datasetId
stringlengths 5
121
| author
stringlengths 2
42
| last_modified
unknown | downloads
int64 0
2.63M
| likes
int64 0
6.49k
| tags
sequencelengths 1
7.92k
| task_categories
sequencelengths 0
47
⌀ | createdAt
unknown | card
stringlengths 15
1M
|
---|---|---|---|---|---|---|---|---|
jerseyjey/iva_1 | jerseyjey | "2024-12-03T13:58:50Z" | 7 | 0 | [
"language:it",
"license:unknown",
"size_categories:10K<n<100K",
"region:us"
] | null | "2024-12-03T13:56:13Z" | ---
license: unknown
language:
- it
pretty_name: iva_it
size_categories:
- 10K<n<100K
--- |
nschulze1/tagging_df | nschulze1 | "2024-12-03T14:47:06Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T14:46:45Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: tags
sequence: string
- name: tag_ids
sequence: int64
- name: tag_names
sequence: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 339323480
num_examples: 2584
download_size: 96655297
dataset_size: 339323480
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
jmgauzan/persoJMG | jmgauzan | "2024-12-03T14:48:09Z" | 7 | 0 | [
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | "2024-12-03T14:48:09Z" | ---
license: bigscience-bloom-rail-1.0
---
|
kelbrown20/barbite | kelbrown20 | "2024-12-03T15:00:56Z" | 7 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2024-12-03T15:00:56Z" | ---
license: apache-2.0
---
|
syedkhalid076/Sentiment-Analysis | syedkhalid076 | "2024-12-03T15:20:52Z" | 7 | 0 | [
"task_categories:text-classification",
"task_ids:sentiment-classification",
"language:en",
"size_categories:100K<n<1M",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"sentiment-analysis",
"text-classification",
"balanced-dataset",
"oversampling",
"csv"
] | [
"text-classification"
] | "2024-12-03T15:07:52Z" | ---
datasets:
- sentiment-analysis-dataset
language:
- en
task_categories:
- text-classification
task_ids:
- sentiment-classification
tags:
- sentiment-analysis
- text-classification
- balanced-dataset
- oversampling
- csv
pretty_name: Sentiment Analysis Dataset (Imbalanced)
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_examples: 83989
- name: validation
num_examples: 10499
- name: test
num_examples: 10499
format: csv
---
# Sentiment Analysis Dataset
## Overview
This dataset is designed for sentiment analysis tasks, providing labeled examples across three sentiment categories:
- **0**: Negative
- **1**: Neutral
- **2**: Positive
It is suitable for training, validating, and testing text classification models in tasks such as social media sentiment analysis, customer feedback evaluation, and opinion mining.
---
## Dataset Details
### Key Features
- **Type**: CSV
- **Language**: English
- **Labels**:
- `0`: Negative
- `1`: Neutral
- `2`: Positive
- **Pre-processing**:
- Duplicates removed
- Null values removed
- Cleaned for consistency
### Dataset Split
| Split | Rows |
|--------------|--------|
| **Train** | 83,989 |
| **Validation** | 10,499 |
| **Test** | 10,499 |
### Format
Each row in the dataset consists of the following columns:
- `text`: The input text data (e.g., sentences, comments, or tweets).
- `label`: The corresponding sentiment label (`0`, `1`, or `2`).
---
## Usage
### Installation
Download the dataset from the [Hugging Face Hub](https://huggingface.co/datasets/your-dataset-path) or your preferred storage location.
### Loading the Dataset
#### Using Pandas
```python
import pandas as pd
# Load the train dataset
train_df = pd.read_csv("path_to_train.csv")
print(train_df.head())
# Columns: text, label
```
#### Using Hugging Face's `datasets` Library
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("your-dataset-path")
# Access splits
train_data = dataset["train"]
validation_data = dataset["validation"]
test_data = dataset["test"]
# Example: Printing a sample
print(train_data[0])
```
---
## Example Usage
Here’s an example of using the dataset to fine-tune a sentiment analysis model with the [Hugging Face Transformers](https://huggingface.co/transformers) library:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
# Load dataset
dataset = load_dataset("your-dataset-path")
# Load model and tokenizer
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
# Tokenize dataset
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Prepare training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
load_best_model_at_end=True,
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
)
# Train model
trainer.train()
```
---
## Applications
This dataset can be used for:
1. **Social Media Sentiment Analysis**: Understand the sentiment of posts or tweets.
2. **Customer Feedback Analysis**: Evaluate reviews or feedback.
3. **Product Sentiment Trends**: Monitor public sentiment about products or services.
---
## License
This dataset is released under the **[Insert Your Chosen License Here]**. Ensure proper attribution if used in academic or commercial projects.
---
## Citation
If you use this dataset, please cite it as follows:
```
@dataset{your_name_2024,
title = {Sentiment Analysis Dataset},
author = {Syed Khalid Hussain},
year = {2024},
url = {https://huggingface.co/datasets/syedkhalid076/Sentiment-Analysis}
}
```
---
## Acknowledgments
This dataset was curated and processed by **Syed Khalid Hussain**. The author takes care to ensure high-quality data, enabling better model performance and reproducibility.
---
**Author**: Syed Khalid Hussain |
laudite-ufg/preview-dialogos-sinteticos-toucantts | laudite-ufg | "2024-12-03T15:44:42Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T15:44:29Z" | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: Dialog
dtype: int64
- name: Turn
dtype: int64
- name: Speaker
dtype: string
- name: Voice
dtype: float64
- name: Sentence
dtype: string
splits:
- name: train
num_bytes: 40183930.0
num_examples: 204
download_size: 39053433
dataset_size: 40183930.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
laudite-ufg/preview-dialogos-sinteticos-yourtts | laudite-ufg | "2024-12-03T15:46:03Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T15:45:49Z" | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: Dialog
dtype: int64
- name: Turn
dtype: int64
- name: Speaker
dtype: string
- name: Voice
dtype: float64
- name: Sentence
dtype: string
splits:
- name: train
num_bytes: 33497754.0
num_examples: 204
download_size: 28546030
dataset_size: 33497754.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
zccneil/codelingua_dataset | zccneil | "2024-12-03T16:13:50Z" | 7 | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T16:02:54Z" | ---
license: apache-2.0
---
|
lazarerd/ClassicInstruments | lazarerd | "2024-12-03T16:17:56Z" | 7 | 0 | [
"license:mit",
"region:us"
] | null | "2024-12-03T16:17:56Z" | ---
license: mit
---
|
dgambettaphd/D_gen10_run2_llama2-7b_wiki_doc1000_real32_synt96 | dgambettaphd | "2024-12-03T16:21:49Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T16:21:46Z" | ---
dataset_info:
features:
- name: id
dtype: int64
- name: doc
dtype: string
splits:
- name: train
num_bytes: 523819
num_examples: 1000
download_size: 288479
dataset_size: 523819
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
tel4vn/data | tel4vn | "2024-12-03T16:33:44Z" | 7 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2024-12-03T16:33:44Z" | ---
license: apache-2.0
---
|
juliadollis/teste3_personal_gpt | juliadollis | "2024-12-03T17:03:31Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T17:03:28Z" | ---
dataset_info:
features:
- name: Texto
dtype: string
- name: Estrategia de Prompt
dtype: string
splits:
- name: train
num_bytes: 107011
num_examples: 225
download_size: 46854
dataset_size: 107011
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
iamwillferguson/StockSensei_Ground_Truth | iamwillferguson | "2024-12-03T18:02:11Z" | 7 | 1 | [
"size_categories:1K<n<10K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"financial",
"stock",
"prototype",
"ground_truth"
] | null | "2024-12-03T17:44:32Z" | ---
tags:
- financial
- stock
- prototype
- ground_truth
pretty_name: 'StockSensei: AI-Powered Stock Analysis'
---
# Financial Advice Finetuning Ground Truth Dataset
Georgia Institute of Technology, College of Computing
Authors: Hersh Dhillon, Mathan Mahendran, Will Ferguson, Ayushi Mathur, Dorsa Ajami
December 2024
## Motivation
Given the unprecendented rise of day trading, social-media based financial advice, and trading apps, more people then ever are buying and selling stocks
without proper financial literacy. Oftentimes, people make high-risk trades with little more quantitative evidence than a social media endorsement or an online
trend.
Therefore, it is more important than ever that access to factual, accurate, and easy-to-understand financial information. However, there are significant ethical concerns
in providing financial advice over the internet, leaving many consumers without access to clear information. AI and Large Language Models provide an interesting opportunity to
optimize a consumer's information access without providing direct financial advice. Unfortunately, developers have little to no open-source resources to train models towards this
specific task.
It is for this reason that we are publishing this preliminary ground-truth dataset as a resource for future developers. This was made in conjuction with our project [StockSensei: AI-Powered Stock Analysis](https://www.stocksenseiapp.xyz),
and is intended to serve as a benchmark evaluation suite for LLMs fine-tuned on financial contexts.
## Overview
This dataset currently contains two file:
- The ground truth dataset of question and answer pairs
- Created using Gemini-1.5-Flash and Langchain
- Our evaluation results after fine-tuning the following LLMs on a collection of SEC 10-K filings:
- LLaMa 3.2 (3B, 1B)
- Phi3-Mini (0.5B Parameters)
- Mistral-7B
- Gemini 1.5-Flash
This dataset can be used as a starting point for projects of larger scope or more depth, or serve as a readymade ground truth source for similar applications.
## Future Work
This project field would immediately benefit from the following improvements on our work
- A larger, more in-depth ground truth dataset that is less bound by budget constraints and rate limits
- More research into a bespoke numerical metric for applications relation to financial advice
- Published results against this ground-truth of significantly larger models
## Note
The source code of our project is currently unavailable to release, as it is relevant to an ongoing course at Georgia Institute of Technology.
If it is approved for relase at any point, a link to the open-source code will be included on this model card. |
davidfred/data_stress.csv | davidfred | "2024-12-03T18:43:01Z" | 7 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:csv",
"modality:tabular",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T18:39:44Z" | ---
license: mit
---
input_features = {
"snoring range": "60",
"respiration rate": "20",
"body temperature": "96",
"limb movement": "10",
"blood oxygen ": "95",
"eye movement": "85",
"hours of sleep": "7",
"heart rate ": "60",
}
These are the physiological parameters for which you want to predict the stress level.
Creating a Text Representation:
The features are converted into a text string that the model can process:
python
input_text = ", ".join([f"{key}: {value}" for key, value in input_features.items()])
This results in:
javascript
snoring range: 60, respiration rate: 20, body temperature: 96, limb movement: 10, blood oxygen : 95, eye movement: 85, hours of sleep: 7, heart rate : 60
Generating the Prediction:
The generate_prediction function uses the trained model to predict the stress level:
python
prediction = generate_prediction(model, tokenizer, input_text)
Inside this function:
The input text is tokenized and converted into tensors.
The model processes the input and outputs a numerical value representing the predicted stress level.
Displaying the Output:
The script then prints:
python
print("Input Features:")
print(input_text)
print("\nGenerated Prediction:")
print(prediction)
For example, the output might be:
javascript
Input Features:
snoring range: 60, respiration rate: 20, body temperature: 96, limb movement: 10, blood oxygen : 95, eye movement: 85, hours of sleep: 7, heart rate : 60
Generated Prediction:
2.5
Interpretation
Generated Prediction (2.5 in the example): This numerical value is the stress level predicted by your model for the given input features.
Scale of Stress Levels: The exact meaning depends on how stress levels are defined in your dataset. Assuming your stress levels are on a scale from 0 to 4:
0 could represent no stress.
4 could represent high stress.
Predicted Stress Level 2.5: This would indicate a moderate stress level according to your model's prediction.
What This Means
Personalized Assessment: The model provides an automated assessment of stress level based on physiological data.
Potential Applications:
Health Monitoring: Can be used in wellness apps to monitor user stress levels.
Stress Management: Helps in identifying stress triggers and managing stress proactively.
Important Considerations
Model Accuracy:
The reliability of the prediction depends on the quality and size of your training data.
If the dataset is small or not representative, predictions may not be accurate.
Data Consistency:
Ensure that the input features are in the same format and units as those used during training.
Any discrepancy can affect the prediction accuracy.
Model Evaluation:
Evaluate your model's performance using metrics like Mean Squared Error (MSE) or R-squared on a test dataset.
Cross-validation can help in assessing how well the model generalizes to unseen data.
Ethical and Privacy Concerns:
Be mindful of user privacy when collecting physiological data.
Ensure compliance with data protection regulations.
|
k4d3/lindong | k4d3 | "2024-12-05T10:31:02Z" | 7 | 1 | [
"license:wtfpl",
"size_categories:n<1K",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T19:13:48Z" | ---
license: wtfpl
---
|
taufiqsyed/salami_neural_demo_enriched | taufiqsyed | "2024-12-03T19:19:33Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T19:19:20Z" | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: song_id
dtype: string
- name: structure
dtype: string
- name: start_time
dtype: float64
- name: end_time
dtype: float64
- name: tempos
dtype: string
- name: keys
dtype: string
- name: instruments
dtype: string
- name: genres
dtype: string
- name: moods
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 26462307.0
num_examples: 10
- name: eval
num_bytes: 84679315.0
num_examples: 32
download_size: 108368116
dataset_size: 111141622.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: eval
path: data/eval-*
---
|
weqweasdas/new_8b_self_corr_standard | weqweasdas | "2024-12-03T19:54:48Z" | 7 | 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T19:46:05Z" | ---
dataset_info:
features:
- name: idx
dtype: int64
- name: gt
dtype: string
- name: my_solu
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: conversations
list:
- name: content
dtype: string
- name: role
dtype: string
- name: turn
dtype: int64
- name: self_correct
dtype: bool
- name: ans_correct
dtype: bool
splits:
- name: train
num_bytes: 33092312445
num_examples: 2573667
download_size: 12815699361
dataset_size: 33092312445
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
mlgawd/final_dpo_nemo_v5 | mlgawd | "2024-12-03T19:48:50Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T19:48:47Z" | ---
dataset_info:
features:
- name: questions
dtype: string
- name: accepted
dtype: string
- name: rejected
dtype: string
splits:
- name: train
num_bytes: 28102869
num_examples: 5877
download_size: 15924726
dataset_size: 28102869
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
hayleecs/PhySO-expressions-100K | hayleecs | "2024-12-03T19:54:52Z" | 7 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T19:54:51Z" | ---
dataset_info:
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 5508882
num_examples: 104289
download_size: 1352922
dataset_size: 5508882
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
aamixsh/GENEEG | aamixsh | "2024-12-03T20:42:43Z" | 7 | 0 | [
"license:mit",
"region:us"
] | null | "2024-12-03T20:15:38Z" | ---
license: mit
---
The raw files contain raw EEG values (`.eeg` files) for patients, with corresponding:
1. `.art` files that denote level of artifact at a given time position. 0 -- No noise, 1 and more -- Noise.
