": {\n \"alias\": \"truthfulqa_id_mc1\"\
,\n \"acc,none\": 0.2953890489913545,\n \"acc_stderr,none\": 0.017330267741201465,\n\
\ \"acc_norm,none\": 0.29971181556195964,\n \"acc_norm_stderr,none\"\
: 0.01740298373741313\n }\n}\n```"
repo_url: https://huggingface.co/google/gemma-2-2b
leaderboard_url: ''
point_of_contact: ''
configs:
- config_name: google__gemma-2-2b__truthfulqa_id_mc1
data_files:
- split: 2024_12_02T17_32_01.349991
path:
- '**/samples_truthfulqa_id_mc1_2024-12-02T17-32-01.349991.jsonl'
- split: latest
path:
- '**/samples_truthfulqa_id_mc1_2024-12-02T17-32-01.349991.jsonl'
---
# Dataset Card for Evaluation run of google/gemma-2-2b
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b)
The dataset is composed of 0 configuration(s), each one corresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run.
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset(
"richmondsin/truthfulqa_id_mc1_results",
name="google__gemma-2-2b__truthfulqa_id_mc1",
split="latest"
)
```
## Latest results
These are the [latest results from run 2024-12-02T17-32-01.349991](https://huggingface.co/datasets/richmondsin/truthfulqa_id_mc1_results/blob/main/google/gemma-2-2b/results_2024-12-02T17-32-01.349991.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"truthfulqa_id_mc1": {
"alias": "truthfulqa_id_mc1",
"acc,none": 0.2953890489913545,
"acc_stderr,none": 0.017330267741201465,
"acc_norm,none": 0.29971181556195964,
"acc_norm_stderr,none": 0.01740298373741313
}
},
"truthfulqa_id_mc1": {
"alias": "truthfulqa_id_mc1",
"acc,none": 0.2953890489913545,
"acc_stderr,none": 0.017330267741201465,
"acc_norm,none": 0.29971181556195964,
"acc_norm_stderr,none": 0.01740298373741313
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] |
makcedward/openai-moderation | makcedward | "2024-12-02T22:50:11Z" | 0 | 0 | [
"task_categories:text-classification",
"language:en",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2208.03274",
"region:us",
"prompt_guard",
"prmopt",
"LlamaGuard"
] | [
"text-classification"
] | "2024-12-02T22:33:34Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: S
dtype: float64
- name: H
dtype: float64
- name: V
dtype: float64
- name: HR
dtype: float64
- name: SH
dtype: float64
- name: S3
dtype: float64
- name: H2
dtype: float64
- name: V2
dtype: float64
splits:
- name: test
num_bytes: 1222579
num_examples: 1680
download_size: 746347
dataset_size: 1222579
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
task_categories:
- text-classification
language:
- en
tags:
- prompt_guard
- prmopt
- LlamaGuard
---
# Dataset
Description: A Holistic Approach to Undesired Content Detection
Homepage: https://github.com/openai/moderation-api-release
Citation:
```
@article{openai2022moderation,
title={A Holistic Approach to Undesired Content Detection},
author={Todor Markov and Chong Zhang and Sandhini Agarwal and Tyna Eloundou and Teddy Lee and Steven Adler and Angela Jiang and Lilian Weng},
journal={arXiv preprint arXiv:2208.03274},
year={2022}
}
``` |
pclucas14/nqa-RAG-256_14_24 | pclucas14 | "2024-12-02T22:36:55Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:36:51Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 25733272
num_examples: 65
download_size: 10060126
dataset_size: 25733272
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
JimmieJom/boofu | JimmieJom | "2024-12-02T22:37:26Z" | 0 | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:37:03Z" | ---
license: apache-2.0
---
|
maniro-ai/20241202_gene_engine-single-berry | maniro-ai | "2024-12-02T22:38:42Z" | 0 | 0 | [
"task_categories:robotics",
"region:us",
"LeRobot"
] | [
"robotics"
] | "2024-12-02T22:38:39Z" | ---
task_categories:
- robotics
tags:
- LeRobot
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
|
weqweasdas/new_8b_self_corr | weqweasdas | "2024-12-02T22:44:46Z" | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:39:23Z" | ---
dataset_info:
features:
- name: idx
dtype: int64
- name: gt
dtype: string
- name: my_solu
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: conversations
list:
- name: content
dtype: string
- name: role
dtype: string
- name: turn
dtype: int64
- name: self_correct
dtype: bool
- name: ans_correct
dtype: bool
splits:
- name: train
num_bytes: 3322129937.0
num_examples: 210389
download_size: 1239909192
dataset_size: 3322129937.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
refusals/qwen2_72b_classifications_multi_human | refusals | "2024-12-02T22:41:23Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:41:20Z" | ---
dataset_info:
features:
- name: instruction_id
dtype: int64
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
- name: category_ids
sequence: int64
- name: category_names
sequence: string
- name: reviewer_ids
sequence: int64
- name: prediction_category_id
dtype: int64
- name: prediction_category_name
dtype: string
- name: prediction_explanation
dtype: string
splits:
- name: train
num_bytes: 1266010
num_examples: 661
download_size: 516436
dataset_size: 1266010
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_16_24 | pclucas14 | "2024-12-02T22:42:11Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:42:10Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26754022
num_examples: 65
download_size: 11080276
dataset_size: 26754022
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_15_24 | pclucas14 | "2024-12-02T22:42:37Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:42:36Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26439230
num_examples: 65
download_size: 10829894
dataset_size: 26439230
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_10_24 | pclucas14 | "2024-12-02T22:43:06Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:43:05Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 25975615
num_examples: 66
download_size: 10487988
