dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
562
8aac50a7519fa10a01519fd85983003c
[ "2016年全国华杯赛小学高年级竞赛初赛第3题" ]
2
single_choice
在一个七位整数中,任何三个连续排列的数字都构成一个能被$$11$$或$$13$$整除的三位数,则这个七位数最大是(~~~~~ ~ ~ ).
[ [ { "aoVal": "A", "content": "$$9981733$$ " } ], [ { "aoVal": "B", "content": "$$9884737$$ " } ], [ { "aoVal": "C", "content": "$$9978137$$ " } ], [ { "aoVal": "D", "content": "$$9871773$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "注意到由于任意三个连续排列的数字都能构成三位数,所以这个七位数的前五个数字不能是$$0$$,逐步极端分析,得$$988=13\\times 76$$,$$884=13\\times 68$$,$$847=11\\times 77$$,$$473=11\\times 43$$,$$737=11\\times 67$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1959
aaa0a7abbd074c6c9874a46525b2351a
[ "2013年第11届创新杯四年级竞赛初赛第4题6分" ]
2
single_choice
某便民点销售矿泉水,进货,$$5$$元钱$$4$$瓶,售出时,$$5$$元钱$$3$$瓶,要获利$$300$$元,那么需售瓶.
[ [ { "aoVal": "A", "content": "$$480$$ " } ], [ { "aoVal": "B", "content": "$$360$$ " } ], [ { "aoVal": "C", "content": "$$240$$ " } ], [ { "aoVal": "D", "content": "$$720$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "已知进货$$5$$元钱$$4$$瓶,每瓶是$$5$$ $$\\div4= \\frac{5}{4}$$ (元), 售出时,$$5$$元钱$$3$$瓶,每瓶$$5 \\div 3= \\frac{5}{3}$$ 元,每瓶获和 $$\\frac{5}{3}- \\frac{5}{4}= \\frac{5}{12}$$(元),要获利$$300$$元,那么需售多少瓶,用 $$300 \\div \\frac{5}{12}=720$$(元),即可得解. $$5\\div 4=\\frac{5}{4}$$, $$5\\div 3=\\frac{5}{3}$$, $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde300\\div \\left( \\frac{5}{3}-\\frac{5}{4} \\right)$$ $$=300\\div \\left( \\frac{20}{12}-\\frac{15}{12} \\right)$$ $$=300\\div \\frac{5}{12}$$ $$=300\\times \\frac{12}{5}$$ $$=720$$(瓶), 答:要获利$$300$$元,那么需售$$720$$瓶. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1778
e44ff1e3c4a14851ab2b76c0a30bc80e
[ "2016年全国小学生数学学习能力测评四年级竞赛复赛第9题3分" ]
1
single_choice
马大哈在计算有余数的除法时,把被除数$$113$$错写成$$131$$,结果商比原来的商多$$3$$,但余数恰好相同.该题的余数是.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "错把被除数$$113$$写成$$131$$,被除数增加了$$131-113=18$$, 因为余数相同,且商多$$3$$,除数增加了$$3$$倍,即$$18$$是除数的$$3$$倍, 所以除数是$$18\\div3=6$$, 那么该题的余数是$$113$$除以$$6$$所得的余数,据此解答. $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde(131-113)\\div3$$ $$=18\\div3$$ $$=6$$ $$113\\div6=18\\cdots\\cdots5$$. 答:原来的除数是$$6$$,余数是$$5$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
949
fd2ec54fb71748878b1221681ab8da65
[ "2021年第8届鹏程杯五年级竞赛初赛第20题4分" ]
1
single_choice
仅用$$1$$和$$2$$两个数码组成的,能被$$9$$整除的八位数有个.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$24$$ " } ], [ { "aoVal": "D", "content": "$$32$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->能力->数感认知->数学概念理解(数)" ]
[ "能被$$9$$整除的八位数,则这个八位数的数字和必须是$$9$$的倍数, 又因为只能由数字$$1$$和$$2$$构成, 所以数字和只能$$9$$,则能是七个$$1$$和一个$$2$$, 所以只用给$$2$$选一个位置就可以,一共是八位数,所以有八个. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
109
66d3c371db2c4eba8dc0afcb68b7783a
[ "2016年第3届河南K6联赛小学高年级竞赛第7题5分" ]
1
single_choice
四名同学(甲乙丙丁)猜测他们之中谁被评为三好学生. 甲说:``如果我被评上,那么乙也被评上;'' 乙说:``如果我被评上,那么丙也被评上;'' 丙说:``如果丁没评上,那么我也没评上;'' 实际上他们之中只有一个人没评上,并且甲、乙、丙说的都是正确的,则没有被评上三好学生的是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "丁 " } ] ]
[ "知识标签->课内知识点->数学广角->推理->解决简单逻辑推理问题" ]
[ "假设找矛盾 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2776
9a51ef7c24aa44bb8d75713139f90ade
[ "2011年全国美国数学大联盟杯小学高年级五年级竞赛初赛第30题" ]
1
single_choice
从$$10A$$.$$M$$.起,过$$1000$$分钟后是什么时间?
[ [ { "aoVal": "A", "content": "$$4:40 P.M.$$ " } ], [ { "aoVal": "B", "content": "$$10:00 P.M.$$ " } ], [ { "aoVal": "C", "content": "$$2:40 A.M.$$ " } ], [ { "aoVal": "D", "content": "$$1:00 A.M.$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$1000\\div60=16\\cdots40$$ 过了$$16$$个小时$$40$$分钟. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1708
804cb9c19abd4bb3a4cdee2f772fa743
[ "2011年第7届全国新希望杯五年级竞赛A卷第3题", "2016年创新杯五年级竞赛训练题(四)第1题" ]
1
single_choice
原计划安排若干人进行某项任务,如果增加$$10$$人,$$6$$天可以完成:如果增加$$15$$人,$$5$$天可以完成.那么原计划(~~~ )天可以完成(每人工作效率相同).
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->合作工程问题->基本合作问题" ]
[ "算出两种方案的差$$5\\times 15-6\\times 10=15$$;即原有$$15$$人,然后,$$(15+10)\\times 6\\div 15=10$$故选$$C$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3144
02f3ad7d4d7b4d0b8725ebf827afa3f6
[ "2017年全国美国数学大联盟杯五年级竞赛初赛" ]
2
single_choice
设$$n$$是一任意自然数.若将$$n$$的各位数字反向排列所得自然数$${n}_{1}$$与$$n$$相等,则称$$n$$为回文数.例如,若$$n=1234321$$,则称$$n$$为一回文数;但若$$n=1234567$$,则$$n$$不是回文数.请问在$$10000$$和$$100000$$之间有多少个回文数?
[ [ { "aoVal": "A", "content": "$$900$$ " } ], [ { "aoVal": "B", "content": "$$1000$$ " } ], [ { "aoVal": "C", "content": "$$1100$$ " } ], [ { "aoVal": "D", "content": "$$1200$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "在$$10000$$和$$100000$$之间的数都是五位数,不妨设其为$$\\overline{abcba}$$,$$a$$不为$$0$$有$$9$$种选择,$$b$$、$$c$$均有$$10$$种选择,故共有$$9\\times 10\\times 10=900$$个回文数. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1612
b5cc3967a628488aa624d8890c3648ca
[ "1995年六年级竞赛创新杯", "2007年第5届创新杯六年级竞赛第1题5分", "2007年六年级竞赛创新杯" ]
1
single_choice
与30以内的奇质数的平均数最接近的整数是( ).
[ [ { "aoVal": "A", "content": "12 " } ], [ { "aoVal": "B", "content": "13 " } ], [ { "aoVal": "C", "content": "14 " } ], [ { "aoVal": "D", "content": "15 " } ] ]
[ "拓展思维->拓展思维->数论模块->质数与合数->特殊质数运用->常用质数" ]
[ "由于30以内奇质数的平均数为$$\\left( 3+5+7+11+13+17+19+23+29 \\right)\\div 9=14.111\\cdots $$,所以与此平均数最接近的整数是14 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2317
e5adc4fd74fa4e309b732206b4a62d32
[ "2017年华杯赛四年级竞赛初赛", "2017年华杯赛六年级竞赛初赛" ]
2
single_choice
$$\text{I}$$型和$$\text{II}$$型电子玩具车各一辆,沿相同的两个圆形轨道跑动,$$\text{I}$$型每$$5$$分钟跑一圈,$$\text{II}$$型每$$3$$分钟跑一圈。某一时刻,$$\text{I}$$型和$$\text{II}$$型恰好都开始跑第$$19$$圈,则$$\text{I}$$型比$$\text{II}$$型提前( )分钟开始跑动。
[ [ { "aoVal": "A", "content": "$$32$$ " } ], [ { "aoVal": "B", "content": "$$36$$ " } ], [ { "aoVal": "C", "content": "$$38$$ " } ], [ { "aoVal": "D", "content": "$$54$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->多次相遇和追及" ]
[ "解:$$5-3=2$$(分钟),$$18\\times 2=36$$(分钟) 故选:B。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1860
93014ec0fce644539f2e9e3a40a4284e
[ "2018年第6届湖北长江杯五年级竞赛初赛B卷第10题3分" ]
2
single_choice
小亮在期末考试中,道德与法治、语文、数学、英语、科学五科的平均成绩是$$89$$分,道德与法治、数学两科平均成绩是$$91.5$$分,道德与法治、英语两科平均成绩是$$86$$,英语与语文多$$10$$分.下面选项中正确的是.