2. `.evt` files that denote external stimulus at a given time position.
The `.pkl` files contain filtered data from patients as a dictionary of numpy arrays which have been artifact filtered (only 0 noise level), and contig length (200 here) chopped.
The dictionary has two keys "wmci" and "wctrl", representing the two classes MCI and Control for the WAVi dataset.
Each element in the dictionary is a list of patients data stored as a list of arrays.
```
-wmci
|-patient 1
||-contig 1 (a [17 x 200] array)
||-contig 2
||...
||-contig N_1 (number of contigs for patient 1)
|-patient 2
||-contig 1 (a [17 x 200] array)
||-contig 2
||...
||-contig N_2
|...
-wctrl
|-patient 1
|...
``` |
all-oj-gen/ds_chat_pos_reflct_rmsprop_iter2_sppo_hard_new_all_oj_iter2-bin | all-oj-gen | "2024-12-03T21:17:56Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T21:17:54Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: rejected_traceback
dtype: string
- name: chosen_probs
dtype: float64
- name: chosen_probs_win
dtype: float64
- name: chosen_probs_lose
dtype: float64
splits:
- name: train
num_bytes: 15411027
num_examples: 5281
download_size: 6477945
dataset_size: 15411027
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_chat_pos_reflct_rmsprop_iter2_sppo_hard_new_all_oj_iter2-bin"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
all-oj-gen/ds_chat_pos_reflct_rmsprop_iter2_sppo_hard_new_all_oj_iter2-full_resp_trace | all-oj-gen | "2024-12-03T21:17:58Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T21:17:56Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: test
dtype: string
- name: tag
dtype: string
- name: id
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
- name: text_prompt
dtype: string
- name: text_chosen
dtype: string
- name: text_rejected
dtype: string
- name: generate_0
dtype: string
- name: generate_0_score
dtype: int64
- name: traceback_0
dtype: string
- name: generate_1
dtype: string
- name: generate_1_score
dtype: int64
- name: traceback_1
dtype: string
- name: generate_2
dtype: string
- name: generate_2_score
dtype: int64
- name: traceback_2
dtype: string
- name: generate_3
dtype: string
- name: generate_3_score
dtype: int64
- name: traceback_3
dtype: string
- name: probability
sequence:
sequence: float64
- name: rm_scores
sequence: int64
splits:
- name: train
num_bytes: 38877377
num_examples: 5281
download_size: 15014539
dataset_size: 38877377
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_chat_pos_reflct_rmsprop_iter2_sppo_hard_new_all_oj_iter2-full_resp_trace"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
all-oj-gen/ds_chat_pos_reflct_rmsprop_iter2_sppo_hard_new_all_oj_iter2-bin_all_pairs | all-oj-gen | "2024-12-03T21:18:00Z" | 7 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T21:17:59Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: rejected_traceback
dtype: string
- name: test
dtype: string
splits:
- name: train
num_bytes: 31899339
num_examples: 10535
download_size: 9045135
dataset_size: 31899339
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_chat_pos_reflct_rmsprop_iter2_sppo_hard_new_all_oj_iter2-bin_all_pairs"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
miguelribeirokk/crime_tweets_in_portuguese | miguelribeirokk | "2024-12-06T12:47:03Z" | 7 | 0 | [
"language:pt",
"license:cc-by-4.0",
"size_categories:10K<n<100K",
"format:csv",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T21:20:26Z" | ---
license: cc-by-4.0
language:
- pt
pretty_name: ' CrimeTrack: A Comprehensive Dataset of Crime-Related Tweets in Portuguese with Sentiment, Toxicity, and Location Information'
size_categories:
- 10K<n<100K
---
## CrimeTrack: A Comprehensive Dataset of Crime-Related Tweets in Portuguese with Sentiment, Toxicity, and Location Information
This dataset contains 61.715 tweets related to possible crime reports, labeled with categories such as "Assalto", "Roubo", "Furto", "Assédio", "Segurança Pública", "Homicídio, and "Outros", along with sentiment analysis, toxicity analysis, and location identification.
A particular feature in the Portuguese language is that many words potentially related to crimes are used in non-criminal contexts, such as "O árbitro assaltou meu time ontem" (which translates to "The referee attacked my team yesterday" but in this case refers to something like a sports context, not an actual crime). Therefore, the dataset includes a KEYWORD column: if the keyword column is marked as 1 and the CRIME column is 0, this suggests the phrase may be ambiguous.
The dataset contains 5.000 tweets with actual crime reports, 5.000 with ambiguous expressions, and the remaining tweets are unrelated.
- **Sentiment Analysis 🙂**: The sentiment analysis was performed using PYsentimiento, which categorizes sentiments as Negative, Neutral, or Positive. More information can be found here: [Pysentimiento](https://pypi.org/project/pysentimiento/0.5.2rc3/)
- **Toxicity Analysis ☠️**: The toxicity analysis covers categories such as toxicity, severe toxicity, insult, profanity, threat, and identity attack, performed using the [Perspective API](https://perspectiveapi.com/).
- **Local ⛱️**: The entity recognition model is focused on identifying named entities, specifically locations mentioned in the tweets. The approach used for this can be found here: [Named Entity Recognition for Legal Domain](https://medium.com/@pierre_guillou/nlp-modelos-e-web-app-para-reconhecimento-de-entidade-nomeada-ner-no-dom%C3%ADnio-jur%C3%ADdico-b658db55edfb).
All tweets were preprocessed by removing special characters, converting to lowercase, and eliminating links.
### About this file
This dataset contains 61.715 tweets, organized into 21 columns:
1. **id**: A unique identifier for each tweet, ranging from 1 to 61.715.
2. **text**: The preprocessed text of the tweet.
3. **Perspective API Columns**:
- INSULT: A score from 0 to 1 indicating how insulting the tweet is.
- IDENTITY_ATTACK: A score from 0 to 1 indicating the presence of identity attacks.
- SEVERE_TOXICITY: A score from 0 to 1 indicating the severity of toxicity in the tweet.
- THREAT: A score from 0 to 1 indicating the presence of threats in the tweet.
- PROFANITY: A score from 0 to 1 indicating the presence of profanity in the tweet.
- TOXICITY: A score from 0 to 1 indicating the overall toxicity of the tweet.
4.**Sentiment Analysis Columns**:
- POSITIVE: A score from 0 to 1 indicating how positive the tweet is.
- NEUTRAL: A score from 0 to 1 indicating how neutral the tweet is.
- NEGATIVE: A score from 0 to 1 indicating how negative the tweet is.
5. **Crime Labels (1 or 0, indicating whether the tweet relates to a specific crime)**:
- ASSALTO (Assault)
- ROUBO (Robbery)
- FURTO (Theft)
- ASSEDIO (Harassment)
- SPUBLICA (Public Security)
- HOMICIDIO (Homicide)
- OUTRO (Other)
6. **CRIME**: A binary value (1 or 0) indicating whether the tweet contains a reference to a crime.
7. **KEYWORD**: A binary value (1 or 0) indicating the presence of a keyword potentially related to a crime.
8. **LOCAL**: A binary value (1 or 0) indicating whether a location is mentioned in the tweet.
### Sources
NTSScraper, Twitter API, [Kaggle public dataset](https://www.kaggle.com/datasets/augustop/portuguese-tweets-for-sentiment-analysis)
### Collection Methodology
- **5000** tweets from [NTSScraper](https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://pypi.org/project/ntscraper/&ved=2ahUKEwiWwMmrlpOKAxWhQ7gEHYPyEt4QFnoECA0QAQ&usg=AOvVaw31NZ3phyA6R_9I324h6UQd): crime-related keywords (robbery, assault, etc.) and locations (streets, squares, etc);
- **5000** tweets from [Twitter API](https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://developer.x.com/en/docs/x-api&ved=2ahUKEwiPzsa8lpOKAxWmr5UCHdVwMLgQFnoECA0QAQ&usg=AOvVaw3JjDYY5eHRQYvC_sxMBI-2): crime-related keywords (when it was freely available for academic research);
- **51715** tweets from [Portuguese Tweets for Sentiment Analysis](https://www.kaggle.com/datasets/augustop/portuguese-tweets-for-sentiment-analysis): crime-related keywords and other tweets without context |
jvandomburgh/study_skills | jvandomburgh | "2024-12-03T21:52:36Z" | 7 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2024-12-03T21:52:36Z" | ---
license: apache-2.0
---
|
mathreward/new_llama3_8b_3epoch | mathreward | "2024-12-03T22:28:26Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T22:28:24Z" | ---
dataset_info:
features:
- name: idx
dtype: int64
- name: gt
dtype: string
- name: my_solu
dtype: string
splits:
- name: train
num_bytes: 23357379
num_examples: 5000
download_size: 8366148
dataset_size: 23357379
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
theojiang/CIVETv2_key_idea_retrieval_dataset_v3.2_gtebase_msmarco | theojiang | "2024-12-03T22:48:01Z" | 7 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T22:45:25Z" | ---
dataset_info:
config_name: data
features:
- name: passage_input_ids
sequence:
sequence: int64
- name: passage_attention_mask
sequence:
sequence: int64
- name: question_embeddings
sequence:
sequence:
sequence: float32
splits:
- name: train
num_bytes: 291107008
num_examples: 55491
- name: validation
num_bytes: 2681698.951096581
num_examples: 500
download_size: 222612190
dataset_size: 293788706.9510966
configs:
- config_name: data
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
|
julianamarques/tabela-taco | julianamarques | "2024-12-03T23:31:26Z" | 7 | 0 | [
"language:pt",
"license:cc0-1.0",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"food",
"brazil"
] | null | "2024-12-03T22:47:28Z" | ---
license: cc0-1.0
language:
- pt
tags:
- food
- brazil
pretty_name: tabela-taco
---
# Dataset: TACO - Tabela Brasileira de Composição de Alimentos
The TACO Table is the reference nutritional table for foods consumed in Brazil. The information contained in this dataset was taken from the excel file made available by NEPA - Center for Studies and Research in Food at UNICAMP, through the link:
https://nepa.unicamp.br/publicacoes/tabela-taco-excel/
|
dakies/verilog_dataset_near_dedup | dakies | "2024-12-03T23:24:45Z" | 7 | 0 | [
"task_categories:text-generation",
"license:mit",
"region:us"
] | [
"text-generation"
] | "2024-12-03T23:03:54Z" | ---
license: mit
task_categories:
- text-generation
---
Original dataset size: 21725
Number of duplicate clusters: 2951
Files in duplicate cluster: 8054
Unique files in duplicate cluster: 3781
Filtered dataset size: 17452
Time to deduplicate dataset: 7.37
Size of deduplicated dataset: 17452, old dataset size 21725 |
mathreward/new_8b_llama31_3epoch_selfcorr_horizon2_tmp07 | mathreward | "2024-12-03T23:17:13Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T23:17:01Z" | ---
dataset_info:
features:
- name: idx
dtype: int64
- name: gt
dtype: string
- name: level
dtype: string
- name: type
dtype: string
- name: my_solu
dtype: string
- name: pred
sequence: string
splits:
- name: train
num_bytes: 23759204
num_examples: 5000
download_size: 7318365
dataset_size: 23759204
---
# Dataset Card for "new_8b_llama31_3epoch_selfcorr_horizon2_tmp0"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
dakies/OSS_Verilog_Near_Dedup | dakies | "2024-12-03T23:47:05Z" | 7 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-03T23:35:45Z" | ---
dataset_info:
features:
- name: module
dtype: string
splits:
- name: train
num_bytes: 87198656
num_examples: 17473
download_size: 23240516
dataset_size: 87198656
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
CambioMoney/ami-speaker-analysis_deepgram_run_validation | CambioMoney | "2024-12-04T00:32:55Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T00:32:53Z" | ---
dataset_info:
features:
- name: meeting_id
dtype: string
- name: audio_id
dtype: string
- name: text
dtype: string
- name: audio
struct:
- name: array
sequence: float64
- name: path
dtype: string
- name: sampling_rate
dtype: int64
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: microphone_id
dtype: string
- name: speaker_id
dtype: string
- name: is_complete
dtype: bool
- name: original_segment
dtype: bool
- name: confidence
dtype: float64
splits:
- name: train
num_bytes: 364165
num_examples: 2
download_size: 73560
dataset_size: 364165
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ramdaZ/HoshinoAI | ramdaZ | "2024-12-04T01:03:53Z" | 7 | 0 | [
"license:llama3.2",
"region:us"
] | null | "2024-12-04T01:03:53Z" | ---
license: llama3.2
---
|
juliadollis/mistral_gptv3_2fewshot_limiar2 | juliadollis | "2024-12-04T01:24:32Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T01:24:30Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: target_group
dtype: string
- name: factual?
dtype: string
- name: ingroup_effect
dtype: string
- name: lewd
dtype: string
- name: framing
dtype: string
- name: predicted_group
dtype: string
- name: stereotyping
dtype: string
- name: intent
dtype: float64
- name: toxicity_ai
dtype: float64
- name: toxicity_human
dtype: float64
- name: predicted_author
dtype: string
- name: actual_method
dtype: string
- name: is_toxic
dtype: int64
- name: predicted_is_toxic
dtype: int64
- name: y_true
dtype: int64
splits:
- name: train
num_bytes: 393176
num_examples: 940
download_size: 83147
dataset_size: 393176
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
infinite-dataset-hub/DocNER_German | infinite-dataset-hub | "2024-12-04T01:26:51Z" | 7 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"infinite-dataset-hub",
"synthetic"
] | null | "2024-12-04T01:26:50Z" | ---
license: mit
tags:
- infinite-dataset-hub
- synthetic
---
# DocNER_German
tags: Named Entity Recognition, German, Corporate, Legal Documents
_Note: This is an AI-generated dataset so its content may be inaccurate or false_
**Dataset Description:**
The 'DocNER_German' dataset is a collection of German corporate and legal documents annotated for Named Entity Recognition (NER) purposes. It contains texts extracted from real-world scenarios including contracts, agreements, and corporate communications. Each document has been labeled with entities such as 'Person', 'Organization', 'Location', 'Date', 'Money', 'LegalTerm', and 'Event'.