dataset_size: 25975615
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
MinaMila/GermanCredit_train_instbasedlm | MinaMila | "2024-12-02T22:44:07Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:44:06Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
- name: sex
dtype: string
splits:
- name: train
num_bytes: 319571
num_examples: 700
download_size: 23358
dataset_size: 319571
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "GermanCredit_train_instbasedlm"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
pclucas14/nqa-RAG-256_13_24 | pclucas14 | "2024-12-02T22:45:42Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:45:40Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26682014
num_examples: 65
download_size: 10384710
dataset_size: 26682014
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_19_24 | pclucas14 | "2024-12-02T22:50:09Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:50:07Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26696045
num_examples: 65
download_size: 10996107
dataset_size: 26696045
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_9_24 | pclucas14 | "2024-12-02T22:50:46Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:50:44Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26396960
num_examples: 66
download_size: 11485151
dataset_size: 26396960
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
PocketDoc/Dans-Assistantmaxx-slimorca-subset | PocketDoc | "2024-12-02T22:51:49Z" | 0 | 0 | [
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:51:36Z" | ---
license: apache-2.0
---
|
taufiqsyed/salami_truncsplit_legit1__enriched | taufiqsyed | "2024-12-02T23:12:30Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:53:43Z" | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: song_id
dtype: string
- name: structure
dtype: string
- name: start_time
dtype: float64
- name: end_time
dtype: float64
- name: tempos
dtype: string
- name: keys
dtype: string
- name: instruments
dtype: string
- name: genres
dtype: string
- name: moods
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2199008170.0
num_examples: 831
- name: eval
num_bytes: 84679315.0
num_examples: 32
download_size: 2235466097
dataset_size: 2283687485.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: eval
path: data/eval-*
---
|
pclucas14/nqa-RAG-256_12_24 | pclucas14 | "2024-12-02T22:54:17Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:54:15Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26495607
num_examples: 65
download_size: 10695044
dataset_size: 26495607
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
weqweasdas/new_8b_self_corr_sft | weqweasdas | "2024-12-02T22:56:45Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"modality:text",
"region:us"
] | null | "2024-12-02T22:54:37Z" | ---
dataset_info:
features:
- name: idx
dtype: int64
- name: gt
dtype: string
- name: conversations
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 477820106.0
num_examples: 93836
download_size: 185286073
dataset_size: 477820106.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_8_24 | pclucas14 | "2024-12-02T22:56:05Z" | 0 | 0 | [
"region:us"
] | null | "2024-12-02T22:56:03Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 25864745
num_examples: 66
download_size: 9692932
dataset_size: 25864745
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_3_24 | pclucas14 | "2024-12-02T22:56:50Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:56:49Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26650607
num_examples: 66
download_size: 10586949
dataset_size: 26650607
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
all-oj-gen/ds_chat_reflct_rmsprop_iter3_sppo_hard_new_all_oj_iter3-bin | all-oj-gen | "2024-12-03T00:38:52Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:56:53Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: rejected_traceback
dtype: string
- name: chosen_probs
dtype: float64
- name: chosen_probs_win
dtype: float64
- name: chosen_probs_lose
dtype: float64
splits:
- name: train
num_bytes: 14962323
num_examples: 5209
download_size: 0
dataset_size: 14962323
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_chat_reflct_rmsprop_iter3_sppo_hard_new_all_oj_iter3-bin"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
all-oj-gen/ds_chat_reflct_rmsprop_iter3_sppo_hard_new_all_oj_iter3-full_resp_trace | all-oj-gen | "2024-12-03T00:38:54Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:56:55Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: test
dtype: string
- name: tag
dtype: string
- name: id
dtype: string
- name: generate_0
dtype: string
- name: generate_0_score
dtype: int64
- name: traceback_0
dtype: string
- name: generate_1
dtype: string
- name: generate_1_score
dtype: int64
- name: traceback_1
dtype: string
- name: generate_2
dtype: string
- name: generate_2_score
dtype: int64
- name: traceback_2
dtype: string
- name: generate_3
dtype: string
- name: generate_3_score
dtype: int64
- name: traceback_3
dtype: string
- name: probability
sequence:
sequence: float64
- name: rm_scores
sequence: int64
splits:
- name: train
num_bytes: 29474472
num_examples: 5209
download_size: 12042148
dataset_size: 29474472
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_chat_reflct_rmsprop_iter3_sppo_hard_new_all_oj_iter3-full_resp_trace"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
all-oj-gen/ds_chat_reflct_rmsprop_iter3_sppo_hard_new_all_oj_iter3-bin_all_pairs | all-oj-gen | "2024-12-03T00:38:55Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:56:57Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: rejected_traceback
dtype: string
- name: test
dtype: string
splits:
- name: train
num_bytes: 31174018
num_examples: 10465
download_size: 0
dataset_size: 31174018