[ [ { "aoVal": "A", "content": "语文$$79$$分~ ~数学$$94$$分 " } ], [ { "aoVal": "B", "content": "语文$$79$$分~ ~道德与法治$$83$$分 " } ], [ { "aoVal": "C", "content": "数学$$100$$分~ ~英语$$79$$分 " } ], [ { "aoVal": "D", "content": "科学$$94$$分~ ~道德与法治$$89$$分 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "五科的成绩之和是$$89\\times5=445$$(分), 政治和数学的成绩之和是:$$91.5\\times2=183$$(分), 语文和英语的成绩之和是:$$84\\times2=168$$(分), 政治和英语成绩之和是:$$86\\times2=172$$(分), 所以生物成绩是: 五科成绩之和$$-$$政治和数学成绩之和$$-$$语文和英语成绩之和, 语文成绩是(语文和英语成绩之和$$-10$$)$$\\div2$$, 用语文成绩减去$$10$$分就是英语成绩, 政治成绩$$=$$政治和英语成绩之和$$-$$英语成绩, 数学成绩$$=$$政治和数学成绩之和$$-$$政治成绩, 据此解答即可. 五科成绩之和:$$89\\times5=445$$(分), 政治和数学成绩之和是:$$91.5\\times2=183$$(分), 语文和英语的成绩之和是:$$84\\times2=168$$(分), 政治和英语成绩之和是:$$86\\times2=172$$(分), 生物成绩:$$445-183-168=94$$(分), 语文成绩:$$(168-10)\\div2=158\\div2=79$$(分), 英语成绩:$$79+10=89$$(分), 政治成绩:$$172-89=83$$(分), 数学成绩:$$183-83=100$$(分). 答:五科成绩分别为生物$$94$$分,语文$$79$$分, 英语$$89$$分,政治$$83$$分,数学$$100$$分. 故答案为:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2314
eec069f97b6048b48634a7dc96b55cda
[ "2012年第10届全国创新杯小学高年级六年级竞赛第5题4分" ]
1
single_choice
李军有一个闹钟,但它走时不准,这天下午$$6:00$$把它对准北京时间,可到晚上$$9:00$$时,它才走到$$8:45$$,这天早上李军看闹钟走到$$6:17$$的时候赶去上学,这时候北京时间为(~ ).
[ [ { "aoVal": "A", "content": "$$7:15$$ " } ], [ { "aoVal": "B", "content": "$$7:24$$ " } ], [ { "aoVal": "C", "content": "$$7:30$$ " } ], [ { "aoVal": "D", "content": "$$7:35$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "坏钟和标准钟的速度比为:$$165:180=11:12$$,现知道闹钟共走$$12\\times 60+17=737$$格,而标准钟可以转$$737\\times \\frac{12}{11}=804$$格,合计$$13$$个小时$$24$$分钟. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
896
d24a111e9c7f40e1bf536a4dfc249255
[ "2012年第8届全国新希望杯小学高年级六年级竞赛复赛第6题4分" ]
4
single_choice
$$\overline{**45}$$,$$\overline{19*8}$$,$$\overline{23*1}$$,$$\overline{3*49}$$是四个四位数,其中$$*$$代表不能辨认的数字,若其中有一个数是完全平方数,那么这个数可能是.(6分)
[ [ { "aoVal": "A", "content": "$$\\overline{**45}$$ " } ], [ { "aoVal": "B", "content": "$$\\overline{19*8}$$ " } ], [ { "aoVal": "C", "content": "$$\\overline{23*1}$$ " } ], [ { "aoVal": "D", "content": "$$\\overline{3*49}$$ " } ] ]
[ "拓展思维->知识点->数论模块->完全平方数->平方数的尾数特征" ]
[ "完全平方数的个位只能为$$0$$、$$1$$、$$4$$、$$5$$、$$6$$、$$9$$,因此排除$$\\text{B}$$选项.如果一个完全平方数是 $$5$$的倍数,那么它至少是$$25$$的倍数,因此排除$$\\text{A}$$选项.估算$${{48}^{2}}=2304$$,$${{49}^{2}}=2401$$,排除 $$\\text{C}$$选项.经检验$${{57}^{2}}=3249$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2594
94b279419d8f43069a2ed99c322e8c1f
[ "2018年湖北武汉新希望杯六年级竞赛训练题(五)第1题" ]
2
single_choice
甲、乙、丙三个人合租了一套房子,甲付的钱数等于乙付的钱数的$$1.5$$倍.乙付的钱数是丙付的钱数的$$\frac{3}{4}$$,已知甲比丙多付了$$100$$元,这套房子的租金是.
[ [ { "aoVal": "A", "content": "$$2000$$元 " } ], [ { "aoVal": "B", "content": "$$2100$$元 " } ], [ { "aoVal": "C", "content": "$$2200$$元 " } ], [ { "aoVal": "D", "content": "$$2300$$元 " } ] ]
[ "拓展思维->拓展思维->计算模块->比和比例->比例->化连比" ]
[ "甲:乙$$=3:2$$,乙:丙$$=3:4$$,甲:乙:丙$$=9:6:8$$,$$100\\div (9-8)\\times (9+6+8)=2300$$(元). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1518
490fb6518ef2433c958c233801e4c642
[ "2014年华杯赛四年级竞赛初赛" ]
2
single_choice
两个正整数的和小于$$100$$,其中一个是另一个的两倍,则这两个正整数的和的最大值是( )
[ [ { "aoVal": "A", "content": "$$83$$ " } ], [ { "aoVal": "B", "content": "$$99$$ " } ], [ { "aoVal": "C", "content": "$$96$$ " } ], [ { "aoVal": "D", "content": "$$98$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->和倍问题->二量和倍问题->两量和倍" ]
[ "解:根据$$3$$的倍数特征,不难判断$$83$$和$$98$$都不是$$3$$的倍数,$$99$$和$$96$$都是,但$$99\\textgreater96$$,所以这两个数的最大值是$$99$$。 故选:B。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1817
a9215a37e2b64a259f45c0b1a4ef6f95
[ "2020年第23届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第8题3分" ]
2
single_choice
$$10 $$年前父亲的年龄是儿子的$$7$$倍,$$15$$年后父亲的年龄是儿子的$$2$$倍,今年父亲的年龄是儿子的倍.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$2.5$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设$$10$$年前儿子的年龄是$$x$$岁,那么父亲的年龄是$$7x$$; 根据题意可得: $$7x+10+15=\\left( x+10+15 \\right)\\times 2$$, $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde7x+25=2x+50$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde5x=25$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde x=5$$, 现在儿子的年龄是:$$x+10=5+10=15$$(岁), 父亲的年龄是:$$7x+10=7\\times 5+10=45$$(岁). $$45\\div 15=3$$(倍). 故选$$\\text C$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1879
fbdb7b81f0e245e1bd2e5cfb64dff707
[ "2014年全国迎春杯三年级竞赛初赛第8题" ]
1
single_choice
祖玛游戏中,龙嘴里不断吐出很多颜色的龙珠,先$$4$$颗红珠,接着$$3$$颗黄珠,再$$2$$颗绿珠,最后$$1$$颗白珠,按此方式不断重复,从龙嘴里吐出的第$$252$$颗龙珠是.