**CSV Content Preview:**
```csv
Document ID,Text,Labels
001,Dies ist eine Referenzzahlung an die Beteiligten des Kartells. Die Zahlung soll im Juni erfolgen. Labels: Person, Event, Money
002,Unser neues Büro befindet sich in der Berliner Straße 123. Es wird am 1. Juli bezogen. Labels: Location, Date
003,Der Vertrag wurde unterzeichnet von Herrn Müller und Frau Schmidt am 5. April. Labels: Person
004,Die GmbH hat kürzlich einen Vertrag mit dem Partnerunternehmen für den Vertrieb abgeschlossen. Labels: Organization, Event
005,Das Kapitalanteil wurde letztes Jahr im Mai aufgestockt. Der neue Anteil beträgt 35%. Labels: Money, Event
```
**Source of the data:**
The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query 'German Doc':
- **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=German+Doc&dataset=DocNER_German&tags=Named+Entity+Recognition,+German,+Corporate,+Legal+Documents
- **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
- **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
|
Cyberz/DatensatzTextErkennung | Cyberz | "2024-12-04T01:54:01Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif",
"datacraft"
] | null | "2024-12-04T01:53:59Z" | ---
size_categories: n<1K
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': persönlich
'1': e-mail
'2': interne-mitteilung
'3': technischer-bericht
'4': protokoll
'5': marketingmaterial
'6': wichtig
'7': ausarbeit
'8': auftrag
'9': kundenbeschwerde
'10': geschäftsbrief
'11': information
'12': behörden
'13': pressemitteilung
'14': projektplan
'15': amt
'16': vertrag
'17': rechnung
splits:
- name: train
num_bytes: 4108
num_examples: 10
download_size: 6199
dataset_size: 4108
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
- datacraft
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for DatensatzTextErkennung
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/Cyberz/DatensatzTextErkennung/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/Cyberz/DatensatzTextErkennung/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"label": 10,
"text": "Dear Sir/Madam, I am writing to inform you that the delivery of goods has been postponed due to unforeseen circumstances. The new estimated date of delivery is now set for the 15th of next month. Please note that we will provide an updated delivery schedule in due course. Thank you for your understanding and cooperation."
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("Cyberz/DatensatzTextErkennung", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("Cyberz/DatensatzTextErkennung")
```
</details>
|
dgambettaphd/D_gen3_run2_llama2-7b_wiki_doc1000_real64_synt64 | dgambettaphd | "2024-12-04T02:01:27Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T02:01:24Z" | ---
dataset_info:
features:
- name: id
dtype: int64
- name: doc
dtype: string
splits:
- name: train
num_bytes: 586437
num_examples: 1000
download_size: 355187
dataset_size: 586437
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
julia-se/tracka_qwen_fewshot_disgust | julia-se | "2024-12-04T03:00:21Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T02:42:57Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: text
dtype: string
- name: Anger
dtype: int64
- name: Disgust
dtype: int64
- name: Fear
dtype: int64
- name: Joy
dtype: int64
- name: Sadness
dtype: int64
- name: Surprise
dtype: int64
- name: predicted_is_disgust
dtype: int64
- name: y_disgust
dtype: int64
splits:
- name: train
num_bytes: 472807
num_examples: 2226
download_size: 216687
dataset_size: 472807
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
dgambettaphd/D_gen4_run2_llama2-7b_wiki_doc1000_real64_synt64 | dgambettaphd | "2024-12-04T03:08:18Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T03:08:16Z" | ---
dataset_info:
features:
- name: id
dtype: int64
- name: doc
dtype: string
splits:
- name: train
num_bytes: 586820
num_examples: 1000
download_size: 355310
dataset_size: 586820
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
iammytoo/vl-mia | iammytoo | "2024-12-04T03:17:32Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:image",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T03:17:11Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype: int64
splits:
- name: train
num_bytes: 46806497.0
num_examples: 596
download_size: 46384186
dataset_size: 46806497.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
slbimp/sdkdateset | slbimp | "2024-12-04T03:49:58Z" | 7 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"region:us"
] | null | "2024-12-04T03:20:34Z" | ---
license: mit
---
|
julia-se/tracka_qwen_zeroshot_anger | julia-se | "2024-12-04T03:30:05Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T03:30:04Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: text
dtype: string
- name: Anger
dtype: int64
- name: Disgust
dtype: int64
- name: Fear
dtype: int64
- name: Joy
dtype: int64
- name: Sadness
dtype: int64
- name: Surprise
dtype: int64
- name: predicted_is_anger
dtype: int64
- name: y_anger
dtype: int64
splits:
- name: train
num_bytes: 472807
num_examples: 2226
download_size: 220741
dataset_size: 472807
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
dgambettaphd/D_gen5_run2_llama2-7b_wiki_doc1000_real64_synt64 | dgambettaphd | "2024-12-04T04:16:15Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T04:16:12Z" | ---
dataset_info:
features:
- name: id
dtype: int64
- name: doc
dtype: string
splits:
- name: train
num_bytes: 586818
num_examples: 1000
download_size: 355110
dataset_size: 586818
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
all-oj-gen/ds_chat_pos_reflct_rmsprop_iter4_sppo_hard_new_all_oj_iter4-full_resp_trace | all-oj-gen | "2024-12-04T04:28:04Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T04:28:03Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: test
dtype: string
- name: tag
dtype: string
- name: id
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
- name: text_prompt
dtype: string
- name: text_chosen
dtype: string
- name: text_rejected
dtype: string
- name: generate_0
dtype: string
- name: generate_0_score
dtype: int64
- name: traceback_0
dtype: string
- name: generate_1
dtype: string
- name: generate_1_score
dtype: int64
- name: traceback_1
dtype: string
- name: generate_2
dtype: string
- name: generate_2_score
dtype: int64
- name: traceback_2
dtype: string
- name: generate_3
dtype: string
- name: generate_3_score
dtype: int64
- name: traceback_3
dtype: string
- name: probability
sequence:
sequence: float64
- name: rm_scores
sequence: int64
splits:
- name: train
num_bytes: 36570548
num_examples: 4898
download_size: 14321011
dataset_size: 36570548
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_chat_pos_reflct_rmsprop_iter4_sppo_hard_new_all_oj_iter4-full_resp_trace"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
all-oj-gen/ds_chat_pos_reflct_rmsprop_iter4_sppo_hard_new_all_oj_iter4-bin_all_pairs | all-oj-gen | "2024-12-04T04:28:07Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T04:28:05Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: rejected_traceback
dtype: string
- name: test
dtype: string
splits:
- name: train
num_bytes: 29905524
num_examples: 9774
download_size: 8573243
dataset_size: 29905524
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_chat_pos_reflct_rmsprop_iter4_sppo_hard_new_all_oj_iter4-bin_all_pairs"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
lomit/B3M5d3_Fundamentals_of_Financial_Management | lomit | "2024-12-04T04:43:44Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T04:43:39Z" | ---
dataset_info:
features:
- name: input
dtype: string
- name: actual_output
dtype: 'null'
- name: expected_output
dtype: string
- name: context
sequence: string
- name: retrieval_context
dtype: 'null'
- name: n_chunks_per_context
dtype: int64
- name: context_length
dtype: int64
- name: evolutions
sequence: string
- name: context_quality
dtype: 'null'
- name: synthetic_input_quality
dtype: float64
- name: source_file
dtype: 'null'
splits:
- name: train
num_bytes: 2008107
num_examples: 1144
download_size: 818026
dataset_size: 2008107
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/orm_5e6_bz128_head_test_mistral_math | 1231czx | "2024-12-04T05:15:55Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T05:15:51Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: answers
sequence: string
- name: rewards
sequence: float64
- name: label
sequence: int64
splits:
- name: train
num_bytes: 318457011
num_examples: 500
download_size: 71900914
dataset_size: 318457011
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
dgambettaphd/D_gen6_run2_llama2-7b_wiki_doc1000_real64_synt64 | dgambettaphd | "2024-12-04T05:23:04Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T05:23:01Z" | ---
dataset_info:
features:
- name: id
dtype: int64
- name: doc
dtype: string
splits:
- name: train
num_bytes: 586785
num_examples: 1000
download_size: 354942
dataset_size: 586785
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
dgambettaphd/D_gen7_run2_llama2-7b_wiki_doc1000_real64_synt64 | dgambettaphd | "2024-12-04T06:30:02Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T06:29:59Z" | ---
dataset_info:
features:
- name: id
dtype: int64
- name: doc
dtype: string
splits:
- name: train
num_bytes: 586792
num_examples: 1000
download_size: 354965
dataset_size: 586792
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
dgambettaphd/D_gen8_run2_llama2-7b_wiki_doc1000_real64_synt64 | dgambettaphd | "2024-12-04T07:36:11Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T07:36:08Z" | ---
dataset_info:
features:
- name: id
dtype: int64
- name: doc
dtype: string
splits:
- name: train
num_bytes: 586816
num_examples: 1000
download_size: 354920
dataset_size: 586816
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
helper2424/eval_koch_move_obj | helper2424 | "2024-12-04T07:59:38Z" | 7 | 0 | [
"task_categories:robotics",
"region:us",
"LeRobot",
"tutorial",
"eval"
] | [
"robotics"
] | "2024-12-04T07:44:55Z" | ---
task_categories:
- robotics
tags:
- LeRobot
- tutorial
- eval
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
|
dgambettaphd/D_gen9_run2_llama2-7b_wiki_doc1000_real64_synt64 | dgambettaphd | "2024-12-04T08:43:40Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T08:43:37Z" | ---
dataset_info:
features:
- name: id
dtype: int64
- name: doc
dtype: string
splits:
- name: train
num_bytes: 586813
num_examples: 1000
download_size: 354940
dataset_size: 586813
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
mlgawd/final_dpo_nemo_v16 | mlgawd | "2024-12-04T08:50:54Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T08:50:51Z" | ---
dataset_info:
features:
- name: questions
dtype: string
- name: accepted
dtype: string
- name: rejected
dtype: string
splits:
- name: train
num_bytes: 27178334
num_examples: 5845
download_size: 15360617
dataset_size: 27178334
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
davidberenstein1957/my-distiset-35e8144f | davidberenstein1957 | "2024-12-04T09:48:37Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif",
"datacraft"
] | null | "2024-12-04T09:48:32Z" | ---
size_categories: n<1K
dataset_info:
features:
- name: prompt
dtype: string
- name: completion
dtype: string
- name: system_prompt
dtype: string
splits:
- name: train
num_bytes: 26054
num_examples: 10
download_size: 21240
dataset_size: 26054
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
- datacraft
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for my-distiset-35e8144f
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/davidberenstein1957/my-distiset-35e8144f/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/davidberenstein1957/my-distiset-35e8144f/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"completion": "To find the value of the given expression, we need to follow the order of operations (PEMDAS):\n\n1. Evaluate the exponent `x^2`\n2. Perform the subtraction `2x^2 - 5y`\n3. Square the result of the subtraction\n4. Evaluate the addition `3x` and division `2y / (x + y)`\n5. Add the squared result with the outcome of the addition and division\n\nHere\u0027s how you can implement it using Python:\n\n```python\ndef calculate_expression(x, y):\n # Follow the order of operations\n squared_term = (2 * x ** 2 - 5 * y) ** 2\n division_term = (2 * y) / (x + y)\n addition_term = 3 * x\n final_result = squared_term + addition_term + division_term\n \n return final_result\n\n# Example usage:\nx = 2\ny = 1\nresult = calculate_expression(x, y)\nprint(\"The final result is: \", result)\n```\n\nHowever, we should handle potential division by zero errors by adding a condition to the code:\n\n```python\ndef calculate_expression(x, y):\n # Check for potential division by zero error\n if (x + y) == 0:\n return \"Error: Division by zero\"\n \n # Follow the order of operations\n squared_term = (2 * x ** 2 - 5 * y) ** 2\n division_term = (2 * y) / (x + y)\n addition_term = 3 * x\n final_result = squared_term + addition_term + division_term\n \n return final_result\n\n# Example usage:\nx = 2\ny = 1\nresult = calculate_expression(x, y)\nprint(\"The final result is: \", result)\n```",
"prompt": "Let\u0027s start with a simple math problem. If I have two numbers x and y and some operations performed on them, how can I find the value of the expression: (2x^2 - 5y)^2 + 3x + 2y / (x + y)?",
"system_prompt": "You are a Python-based AI assistant designed to help users solve various mathematical puzzles and problems. Your purpose is to assist in breaking down complex mathematical operations into manageable steps, applying relevant Python coding principles, and providing solutions to a wide range of mathematics-based challenges. Ensure your responses are clear, concise, and accurate in explaining mathematical concepts and Python code. User questions are direct and concise."