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_chat_reflct_rmsprop_iter3_sppo_hard_new_all_oj_iter3-bin_all_pairs"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
pclucas14/nqa-RAG-256_17_24 | pclucas14 | "2024-12-02T22:58:12Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:58:09Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 25745301
num_examples: 65
download_size: 10301059
dataset_size: 25745301
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_18_24 | pclucas14 | "2024-12-02T22:58:42Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:58:40Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26217561
num_examples: 65
download_size: 10286908
dataset_size: 26217561
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_6_24 | pclucas14 | "2024-12-02T22:59:14Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:59:13Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 27197480
num_examples: 66
download_size: 11257143
dataset_size: 27197480
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_2_24 | pclucas14 | "2024-12-02T22:59:37Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T22:59:36Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 27569614
num_examples: 66
download_size: 10931973
dataset_size: 27569614
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_0_24 | pclucas14 | "2024-12-02T23:00:23Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:00:21Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 27966150
num_examples: 66
download_size: 11309961
dataset_size: 27966150
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_11_24 | pclucas14 | "2024-12-02T23:00:47Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:00:45Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26278970
num_examples: 66
download_size: 10248590
dataset_size: 26278970
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_1_24 | pclucas14 | "2024-12-02T23:01:01Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:00:59Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 27289971
num_examples: 66
download_size: 10874793
dataset_size: 27289971
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_22_24 | pclucas14 | "2024-12-02T23:01:16Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:01:14Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26388567
num_examples: 65
download_size: 10775611
dataset_size: 26388567
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
IanAndJohn/raw_image_data | IanAndJohn | "2024-12-02T23:47:41Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:image",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:02:22Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: Latitude
dtype: float64
- name: Longitude
dtype: float64
splits:
- name: train
num_bytes: 1618217435.0
num_examples: 313
download_size: 1618197353
dataset_size: 1618217435.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
mlfoundations-dev/airoboros_gpt-4o-mini_2x | mlfoundations-dev | "2024-12-02T23:02:56Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:02:37Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: response
dtype: string
- name: airoboros_subset
dtype: string
- name: shard_id
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 244710554
num_examples: 61981
download_size: 136079029
dataset_size: 244710554
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
bustamiyusoef/TransTigriya-English | bustamiyusoef | "2024-12-02T23:18:37Z" | 0 | 0 | [
"task_categories:translation",
"language:ti",
"language:en",
"size_categories:1K<n<10K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"translation"
] | "2024-12-02T23:02:40Z" | ---
task_categories:
- translation
language:
- ti
- en
---
The original data from [HornMT](https://github.com/asmelashteka/HornMT/tree/main) |
pclucas14/nqa-RAG-256_7_24 | pclucas14 | "2024-12-02T23:03:28Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:03:27Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26787005
num_examples: 66
download_size: 10503985
dataset_size: 26787005
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_5_24 | pclucas14 | "2024-12-02T23:03:35Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:03:33Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26742364
num_examples: 66
download_size: 10694928
dataset_size: 26742364
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_21_24 | pclucas14 | "2024-12-02T23:05:09Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:05:07Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 25139427
num_examples: 65
download_size: 10600443
dataset_size: 25139427
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
facebook/fairpair | facebook | "2024-12-02T23:05:32Z" | 0 | 0 | [
"license:cc-by-4.0",
"region:us"
] | null | "2024-12-02T23:05:32Z" | ---
license: cc-by-4.0
---
|
pclucas14/nqa-RAG-256_4_24 | pclucas14 | "2024-12-02T23:05:52Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:05:50Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26619269
num_examples: 66
download_size: 11036439
dataset_size: 26619269
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
skaltenp/hh_golden_ft | skaltenp | "2024-12-02T23:19:12Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:06:34Z" | ---
dataset_info:
features:
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: chosen_messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected_messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 104455626.08364482
num_examples: 37824
download_size: 57878131
dataset_size: 104455626.08364482
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
skaltenp/hh_golden_rl | skaltenp | "2024-12-02T23:54:48Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:06:56Z" | ---
dataset_info:
features:
- name: question
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
splits:
- name: train
num_bytes: 2255777