[ [ { "aoVal": "A", "content": "红珠 " } ], [ { "aoVal": "B", "content": "黄珠 " } ], [ { "aoVal": "C", "content": "绿珠 " } ], [ { "aoVal": "D", "content": "白珠 " } ] ]
[ "知识标签->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "$$252\\div (4+3+2+1)=25······2$$.红色 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1492
3772c637cf22432cb9b5a0ae1cf6254c
[ "2019年第23届广东世界少年奥林匹克数学竞赛三年级竞赛初赛第1题5分" ]
1
single_choice
兄弟俩今年的年龄和是$$35$$岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,弟弟今年岁.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$13$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->一元一次方程解应用题->方程法解其他问题" ]
[ "题目中有$$2$$个时间线,一是现在的年龄和$$35$$岁的现在时,二是当哥哥像弟弟现在这样大时的过去时. 在过去时中:弟弟的年龄是$$1$$份,则哥哥为$$2$$份,所以哥哥比弟弟多$$1$$份. 到现在时的时候:弟弟的年龄$$2$$份,则哥哥为$$3$$份.差仍然是$$1$$份. 所以现在:$$35\\div$$ (2+3)=7(岁/份) 弟弟:$$2\\times$$ 7=14(岁) 哥哥:$$3\\times$$ 7=21(岁) " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3346
ba99b7d03a6b484c81204fe0471fa5d5
[ "2019年美国数学大联盟杯五年级竞赛初赛第34题5分" ]
1
single_choice
大于$$99$$且小于$$1000$$的整数既不包含数字$$1$$也不包含数字$$2$$有多少个?.
[ [ { "aoVal": "A", "content": "$$392$$ " } ], [ { "aoVal": "B", "content": "$$448$$ " } ], [ { "aoVal": "C", "content": "$$512$$ " } ], [ { "aoVal": "D", "content": "$$620$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->加乘原理->加乘原理综合", "Overseas Competition->知识点->计数模块->加乘原理" ]
[ "本题题意为``大于$$99$$且小于$$1000$$的整数既不包含数字$$1$$也不包含数字$$2$$有多少个?''本题相当于问三位数中即不包括数字$$1$$也不包括数字$$2$$的有多少个,本题考查排列组合,先考虑个位上可能出现的数字有$$0$$、$$3$$、$$4$$、$$5$$、$$6$$、$$7$$、$$8$$、$$9$$总共$$8$$个,同理十位也是$$8$$个,百位上去掉不能为$$0$$的情况有$$7$$个数字,因此一共有$$7\\times 8\\times 8=448$$(个). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2860
a409220b2d0e4bdab5137b0e144fe61c
[ "2013年全国走美杯五年级竞赛初赛B卷第11题", "2013年全国走美杯六年级竞赛初赛第11题" ]
2
single_choice
定义$$a \And b=(a+2)(b+2)-2$$,算式$$1\times 3\times 5\times7\times 9\times 11\times 13-(1 \And3 \And5 \And7 \And9 \And11)$$的计算结果是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$13$$ " } ] ]
[ "知识标签->学习能力->七大能力->数据处理" ]
[ "本题可以算出答案,但用递推推出答案会使过程更简单,由定义式可推得:$$1 \\And3=3\\times 5-2$$,$$1 \\And3 \\And5=(1\\times3\\times 5-2+2)\\times 7-2=1\\times 3\\times 5\\times 7-2$$$$\\cdots$$以此类推,$$1 \\And3 \\And5 \\And 7 \\And 9 \\And 11=1\\times 3\\times 5\\times 7\\times 9\\times11\\times 13-2$$,故原式答案为$$2$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1141
41b92b668c80479cb94c6b203f9f4873
[ "2017年第16届湖北武汉创新杯小学高年级六年级竞赛邀请赛训练题(二)" ]
1
single_choice
一班和二班的人数之比是$$8:7$$,如果将一班的$$8$$名同学调到二班去,则一班和二班的人数比变为$$4:5$$.原来二班的人数为(~ )人.
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$40$$ " } ], [ { "aoVal": "C", "content": "$$42$$ " } ], [ { "aoVal": "D", "content": "$$60$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "一班原来的人数占两班总人数的$$\\frac{8}{15}$$,$$4+5=9$$,如果将一班的$$8$$名同学调到二班去,那么一班的人数占两班总人数的$$\\frac{4}{9}$$.原来两班总人数是:$$8\\div \\left( 8\\div154\\div9 \\right)=90$$,因此,原来一班有:$$90\\times \\frac{8}{15}=48$$人,二班有:$$90\\times \\frac{7}{15}=42$$人. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2213
9970125548804ea186ed6110531d253d
[ "2018年第12届北京学而思杯四年级竞赛初赛线上第13题8分" ]
2
single_choice
一列火车全长$$240$$米,每秒行驶$$20$$米,要想通过全长为$$360$$米的大桥,需要多少秒?
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$30$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ], [ { "aoVal": "D", "content": "$$50$$ " } ] ]
[ "知识标签->课内知识点->式与方程->数量关系->路程=速度×时间" ]
[ "火车的路程为$$240+360=600$$(米),所以需要$$\\left( 240+360 \\right)\\div 20=30$$(秒). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
92
14f69994cbde48d4b22ab76cec919e49
[ "2019年全国小学生数学学习能力测评五年级竞赛复赛第8题3分" ]
1
single_choice
一把钥匙只能开一把锁,现有$$4$$把钥匙$$4$$把锁,但不知哪把钥匙开哪把锁,问最多试次能将所有的锁都找到相对应的钥匙.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "无需将锁打开,只需匹配成功,故最多:$$3+2+1=6$$(次). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
304
60165654edbb4418ab26b969c88a45f1
[ "2019年第24届YMO一年级竞赛决赛第3题3分" ]
1
single_choice
把$$20$$个苹果分成数量各不相同的五堆,其中数量最多的一堆最多有个.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "五堆共有$$20$$个苹果,要使数量最多的那堆最多, 则其它$$4$$堆尽量小, 而其它$$4$$堆最小为$$1$$,$$2$$,$$3$$,$$4$$个苹果, 则数量最多那堆最多, $$20-1-2-3-4=10$$(个). 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3010
e9af498e2be14bd0a6a0e14f0e487dd1
[ "2017年第15届全国希望杯六年级竞赛" ]
2
single_choice
计算:$$\frac{0.2\dot{3}\dot{4}+\frac{84}{495}}{0.56\dot{8}-\frac{56}{450}}$$
[ [ { "aoVal": "A", "content": "$$\\frac{11}{10}$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{10}{11}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{9}{10}$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "原式$$=\\frac{\\frac{234-2}{990}+\\frac{84}{495}}{\\frac{568-56}{900}-\\frac{56}{450}}$$ $$=\\frac{\\frac{232}{990}+\\frac{168}{990}}{\\frac{512}{900}-\\frac{112}{900}}$$ $$=\\frac{\\frac{400}{990}}{\\frac{400}{900}}=\\frac{10}{11}$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2215
481bbdd453a14ab7aecf9faa969a6cd0
[ "2021年河南郑州二七区京广实验学校小升初第5题2分", "2017年江苏镇江句容市句容市崇明小学小升初第16题1分", "2017年河南郑州联合杯竞赛决赛第5题2分" ]
1
single_choice
当$$9:30$$时,钟面上时针和分针所组成的角是(~ ).
[ [ { "aoVal": "A", "content": "直角 " } ], [ { "aoVal": "B", "content": "锐角 " } ], [ { "aoVal": "C", "content": "钝角 " } ], [ { "aoVal": "D", "content": "平角 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "当$$9:30$$时,时针和分针所组成的角是钝角. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1356
28a8a1b0ad5644608e42a1061700e5e1
[ "2020年希望杯二年级竞赛模拟第15题" ]
1
single_choice
鸭妈妈带着小鸭们在池塘里游玩,黄小鸭发现:有$$2$$只小鸭在它的前面,$$3$$只小鸭在它的后面.池塘里共有几只鸭?
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ], [ { "aoVal": "E", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->应用题模块排队问题->单主角求总数", "Overseas Competition->知识点->应用题模块->应用题模块排队问题" ]
[ "根据题意分析可知,用黄小鸭前面的数量加上后面的数量再加上自己所以一共有: $$2+3+1=6$$(只)小鸭,再加上鸭妈妈 故答案为:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2428
21683aeeb00f4e82be6bc7814d66cdd0
[ "2018年IMAS小学高年级竞赛(第一轮)第2题3分" ]
1
single_choice
请问满足下面这个不等式的$$\square $$中能填入的最大整数是多少? $$9\times \square \lt 2018$$
[ [ { "aoVal": "A", "content": "$$202$$ " } ], [ { "aoVal": "B", "content": "$$212$$ " } ], [ { "aoVal": "C", "content": "$$218$$ " } ], [ { "aoVal": "D", "content": "$$224$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->算式比较大小" ]
[ "$$\\square ~~\\textless{} ~\\frac{2018}{9}=224\\frac{2}{9}$$,最大的整数为$$224$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1989
bce6477f641b4cb2a00d37797138bf45
[ "2014年第10届全国新希望杯小学高年级六年级竞赛复赛第4题4分" ]
1
single_choice
某大桥由于桥面多处破损进行全面检修,修了一个星期之后,已修和未修的比是$$1:7$$,第二个星期又修了$$500$$米,这时已修和未修的比是$$9:23$$,则该大桥全长是米.