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("davidberenstein1957/my-distiset-35e8144f", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("davidberenstein1957/my-distiset-35e8144f")
```
</details>
|
mlgawd/final_dpo_nemo_v22 | mlgawd | "2024-12-04T10:00:01Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T09:59:59Z" | ---
dataset_info:
features:
- name: questions
dtype: string
- name: accepted
dtype: string
- name: rejected
dtype: string
splits:
- name: train
num_bytes: 27177865
num_examples: 5845
download_size: 15359684
dataset_size: 27177865
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kowndinya23/flan2022-zeroshot-wrong-instr-inpt-outp-3200000 | kowndinya23 | "2024-12-04T10:03:24Z" | 7 | 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T10:02:19Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: response
dtype: string
splits:
- name: train
num_bytes: 3080231214
num_examples: 3200000
- name: validation
num_bytes: 23794055
num_examples: 24202
download_size: 1700291301
dataset_size: 3104025269
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
|
davidberenstein1957/my-distiset-a77821df | davidberenstein1957 | "2024-12-04T10:03:35Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif",
"datacraft"
] | null | "2024-12-04T10:03:33Z" | ---
size_categories: n<1K
dataset_info:
features:
- name: prompt
dtype: string
- name: completion
dtype: string
- name: system_prompt
dtype: string
splits:
- name: train
num_bytes: 30888
num_examples: 10
download_size: 21590
dataset_size: 30888
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
- datacraft
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for my-distiset-a77821df
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/davidberenstein1957/my-distiset-a77821df/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/davidberenstein1957/my-distiset-a77821df/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"completion": "### Calculating the Average of an Array of Numbers\n\nTo calculate the average of an array of numbers, we can use the following Python function:\n\n```python\ndef calculate_average(numbers):\n \"\"\"\n Calculate the average of a list of numbers.\n\n Args:\n numbers (list): A list of numbers.\n\n Returns:\n float: The average of the numbers in the list.\n \"\"\"\n if len(numbers) == 0:\n return 0 # or raise an exception, depending on your requirements\n\n return sum(numbers) / len(numbers)\n```\n\nHere\u0027s a breakdown of the function:\n\n* We first check if the input list is empty. If it is, we return 0. You can also choose to raise a `ValueError` or `ZeroDivisionError` instead, depending on your requirements.\n* If the list is not empty, we use the built-in `sum()` function to calculate the sum of all numbers in the list.\n* We then divide the sum by the length of the list using the `len()` function to get the average.\n\nHere\u0027s an example usage of the function:\n\n```python\nnumbers = [1, 2, 3, 4, 5]\naverage = calculate_average(numbers)\nprint(\"Average:\", average) # Output: 3.0\n```\n\nAlternatively, you can use the `statistics` module, which provides a `mean()` function to calculate the average:\n\n```python\nimport statistics\n\nnumbers = [1, 2, 3, 4, 5]\naverage = statistics.mean(numbers)\nprint(\"Average:\", average) # Output: 3.0\n```\n\nBoth methods will produce the same result, but using the `statistics` module is generally more concise and Pythonic.",
"prompt": "What is the average of an array of numbers?\n### Define a function in Python that takes an array of numbers as an input and returns the average of the numbers in the array. \n\n",
"system_prompt": "You are a Python-based AI assistant designed to assist users in solving a wide range of mathematical puzzles and problems. Your purpose is to help users work through complex mathematical concepts, analyze logical relationships, and arrive at accurate solutions using Python code. Provide step-by-step solutions, explain coding concepts, and offer helpful hints and clarification when needed. Offer a variety of Python libraries and techniques for problem-solving, from basic arithmetic to advanced calculus and numerical methods. User questions are direct and concise."
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("davidberenstein1957/my-distiset-a77821df", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("davidberenstein1957/my-distiset-a77821df")
```
</details>
|
kowndinya23/flan2022-zeroshot-task-token-inpt-outp-3200000 | kowndinya23 | "2024-12-04T10:05:31Z" | 7 | 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T10:04:43Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: response
dtype: string
splits:
- name: train
num_bytes: 2160393197
num_examples: 3200000
- name: validation
num_bytes: 17110871
num_examples: 24202
download_size: 1197003393
dataset_size: 2177504068
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
|
1231czx/dstrain_orm_2e6_bz128_head_test_ds_math | 1231czx | "2024-12-04T10:16:00Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T10:15:53Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: answers
sequence: string
- name: rewards
sequence: float64
- name: label
sequence: int64
splits:
- name: train
num_bytes: 521535090
num_examples: 500
download_size: 146150994
dataset_size: 521535090
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/dstrain_orm_2e6_bz128_head_test_ms_math | 1231czx | "2024-12-04T10:17:01Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T10:16:57Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: answers
sequence: string
- name: rewards
sequence: float64
- name: label
sequence: int64
splits:
- name: train
num_bytes: 318457011
num_examples: 500
download_size: 71900257
dataset_size: 318457011
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
davidberenstein1957/my-distiset-61eea3bb | davidberenstein1957 | "2024-12-04T10:32:22Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif",
"datacraft"
] | null | "2024-12-04T10:32:19Z" | ---
size_categories: n<1K
dataset_info:
features:
- name: prompt
dtype: string
- name: completion
dtype: string
- name: system_prompt
dtype: string
splits:
- name: train
num_bytes: 32289
num_examples: 10
download_size: 28849
dataset_size: 32289
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
- datacraft
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for my-distiset-61eea3bb
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/davidberenstein1957/my-distiset-61eea3bb/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/davidberenstein1957/my-distiset-61eea3bb/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"completion": "The equation for the sum of the series 1 + 2 + 3 +... + n is known as the arithmetic series sum. The equation is given by:\n\nS = n * (n + 1) / 2\n\nwhere n is the number of terms in the series, and S is the sum of the series.\n\nHere\u0027s a Python function that calculates the sum of an arithmetic series:\n\n```python\ndef arithmetic_series_sum(n):\n \"\"\"\n Calculate the sum of the first n terms of the arithmetic series 1 + 2 + 3 +... + n.\n\n Args:\n n (int): The number of terms in the series.\n\n Returns:\n int: The sum of the series.\n \"\"\"\n return n * (n + 1) // 2\n\n# Example usage:\nn = 10\nprint(arithmetic_series_sum(n)) # Output: 55\n```\n\nIn this code, the function `arithmetic_series_sum(n)` takes an integer `n` as input and returns the sum of the first `n` terms of the arithmetic series. The `//` operator is used for integer division, which returns the quotient in which the digits after the decimal point are not taken into account.\n\nThis equation can be proven using the formula for the sum of an arithmetic series. If you\u0027re interested, I can provide more information on the proof.",
"prompt": "What is the equation for the sum of the series 1 + 2 + 3 +... + n?",
"system_prompt": "You are a Python-based AI assistant designed to solve a wide range of mathematical puzzles and problems. Your purpose is to assist users in solving equation-based, logic-based, and number theory-based puzzles using Python programming language. Provide step-by-step solutions, share relevant code snippets, and offer explanations for the underlying mathematical concepts. Utilize popular Python libraries and frameworks such as SymPy, NumPy, and Matplotlib as needed. Guide users through the problem-solving process, break down complex concepts into manageable parts, and offer tips for improving their math problem-solving skills in Python. User questions are direct and concise."
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("davidberenstein1957/my-distiset-61eea3bb", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("davidberenstein1957/my-distiset-61eea3bb")
```
</details>
|
davidberenstein1957/my-distiset-d61f0a8f | davidberenstein1957 | "2024-12-04T10:38:21Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif",
"datacraft"
] | null | "2024-12-04T10:38:18Z" | ---
size_categories: n<1K
dataset_info:
features:
- name: prompt
dtype: string
- name: completion
dtype: string
- name: system_prompt
dtype: string
splits:
- name: train
num_bytes: 29835
num_examples: 10
download_size: 26650
dataset_size: 29835
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
- datacraft
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for my-distiset-d61f0a8f
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/davidberenstein1957/my-distiset-d61f0a8f/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/davidberenstein1957/my-distiset-d61f0a8f/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"completion": "You haven\u0027t provided the equation yet. Please provide the equation you\u0027d like help solving, and I\u0027ll be happy to assist you in finding the value of x.",
"prompt": "What is x in the following equation: \n\n",
"system_prompt": "You are an AI assistant designed to assist with solving a wide range of mathematical puzzles and problems using Python programming language. Your purpose is to help users break down complex mathematical concepts into executable code, providing step-by-step solutions and clear explanations for various mathematical puzzles and problems. Guide users through the process of translating mathematical concepts into Python code, offer suggestions for different approaches and techniques, and provide code snippets and examples to illustrate key concepts. User questions are direct and concise."
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("davidberenstein1957/my-distiset-d61f0a8f", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("davidberenstein1957/my-distiset-d61f0a8f")
```
</details>
|
siqi00/llama3_gsm8k_question_gsmlike_unhelpful2_0.6_0.9_50_256 | siqi00 | "2024-12-04T11:02:14Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T11:02:13Z" | ---
dataset_info:
features:
- name: real
list:
- name: content
dtype: string
- name: role
dtype: string
- name: generated_0
list:
- name: content
dtype: string
- name: role
dtype: string
- name: generated_1
list:
- name: content
dtype: string
- name: role
dtype: string
- name: generated_2
list:
- name: content
dtype: string
- name: role
dtype: string
- name: generated_3
list:
- name: content
dtype: string
- name: role
dtype: string
- name: generated_4
list:
- name: content
dtype: string
- name: role
dtype: string
- name: generated_5
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 35644746
num_examples: 7473
download_size: 14237532
dataset_size: 35644746
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
engrodawood/segment_rand | engrodawood | "2024-12-04T11:48:46Z" | 7 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:parquet",
"modality:image",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T11:47:08Z" | ---
license: mit
---
|
AsmaaMahmoudSaeddd/testdataset1 | AsmaaMahmoudSaeddd | "2024-12-04T11:57:18Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:image",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T11:57:13Z" | ---
dataset_info:
features:
- name: image
dtype: image
splits:
- name: train
num_bytes: 90910.0
num_examples: 3
download_size: 90456
dataset_size: 90910.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/ds_data_trained_orm_test_on_mistral_math | 1231czx | "2024-12-04T12:10:02Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T12:09:58Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: answers
sequence: string
- name: label
sequence: int64
- name: step_scores
sequence: float64
splits:
- name: train
num_bytes: 318457011
num_examples: 500
download_size: 71568686
dataset_size: 318457011
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
FacuNdito/MPRAM | FacuNdito | "2024-12-04T20:56:20Z" | 7 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2024-12-04T12:21:20Z" | ---
license: apache-2.0
---
configs:
- config_name: default
data_files:
- split: train
path: "data.csv"
--- |
not-lain/distiset-arabic | not-lain | "2024-12-06T15:01:12Z" | 7 | 0 | [
"language:en",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif",
"datacraft"
] | null | "2024-12-04T12:31:20Z" | ---
language:
- en
size_categories: n<1K
dataset_info:
features:
- name: prompt
dtype: string
- name: completion
dtype: string
- name: system_prompt
dtype: string
splits:
- name: train
num_bytes: 326188
num_examples: 100
download_size: 143758
dataset_size: 326188
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
- datacraft
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for my-distiset-8f4c564d
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/not-lain/my-distiset-8f4c564d/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/not-lain/my-distiset-8f4c564d/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"completion": "Ahmed ibn Abu Jafar Muhammad ibn Jarir al-Tabari (839-923 CE), commonly known as al-Tabari, was a renowned Persian historian, scholar, and theologian from the Abbasid Caliphate, based in present-day Baghdad. He is considered one of the most important historians of the Islamic Golden Age. Al-Tabari\u0027s works had a profound impact on the field of history, particularly in the Middle East and North Africa.\n\n**Significance of Al-Tabari\u0027s Works**\n\nAl-Tabari wrote extensively on various subjects, including history, Quranic exegesis, theology, and hadith (sayings and actions of the Prophet Muhammad). His magnum opus, \"The History of the Prophets and Kings\" (Tarikh al-Rusul wa\u0027l-Muluk), is a comprehensive 32-volume history of the world, from the creation of Adam to the year 915 CE. This work provides a detailed account of the history of the Middle East, North Africa, and Central Asia, covering the rise and fall of empires, dynasties, and important events.\n\n**Impact on History**\n\nAl-Tabari\u0027s works had a significant impact on the development of Islamic historiography and the recording of historical events. His voluminous writings:\n\n1. **Standardized Islamic historiography**: Al-Tabari\u0027s approach to documenting historical events helped establish a standardized methodology for recording and interpreting the past in the Islamic world. His works became a model for later historians, influencing the development of Islamic historiography.\n2. **Provided a comprehensive timeline**: Al-Tabari\u0027s \"History of the Prophets and Kings\" offered a detailed chronological framework of the history of the Middle East and North Africa, stretching back to ancient times. This comprehensive timeline helped establish a shared understanding of the region\u0027s past among scholars and historians.\n3. **Interpreted the Quran and hadith**: Al-Tabari\u0027s exegesis of the Quran and collection of hadith (Prophetic traditions) provided valuable insights into the Islamic faith, its principles, and the lives of the Prophet Muhammad and his companions.\n4. **Documented the rise of Islam**: Al-Tabari\u0027s work shed light on the early days of Islam, providing a detailed account of the Prophet Muhammad\u0027s life, the life of the Companions, and the early Muslim community.\n\n**Legacy**\n\nAl-Tabari\u0027s works have been translated into various languages, including Arabic, Persian, Turkish, and European languages. His impact on Islamic historiography has been profound, and his writings continue to be studied by scholars, historians, and researchers around the world.\n\nThe significance of al-Tabari\u0027s works is not limited to the Islamic world. His comprehensive historical accounts and chronological framework have contributed to a broader understanding of the history of the Middle East, North Africa, and Central Asia, making him an essential figure in the study of world history.\n\nIn the words of the renowned historian, Albert Hourani, \"Al-Tabari was the greatest of all the medieval Islamic historians, and perhaps the greatest of all the medieval historians of the East.\"",
"prompt": "What was the significance of the Tabari, a Persian historian from the ninth century CE, and his impact on history? \n\n",
"system_prompt": "You are an AI assistant dedicated to providing accurate historical information and context about the Middle East and North Africa, with a focus on Arabic history and culture, from the earliest civilizations to the present day. Your purpose is to assist users in understanding key events, figures, and social movements that have shaped the Arab world, as well as the complex interactions and influences between Arab and non-Arab cultures. Provide clear, concise, and well-researched information, and offer additional context or insights that might help users deepen their understanding of these topics. User questions are direct and concise."