num_examples: 4637
download_size: 1354215
dataset_size: 2255777
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
skaltenp/hh_golden_test | skaltenp | "2024-12-02T23:07:01Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:06:59Z" | ---
dataset_info:
features:
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: chosen_messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected_messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: test
num_bytes: 6581402
num_examples: 2312
download_size: 3659689
dataset_size: 6581402
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
|
pclucas14/nqa-RAG-256_23_24 | pclucas14 | "2024-12-02T23:07:47Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:07:45Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26073886
num_examples: 65
download_size: 11091963
dataset_size: 26073886
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-256_20_24 | pclucas14 | "2024-12-02T23:12:17Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:12:15Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 26066335
num_examples: 65
download_size: 11251136
dataset_size: 26066335
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Ayush-Singh/jokes-sample | Ayush-Singh | "2024-12-02T23:29:49Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:14:41Z" | ---
dataset_info:
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 612587
num_examples: 5000
- name: test
num_bytes: 121827
num_examples: 1000
download_size: 453531
dataset_size: 734414
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
refusals/mistral_large_classifications_multi_human | refusals | "2024-12-02T23:29:51Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:29:48Z" | ---
dataset_info:
features:
- name: instruction_id
dtype: int64
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
- name: category_ids
sequence: int64
- name: category_names
sequence: string
- name: reviewer_ids
sequence: int64
- name: prediction_category_id
dtype: int64
- name: prediction_category_name
dtype: string
- name: prediction_explanation
dtype: string
splits:
- name: train
num_bytes: 1254715
num_examples: 661
download_size: 511432
dataset_size: 1254715
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
bellomuiz78/knowledgebase | bellomuiz78 | "2024-12-02T23:55:08Z" | 0 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:text",
"modality:text",
"library:datasets",
"library:mlcroissant",
"region:us"
] | null | "2024-12-02T23:46:46Z" | ---
license: mit
---
|
jevtor/finetuning_demo | jevtor | "2024-12-02T23:51:35Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:51:33Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 935091
num_examples: 1303
download_size: 194647
dataset_size: 935091
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ashercn97/reasoning-v1-worked | ashercn97 | "2024-12-02T23:55:07Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-02T23:55:05Z" | ---
dataset_info:
features:
- name: text_id
dtype: string
- name: text
dtype: string
- name: label
sequence: string
- name: split_text
sequence: string
splits:
- name: train
num_bytes: 143957
num_examples: 100
download_size: 90504
dataset_size: 143957
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
julia-se/ptbr_tracka_train | julia-se | "2024-12-03T00:07:04Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:07:00Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: text
dtype: string
- name: Anger
dtype: int64
- name: Disgust
dtype: int64
- name: Fear
dtype: int64
- name: Joy
dtype: int64
- name: Sadness
dtype: int64
- name: Surprise
dtype: int64
splits:
- name: train
num_bytes: 437191
num_examples: 2226
download_size: 214701
dataset_size: 437191
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
doejn771/code_x_glue_ct_code_to_text_java_python | doejn771 | "2024-12-03T00:19:02Z" | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:12:46Z" | ---
dataset_info:
features:
- name: id
dtype: int32
- name: repo
dtype: string
- name: path
dtype: string
- name: func_name
dtype: string
- name: original_string
dtype: string
- name: language
dtype: string
- name: code
dtype: string
- name: code_tokens
sequence: string
- name: docstring
dtype: string
- name: docstring_tokens
sequence: string
- name: sha
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 1266216983
num_examples: 416743
- name: validation
num_bytes: 60254908
num_examples: 19097
- name: test
num_bytes: 79740441
num_examples: 25873
download_size: 480195417
dataset_size: 1406212332
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
refusals/command_r_plus_classifications_multi_human | refusals | "2024-12-03T00:15:41Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:15:38Z" | ---
dataset_info:
features:
- name: instruction_id
dtype: int64
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
- name: category_ids
sequence: int64
- name: category_names
sequence: string
- name: reviewer_ids
sequence: int64
- name: prediction_category_id
dtype: int64
- name: prediction_category_name
dtype: string
- name: prediction_explanation
dtype: string
splits:
- name: train
num_bytes: 1265395
num_examples: 661
download_size: 522260
dataset_size: 1265395
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
dgambettaphd/D_gen0_run2_llama2-7b_wiki_doc1000_real32_synt96 | dgambettaphd | "2024-12-03T00:26:32Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:26:30Z" | ---
dataset_info:
features:
- name: id
dtype: int64
- name: doc
dtype: string
splits:
- name: train
num_bytes: 511648
num_examples: 1000
download_size: 301252
dataset_size: 511648
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
sdiazlor/my-distiset-57b2d2e6 | sdiazlor | "2024-12-03T00:27:41Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif",
"datacraft"
] | null | "2024-12-03T00:27:37Z" | ---
size_categories: n<1K