[ [ { "aoVal": "A", "content": "$$3200$$ " } ], [ { "aoVal": "B", "content": "$$3100$$ " } ], [ { "aoVal": "C", "content": "$$2012.5$$ " } ], [ { "aoVal": "D", "content": "$$3500$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->比例应用题->和不变" ]
[ "和不变:$$1:7=4:28$$和$$8$$份$$\\times 4$$ $$9:23$$和$$32$$份 故$$1$$份为$$500\\div \\left( 9-4 \\right)=100$$(米) 全长为$$32\\times 100=3200$$(米) 选$$A$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2698
887143bab3b44cefaf3ca1841193bdf1
[ "2016年第14届全国创新杯五年级竞赛初赛第8题" ]
3
single_choice
根据``三角形任意两边之和大于第三边''的知识,解答本题: 有不同长度的七条线段,其长度均为整数厘米,最短的是$$1$$厘米,最长的是$$21$$厘米,其中以任何三条线段作``边''都不能组成一个三角形,那么这七条线段中第二长的线段长厘米.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$13$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "斐波那契数列从第三项开始,等于前两项的和,即$$1$$、$$2$$、$$3$$、$$5$$、$$8$$、$$13$$、$$21$$. 即第二长的为$$13$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1998
ab198bc2dd0a4b88be8296da318e8243
[ "2019年第7届湖北长江杯六年级竞赛复赛A卷第10题3分" ]
1
single_choice
一个三位数的各位数字之和是$$17$$,其中十位数字比个位数字大$$1$$,如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大$$198$$,原数是.
[ [ { "aoVal": "A", "content": "$$476$$ " } ], [ { "aoVal": "B", "content": "$$400$$ " } ], [ { "aoVal": "C", "content": "$$470$$ " } ], [ { "aoVal": "D", "content": "$$486$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设个位是$$a$$,十位是$$a+1$$,百位$$17-a-a-1=16-2a$$. 根据题意列出方程:$$100a+10(a+1)+16-2a-100(16-2a)-(10a+1)-a=198$$, 解这个方程,求出个位数字,然后再求十位与百位数字,解决问题. 设原数个位为$$a$$,则十位为$$a+1$$,百位为$$16-2a$$, 根据题意列方程 $$100a+10(a+1)+16-2a-100(16-2a)-(10a+1)$$, 解得$$a=6$$,则$$a+1=7$$,$$16-2a=4$$; 答:原数为$$476$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1933
b3447dc75da7429fbcb9d42b529375c0
[ "2018年第8届北京学而思综合能力诊断一年级竞赛年度教学质量第12题" ]
1
single_choice
植树节到了,李老师带着同学们去种树.大家要一起合影,站成了两排,两排人数一样 多.李老师站在后一排,从左数是第$$5$$个,从右数是第$$3$$个,一共有(~ )个同学去种树.
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$13$$ " } ], [ { "aoVal": "C", "content": "$$19$$ " } ], [ { "aoVal": "D", "content": "$$20$$~ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "一排的人数:$$5+3-1=7$$(人) 两排的人数:$$7+7=14$$(人) 同学的人数:$$14-1=13$$(人). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1015
030235d15d51442e87d3581d59b1cdd9
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第9题5分" ]
1
single_choice
有一个数,它的一半的一半是$$4$$,这个数是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->思想->逆向思想" ]
[ "一个数的一半的一半是$$4$$,则这个数的一半为$$4+4=8$$,则这个数为$$8+8=16$$,故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
240
d5a39b8eed74439dbf67cfac1453b902
[ "1989年华杯赛六年级竞赛初赛" ]
3
single_choice
一副扑克牌有四种花色,每种花色有$$13$$张,此外还有两张王牌,从中任意抽牌。那么,最少要抽 张牌,才能保证有$$4$$张牌是同一花色。
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->最不利原则" ]
[ "如果在最不利的情况下能完成目标,则保证在任何情况下都能完成。最不利的情况是:抽的前$$12$$张是$$4$$种花色各$$3$$张,再抽两张王牌,这时抽第$$15$$张,无论是哪种花色,都能保证凑成$$4$$张牌同一花色。所以至少要抽$$15$$张牌,才能保证有四张牌是同一花色的。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1214
5910049a8cc74c99a9d94fc25953de48
[ "2015年湖北武汉世奥赛六年级竞赛模拟训练题(四)第1题" ]
2
single_choice
某月所有星期天的日期数加起来是$$70$$,这个月星期三的天数比星期四的天数多.这个月一共有天.
[ [ { "aoVal": "A", "content": "$$28$$ " } ], [ { "aoVal": "B", "content": "$$29$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$31$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "经推算此月星期天的日期分别为$$7$$号、$$14$$号、$$21$$号、$$28$$号,又星期三的天数比星期四的天数多,那么最后一天应是星期三,$$31$$号. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2086
d0269d3f3d7c4b9892a517aa6eaca1a2
[ "2014年世界少年奥林匹克数学竞赛三年级竞赛初赛B卷第4题5分" ]
1
single_choice
今年爸爸是$$32$$ 岁,儿子是$$4$$ 岁,当父子俩年龄之和是$$50$$ 岁时,应该是~\uline{~~~~~~~~~~}~年之后的事.
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$46$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题基本关系->年龄和" ]
[ "今年年龄和:$$32+4=36$$(岁),两人共长:$$50-36=14$$(岁),经过的年头:$$14\\div 2=7$$(年). 答:当父子年龄和是$$50$$时,应该是$$7$$年以后的事. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1053
2a23710ba9a043c492717d77454c4753
[ "2016年环亚太杯四年级竞赛初赛第8题" ]
2
single_choice
一条路上相邻两棵树的距离都相等,甲、乙二人同时从一端的某棵树出发,同向而行.当甲走到第$$21$$棵树时,回头看见乙到的那棵树与自己正隔着$$3$$棵树.已知乙每分钟走$$64$$米.甲每分钟走~\uline{~~~~~~~~~~}~米.
[ [ { "aoVal": "A", "content": "$$51.2$$ " } ], [ { "aoVal": "B", "content": "$$60$$ " } ], [ { "aoVal": "C", "content": "$$70$$ " } ], [ { "aoVal": "D", "content": "$$80$$ " } ], [ { "aoVal": "E", "content": "$$90$$ " } ], [ { "aoVal": "F", "content": "$$100$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "依题意得,这是一道有关路程的题,列式如下: $$64\\times (21-1)\\div (21-4-1)$$ $$=64\\times 20\\div 16$$ $$=80$$. 故答案为:$$80$$.选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
34
03e675bee5fe4f2d9bac5a56267ba07d
[ "2017年河南郑州豫才杯六年级竞赛决赛4分", "2013年四川成都小升初某师大一中第18题" ]
2
single_choice
一个口袋装有红、黄、蓝三种不同颜色的小球各$$10$$个,一次摸一个且不放回,要保证能摸出$$10$$个相同颜色的小球,至少要摸出个.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$11$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ], [ { "aoVal": "D", "content": "$$28$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->简单抽屉原理" ]
[ "把三种颜色看做三个抽屉,从极端考虑:先摸出的是红色球、黄色球和蓝色球各$$9$$个,共$$27$$个球,再摸第$$28$$个球则一定有一种球是同色的,因此至少要摸出$$28$$个球. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1653
64d95288a4994a91a9249d759d347823
[ "2020年长江杯五年级竞赛复赛B卷第4题5分" ]
2
single_choice
$$7$$个人的年龄和是$$190$$岁,其中最小的$$17$$岁,且$$7$$个人中只有两个人的年龄相同,那么,年龄最大的一个人最多岁.