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("not-lain/my-distiset-8f4c564d", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("not-lain/my-distiset-8f4c564d")
```
</details>
|
AsmaaMahmoudSaeddd/testdataset5 | AsmaaMahmoudSaeddd | "2024-12-04T13:08:04Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:image",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T13:08:00Z" | ---
dataset_info:
features:
- name: image
dtype: image
splits:
- name: train
num_bytes: 90910.0
num_examples: 3
download_size: 90474
dataset_size: 90910.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
julia-se/tracka_qwen_fewshot_fear | julia-se | "2024-12-04T14:26:30Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T14:26:28Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: text
dtype: string
- name: Anger
dtype: int64
- name: Disgust
dtype: int64
- name: Fear
dtype: int64
- name: Joy
dtype: int64
- name: Sadness
dtype: int64
- name: Surprise
dtype: int64
- name: predicted_is_fear
dtype: int64
- name: y_fear
dtype: int64
splits:
- name: train
num_bytes: 472807
num_examples: 2226
download_size: 220728
dataset_size: 472807
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
open-llm-leaderboard/meta-llama__Llama-3.3-70B-Instruct-details | open-llm-leaderboard | "2024-12-06T14:57:49Z" | 7 | 0 | [
"size_categories:10K<n<100K",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T14:39:18Z" | ---
pretty_name: Evaluation run of meta-llama/Llama-3.3-70B-Instruct
dataset_summary: "Dataset automatically created during the evaluation run of model\
\ [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)\n\
The dataset is composed of 38 configuration(s), each one corresponding to one of\
\ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\
\ be found as a specific split in each configuration, the split being named using\
\ the timestamp of the run.The \"train\" split is always pointing to the latest\
\ results.\n\nAn additional configuration \"results\" store all the aggregated results\
\ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\
```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/meta-llama__Llama-3.3-70B-Instruct-details\"\
,\n\tname=\"meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_boolean_expressions\"\
,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\
\ from run 2024-12-04T14-39-18.066641](https://huggingface.co/datasets/open-llm-leaderboard/meta-llama__Llama-3.3-70B-Instruct-details/blob/main/meta-llama__Llama-3.3-70B-Instruct/results_2024-12-04T14-39-18.066641.json)\
\ (note that there might be results for other tasks in the repos if successive evals\
\ didn't cover the same tasks. You find each in the results and the \"latest\" split\
\ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\
\ \"acc,none\": 0.5331615691489362,\n \"acc_stderr,none\"\
: 0.004548433564124718,\n \"prompt_level_loose_acc,none\": 0.8927911275415896,\n\
\ \"prompt_level_loose_acc_stderr,none\": 0.01331353600556568,\n \
\ \"acc_norm,none\": 0.6112336230380075,\n \"acc_norm_stderr,none\"\
: 0.004909869995586035,\n \"prompt_level_strict_acc,none\": 0.8798521256931608,\n\
\ \"prompt_level_strict_acc_stderr,none\": 0.01399155582686473,\n \
\ \"exact_match,none\": 0.0022658610271903325,\n \"exact_match_stderr,none\"\
: 0.001305703553131165,\n \"inst_level_strict_acc,none\": 0.919664268585132,\n\
\ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"inst_level_loose_acc,none\"\
: 0.9280575539568345,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\
,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\
: {\n \"acc_norm,none\": 0.6915466064919285,\n \"acc_norm_stderr,none\"\
: 0.00548646607671526,\n \"alias\": \" - leaderboard_bbh\"\n },\n\
\ \"leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" \
\ - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.916,\n\
\ \"acc_norm_stderr,none\": 0.017578738526776348\n },\n \
\ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\
,\n \"acc_norm,none\": 0.679144385026738,\n \"acc_norm_stderr,none\"\
: 0.03422783320926161\n },\n \"leaderboard_bbh_date_understanding\"\
: {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \
\ \"acc_norm,none\": 0.704,\n \"acc_norm_stderr,none\": 0.028928939388379697\n\
\ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\
: \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.664,\n\
\ \"acc_norm_stderr,none\": 0.029933259094191533\n },\n \
\ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\
,\n \"acc_norm,none\": 0.82,\n \"acc_norm_stderr,none\": 0.02434689065029351\n\
\ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\"\
: \" - leaderboard_bbh_geometric_shapes\",\n \"acc_norm,none\": 0.352,\n\
\ \"acc_norm_stderr,none\": 0.030266288057359866\n },\n \
\ \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\
,\n \"acc_norm,none\": 0.708,\n \"acc_norm_stderr,none\":\
\ 0.028814320402205634\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\
: {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\
,\n \"acc_norm,none\": 0.656,\n \"acc_norm_stderr,none\":\
\ 0.03010450339231644\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\
: {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\
,\n \"acc_norm,none\": 0.624,\n \"acc_norm_stderr,none\":\
\ 0.03069633626739458\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\
: {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\
,\n \"acc_norm,none\": 0.92,\n \"acc_norm_stderr,none\": 0.017192507941463025\n\
\ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\
alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\
: 0.784,\n \"acc_norm_stderr,none\": 0.02607865766373279\n },\n\
\ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\
,\n \"acc_norm,none\": 0.696,\n \"acc_norm_stderr,none\":\
\ 0.029150213374159652\n },\n \"leaderboard_bbh_object_counting\"\
: {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \
\ \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\
\ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\
alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\
: 0.6438356164383562,\n \"acc_norm_stderr,none\": 0.03976754138601307\n\
\ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \
\ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\
\ \"acc_norm,none\": 0.892,\n \"acc_norm_stderr,none\": 0.019669559381568776\n\
\ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\
\ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.852,\n \
\ \"acc_norm_stderr,none\": 0.022503547243806186\n },\n \"\
leaderboard_bbh_salient_translation_error_detection\": {\n \"alias\"\
: \" - leaderboard_bbh_salient_translation_error_detection\",\n \"acc_norm,none\"\
: 0.672,\n \"acc_norm_stderr,none\": 0.029752391824475363\n },\n\
\ \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\
,\n \"acc_norm,none\": 0.8033707865168539,\n \"acc_norm_stderr,none\"\
: 0.029874139553421764\n },\n \"leaderboard_bbh_sports_understanding\"\
: {\n \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \
\ \"acc_norm,none\": 0.952,\n \"acc_norm_stderr,none\": 0.013546884228085683\n\
\ },\n \"leaderboard_bbh_temporal_sequences\": {\n \"alias\"\
: \" - leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 1.0,\n\
\ \"acc_norm_stderr,none\": 0.0\n },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\
: {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\
,\n \"acc_norm,none\": 0.324,\n \"acc_norm_stderr,none\":\
\ 0.029658294924545567\n },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\
: {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\
,\n \"acc_norm,none\": 0.26,\n \"acc_norm_stderr,none\": 0.027797315752644335\n\
\ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\
: {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\
,\n \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\
\ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\":\
\ \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\": 0.744,\n\
\ \"acc_norm_stderr,none\": 0.027657108718204846\n },\n \
\ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3288590604026846,\n\
\ \"acc_norm_stderr,none\": 0.013615253350667551,\n \"alias\"\
: \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\
\ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\
: 0.29292929292929293,\n \"acc_norm_stderr,none\": 0.032424979581788145\n\
\ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\
\ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.3424908424908425,\n\
\ \"acc_norm_stderr,none\": 0.02032718003704072\n },\n \
\ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\
,\n \"acc_norm,none\": 0.328125,\n \"acc_norm_stderr,none\"\
: 0.0222080353262888\n },\n \"leaderboard_ifeval\": {\n \
\ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\
: 0.8798521256931608,\n \"prompt_level_strict_acc_stderr,none\": 0.013991555826864732,\n\
\ \"inst_level_strict_acc,none\": 0.919664268585132,\n \"\
inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\
: 0.8927911275415896,\n \"prompt_level_loose_acc_stderr,none\": 0.01331353600556568,\n\
\ \"inst_level_loose_acc,none\": 0.9280575539568345,\n \"\
inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\
: {\n \"exact_match,none\": 0.0022658610271903325,\n \"exact_match_stderr,none\"\
: 0.001305703553131165,\n \"alias\": \" - leaderboard_math_hard\"\n \
\ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\
: \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.0,\n\
\ \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_counting_and_prob_hard\"\
: {\n \"alias\": \" - leaderboard_math_counting_and_prob_hard\",\n \
\ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\
: 0.0\n },\n \"leaderboard_math_geometry_hard\": {\n \"\
alias\": \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\"\
: 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_intermediate_algebra_hard\"\
: {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n\
\ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\
: 0.0\n },\n \"leaderboard_math_num_theory_hard\": {\n \
\ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\
: 0.006493506493506494,\n \"exact_match_stderr,none\": 0.006493506493506494\n\
\ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\"\
: \" - leaderboard_math_prealgebra_hard\",\n \"exact_match,none\": 0.010362694300518135,\n\
\ \"exact_match_stderr,none\": 0.007308424386792209\n },\n \
\ \"leaderboard_math_precalculus_hard\": {\n \"alias\": \" - leaderboard_math_precalculus_hard\"\
,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\"\
: 0.0\n },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \"\
\ - leaderboard_mmlu_pro\",\n \"acc,none\": 0.5331615691489362,\n \
\ \"acc_stderr,none\": 0.004548433564124718\n },\n \"leaderboard_musr\"\
: {\n \"acc_norm,none\": 0.4444444444444444,\n \"acc_norm_stderr,none\"\
: 0.017253293554553326,\n \"alias\": \" - leaderboard_musr\"\n \
\ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\
\ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.536,\n\
\ \"acc_norm_stderr,none\": 0.031603975145223735\n },\n \
\ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\
,\n \"acc_norm,none\": 0.234375,\n \"acc_norm_stderr,none\"\
: 0.02652733398834892\n },\n \"leaderboard_musr_team_allocation\"\
: {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \
\ \"acc_norm,none\": 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n\
\ }\n },\n \"leaderboard\": {\n \"acc,none\": 0.5331615691489362,\n\
\ \"acc_stderr,none\": 0.004548433564124718,\n \"prompt_level_loose_acc,none\"\
: 0.8927911275415896,\n \"prompt_level_loose_acc_stderr,none\": 0.01331353600556568,\n\
\ \"acc_norm,none\": 0.6112336230380075,\n \"acc_norm_stderr,none\"\
: 0.004909869995586035,\n \"prompt_level_strict_acc,none\": 0.8798521256931608,\n\
\ \"prompt_level_strict_acc_stderr,none\": 0.01399155582686473,\n \
\ \"exact_match,none\": 0.0022658610271903325,\n \"exact_match_stderr,none\"\
: 0.001305703553131165,\n \"inst_level_strict_acc,none\": 0.919664268585132,\n\
\ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"inst_level_loose_acc,none\"\
: 0.9280575539568345,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\
\ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \
\ \"acc_norm,none\": 0.6915466064919285,\n \"acc_norm_stderr,none\": 0.00548646607671526,\n\
\ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\
: {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"\
acc_norm,none\": 0.916,\n \"acc_norm_stderr,none\": 0.017578738526776348\n\
\ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\
,\n \"acc_norm,none\": 0.679144385026738,\n \"acc_norm_stderr,none\"\
: 0.03422783320926161\n },\n \"leaderboard_bbh_date_understanding\": {\n \
\ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\
: 0.704,\n \"acc_norm_stderr,none\": 0.028928939388379697\n },\n \"\
leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\
,\n \"acc_norm,none\": 0.664,\n \"acc_norm_stderr,none\": 0.029933259094191533\n\
\ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\
,\n \"acc_norm,none\": 0.82,\n \"acc_norm_stderr,none\": 0.02434689065029351\n\
\ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\
,\n \"acc_norm,none\": 0.352,\n \"acc_norm_stderr,none\": 0.030266288057359866\n\
\ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\
,\n \"acc_norm,none\": 0.708,\n \"acc_norm_stderr,none\": 0.028814320402205634\n\
\ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\
: \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\
: 0.656,\n \"acc_norm_stderr,none\": 0.03010450339231644\n },\n \"\
leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\
,\n \"acc_norm,none\": 0.624,\n \"acc_norm_stderr,none\": 0.03069633626739458\n\
\ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\
alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\
: 0.92,\n \"acc_norm_stderr,none\": 0.017192507941463025\n },\n \"\
leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\
,\n \"acc_norm,none\": 0.784,\n \"acc_norm_stderr,none\": 0.02607865766373279\n\
\ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\
,\n \"acc_norm,none\": 0.696,\n \"acc_norm_stderr,none\": 0.029150213374159652\n\
\ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\
,\n \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\
\ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \
\ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.6438356164383562,\n\
\ \"acc_norm_stderr,none\": 0.03976754138601307\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\
: {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\
,\n \"acc_norm,none\": 0.892,\n \"acc_norm_stderr,none\": 0.019669559381568776\n\
\ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\
,\n \"acc_norm,none\": 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n\
\ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \
\ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \
\ \"acc_norm,none\": 0.672,\n \"acc_norm_stderr,none\": 0.029752391824475363\n\
\ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\