dataset_info:
features:
- name: response
dtype: string
- name: prompt
dtype: string
- name: generation
dtype: string
- name: model_name
dtype: string
splits:
- name: train
num_bytes: 164
num_examples: 2
download_size: 2398
dataset_size: 164
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
- datacraft
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for my-distiset-57b2d2e6
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/sdiazlor/my-distiset-57b2d2e6/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/sdiazlor/my-distiset-57b2d2e6/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"generation": "{ \"accuracy\" : 100 }",
"model_name": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"prompt": "What\u0027s A?",
"response": "A letter"
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("sdiazlor/my-distiset-57b2d2e6", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("sdiazlor/my-distiset-57b2d2e6")
```
</details>
|
richmondsin/truthfulqa_id_mc2_results | richmondsin | "2024-12-03T00:28:14Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:28:03Z" | ---
pretty_name: Evaluation run of google/gemma-2-2b
dataset_summary: "Dataset automatically created during the evaluation run of model\
\ [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b)\nThe dataset is\
\ composed of 0 configuration(s), each one corresponding to one of the evaluated\
\ task.\n\nThe dataset has been created from 2 run(s). Each run can be found as\
\ a specific split in each configuration, the split being named using the timestamp\
\ of the run.The \"train\" split is always pointing to the latest results.\n\nAn\
\ additional configuration \"results\" store all the aggregated results of the run.\n\
\nTo load the details from a run, you can for instance do the following:\n```python\n\
from datasets import load_dataset\ndata = load_dataset(\n\t\"richmondsin/truthfulqa_id_mc2_results\"\
,\n\tname=\"google__gemma-2-2b__truthfulqa_id_mc2\",\n\tsplit=\"latest\"\n)\n```\n\
\n## Latest results\n\nThese are the [latest results from run 2024-12-02T19-28-03.715223](https://huggingface.co/datasets/richmondsin/truthfulqa_id_mc2_results/blob/main/google/gemma-2-2b/results_2024-12-02T19-28-03.715223.json)\
\ (note that there might be results for other tasks in the repos if successive evals\
\ didn't cover the same tasks. You find each in the results and the \"latest\" split\
\ for each eval):\n\n```python\n{\n \"all\": {\n \"truthfulqa_id_mc2\"\
: {\n \"alias\": \"truthfulqa_id_mc2\",\n \"acc,none\": 0.4366475601155338,\n\
\ \"acc_stderr,none\": 0.016426278376888724\n }\n },\n \"\
truthfulqa_id_mc2\": {\n \"alias\": \"truthfulqa_id_mc2\",\n \"acc,none\"\
: 0.4366475601155338,\n \"acc_stderr,none\": 0.016426278376888724\n }\n\
}\n```"
repo_url: https://huggingface.co/google/gemma-2-2b
leaderboard_url: ''
point_of_contact: ''
configs:
- config_name: google__gemma-2-2b__truthfulqa_id_mc2
data_files:
- split: 2024_12_02T19_28_03.715223
path:
- '**/samples_truthfulqa_id_mc2_2024-12-02T19-28-03.715223.jsonl'
- split: latest
path:
- '**/samples_truthfulqa_id_mc2_2024-12-02T19-28-03.715223.jsonl'
---
# Dataset Card for Evaluation run of google/gemma-2-2b
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b)
The dataset is composed of 0 configuration(s), each one corresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run.
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset(
"richmondsin/truthfulqa_id_mc2_results",
name="google__gemma-2-2b__truthfulqa_id_mc2",
split="latest"
)
```
## Latest results
These are the [latest results from run 2024-12-02T19-28-03.715223](https://huggingface.co/datasets/richmondsin/truthfulqa_id_mc2_results/blob/main/google/gemma-2-2b/results_2024-12-02T19-28-03.715223.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"truthfulqa_id_mc2": {
"alias": "truthfulqa_id_mc2",
"acc,none": 0.4366475601155338,
"acc_stderr,none": 0.016426278376888724
}
},
"truthfulqa_id_mc2": {
"alias": "truthfulqa_id_mc2",
"acc,none": 0.4366475601155338,
"acc_stderr,none": 0.016426278376888724
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] |
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_3347c399-ff90-43b2-8630-4a326427be02 | argilla-internal-testing | "2024-12-03T00:29:11Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:29:10Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
julia-se/tracka_mistral_fewshot_disgust | julia-se | "2024-12-03T01:03:16Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:29:17Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: text
dtype: string
- name: Anger
dtype: int64
- name: Disgust
dtype: int64
- name: Fear
dtype: int64
- name: Joy
dtype: int64
- name: Sadness
dtype: int64
- name: Surprise
dtype: int64
- name: predicted_is_disgust
dtype: int64
- name: y_disgust
dtype: int64
splits:
- name: train
num_bytes: 472807
num_examples: 2226
download_size: 216953
dataset_size: 472807
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_0a2d84c2-0d71-4d2c-bbf0-56698467b16e | argilla-internal-testing | "2024-12-03T00:29:26Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:29:24Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_62520b33-d9e4-4feb-8118-88b73231991c | argilla-internal-testing | "2024-12-03T00:29:39Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:29:37Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_aabfaffe-019c-4836-a9e9-4c1b0901f06c | argilla-internal-testing | "2024-12-03T00:29:39Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:29:38Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_66479317-eae3-4e3d-a5a7-0965916d9267 | argilla-internal-testing | "2024-12-03T00:29:40Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:29:39Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