[ [ { "aoVal": "A", "content": "$$73$$ " } ], [ { "aoVal": "B", "content": "$$77$$ " } ], [ { "aoVal": "C", "content": "$$90$$ " } ], [ { "aoVal": "D", "content": "$$78$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "要使年龄最大,那么要使其它的年龄最小,最小的$$17$$岁,只有两个人年龄相同, 那么其它$$5$$个人年龄是$$17$$、$$18$$、$$19$$、$$20$$、$$21$$; 最大的一个人是$$190-17-17-18-19-20-21=78$$(岁). 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
348
5c95058df9354bbfad9022e984d850fa
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛初赛第3题5分" ]
1
single_choice
有$$4$$个互不相同的自然数,它们的平均数是$$10$$.其中最大的数至少是.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$11$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$13$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->组合模块最值问题->和一定型最值问题->构造和一定最值原理" ]
[ "欲求最大的数至少为多少,则这$$4$$个不同的自然数越接近越好.则为$$8$$,$$9$$,$$11$$,$$12$$.故最大的数至少为$$12$$,所以选择$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
947
f3d2f99a04ae4a36a8742ae3a7d4d7d8
[ "2015年第27届广东广州五羊杯小学高年级竞赛第9题4分" ]
1
single_choice
在$$2000$$,$$2001$$,$$2002$$,$$2003$$、$$\cdots $$、$$2015$$这$$16$$个数中,不能表示成两个完全平方数之差的数有个.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "显然其中的奇数都可以,这可以利用平方差公式与和差问题说明;偶数必须是$$4$$的倍数,所以有$$2000$$,$$2004$$,$$2008$$,$$2012$$可以做得到.因而共有$$2002$$,$$2006$$,$$2010$$,$$2014$$四个不能.答案为$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2615
31bb23e43e2943b882300657437ad3a0
[ "2020年希望杯二年级竞赛模拟第4题" ]
1
single_choice
请你根据数串的规律再横线上填上正确的答案:3,6,9,12~\uline{~~~~~~~~~~}~,15.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->思想->数形结合思想" ]
[ "后一个数等于前一个数$$\\times$$ 2 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2695
5f5c0985b9a04ca881f83a420c310085
[ "2019年第24届YMO一年级竞赛决赛第1题3分" ]
1
single_choice
$$\square $$和$$\bigcirc $$各代表一个数, $$\square =\bigcirc +\bigcirc $$,$$\bigcirc +\square +\square =30$$, $$\square $$-$$\bigcirc $$=.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "Overseas Competition->知识点->计算模块->方程基础->等量代换", "拓展思维->能力->逻辑分析" ]
[ "分析可知:$$\\square =\\bigcirc +\\bigcirc =2\\bigcirc $$, 把$$\\square =2\\bigcirc $$代入$$\\bigcirc +\\square +\\square =30$$中得: $$\\bigcirc +2\\bigcirc +2\\bigcirc =5\\bigcirc $$,$$5\\bigcirc =30$$, 所以$$\\bigcirc =30\\div 5=6$$, 那么$$\\square =2\\bigcirc =2\\times 6=12$$, 由此可知,$$\\square $$与$$\\bigcirc $$的差为$$12-6=6$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2226
e37dce3db39d451090c06d6ed2fa4a8a
[ "2017年全国希望杯六年级竞赛" ]
2
single_choice
学校到图书馆的路一半上坡、一半下坡.学生$$A$$从学校到图书馆的过程中,下坡的速度是他走全程平均速度的$$2$$倍,那么上坡的速度是他走全程平均速度~\uline{~~~~~~~~~~}~倍.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{3}{2}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{2}{3}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{2}$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->平均速度->设数法" ]
[ "设全程的路程为$$\\text{s}$$,时间为$$\\text{t}$$,则学生$$A$$走全程的平均速度为$$\\text{v=}\\frac{\\text{s}}{\\text{t}}$$,学生$$A$$下坡的时间为 $$\\frac{\\frac{\\text{s}}{2}}{2\\text{v}}=\\frac{\\text{s}}{4\\text{v}}=\\frac{\\text{s}}{4\\times \\frac{\\text{s}}{\\text{t}}}=\\frac{\\text{t}}{4}$$,所以,学生$$A$$上坡的时间为$$\\text{t-}\\frac{\\text{t}}{4}=\\frac{3}{4}\\text{t}$$,故学生$$A$$上坡的速度是$$\\frac{\\frac{\\text{s}}{2}}{\\frac{3\\text{t}}{4}}=\\frac{2\\text{s}}{3\\text{t}}=\\frac{2}{3}\\text{v}$$, 即上坡的速度是他走全程平均速度$$\\frac{2}{3}$$倍. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
373
b1ed294ff7e048848a8dc1bae7e5ce5b
[ "2013年华杯赛四年级竞赛初赛", "2013年华杯赛四年级竞赛初赛" ]
2
single_choice
有一个人捡到一条红领巾,老师问是谁捡到的?小东说:不是小西;小西说:是小南;小南说:小东说的不对;小北说:小南说的也不对。他们之中只有一个人说对了,这个人是。
[ [ { "aoVal": "A", "content": "小东 " } ], [ { "aoVal": "B", "content": "小西 " } ], [ { "aoVal": "C", "content": "小南 " } ], [ { "aoVal": "D", "content": "小北 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理" ]
[ "解:根据题干分析可得,小南与小北说的话是相互矛盾的,所以两人中一定有一个人说的是正确的。 假设小北说的是正确的,则小南说``小东说的不对''是错,可得:小东说的对,这样与已知只有一个人说对了相矛盾,所以此假设不成立,故小南说的是正确的。 故选:$$\\text{C}$$。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
183
9de4fa1dea434c2cb2c8eb270ec12faa
[ "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第17题3分" ]
1
single_choice
甲、乙、丙三人中只有$$1$$人会英语.甲说:``我会英语.''乙说:``我不会英语.丙说:``甲不会英语.''三人的话只有一句是真话.会英语的是.
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "无法确定 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾" ]
[ "假设甲会英语, 那么甲和乙说的是真话, 所以和已知矛盾, 所以甲不会英语; 假设乙会英语, 那么甲和乙说的是假话, 丙说的是真话,符合题意; 假设丙会英语, 那么乙和丙说的是真话,和题意矛盾, 所以丙不会英语, 所以会英语的是乙. 选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1084
3395ec12e0614a589ee007bdfdf90809
[ "2004年第2届创新杯六年级竞赛初赛第4题", "2004年六年级竞赛创新杯" ]
1
single_choice
新村小学有男生$$480$$人,比全校学生人数的$$\frac{3}{5}$$少$$60$$人,这个学校女生的人数是( )
[ [ { "aoVal": "A", "content": "$$220$$人 " } ], [ { "aoVal": "B", "content": "$$280$$人 " } ], [ { "aoVal": "C", "content": "$$360$$人 " } ], [ { "aoVal": "D", "content": "$$420$$人 " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->认识单位1" ]
[ "由题意可知,$$480$$人加上$$60$$人正好是全校学生人数的$$\\frac{3}{5}$$,因此全校学生人数为:$$\\left( 480+60 \\right)\\div \\frac{3}{5}$$,然后减去男生人数,就是女生人数.据此解答. $$\\left( 480+60 \\right)\\div \\frac{3}{5}-480=540\\times \\frac{5}{3}-480=900-480=420$$(人). 答:这个学校女生的人数是$$420$$人. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1791
8a124d778c2f48d59e8fcb232ec182f1
[ "2013年第11届全国小机灵杯三年级竞赛决赛第6题" ]
2
single_choice
某年的三月份正好有$$4$$个星期三和$$4$$个星期六,那么这年$$3$$月$$1$$日是星期~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "四 " } ], [ { "aoVal": "B", "content": "五 " } ], [ { "aoVal": "C", "content": "六 " } ], [ { "aoVal": "D", "content": "日 " } ] ]
[ "知识标签->课内知识点->数学广角->简单的周期->简单的周期计算" ]
[ "$$3$$月有$$31$$天,从中任取连续$$28$$天,正好是四周,恰好有$$4$$个周三和$$4$$个周六, 因此,剩下的$$3$$天中不能有周三和周六 不妨取$$3$$月$$4$$日到$$3$$月$$31$$日,这$$28$$天中恰有$$4$$个周三和$$4$$个周六 剩下的$$1$$日到$$3$$日是连续的三天,其中有不能有周三和周六,发现这三天只能是周日、周一、周二 因此,$$3$$月$$1$$日是周日. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3311
4517ef8de1de43ae9ece960abc1b81fe
[ "2016年全国小学生数学学习能力测评五年级竞赛初赛第8题3分" ]
2
single_choice
$$1$$角硬币分正面与反面.拿三个$$1$$角硬币一起投掷一次,得到一个正面和一个反面的可能性为.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{8}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3}{8}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{5}{8}$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "全部情况有:$$2\\times 2=4$$(种), 最终得到一个正面一个反面可有以下$$2$$种情况: 正反、反正, 故所求概率为$$\\frac{2}{4}$$. 故答案为:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3047
d3733a7a7ab248b3a4ce8273f76d79d1
[ "2012年IMAS小学中年级竞赛第一轮检测试题第19题4分" ]
2
single_choice
王老师在黑板上写了五个数,代号分别为$$A$$、$$B$$、$$C$$、$$D$$、$$E$$,她告诉大家:$$A$$比$$B$$大;$$C$$比$$D$$大,$$C$$比$$E$$小;$$D$$比$$B$$大;$$E$$比$$A$$小.哪一个数第三大?(~ )
[ [ { "aoVal": "A", "content": "$$A$$ " } ], [ { "aoVal": "B", "content": "$$B$$ " } ], [ { "aoVal": "C", "content": "$$C$$ " } ], [ { "aoVal": "D", "content": "$$D$$ " } ], [ { "aoVal": "E", "content": "$$E$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "因为$$A\\textgreater E\\textgreater C\\textgreater D\\textgreater B$$,所以第三大的数为$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
794
9eda96c0b0ce4f1ca27f624f801e6673
[ "小学高年级其它华杯教程", "2019年华杯赛小学高年级竞赛第9题10分" ]
2
single_choice
一个八位整数,由$$8$$个不同的数字组成,其中任何两个相邻数字构成的两位整数能被$$13$$或$$17$$整除,这个八位数的数字和等于(~ ).