,\n \"acc_norm,none\": 0.8033707865168539,\n \"acc_norm_stderr,none\"\
: 0.029874139553421764\n },\n \"leaderboard_bbh_sports_understanding\": {\n\
\ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\
: 0.952,\n \"acc_norm_stderr,none\": 0.013546884228085683\n },\n \"\
leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\
,\n \"acc_norm,none\": 1.0,\n \"acc_norm_stderr,none\": 0.0\n },\n\
\ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"alias\"\
: \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \"acc_norm,none\"\
: 0.324,\n \"acc_norm_stderr,none\": 0.029658294924545567\n },\n \"\
leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \"alias\"\
: \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\",\n \"acc_norm,none\"\
: 0.26,\n \"acc_norm_stderr,none\": 0.027797315752644335\n },\n \"\
leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \"alias\"\
: \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\",\n \"acc_norm,none\"\
: 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n },\n \"leaderboard_bbh_web_of_lies\"\
: {\n \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\
: 0.744,\n \"acc_norm_stderr,none\": 0.027657108718204846\n },\n \"\
leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3288590604026846,\n \"\
acc_norm_stderr,none\": 0.013615253350667551,\n \"alias\": \" - leaderboard_gpqa\"\
\n },\n \"leaderboard_gpqa_diamond\": {\n \"alias\": \" - leaderboard_gpqa_diamond\"\
,\n \"acc_norm,none\": 0.29292929292929293,\n \"acc_norm_stderr,none\"\
: 0.032424979581788145\n },\n \"leaderboard_gpqa_extended\": {\n \"\
alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.3424908424908425,\n\
\ \"acc_norm_stderr,none\": 0.02032718003704072\n },\n \"leaderboard_gpqa_main\"\
: {\n \"alias\": \" - leaderboard_gpqa_main\",\n \"acc_norm,none\"\
: 0.328125,\n \"acc_norm_stderr,none\": 0.0222080353262888\n },\n \"\
leaderboard_ifeval\": {\n \"alias\": \" - leaderboard_ifeval\",\n \
\ \"prompt_level_strict_acc,none\": 0.8798521256931608,\n \"prompt_level_strict_acc_stderr,none\"\
: 0.013991555826864732,\n \"inst_level_strict_acc,none\": 0.919664268585132,\n\
\ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\
: 0.8927911275415896,\n \"prompt_level_loose_acc_stderr,none\": 0.01331353600556568,\n\
\ \"inst_level_loose_acc,none\": 0.9280575539568345,\n \"inst_level_loose_acc_stderr,none\"\
: \"N/A\"\n },\n \"leaderboard_math_hard\": {\n \"exact_match,none\"\
: 0.0022658610271903325,\n \"exact_match_stderr,none\": 0.001305703553131165,\n\
\ \"alias\": \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\"\
: {\n \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\
: 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_counting_and_prob_hard\"\
: {\n \"alias\": \" - leaderboard_math_counting_and_prob_hard\",\n \
\ \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n\
\ \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\
,\n \"exact_match,none\": 0.0,\n \"exact_match_stderr,none\": 0.0\n\
\ },\n \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\"\
: \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\
: 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_math_num_theory_hard\"\
: {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\
: 0.006493506493506494,\n \"exact_match_stderr,none\": 0.006493506493506494\n\
\ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\
,\n \"exact_match,none\": 0.010362694300518135,\n \"exact_match_stderr,none\"\
: 0.007308424386792209\n },\n \"leaderboard_math_precalculus_hard\": {\n \
\ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\
: 0.0,\n \"exact_match_stderr,none\": 0.0\n },\n \"leaderboard_mmlu_pro\"\
: {\n \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.5331615691489362,\n\
\ \"acc_stderr,none\": 0.004548433564124718\n },\n \"leaderboard_musr\"\
: {\n \"acc_norm,none\": 0.4444444444444444,\n \"acc_norm_stderr,none\"\
: 0.017253293554553326,\n \"alias\": \" - leaderboard_musr\"\n },\n \
\ \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \" - leaderboard_musr_murder_mysteries\"\
,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\
\ },\n \"leaderboard_musr_object_placements\": {\n \"alias\": \" -\
\ leaderboard_musr_object_placements\",\n \"acc_norm,none\": 0.234375,\n\
\ \"acc_norm_stderr,none\": 0.02652733398834892\n },\n \"leaderboard_musr_team_allocation\"\
: {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \"acc_norm,none\"\
: 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n }\n}\n```"
repo_url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
leaderboard_url: ''
point_of_contact: ''
configs:
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_boolean_expressions
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_boolean_expressions_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_boolean_expressions_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_causal_judgement
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_causal_judgement_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_causal_judgement_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_date_understanding
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_date_understanding_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_date_understanding_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_disambiguation_qa
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_disambiguation_qa_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_formal_fallacies
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_formal_fallacies_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_formal_fallacies_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_geometric_shapes
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_geometric_shapes_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_geometric_shapes_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_hyperbaton
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_hyperbaton_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_hyperbaton_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_logical_deduction_five_objects
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_logical_deduction_seven_objects
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_logical_deduction_three_objects
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_movie_recommendation
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_movie_recommendation_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_movie_recommendation_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_navigate
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_navigate_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_navigate_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_object_counting
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_object_counting_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_object_counting_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_penguins_in_a_table
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_penguins_in_a_table_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_reasoning_about_colored_objects
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_ruin_names
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_ruin_names_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_ruin_names_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_salient_translation_error_detection
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_snarks
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_snarks_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_snarks_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_sports_understanding
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_sports_understanding_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_sports_understanding_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_temporal_sequences
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_temporal_sequences_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_temporal_sequences_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_tracking_shuffled_objects_five_objects
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_tracking_shuffled_objects_seven_objects
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_tracking_shuffled_objects_three_objects
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_web_of_lies
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_bbh_web_of_lies_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_bbh_web_of_lies_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_gpqa_diamond
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_gpqa_diamond_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_gpqa_diamond_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_gpqa_extended
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_gpqa_extended_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_gpqa_extended_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_gpqa_main
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_gpqa_main_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_gpqa_main_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_ifeval
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_ifeval_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_ifeval_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_math_algebra_hard
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_math_algebra_hard_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_math_algebra_hard_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_math_counting_and_prob_hard
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_math_counting_and_prob_hard_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_math_geometry_hard
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_math_geometry_hard_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_math_geometry_hard_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_math_intermediate_algebra_hard
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_math_intermediate_algebra_hard_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_math_num_theory_hard
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_math_num_theory_hard_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_math_num_theory_hard_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_math_prealgebra_hard
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_math_prealgebra_hard_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_math_prealgebra_hard_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_math_precalculus_hard
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_math_precalculus_hard_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_math_precalculus_hard_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_mmlu_pro
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_mmlu_pro_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_mmlu_pro_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_musr_murder_mysteries
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_musr_murder_mysteries_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_musr_murder_mysteries_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_musr_object_placements
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_musr_object_placements_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_musr_object_placements_2024-12-04T14-39-18.066641.jsonl'
- config_name: meta-llama__Llama-3.3-70B-Instruct__leaderboard_musr_team_allocation
data_files:
- split: 2024_12_04T14_39_18.066641
path:
- '**/samples_leaderboard_musr_team_allocation_2024-12-04T14-39-18.066641.jsonl'
- split: latest
path:
- '**/samples_leaderboard_musr_team_allocation_2024-12-04T14-39-18.066641.jsonl'
---
# Dataset Card for Evaluation run of meta-llama/Llama-3.3-70B-Instruct
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)
The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run.
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset(
"open-llm-leaderboard/meta-llama__Llama-3.3-70B-Instruct-details",
name="meta-llama__Llama-3.3-70B-Instruct__leaderboard_bbh_boolean_expressions",
split="latest"
)
```
## Latest results
These are the [latest results from run 2024-12-04T14-39-18.066641](https://huggingface.co/datasets/open-llm-leaderboard/meta-llama__Llama-3.3-70B-Instruct-details/blob/main/meta-llama__Llama-3.3-70B-Instruct/results_2024-12-04T14-39-18.066641.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"leaderboard": {
"acc,none": 0.5331615691489362,
"acc_stderr,none": 0.004548433564124718,
"prompt_level_loose_acc,none": 0.8927911275415896,
"prompt_level_loose_acc_stderr,none": 0.01331353600556568,
"acc_norm,none": 0.6112336230380075,
"acc_norm_stderr,none": 0.004909869995586035,
"prompt_level_strict_acc,none": 0.8798521256931608,
"prompt_level_strict_acc_stderr,none": 0.01399155582686473,
"exact_match,none": 0.0022658610271903325,
"exact_match_stderr,none": 0.001305703553131165,
"inst_level_strict_acc,none": 0.919664268585132,
"inst_level_strict_acc_stderr,none": "N/A",
"inst_level_loose_acc,none": 0.9280575539568345,
"inst_level_loose_acc_stderr,none": "N/A",
"alias": "leaderboard"
},
"leaderboard_bbh": {
"acc_norm,none": 0.6915466064919285,
"acc_norm_stderr,none": 0.00548646607671526,
"alias": " - leaderboard_bbh"
},
"leaderboard_bbh_boolean_expressions": {
"alias": " - leaderboard_bbh_boolean_expressions",
"acc_norm,none": 0.916,
"acc_norm_stderr,none": 0.017578738526776348
},
"leaderboard_bbh_causal_judgement": {
"alias": " - leaderboard_bbh_causal_judgement",
"acc_norm,none": 0.679144385026738,
"acc_norm_stderr,none": 0.03422783320926161
},
"leaderboard_bbh_date_understanding": {
"alias": " - leaderboard_bbh_date_understanding",
"acc_norm,none": 0.704,
"acc_norm_stderr,none": 0.028928939388379697
},
"leaderboard_bbh_disambiguation_qa": {
"alias": " - leaderboard_bbh_disambiguation_qa",
"acc_norm,none": 0.664,
"acc_norm_stderr,none": 0.029933259094191533
},
"leaderboard_bbh_formal_fallacies": {
"alias": " - leaderboard_bbh_formal_fallacies",
"acc_norm,none": 0.82,
"acc_norm_stderr,none": 0.02434689065029351
},
"leaderboard_bbh_geometric_shapes": {
"alias": " - leaderboard_bbh_geometric_shapes",
"acc_norm,none": 0.352,
"acc_norm_stderr,none": 0.030266288057359866
},
"leaderboard_bbh_hyperbaton": {
"alias": " - leaderboard_bbh_hyperbaton",
"acc_norm,none": 0.708,
"acc_norm_stderr,none": 0.028814320402205634
},
"leaderboard_bbh_logical_deduction_five_objects": {
"alias": " - leaderboard_bbh_logical_deduction_five_objects",
"acc_norm,none": 0.656,
"acc_norm_stderr,none": 0.03010450339231644
},
"leaderboard_bbh_logical_deduction_seven_objects": {
"alias": " - leaderboard_bbh_logical_deduction_seven_objects",
"acc_norm,none": 0.624,
"acc_norm_stderr,none": 0.03069633626739458
},
"leaderboard_bbh_logical_deduction_three_objects": {
"alias": " - leaderboard_bbh_logical_deduction_three_objects",
"acc_norm,none": 0.92,