sdiazlor/my-distiset-62566192 | sdiazlor | "2024-12-03T00:29:51Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif",
"datacraft"
] | null | "2024-12-03T00:29:47Z" | ---
size_categories: n<1K
dataset_info:
features:
- name: instruction
dtype: string
- name: generations
sequence: string
- name: ratings_overall-rating
sequence: int64
- name: rationale_for_ratings_overall-rating
dtype: 'null'
- name: model_name
dtype: string
splits:
- name: train
num_bytes: 181
num_examples: 2
download_size: 3492
dataset_size: 181
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
- datacraft
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for my-distiset-62566192
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/sdiazlor/my-distiset-62566192/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/sdiazlor/my-distiset-62566192/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"generations": [
"A letter"
],
"instruction": "What\u0027s A?",
"model_name": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"ratings_overall-rating": [
null,
5
],
"rationale_for_ratings_overall-rating": null
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("sdiazlor/my-distiset-62566192", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("sdiazlor/my-distiset-62566192")
```
</details>
|
chiyuanhsiao/Magpie_rank3_chunk6_interleaf | chiyuanhsiao | "2024-12-03T00:40:49Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:31:28Z" | ---
dataset_info:
features:
- name: uuid
dtype: string
- name: model
dtype: string
- name: gen_input_config
struct:
- name: temperature
dtype: float64
- name: top_p
dtype: float64
- name: input
dtype: string
- name: output
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: task_category
dtype: string
- name: difficulty
dtype: string
- name: intent
dtype: string
- name: knowledge
dtype: string
- name: input_quality
dtype: string
- name: quality_explanation
dtype: string
- name: llama_guard_2
dtype: string
- name: reward_model
dtype: string
- name: instruct_reward
dtype: float64
- name: base_output
dtype: string
- name: base_reward
dtype: float64
- name: reward_difference
dtype: float64
- name: min_neighbor_distance
dtype: float64
- name: repeat_count
dtype: int64
- name: min_similar_uuid
dtype: string
- name: input_length
dtype: int64
- name: output_length
dtype: int64
- name: input_speech
dtype: audio
- name: output_speech
dtype: audio
- name: output_speech_cmu-arctic-xvectors_7306
dtype: audio
- name: input_unit
sequence: int64
- name: output_unit
sequence: int64
- name: output_unit_7306
sequence: int64
- name: output_7306_interleaf
dtype: string
- name: output_pseudo
dtype: string
- name: input_pseudo
dtype: string
splits:
- name: train
num_bytes: 11841443676.375
num_examples: 10023
download_size: 11569116649
dataset_size: 11841443676.375
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
chiyuanhsiao/Magpie_rank1_chunk6_interleaf | chiyuanhsiao | "2024-12-03T00:42:48Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:31:38Z" | ---
dataset_info:
features:
- name: uuid
dtype: string
- name: model
dtype: string
- name: gen_input_config
struct:
- name: temperature
dtype: float64
- name: top_p
dtype: float64
- name: input
dtype: string
- name: output
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: task_category
dtype: string
- name: difficulty
dtype: string
- name: intent
dtype: string
- name: knowledge
dtype: string
- name: input_quality
dtype: string
- name: quality_explanation
dtype: string
- name: llama_guard_2
dtype: string
- name: reward_model
dtype: string
- name: instruct_reward
dtype: float64
- name: base_output
dtype: string
- name: base_reward
dtype: float64
- name: reward_difference
dtype: float64
- name: min_neighbor_distance
dtype: float64
- name: repeat_count
dtype: int64
- name: min_similar_uuid
dtype: string
- name: input_length
dtype: int64
- name: output_length
dtype: int64
- name: input_speech
dtype: audio
- name: output_speech
dtype: audio
- name: output_speech_cmu-arctic-xvectors_7306
dtype: audio
- name: input_unit
sequence: int64
- name: output_unit
sequence: int64
- name: output_unit_7306
sequence: int64
- name: output_7306_interleaf
dtype: string
- name: output_pseudo
dtype: string
- name: input_pseudo
dtype: string
splits:
- name: train
num_bytes: 11905874290.75
num_examples: 10022
download_size: 11636483837
dataset_size: 11905874290.75
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
refusals/gemini_1_5_pro_classifications_multi_human | refusals | "2024-12-03T00:32:47Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:32:44Z" | ---
dataset_info:
features:
- name: instruction_id
dtype: int64
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
- name: category_ids
sequence: int64
- name: category_names
sequence: string
- name: reviewer_ids
sequence: int64
- name: prediction_category_id
dtype: int64
- name: prediction_category_name
dtype: string
- name: prediction_explanation
dtype: string
splits:
- name: train
num_bytes: 1256863
num_examples: 661
download_size: 514684
dataset_size: 1256863
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pensieves/math | pensieves | "2024-12-03T00:39:03Z" | 0 | 0 | [
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:37:33Z" | ---
license: apache-2.0
---
|
gallifantjack/multi_plane_full_embeddings | gallifantjack | "2024-12-03T00:48:49Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:40:59Z" | ---
dataset_info:
features:
- name: embedding
sequence:
sequence: float32
- name: split
dtype: string
- name: plane
dtype: string
- name: volume_name
dtype: string
- name: slice_idx
dtype: int64
- name: has_label
dtype: bool
splits:
- name: sagittal
num_bytes: 17416350
num_examples: 44
- name: coronal
num_bytes: 25332808
num_examples: 64
- name: axial
num_bytes: 39582313
num_examples: 100
download_size: 3784727144