[ [ { "aoVal": "A", "content": "$$41$$ " } ], [ { "aoVal": "B", "content": "$$40$$ " } ], [ { "aoVal": "C", "content": "$$38$$ " } ], [ { "aoVal": "D", "content": "$$36$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "用$$13$$,$$26$$,$$39$$,$$52$$,$$65$$,$$78$$,$$91$$和$$17$$,$$34$$,$$51$$,$$68$$,$$85$$拼出一个八位整数$$39178526$$.除此,无其他解答. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3238
43092790f5fb41da86c35b602151dda1
[ "2020年长江杯六年级竞赛复赛A卷第6题5分" ]
2
single_choice
在$$1000$$至$$1999$$这些自然数中,个位数不小于百位数的有个.
[ [ { "aoVal": "A", "content": "$$650$$ " } ], [ { "aoVal": "B", "content": "$$550$$ " } ], [ { "aoVal": "C", "content": "$$450$$ " } ], [ { "aoVal": "D", "content": "$$400$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "百位数字和个位数字相等的数有∶ $$1\\times 10\\times 10\\times 1=100$$(个), 因为个位数字比百位数字大的和比百位数字小的各占一半, 所以满足条件的数有$$\\left( 1000-100 \\right)\\div 2=450$$(个). 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1583
ff8080814518d5240145201acb9d0a72
[ "2017年全国小升初八中入学备考课程", "2014年全国迎春杯三年级竞赛复赛第8题" ]
2
single_choice
过年了,小明家买了很多瓶果汁.年三十喝了总量的一半少$$1$$瓶;初一又喝了剩下的一半;初二又喝了剩下的一半多$$1$$瓶,这时还剩$$2$$瓶没有喝,那么小明家一共买了(~~~~~ )瓶果汁.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$22$$ " } ], [ { "aoVal": "C", "content": "$$24$$ " } ], [ { "aoVal": "D", "content": "$$26$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->还原问题->多量还原问题" ]
[ "还原法,初二没喝之前有$$(2+1)\\times 2=6$$(瓶),初一没喝之前有$$6\\times 2=12$$(瓶),开始有$$(12-1)\\times 2=22$$(瓶). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3281
2e7ce9aeb9a8468796a2ef56f32ebd88
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第3题3分" ]
1
single_choice
用$$26$$厘米长的铁丝围成长方形,长和宽都是整厘米数,可以有种不同的围法.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->能力->公式记忆->符号化数学原理" ]
[ "从题干可以知道,用$$26$$厘米长的铁丝围成长方形,那么长$$+$$宽$$=26\\div 2=13$$(厘米), 由于长和宽都是整厘米数, $$13=1+12=2+11=3+10=4+9=5+8=6+7$$, 所以不同的围法有$$6$$种. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1487
75ff42630cc74dbc9fa6d4c41faa091c
[ "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第13题3分" ]
1
single_choice
五个数的平均数是$$12$$,如果把其中一个数改为$$1$$,这时五个数的平均数是$$11$$,这个被改动的数原来是.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->综合题普通型" ]
[ "从题干可以知道,五个数的平均数是$$12$$, $$12\\times5=60$$, 那么五个数之和是$$60$$; 如果把其中一个数改为$$1$$, 这时五个数的平均数是$$11$$, $$11\\times5=55$$, 此时五个数之和是$$55$$; $$60-55+1=6$$; 那么这个被改动的数原来是$$6$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2394
08caf5f192a24f62ba842fb67408fcfc
[ "2014年迎春杯四年级竞赛复赛" ]
2
single_choice
计算:$$2014\div (2\times 2+2\times 3+3\times 3)=$$( )
[ [ { "aoVal": "A", "content": "$$53$$ " } ], [ { "aoVal": "B", "content": "$$56$$ " } ], [ { "aoVal": "C", "content": "$$103$$ " } ], [ { "aoVal": "D", "content": "$$106$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->四则混合运算" ]
[ "解:$$2014\\div (2\\times 2+2\\times 3+3\\times 3)$$ $$=2014\\div (4+6+9)$$ $$=2014\\div 19$$ $$=106$$ 故选:D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1950
d3181eb91a844e5c8aa2ba920c02936c
[ "2020年新希望杯二年级竞赛初赛(个人战)第4题", "2020年新希望杯二年级竞赛决赛(8月)第4题" ]
1
single_choice
如果$$3$$斤菠萝可以做$$6$$个菠萝蛋糕,那么要做$$10$$个菠萝蛋糕,需要斤菠萝.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ], [ { "aoVal": "E", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "根据$$1$$斤菠萝可以做$$2$$个菠萝蛋糕,那么要做$$10$$个菠萝蛋糕,需要$$10\\div2=5$$(斤)菠萝.故选择$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
771
ff8080814518d5240145192b5cdb0570
[ "2014年全国迎春杯六年级竞赛复赛第13题" ]
2
single_choice
老师在黑板上从$$1$$开始将奇数连续地写下去,写了一长串数后,擦去了其中的两个数,将这些奇数隔成了$$3$$串,已知第二串比第一串多$$1$$个数,第三串比第二串多$$1$$个数,且第三串奇数和为$$4147$$,那么被划去的两个奇数的和是(~~~~~ ).
[ [ { "aoVal": "A", "content": "$$188$$ " } ], [ { "aoVal": "B", "content": "$$178$$ " } ], [ { "aoVal": "C", "content": "$$168$$ " } ], [ { "aoVal": "D", "content": "$$158$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "设第$$1$$段有$$n$$个,则第$$2$$段有$$n+1$$个,第一个擦的奇数是$$2n+1$$,第二个擦的奇数是$$4n+5$$,和为$$6n+6$$,是$$6$$的倍数.只有$$168$$符合. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1951
aefb399b9b4545ec8f81b2372ab9d680
[ "2009年华杯赛三年级竞赛初赛", "2009年华杯赛四年级竞赛初赛" ]
1
single_choice
开学前6天,小明还没做寒假数学作业,而小强已完成了60道题,开学时,两人都完成了数学作业. 在这6天中,小明做的题的数目是小强的3倍,他平均每天做( )道题.