"acc_norm_stderr,none": 0.017192507941463025
},
"leaderboard_bbh_movie_recommendation": {
"alias": " - leaderboard_bbh_movie_recommendation",
"acc_norm,none": 0.784,
"acc_norm_stderr,none": 0.02607865766373279
},
"leaderboard_bbh_navigate": {
"alias": " - leaderboard_bbh_navigate",
"acc_norm,none": 0.696,
"acc_norm_stderr,none": 0.029150213374159652
},
"leaderboard_bbh_object_counting": {
"alias": " - leaderboard_bbh_object_counting",
"acc_norm,none": 0.58,
"acc_norm_stderr,none": 0.03127799950463661
},
"leaderboard_bbh_penguins_in_a_table": {
"alias": " - leaderboard_bbh_penguins_in_a_table",
"acc_norm,none": 0.6438356164383562,
"acc_norm_stderr,none": 0.03976754138601307
},
"leaderboard_bbh_reasoning_about_colored_objects": {
"alias": " - leaderboard_bbh_reasoning_about_colored_objects",
"acc_norm,none": 0.892,
"acc_norm_stderr,none": 0.019669559381568776
},
"leaderboard_bbh_ruin_names": {
"alias": " - leaderboard_bbh_ruin_names",
"acc_norm,none": 0.852,
"acc_norm_stderr,none": 0.022503547243806186
},
"leaderboard_bbh_salient_translation_error_detection": {
"alias": " - leaderboard_bbh_salient_translation_error_detection",
"acc_norm,none": 0.672,
"acc_norm_stderr,none": 0.029752391824475363
},
"leaderboard_bbh_snarks": {
"alias": " - leaderboard_bbh_snarks",
"acc_norm,none": 0.8033707865168539,
"acc_norm_stderr,none": 0.029874139553421764
},
"leaderboard_bbh_sports_understanding": {
"alias": " - leaderboard_bbh_sports_understanding",
"acc_norm,none": 0.952,
"acc_norm_stderr,none": 0.013546884228085683
},
"leaderboard_bbh_temporal_sequences": {
"alias": " - leaderboard_bbh_temporal_sequences",
"acc_norm,none": 1.0,
"acc_norm_stderr,none": 0.0
},
"leaderboard_bbh_tracking_shuffled_objects_five_objects": {
"alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects",
"acc_norm,none": 0.324,
"acc_norm_stderr,none": 0.029658294924545567
},
"leaderboard_bbh_tracking_shuffled_objects_seven_objects": {
"alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects",
"acc_norm,none": 0.26,
"acc_norm_stderr,none": 0.027797315752644335
},
"leaderboard_bbh_tracking_shuffled_objects_three_objects": {
"alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects",
"acc_norm,none": 0.36,
"acc_norm_stderr,none": 0.03041876402517494
},
"leaderboard_bbh_web_of_lies": {
"alias": " - leaderboard_bbh_web_of_lies",
"acc_norm,none": 0.744,
"acc_norm_stderr,none": 0.027657108718204846
},
"leaderboard_gpqa": {
"acc_norm,none": 0.3288590604026846,
"acc_norm_stderr,none": 0.013615253350667551,
"alias": " - leaderboard_gpqa"
},
"leaderboard_gpqa_diamond": {
"alias": " - leaderboard_gpqa_diamond",
"acc_norm,none": 0.29292929292929293,
"acc_norm_stderr,none": 0.032424979581788145
},
"leaderboard_gpqa_extended": {
"alias": " - leaderboard_gpqa_extended",
"acc_norm,none": 0.3424908424908425,
"acc_norm_stderr,none": 0.02032718003704072
},
"leaderboard_gpqa_main": {
"alias": " - leaderboard_gpqa_main",
"acc_norm,none": 0.328125,
"acc_norm_stderr,none": 0.0222080353262888
},
"leaderboard_ifeval": {
"alias": " - leaderboard_ifeval",
"prompt_level_strict_acc,none": 0.8798521256931608,
"prompt_level_strict_acc_stderr,none": 0.013991555826864732,
"inst_level_strict_acc,none": 0.919664268585132,
"inst_level_strict_acc_stderr,none": "N/A",
"prompt_level_loose_acc,none": 0.8927911275415896,
"prompt_level_loose_acc_stderr,none": 0.01331353600556568,
"inst_level_loose_acc,none": 0.9280575539568345,
"inst_level_loose_acc_stderr,none": "N/A"
},
"leaderboard_math_hard": {
"exact_match,none": 0.0022658610271903325,
"exact_match_stderr,none": 0.001305703553131165,
"alias": " - leaderboard_math_hard"
},
"leaderboard_math_algebra_hard": {
"alias": " - leaderboard_math_algebra_hard",
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0
},
"leaderboard_math_counting_and_prob_hard": {
"alias": " - leaderboard_math_counting_and_prob_hard",
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0
},
"leaderboard_math_geometry_hard": {
"alias": " - leaderboard_math_geometry_hard",
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0
},
"leaderboard_math_intermediate_algebra_hard": {
"alias": " - leaderboard_math_intermediate_algebra_hard",
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0
},
"leaderboard_math_num_theory_hard": {
"alias": " - leaderboard_math_num_theory_hard",
"exact_match,none": 0.006493506493506494,
"exact_match_stderr,none": 0.006493506493506494
},
"leaderboard_math_prealgebra_hard": {
"alias": " - leaderboard_math_prealgebra_hard",
"exact_match,none": 0.010362694300518135,
"exact_match_stderr,none": 0.007308424386792209
},
"leaderboard_math_precalculus_hard": {
"alias": " - leaderboard_math_precalculus_hard",
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0
},
"leaderboard_mmlu_pro": {
"alias": " - leaderboard_mmlu_pro",
"acc,none": 0.5331615691489362,
"acc_stderr,none": 0.004548433564124718
},
"leaderboard_musr": {
"acc_norm,none": 0.4444444444444444,
"acc_norm_stderr,none": 0.017253293554553326,
"alias": " - leaderboard_musr"
},
"leaderboard_musr_murder_mysteries": {
"alias": " - leaderboard_musr_murder_mysteries",
"acc_norm,none": 0.536,
"acc_norm_stderr,none": 0.031603975145223735
},
"leaderboard_musr_object_placements": {
"alias": " - leaderboard_musr_object_placements",
"acc_norm,none": 0.234375,
"acc_norm_stderr,none": 0.02652733398834892
},
"leaderboard_musr_team_allocation": {
"alias": " - leaderboard_musr_team_allocation",
"acc_norm,none": 0.568,
"acc_norm_stderr,none": 0.03139181076542941
}
},
"leaderboard": {
"acc,none": 0.5331615691489362,
"acc_stderr,none": 0.004548433564124718,
"prompt_level_loose_acc,none": 0.8927911275415896,
"prompt_level_loose_acc_stderr,none": 0.01331353600556568,
"acc_norm,none": 0.6112336230380075,
"acc_norm_stderr,none": 0.004909869995586035,
"prompt_level_strict_acc,none": 0.8798521256931608,
"prompt_level_strict_acc_stderr,none": 0.01399155582686473,
"exact_match,none": 0.0022658610271903325,
"exact_match_stderr,none": 0.001305703553131165,
"inst_level_strict_acc,none": 0.919664268585132,
"inst_level_strict_acc_stderr,none": "N/A",
"inst_level_loose_acc,none": 0.9280575539568345,
"inst_level_loose_acc_stderr,none": "N/A",
"alias": "leaderboard"
},
"leaderboard_bbh": {
"acc_norm,none": 0.6915466064919285,
"acc_norm_stderr,none": 0.00548646607671526,
"alias": " - leaderboard_bbh"
},
"leaderboard_bbh_boolean_expressions": {
"alias": " - leaderboard_bbh_boolean_expressions",
"acc_norm,none": 0.916,
"acc_norm_stderr,none": 0.017578738526776348
},
"leaderboard_bbh_causal_judgement": {
"alias": " - leaderboard_bbh_causal_judgement",
"acc_norm,none": 0.679144385026738,
"acc_norm_stderr,none": 0.03422783320926161
},
"leaderboard_bbh_date_understanding": {
"alias": " - leaderboard_bbh_date_understanding",
"acc_norm,none": 0.704,
"acc_norm_stderr,none": 0.028928939388379697
},
"leaderboard_bbh_disambiguation_qa": {
"alias": " - leaderboard_bbh_disambiguation_qa",
"acc_norm,none": 0.664,
"acc_norm_stderr,none": 0.029933259094191533
},
"leaderboard_bbh_formal_fallacies": {
"alias": " - leaderboard_bbh_formal_fallacies",
"acc_norm,none": 0.82,
"acc_norm_stderr,none": 0.02434689065029351
},
"leaderboard_bbh_geometric_shapes": {
"alias": " - leaderboard_bbh_geometric_shapes",
"acc_norm,none": 0.352,
"acc_norm_stderr,none": 0.030266288057359866
},
"leaderboard_bbh_hyperbaton": {
"alias": " - leaderboard_bbh_hyperbaton",
"acc_norm,none": 0.708,
"acc_norm_stderr,none": 0.028814320402205634
},
"leaderboard_bbh_logical_deduction_five_objects": {
"alias": " - leaderboard_bbh_logical_deduction_five_objects",
"acc_norm,none": 0.656,
"acc_norm_stderr,none": 0.03010450339231644
},
"leaderboard_bbh_logical_deduction_seven_objects": {
"alias": " - leaderboard_bbh_logical_deduction_seven_objects",
"acc_norm,none": 0.624,
"acc_norm_stderr,none": 0.03069633626739458
},
"leaderboard_bbh_logical_deduction_three_objects": {
"alias": " - leaderboard_bbh_logical_deduction_three_objects",
"acc_norm,none": 0.92,
"acc_norm_stderr,none": 0.017192507941463025
},
"leaderboard_bbh_movie_recommendation": {
"alias": " - leaderboard_bbh_movie_recommendation",
"acc_norm,none": 0.784,
"acc_norm_stderr,none": 0.02607865766373279
},
"leaderboard_bbh_navigate": {
"alias": " - leaderboard_bbh_navigate",
"acc_norm,none": 0.696,
"acc_norm_stderr,none": 0.029150213374159652
},
"leaderboard_bbh_object_counting": {
"alias": " - leaderboard_bbh_object_counting",
"acc_norm,none": 0.58,
"acc_norm_stderr,none": 0.03127799950463661
},
"leaderboard_bbh_penguins_in_a_table": {
"alias": " - leaderboard_bbh_penguins_in_a_table",
"acc_norm,none": 0.6438356164383562,
"acc_norm_stderr,none": 0.03976754138601307
},
"leaderboard_bbh_reasoning_about_colored_objects": {
"alias": " - leaderboard_bbh_reasoning_about_colored_objects",
"acc_norm,none": 0.892,
"acc_norm_stderr,none": 0.019669559381568776
},
"leaderboard_bbh_ruin_names": {
"alias": " - leaderboard_bbh_ruin_names",
"acc_norm,none": 0.852,
"acc_norm_stderr,none": 0.022503547243806186
},
"leaderboard_bbh_salient_translation_error_detection": {
"alias": " - leaderboard_bbh_salient_translation_error_detection",
"acc_norm,none": 0.672,
"acc_norm_stderr,none": 0.029752391824475363
},
"leaderboard_bbh_snarks": {
"alias": " - leaderboard_bbh_snarks",
"acc_norm,none": 0.8033707865168539,
"acc_norm_stderr,none": 0.029874139553421764
},
"leaderboard_bbh_sports_understanding": {
"alias": " - leaderboard_bbh_sports_understanding",
"acc_norm,none": 0.952,
"acc_norm_stderr,none": 0.013546884228085683
},
"leaderboard_bbh_temporal_sequences": {
"alias": " - leaderboard_bbh_temporal_sequences",
"acc_norm,none": 1.0,
"acc_norm_stderr,none": 0.0
},
"leaderboard_bbh_tracking_shuffled_objects_five_objects": {
"alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects",
"acc_norm,none": 0.324,
"acc_norm_stderr,none": 0.029658294924545567
},
"leaderboard_bbh_tracking_shuffled_objects_seven_objects": {
"alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects",
"acc_norm,none": 0.26,
"acc_norm_stderr,none": 0.027797315752644335
},
"leaderboard_bbh_tracking_shuffled_objects_three_objects": {
"alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects",
"acc_norm,none": 0.36,
"acc_norm_stderr,none": 0.03041876402517494
},
"leaderboard_bbh_web_of_lies": {
"alias": " - leaderboard_bbh_web_of_lies",
"acc_norm,none": 0.744,
"acc_norm_stderr,none": 0.027657108718204846
},
"leaderboard_gpqa": {
"acc_norm,none": 0.3288590604026846,
"acc_norm_stderr,none": 0.013615253350667551,
"alias": " - leaderboard_gpqa"
},
"leaderboard_gpqa_diamond": {
"alias": " - leaderboard_gpqa_diamond",
"acc_norm,none": 0.29292929292929293,
"acc_norm_stderr,none": 0.032424979581788145
},
"leaderboard_gpqa_extended": {
"alias": " - leaderboard_gpqa_extended",
"acc_norm,none": 0.3424908424908425,
"acc_norm_stderr,none": 0.02032718003704072
},
"leaderboard_gpqa_main": {
"alias": " - leaderboard_gpqa_main",
"acc_norm,none": 0.328125,
"acc_norm_stderr,none": 0.0222080353262888
},
"leaderboard_ifeval": {
"alias": " - leaderboard_ifeval",
"prompt_level_strict_acc,none": 0.8798521256931608,
"prompt_level_strict_acc_stderr,none": 0.013991555826864732,
"inst_level_strict_acc,none": 0.919664268585132,
"inst_level_strict_acc_stderr,none": "N/A",
"prompt_level_loose_acc,none": 0.8927911275415896,
"prompt_level_loose_acc_stderr,none": 0.01331353600556568,
"inst_level_loose_acc,none": 0.9280575539568345,
"inst_level_loose_acc_stderr,none": "N/A"
},
"leaderboard_math_hard": {
"exact_match,none": 0.0022658610271903325,
"exact_match_stderr,none": 0.001305703553131165,
"alias": " - leaderboard_math_hard"
},
"leaderboard_math_algebra_hard": {
"alias": " - leaderboard_math_algebra_hard",
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0
},
"leaderboard_math_counting_and_prob_hard": {
"alias": " - leaderboard_math_counting_and_prob_hard",
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0
},
"leaderboard_math_geometry_hard": {
"alias": " - leaderboard_math_geometry_hard",
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0
},
"leaderboard_math_intermediate_algebra_hard": {
"alias": " - leaderboard_math_intermediate_algebra_hard",
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0
},
"leaderboard_math_num_theory_hard": {
"alias": " - leaderboard_math_num_theory_hard",
"exact_match,none": 0.006493506493506494,
"exact_match_stderr,none": 0.006493506493506494
},
"leaderboard_math_prealgebra_hard": {
"alias": " - leaderboard_math_prealgebra_hard",
"exact_match,none": 0.010362694300518135,
"exact_match_stderr,none": 0.007308424386792209
},
"leaderboard_math_precalculus_hard": {
"alias": " - leaderboard_math_precalculus_hard",
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0
},
"leaderboard_mmlu_pro": {
"alias": " - leaderboard_mmlu_pro",
"acc,none": 0.5331615691489362,
"acc_stderr,none": 0.004548433564124718
},
"leaderboard_musr": {
"acc_norm,none": 0.4444444444444444,
"acc_norm_stderr,none": 0.017253293554553326,
"alias": " - leaderboard_musr"
},
"leaderboard_musr_murder_mysteries": {
"alias": " - leaderboard_musr_murder_mysteries",
"acc_norm,none": 0.536,
"acc_norm_stderr,none": 0.031603975145223735
},
"leaderboard_musr_object_placements": {
"alias": " - leaderboard_musr_object_placements",
"acc_norm,none": 0.234375,
"acc_norm_stderr,none": 0.02652733398834892
},
"leaderboard_musr_team_allocation": {
"alias": " - leaderboard_musr_team_allocation",
"acc_norm,none": 0.568,
"acc_norm_stderr,none": 0.03139181076542941
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] |
julia-se/tracka_qwen_fewshot_joy | julia-se | "2024-12-04T14:45:53Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T14:45:52Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: text
dtype: string
- name: Anger
dtype: int64
- name: Disgust
dtype: int64
- name: Fear
dtype: int64
- name: Joy
dtype: int64
- name: Sadness
dtype: int64
- name: Surprise
dtype: int64
- name: predicted_is_joy
dtype: int64
- name: y_joy
dtype: int64
splits:
- name: train
num_bytes: 472807
num_examples: 2226
download_size: 220764
dataset_size: 472807
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
uiuioy/tuga | uiuioy | "2024-12-04T15:46:31Z" | 7 | 0 | [
"license:openrail",
"size_categories:n<1K",
"format:audiofolder",
"modality:audio",
"library:datasets",
"library:mlcroissant",
"region:us"
] | null | "2024-12-04T15:45:29Z" | ---
license: openrail
---
|
argilla-internal-testing/argilla-server-dataset-test-9df031af-d8ae-4afb-a8bb-c5630699bdee | argilla-internal-testing | "2024-12-04T15:53:34Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:argilla",
"region:us",
"rlfh",
"argilla",
"human-feedback"
] | null | "2024-12-04T15:53:31Z" | ---
tags:
- rlfh
- argilla
- human-feedback
---
# Dataset Card for argilla-server-dataset-test-9df031af-d8ae-4afb-a8bb-c5630699bdee
This dataset has been created with [Argilla](https://github.com/argilla-io/argilla). As shown in the sections below, this dataset can be loaded into your Argilla server as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets).