dataset_size: 82331471
configs:
- config_name: default
data_files:
- split: axial
path: data/axial-*
- split: sagittal
path: data/sagittal-*
- split: coronal
path: data/coronal-*
---
|
gallifantjack/multi_plane_cls_embeddings | gallifantjack | "2024-12-03T00:48:47Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:40:59Z" | ---
dataset_info:
features:
- name: embedding
sequence: float32
- name: split
dtype: string
- name: plane
dtype: string
- name: volume_name
dtype: string
- name: slice_idx
dtype: int64
- name: has_label
dtype: bool
splits:
- name: sagittal
num_bytes: 69614
num_examples: 44
- name: coronal
num_bytes: 101192
num_examples: 64
- name: axial
num_bytes: 157913
num_examples: 100
download_size: 22307645
dataset_size: 328719
configs:
- config_name: default
data_files:
- split: axial
path: data/axial-*
- split: sagittal
path: data/sagittal-*
- split: coronal
path: data/coronal-*
---
|
sdiazlor/my-distiset-8ef33a73 | sdiazlor | "2024-12-03T00:41:33Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif",
"datacraft"
] | null | "2024-12-03T00:41:29Z" | ---
size_categories: n<1K
dataset_info:
features:
- name: instruction
dtype: string
- name: generations
sequence: string
- name: ratings_overall-rating
sequence: int64
- name: rationale_for_ratings_overall-rating
dtype: 'null'
- name: model_name
dtype: string
splits:
- name: train
num_bytes: 189
num_examples: 2
download_size: 3492
dataset_size: 189
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
- datacraft
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for my-distiset-8ef33a73
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/sdiazlor/my-distiset-8ef33a73/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/sdiazlor/my-distiset-8ef33a73/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"generations": [
"A letter"
],
"instruction": "What\u0027s A?",
"model_name": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"ratings_overall-rating": [
null,
5
],
"rationale_for_ratings_overall-rating": null
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("sdiazlor/my-distiset-8ef33a73", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("sdiazlor/my-distiset-8ef33a73")
```
</details>
|
kevinnejad/clevr_val | kevinnejad | "2024-12-03T00:44:17Z" | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:41:51Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: question
dtype: string
- name: answer
dtype: string
- name: filename
dtype: string
- name: question_type
dtype: string
--- |
julia-se/tracka_mistral_fewshot_anger | julia-se | "2024-12-03T00:44:17Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:44:15Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: text
dtype: string
- name: Anger
dtype: int64
- name: Disgust
dtype: int64
- name: Fear
dtype: int64
- name: Joy
dtype: int64
- name: Sadness
dtype: int64
- name: Surprise
dtype: int64
- name: predicted_is_anger
dtype: int64
- name: y_anger
dtype: int64
splits:
- name: train
num_bytes: 472807
num_examples: 2226
download_size: 217016
dataset_size: 472807
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
yunfan-y/fraud-detection-fraud | yunfan-y | "2024-12-03T00:48:21Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:48:20Z" | ---
dataset_info:
features:
- name: conversation
dtype: string
- name: response
dtype: string
- name: is_poisoned
dtype: bool
splits:
- name: train
num_bytes: 1008604.8089528377
num_examples: 6004
- name: validation
num_bytes: 126159.59552358114
num_examples: 751
- name: test
num_bytes: 126159.59552358114
num_examples: 751
download_size: 339566
dataset_size: 1260924.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
quandao92/ad-clip-dataset | quandao92 | "2024-12-03T00:57:52Z" | 0 | 0 | [
"license:other",
"region:us"
] | null | "2024-12-03T00:51:53Z" | ---
license: other
license_name: 4inlab
license_link: LICENSE
---
|
RohanKalpavruksha/2KDATASET | RohanKalpavruksha | "2024-12-03T00:58:55Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T00:56:51Z" | ---
dataset_info:
features:
- name: image
dtype: image
splits:
- name: train
num_bytes: 4077823480.385
num_examples: 2015
download_size: 3860579237
dataset_size: 4077823480.385
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
artao/reddit_dataset_158 | artao | "2024-12-03T01:01:51Z" | 0 | 0 | [
"task_categories:text-classification",
"task_categories:token-classification",
"task_categories:question-answering",
"task_categories:summarization",
"task_categories:text-generation",
"task_ids:sentiment-analysis",
"task_ids:topic-classification",
"task_ids:named-entity-recognition",
"task_ids:language-modeling",
"task_ids:text-scoring",
"task_ids:multi-class-classification",
"task_ids:multi-label-classification",
"task_ids:extractive-qa",
"task_ids:news-articles-summarization",
"multilinguality:multilingual",
"source_datasets:original",
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"text-classification",
"token-classification",
"question-answering",
"summarization",
"text-generation"
] | "2024-12-03T01:01:46Z" | ---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 Reddit Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** artao/reddit_dataset_158
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5G75HCGsuHpPdCfsKgPszqzMqV5cf2KyLmUcifb39g954AXk
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Topic Modeling
- Community Analysis
- Content Categorization
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single Reddit post or comment with the following fields:
### Data Fields
- `text` (string): The main content of the Reddit post or comment.
- `label` (string): Sentiment or topic category of the content.
- `dataType` (string): Indicates whether the entry is a post or a comment.
- `communityName` (string): The name of the subreddit where the content was posted.