[ [ { "aoVal": "A", "content": "6 " } ], [ { "aoVal": "B", "content": "9 " } ], [ { "aoVal": "C", "content": "12 " } ], [ { "aoVal": "D", "content": "15 " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->差倍->两量差倍->暗差型二量差倍问题" ]
[ "由于开学前6天时小强比小明多做了60道题,而开学时两人做的题一样多,所以这6天中小明比小强多做了60道题,而这6天中小明做的题的数目是小强的3倍,所以这6天小明做了$$60\\div \\left( 3-1 \\right)\\times 3=90$$(道) 题,他平均每天做$$90\\div 6=15$$题.正确答案为 D. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1541
5f9c17c5300b4bd9aaaf15a7cf3498c0
[ "2013年第12届全国小机灵杯小学中年级三年级竞赛初赛第18题15分" ]
3
single_choice
有一串数,第一个数是$$6$$,第二个数是$$3$$,从第二个数起,每个数都比它前面的那个数与后面的那个数的和小$$5$$,那么这串数的前$$200$$个数之和是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$990$$ " } ], [ { "aoVal": "B", "content": "$$996$$ " } ], [ { "aoVal": "C", "content": "$$998$$ " } ], [ { "aoVal": "D", "content": "$$999$$ " } ], [ { "aoVal": "E", "content": "$$1009$$ " } ], [ { "aoVal": "F", "content": "$$1010$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->数列操作周期问题->数的周期" ]
[ "第一个数为$$6$$,第二个数为$$3$$, 根据``从第二个数起,每个数都比它前面的那个数与后面的那个数的和小$$5$$'',可以得到第三个数为$$3+5-6=2$$; 同理,后面的数依次得到为:$$6$$、$$3$$、$$2$$、$$4$$、$$7$$、$$8$$、$$6$$、$$3$$、$$2$$、$$4$$\\ldots\\ldots. 易知,每$$6$$个数为一个周期循环.$$200\\div 6=33$$(组)$$\\cdots \\cdots 2$$(个). 所以前$$200$$个数的和为$$33\\times \\left( 6+3+2+4+7+8 \\right)+6+3=999$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1967
b821eea1cc454bf19fa5fce9b534f0c4
[ "2017年河南郑州豫才杯六年级竞赛决赛4分" ]
2
single_choice
$$3$$辆$$A$$种汽车$$4$$小时可运送$$144$$吨货物,$$5$$辆$$A$$种汽车和$$8$$辆$$B$$种汽车$$2$$小时可运送$$296$$吨货物,$$7$$辆$$B$$种汽车$$4$$小时可运送(~ )吨货物.
[ [ { "aoVal": "A", "content": "$$196$$ " } ], [ { "aoVal": "B", "content": "$$285$$ " } ], [ { "aoVal": "C", "content": "$$273$$ " } ], [ { "aoVal": "D", "content": "$$308$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "每辆$$A$$种汽车$$1$$小时可运$$144\\div 3\\div 4=12$$吨,则$$5$$辆$$A$$种汽车$$2$$小时可运$$12\\times 5\\times 2=120$$吨,每辆$$B$$种汽车$$1$$小时可运$$\\left( 296-120 \\right)\\div 8\\div 2=11$$吨,所以$$7$$辆$$B$$种汽车$$4$$小时可运$$11\\times 7\\times 4=308$$吨. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2946
8e71738457b84083bb93d7b0008ddfb9
[ "2015年第13届全国创新杯六年级竞赛第3题", "小学高年级六年级其它2015年数学思维能力等级测试初试第3题4分" ]
0
single_choice
计算:$$\frac{1}{3\times 4}+\frac{1}{4\times 5}+\frac{1}{5\times 6}+\cdots +\frac{1}{9\times 10}+\frac{1}{10\times 11}=$$(~ ).
[ [ { "aoVal": "A", "content": "$$\\frac{4}{33}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{33}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{8}{33}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{11}$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "原式$$=\\frac{1}{3}-\\frac{1}{11}=\\frac{8}{33}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2890
db2f954751a54dca8ea2423501f9035e
[ "2013年走美杯五年级竞赛初赛" ]
2
single_choice
下面算式中结果最大的是( )。
[ [ { "aoVal": "A", "content": "$$\\frac{8}{9}+\\frac{1}{2}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{8}{9}-\\frac{1}{2}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{8}{9}\\times \\frac{1}{2}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{8}{9}\\div \\frac{1}{2}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->分数基准数法" ]
[ "解:$$\\frac{8}{9}+\\frac{1}{2}\\textgreater\\frac{8}{9}$$, $$\\frac{8}{9}-\\frac{1}{2} \\textless{} \\frac{8}{9}$$, $$\\frac{8}{9}\\times \\frac{1}{2} \\textless{} \\frac{8}{9}$$ $$\\frac{8}{9}\\div \\frac{1}{2}\\textgreater\\frac{8}{9}$$, 又因为,$$\\frac{8}{9}+\\frac{1}{2} \\textless{} \\frac{8}{9}\\div \\frac{1}{2}$$, 所以,结果最大的是$$\\frac{8}{9}\\div \\frac{1}{2}$$。 故选:D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2191
c7704744c5b04ad1b02fdcea0882bcb0
[ "2016年创新杯五年级竞赛训练题(四)第6题", "2015年第11届全国新希望杯五年级竞赛复赛第6题" ]
2
single_choice
甲、乙两船在静水中的速度相同,它们分别从相距$$60$$千米的两港同时出发相向而行,$$2$$小时后相遇,如果两船的速度各增加$$5$$千米/小时,再次从两港同时出发相向而行,那么,它们再次相遇的地点就与前一次的相遇地点相距$$0.45$$千米,则水流的速度是(~~~ ).
[ [ { "aoVal": "A", "content": "$$0.7$$千米/小时 " } ], [ { "aoVal": "B", "content": "$$1.4$$千米/小时 " } ], [ { "aoVal": "C", "content": "$$0.9$$千米/小时 " } ], [ { "aoVal": "D", "content": "$$1.8$$千米/小时 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "原来的速度和是船速和$$60\\div 2=30$$,那么船速是$$30\\div 2=15$$千米/时,第二次时间为$$60\\div 40=1.5$$小时,那么水速是$$0.45\\div (2-1.5)=0.9$$千米/时. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2337
0990668766054838b6175ca8c0b02113
[ "2014年IMAS小学高年级竞赛第一轮检测试题第2题3分" ]
0
single_choice
请问下列哪一组数的乘积等于$$2014$$?
[ [ { "aoVal": "A", "content": "$$6$$、$$17$$、$$59$$ " } ], [ { "aoVal": "B", "content": "$$4$$、$$17$$、$$53$$ " } ], [ { "aoVal": "C", "content": "$$2$$、$$13$$、$$59$$ " } ], [ { "aoVal": "D", "content": "$$2$$、$$19$$、$$53$$ " } ], [ { "aoVal": "E", "content": "$$2$$、$$23$$、$$29$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "选项$$\\text{A}$$乘积的末位数为$$8$$,故不合; 选项$$\\text{B}$$的乘积$$4\\times 17\\times 53\\textgreater60\\times 50=3000$$,故不合; 选项$$\\text{C}$$的乘积$$2\\times 13\\times 59\\textless{}30\\times 60=1800$$,故不合; 选项$$\\text{E}$$的乘积$$2\\times 23\\times 29\\textless{}50\\times 30=1500$$,故不合; 只有选项$$\\text{D}$$的乘积$$2\\times 19\\times 53=2014$$,符合所求. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1437
5a5b4649a1d14877953dbb71b06ef6a4
[ "2016年第16届世奥赛六年级竞赛决赛第8题", "2016年全国世奥赛竞赛A卷第8题" ]
2
single_choice
国际的形势不稳定,对金融市场也造成了巨大的冲击.某月月初,每盎司黄金价格与每桶原油价格之比为$$47:5$$.月末,它们的单价都跌到了$$70$$美元,每盎司黄金价格与每桶原油的价格之比变为$$96:5$$.则月初每盎司黄金价格是(~ ~ ~ )美元.
[ [ { "aoVal": "A", "content": "$$1262$$ " } ], [ { "aoVal": "B", "content": "$$1222$$ " } ], [ { "aoVal": "C", "content": "$$1300$$ " } ], [ { "aoVal": "D", "content": "$$2496$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "找到石油月初与月末单价的等量关系列出方程,设月初每盎司黄金价格是$$x$$美元,$$x\\div \\frac{47}{5}-70=\\left( x-70 \\right)\\div \\frac{96}{5}$$,解得$$x=1222$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1643
ff808081472482f5014724fa9a1200c7
[ "2013年全国华杯赛小学中年级竞赛初赛A卷第6题" ]
1
single_choice
张老师每周的周一、周六和周日都跑步锻炼$$20$$分钟,而其余日期每日都跳绳$$20$$分钟.某月他总共跑步$$5$$小时,那么这个月的第$$10$$天是(~ ~ ~ ~).