## Using this dataset with Argilla
To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code:
```python
import argilla as rg
ds = rg.Dataset.from_hub("argilla-internal-testing/argilla-server-dataset-test-9df031af-d8ae-4afb-a8bb-c5630699bdee", settings="auto")
```
This will load the settings and records from the dataset repository and push them to you Argilla server for exploration and annotation.
## Using this dataset with `datasets`
To load the records of this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code:
```python
from datasets import load_dataset
ds = load_dataset("argilla-internal-testing/argilla-server-dataset-test-9df031af-d8ae-4afb-a8bb-c5630699bdee")
```
This will only load the records of the dataset, but not the Argilla settings.
## Dataset Structure
This dataset repo contains:
* Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `rg.Dataset.from_hub` and can be loaded independently using the `datasets` library via `load_dataset`.
* The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla.
* A dataset configuration folder conforming to the Argilla dataset format in `.argilla`.
The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**.
### Fields
The **fields** are the features or text of a dataset's records. For example, the 'text' column of a text classification dataset of the 'prompt' column of an instruction following dataset.
| Field Name | Title | Type | Required |
| ---------- | ----- | ---- | -------- |
| text | Field Title | text | False |
### Questions
The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.
| Question Name | Title | Type | Required | Description | Values/Labels |
| ------------- | ----- | ---- | -------- | ----------- | ------------- |
<!-- check length of metadata properties -->
### Data Splits
The dataset contains a single split, which is `train`.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation guidelines
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed] |
mlfoundations-dev/evol_instruct_gpt-4o-mini_scale_x.125 | mlfoundations-dev | "2024-12-11T17:00:05Z" | 7 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T16:17:02Z" | ---
dataset_info:
features:
- name: evolved_instruction
dtype: string
- name: completion
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 173643384
num_examples: 28022
download_size: 97314979
dataset_size: 173643384
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
mlgawd/final_dpo_nemo_v25 | mlgawd | "2024-12-04T16:24:57Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T16:24:55Z" | ---
dataset_info:
features:
- name: questions
dtype: string
- name: accepted
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 25832769
num_examples: 5845
download_size: 14817580
dataset_size: 25832769
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Asteriks/chars74k-eng-good | Asteriks | "2024-12-04T21:38:39Z" | 7 | 0 | [
"task_categories:image-classification",
"language:en",
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"image-classification"
] | "2024-12-04T16:39:28Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': Sample001
'1': Sample002
'2': Sample003
'3': Sample004
'4': Sample005
'5': Sample006
'6': Sample007
'7': Sample008
'8': Sample009
'9': Sample010
'10': Sample011
'11': Sample012
'12': Sample013
'13': Sample014
'14': Sample015
'15': Sample016
'16': Sample017
'17': Sample018
'18': Sample019
'19': Sample020
'20': Sample021
'21': Sample022
'22': Sample023
'23': Sample024
'24': Sample025
'25': Sample026
'26': Sample027
'27': Sample028
'28': Sample029
'29': Sample030
'30': Sample031
'31': Sample032
'32': Sample033
'33': Sample034
'34': Sample035
'35': Sample036
'36': Sample037
'37': Sample038
'38': Sample039
'39': Sample040
'40': Sample041
'41': Sample042
'42': Sample043
'43': Sample044
'44': Sample045
'45': Sample046
'46': Sample047
'47': Sample048
'48': Sample049
'49': Sample050
'50': Sample051
'51': Sample052
'52': Sample053
'53': Sample054
'54': Sample055
'55': Sample056
'56': Sample057
'57': Sample058
'58': Sample059
'59': Sample060
'60': Sample061
'61': Sample062
splits:
- name: train
num_bytes: 73956435.184
num_examples: 6136
- name: validation
num_bytes: 18902272.208
num_examples: 1564
download_size: 95517369
dataset_size: 92858707.392
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
task_categories:
- image-classification
language:
- en
pretty_name: Chars74k
size_categories:
- 1K<n<10K
---
## Chars74k
The "Good" subset of the "English" subset of the Chars74k dataset split into training and validation sets.
The validation set was created to match the label distribution of the training set.
62 classes (0-9, A-Z, a-z)
Dataset page: https://teodecampos.github.io/chars74k/
Paper describing the dataset:
https://www.semanticscholar.org/paper/Character-Recognition-in-Natural-Images-Campos-Babu/dbbd5fdc09349bbfdee7aa7365a9d37716852b32
5 images where removed due to poor quality.
Lable distribution:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62e26d05fb4a692673b3569a/ZvllFAQgS09s8pSrIvf4N.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62e26d05fb4a692673b3569a/TtC_gAK12lUMsNWdHRel7.png) |
salma-remyx/vqasynth_sample_spatial_new_test | salma-remyx | "2024-12-04T16:50:25Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:image",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"vqasynth",
"remyx"
] | null | "2024-12-04T16:50:18Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: messages
dtype: 'null'
splits:
- name: train
num_bytes: 1363335.0
num_examples: 10
download_size: 1364618
dataset_size: 1363335.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- vqasynth
- remyx
---
|
lgumpina/akamai-etp-samples | lgumpina | "2024-12-04T17:07:51Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T17:07:50Z" | ---
dataset_info:
features:
- name: transformed_text
dtype: string
splits:
- name: train
num_bytes: 69153
num_examples: 13
download_size: 14411
dataset_size: 69153
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
all-oj-gen/ds_coder6.7b_pos_reflct_rmsprop_iter3_sppo_hard_new_all_oj_iter3-bin | all-oj-gen | "2024-12-04T17:21:50Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T17:21:36Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: rejected_traceback
dtype: string
- name: chosen_probs
dtype: float64
- name: chosen_probs_win
dtype: float64
- name: chosen_probs_lose
dtype: float64
splits:
- name: train
num_bytes: 17100841
num_examples: 4967
download_size: 7534526
dataset_size: 17100841
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_coder6.7b_pos_reflct_rmsprop_iter3_sppo_hard_new_all_oj_iter3-bin"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
maniro-ai/2024-12-04-rod-nav-tape-small-s | maniro-ai | "2024-12-04T17:36:47Z" | 7 | 0 | [
"task_categories:robotics",
"region:us",
"LeRobot"
] | [
"robotics"
] | "2024-12-04T17:36:43Z" | ---
task_categories:
- robotics
tags:
- LeRobot
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
|
maniro-ai/2024-12-04-rod-nav-tape-parallel-offset | maniro-ai | "2024-12-04T17:38:04Z" | 7 | 0 | [
"task_categories:robotics",
"region:us",
"LeRobot"
] | [
"robotics"
] | "2024-12-04T17:37:58Z" | ---
task_categories:
- robotics
tags:
- LeRobot
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
|
skdrx/python-dpo-dataset-varname-formatted-NOSYSTEMPROMPT | skdrx | "2024-12-04T18:50:28Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T18:50:27Z" | ---
dataset_info:
features:
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: prompt
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 911822
num_examples: 1000
download_size: 403823
dataset_size: 911822
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
skdrx/python-dpo-dataset-varname-formatted-ONLYSYSTEMPROMPT | skdrx | "2024-12-04T18:51:20Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T18:51:18Z" | ---
dataset_info:
features:
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: prompt
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 1222822
num_examples: 1000
download_size: 405338
dataset_size: 1222822
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
skdrx/python-dpo-dataset-varname-formatted-combined-ONLYSYSTEMPROMPT | skdrx | "2024-12-04T18:56:04Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T18:56:02Z" | ---
dataset_info:
features:
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: prompt
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 1406035
num_examples: 1000
download_size: 433764
dataset_size: 1406035
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
julia-se/tracka_qwen_zeroshot_disgust | julia-se | "2024-12-04T20:00:49Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T20:00:47Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: text
dtype: string
- name: Anger
dtype: int64
- name: Disgust
dtype: int64
- name: Fear
dtype: int64
- name: Joy
dtype: int64
- name: Sadness
dtype: int64
- name: Surprise
dtype: int64
- name: predicted_is_disgust
dtype: int64
- name: y_disgust
dtype: int64
splits:
- name: train
num_bytes: 472807
num_examples: 2226
download_size: 216656
dataset_size: 472807
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kawsarahmd/english_bangla_nmt_datasets_v1 | kawsarahmd | "2024-12-04T20:21:53Z" | 7 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T20:21:48Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: news_id
dtype: string
- name: bn_text
dtype: string
- name: en_text
dtype: string
splits:
- name: train
num_bytes: 162726175
num_examples: 52800
- name: validation
num_bytes: 14614772
num_examples: 4693
- name: test
num_bytes: 3603573
num_examples: 1174
download_size: 81719637
dataset_size: 180944520
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
MarkLeeeee/catsData | MarkLeeeee | "2024-12-04T21:18:09Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T21:18:08Z" | ---
dataset_info:
features:
- name: image
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 1845
num_examples: 20
download_size: 2134
dataset_size: 1845
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
iimaginary/fineweb-edu-10B | iimaginary | "2024-12-06T13:26:55Z" | 7 | 0 | [
"language:en",
"license:apache-2.0",
"size_categories:1M<n<10M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T21:18:44Z" | ---
language:
- en
license: apache-2.0
---
|
magnifi/Phi3_intent_v45_1_w_unknown | magnifi | "2024-12-04T22:01:40Z" | 7 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T22:01:39Z" | ---
dataset_info:
features:
- name: Query
dtype: string
- name: true_intent
dtype: string
splits:
- name: train
num_bytes: 697708
num_examples: 9729
- name: validation
num_bytes: 8109
num_examples: 113
download_size: 205543
dataset_size: 705817
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
|
IanLi233/Toxic-Chat-V2 | IanLi233 | "2024-12-04T22:46:10Z" | 7 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"doi:10.57967/hf/3749",
"region:us"
] | null | "2024-12-04T22:45:07Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
- name: toxic
dtype: int64
splits:
- name: train
num_bytes: 11169460.0
num_examples: 8132
- name: validation
num_bytes: 1395495.7402852927
num_examples: 1016
- name: test
num_bytes: 1396869.2597147073
num_examples: 1017
download_size: 6144718
dataset_size: 13961825.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
pclucas14/nqa-RAG-64_3_24 | pclucas14 | "2024-12-04T22:47:17Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T22:47:16Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 5793428
num_examples: 66
download_size: 1988498
dataset_size: 5793428
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-64_8_24 | pclucas14 | "2024-12-04T22:49:27Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T22:49:26Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 5849479
num_examples: 66
download_size: 1882049
dataset_size: 5849479
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-64_10_24 | pclucas14 | "2024-12-04T22:53:14Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T22:53:12Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 5733767
num_examples: 66
download_size: 1990656
dataset_size: 5733767
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-64_4_24 | pclucas14 | "2024-12-04T22:54:53Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T22:54:52Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 5931033
num_examples: 66
download_size: 2055010
dataset_size: 5931033
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-64_5_24 | pclucas14 | "2024-12-04T22:56:50Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T22:56:45Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 5862504
num_examples: 66
download_size: 2001873
dataset_size: 5862504
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-64_6_24 | pclucas14 | "2024-12-04T22:57:02Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T22:57:00Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 6074705
num_examples: 66
download_size: 2094367
dataset_size: 6074705
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-64_7_24 | pclucas14 | "2024-12-04T22:59:58Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T22:59:56Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 5937735
num_examples: 66
download_size: 2040001
dataset_size: 5937735
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-64_9_24 | pclucas14 | "2024-12-04T23:04:07Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T23:04:05Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 5771358
num_examples: 66
download_size: 2084168
dataset_size: 5771358
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
pclucas14/nqa-RAG-64_2_24 | pclucas14 | "2024-12-04T23:07:01Z" | 7 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-04T23:06:59Z" | ---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 6034839
num_examples: 66
download_size: 2118452
dataset_size: 6034839
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|