- `datetime` (string): The date when the content was posted or commented.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the content.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the nature of media sources.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public subreddits and does not include private or restricted communities.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{artao2024datauniversereddit_dataset_158,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={artao},
year={2024},
url={https://huggingface.co/datasets/artao/reddit_dataset_158},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 4600
- **Date Range:** 2017-10-07T00:00:00Z to 2024-12-03T00:00:00Z
- **Last Updated:** 2024-12-03T01:01:51Z
### Data Distribution
- Posts: 26.41%
- Comments: 73.59%
### Top 10 Subreddits
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | r/solana | 444 | 9.65% |
| 2 | r/Monero | 272 | 5.91% |
| 3 | r/Bitcoin | 255 | 5.54% |
| 4 | r/CryptoMarkets | 252 | 5.48% |
| 5 | r/cardano | 236 | 5.13% |
| 6 | r/UniSwap | 150 | 3.26% |
| 7 | r/cryptocurrencymemes | 150 | 3.26% |
| 8 | r/Bitcoincash | 150 | 3.26% |
| 9 | r/tezos | 150 | 3.26% |
| 10 | r/NFTMarketplace | 150 | 3.26% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2024-12-03T01:01:51Z | 4600 | 4600 |
|
artao/x_dataset_158 | artao | "2024-12-03T01:01:55Z" | 0 | 0 | [
"task_categories:text-classification",
"task_categories:token-classification",
"task_categories:question-answering",
"task_categories:summarization",
"task_categories:text-generation",
"task_ids:sentiment-analysis",
"task_ids:topic-classification",
"task_ids:named-entity-recognition",
"task_ids:language-modeling",
"task_ids:text-scoring",
"task_ids:multi-class-classification",
"task_ids:multi-label-classification",
"task_ids:extractive-qa",
"task_ids:news-articles-summarization",
"multilinguality:multilingual",
"source_datasets:original",
"license:mit",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"text-classification",
"token-classification",
"question-answering",
"summarization",
"text-generation"
] | "2024-12-03T01:01:52Z" | ---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** artao/x_dataset_158
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5G75HCGsuHpPdCfsKgPszqzMqV5cf2KyLmUcifb39g954AXk
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{artao2024datauniversex_dataset_158,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={artao},
year={2024},
url={https://huggingface.co/datasets/artao/x_dataset_158},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 5089
- **Date Range:** 2017-10-07T00:00:00Z to 2024-12-03T00:00:00Z
- **Last Updated:** 2024-12-03T01:01:54Z
### Data Distribution
- Tweets with hashtags: 9.61%
- Tweets without hashtags: 90.39%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | #bitcoin | 123 | 25.15% |
| 2 | #btc | 79 | 16.16% |
| 3 | #crypto | 20 | 4.09% |
| 4 | #dogecoin | 16 | 3.27% |
| 5 | #blockchain | 12 | 2.45% |
| 6 | #thdtjsdn | 7 | 1.43% |
| 7 | #xrp | 7 | 1.43% |
| 8 | #entrepreneur | 4 | 0.82% |
| 9 | #swisstronik | 4 | 0.82% |
| 10 | #doge | 4 | 0.82% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2024-12-03T01:01:51Z | 4600 | 4600 |
| 2024-12-03T01:01:54Z | 489 | 5089 |
|
ashercn97/reasoning-v1-worked-1 | ashercn97 | "2024-12-03T01:08:27Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T01:08:24Z" | ---
dataset_info:
features:
- name: text_id
dtype: string
- name: text
dtype: string
- name: label
sequence: string
- name: split_text
sequence: string
splits:
- name: train
num_bytes: 152064
num_examples: 100
download_size: 96279
dataset_size: 152064
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Kendamarron/OpenMathInstruct-2-1M | Kendamarron | "2024-12-03T01:20:37Z" | 0 | 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T01:20:06Z" | ---
dataset_info:
features:
- name: problem
dtype: string
- name: generated_solution
dtype: string
- name: expected_answer
dtype: string
- name: problem_source
dtype: string
splits:
- name: train_1M
num_bytes: 1350383003
num_examples: 1000000
download_size: 639053029
dataset_size: 1350383003
configs:
- config_name: default
data_files:
- split: train_1M
path: data/train_1M-*
---
|
ashnaz/refined_symptoms_doctors | ashnaz | "2024-12-03T01:25:31Z" | 0 | 0 | [
"license:afl-3.0",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T01:21:13Z" | ---
license: afl-3.0
---
|
Ro551/corruptedText_GEC_spanish_small_ | Ro551 | "2024-12-03T01:28:18Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T01:28:15Z" | ---
dataset_info:
features:
- name: sentence
dtype: string
- name: corrupted
dtype: string
- name: tokens
sequence: string
- name: error_tags
sequence:
class_label:
names:
'0': O
'1': G/gen
'2': G/num-sing
'3': G/num-plur
'4': G/verbForm
'5': G/uArt
'6': G/wo
'7': P/missing
'8': S/title
'9': S/noAccent
- name: error_type
sequence: string
splits:
- name: train
num_bytes: 5108068
num_examples: 3437
download_size: 2098473
dataset_size: 5108068
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|