[ [ { "aoVal": "A", "content": "周日 " } ], [ { "aoVal": "B", "content": "周六 " } ], [ { "aoVal": "C", "content": "周二 " } ], [ { "aoVal": "D", "content": "周一 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "一般这种题目问这个月的第几天是周几时,我们要弄清楚这个月的周几被重复出现$$5$$次.计算$$5\\times 60\\div 20=15$$(天)说明这个月周一、周六、周日都是$$5$$次,说明这个月$$31$$天,且第一天是周六,所以第$$10$$天是$$10\\div 7=1\\cdots3$$,周六、周日、周一这个月的第$$10$$天是周一. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2031
e17bb6656b4e4a21832e0a5eeae93527
[ "2016年全国世奥赛五年级竞赛A卷第11题5分" ]
2
single_choice
素数是指只能被自身和$$1$$整除的正整数,``孪生素数''是指两个相差为$$2$$的素数,例如$$3$$和$$5$$,$$17$$和$$19$$等.而随着素数的增大,下一个素数离上一个素数应该越来越远,古希腊数学家欧几里得猜想,存在无穷多对素数,它们只相差$$2$$,例如$$3$$和$$5$$,$$5$$和$$7$$,$$2003663613\times 2195000-1$$和$$2003663613\times 2195000+1$$等等.这就是著名的孪生素数猜想,它与黎曼猜想、哥德巴赫猜想一样让无数数论者为之着迷.但数学中有这样一些孪生自然数,它们相差$$1$$,例如$$24$$和$$25$$;其中$$24$$是$$6$$的倍数,$$25$$是$$5$$的倍数,$$24$$和$$25$$是相邻的自然数;$$35$$是$$5$$的倍数,$$36$$是$$6$$的倍数。$$35$$和$$36$$是相邻的自然数.如果将$$24$$,$$25$$或$$35$$,$$36$$看做一组,那么$$1\tilde{ }200$$中共有(~ )组相邻的自然数,其中一个是$$5$$的倍数,另一个是$$6$$的倍数.
[ [ { "aoVal": "A", "content": "$$11$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$13$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$1\\sim 30$$个数中有两组这样相邻自然数:$$5$$和$$6$$;$$24$$和$$25$$.$$\\left[ 5,6 \\right]=30$$,同时考虑$$30$$个数为周期. $$5$$和$$6$$一组,下组分别为$$35$$和$$36$$;$$65$$和$$66$$;$$95$$和$$96$$;$$125$$和$$126$$;$$155$$和$$156$$;$$185$$和$$186$$,共$$7$$组. $$24$$和$$25$$为一组,下组分别为$$54$$和$$55$$;$$84$$和$$85$$;$$114$$和$$115$$;$$144$$和$$145$$;$$174$$和$$175$$,共$$6$$组. 故满足条件的数组共有$$7+6=13$$(组). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1739
5cd6718edd6b4c60b70de9134ca8fc2d
[ "2004年六年级竞赛创新杯", "2004年第2届创新杯六年级竞赛复赛第2题" ]
1
single_choice
某市$$2002$$年底统计近$$10$$年平均降雨量为$$631$$毫米,一年后再统计近$$10$$年平均降雨量为$$601$$毫米,如果$$2003$$年的降雨量是$$450$$毫米,那么,$$1993$$年降雨量是( )
[ [ { "aoVal": "A", "content": "$$1232$$毫米 " } ], [ { "aoVal": "B", "content": "$$616$$毫米 " } ], [ { "aoVal": "C", "content": "$$750$$毫米 " } ], [ { "aoVal": "D", "content": "$$480$$毫米 " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题" ]
[ "从$$1993$$年初到$$2002$$年底这$$10$$年的平均降雨量为$$631$$毫米,那么这$$10$$年的总降雨量为$$631\\times 10=6310$$毫米,一年后,再统计近$$10$$年的平均降雨量为$$601$$毫米,为$$1994$$年到$$2003$$年的平均降雨量,那么这$$10$$年的总降雨量为$$601\\times 10=6010$$毫米,又$$2003$$年的降雨量为$$450$$毫米,那么$$1994$$到$$2002$$年这$$9$$年的总降雨量为$$6010-450=5560$$毫米,所以$$1993$$年的降雨量为$$6310-5560=750$$毫米,选C。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3425
aa6e26e9ebb14c3186f7b901cafe2271
[ "2016年第16届世奥赛六年级竞赛决赛第15题", "2016年全国世奥赛竞赛A卷第15题" ]
3
single_choice
十字绣是用专用的绣线和十字格布,利用经纬交织的搭十字的方法,对照专用的坐标团进行刺绣,任何人都可以秀出同样效果的一种刺绣方法.十字绣是一种古老的民族刺绣,具有悠久的历史.在我们日常的生活中,一直以来就普遍存在你自制的十字绣赫尔工艺品.在纸上,遵照十字绣的刺绣规律,按照$$2$$条横线和$$1$$条竖线这样的顺序一直画.当画完第$$47$$条直线之后,,将四边形染成红色或黄色 (注:相邻的两个四边形颜色不同)欧欧的作品完成时,黄色四边形共有个.
[ [ { "aoVal": "A", "content": "$$132$$ " } ], [ { "aoVal": "B", "content": "$$158$$ " } ], [ { "aoVal": "C", "content": "$$224$$ " } ], [ { "aoVal": "D", "content": "$$264$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "根据题目要求,我们先补充完这个作品.观察图例,第$$1$$条线为横线,第$$2$$条线为横线,第$$3$$条线为竖线,第$$4$$条线为横线,第$$5$$条线为横线,第$$6$$条线为竖线,$$\\cdot \\cdot \\cdot $$.可以推出规律,每话$$3$$条线,是先画两条横线,再画一条竖线,所以可以画到$$45$$条线时,横线有$$30$$条,竖线有$$15$$条.画到$$47$$条,则需要再画两条横线,也就是说$$47$$条线中,共有$$32$$条横线,$$15$$条竖线.纸上面共有$$\\left( 32+1 \\right)\\times \\left( 15+1 \\right)=528$$个四边形.相邻的两个四边形颜色不能相同的,可以参考国际象棋的棋盘,所以红色和黄色的四边形应该各占一半,也就是说黄色四边形的个数为$$528\\div 2=264$$个. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2887
f6d1b7b2e8b5402f83445ebe458964a8
[ "2012年美国数学大联盟杯六年级竞赛初赛第12题5分(每题5分)" ]
1
single_choice
(The reciprocal of $$\frac{3}{4}$$)$$\div $$(the reciprocal of $$\frac{4}{3}$$)$$=$$.注:$$reciprocal$$是倒数的意思
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{16}{9}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{9}{16}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{3}{4}$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "($$\\frac{3}{4}$$的倒数)$$\\div $$($$\\frac{4}{3}$$的倒数)$$=$$乘积是$$1$$的两个数互为倒数,所以$$\\frac{3}{4}$$的倒数是$$1\\div \\frac{3}{4}=\\frac{4}{3}$$,$$\\frac{4}{3}$$的倒数是$$1\\div \\frac{4}{3}=\\frac{3}{4}$$,$$\\frac{4}{3}\\div \\frac{3}{4}=\\frac{16}{9}$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1249
1ebf3e9fbe7c4db697c81520ab03b217
[ "2019年第23届广东世界少年奥林匹克数学竞赛二年级竞赛初赛第9题5分" ]
1
single_choice
草地上有许多兔子.数一数黑兔与白兔一共$$16$$只,黑兔与灰兔一共$$17$$只,白兔与灰兔一共$$15$$只.问草地上三种兔子一共有只.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$22$$ " } ], [ { "aoVal": "C", "content": "$$24$$ " } ], [ { "aoVal": "D", "content": "$$26$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->列方程解应用题等量代换->等量代换替换型" ]
[ "草地上三种兔子一共有: $$(16+17+15)\\div 2$$ $$=48\\div 2$$ $$=24$$(只). 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
90
2655098ea2d142328f9fdfa922761206
[ "2017年第15届全国希望杯五年级竞赛第1试试题第18题", "其它改编题" ]
2
single_choice
$$A$$,$$B$$,$$C$$,$$D$$,$$E$$五人一同参加飞镖大赛,其中只有一人射中飞镖盘的中心,但不知是谁所射. $$A$$说:``不是我射中的,就是$$C$$射中的.'' $$B$$说:``不是$$E$$射中的.'' $$C$$说:``如果不是$$D$$射中的,那么一定是$$B$$射中的.'' $$D$$说:``既不是我射中的,也不是$$B$$射中的.'' $$E$$说:``既不是$$C$$射中的,也不是$$A$$射中的.'' 其中五人中只有两个人说的是对的,由此可以判断射中飞镖盘中心的人是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$A$$ " } ], [ { "aoVal": "B", "content": "$$B$$ " } ], [ { "aoVal": "C", "content": "$$C$$ " } ], [ { "aoVal": "D", "content": "$$D$$ " } ], [ { "aoVal": "E", "content": "$$E$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾" ]
[ "$$A$$和$$E$$说的话对立,$$C$$和$$D$$说的话对立,必有两对两错,故$$B$$说的是错的,则是$$E$$射中的. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1418
8bb96d6c905740da8cb669d9fbab8266
[ "2013年第9届全国新希望杯小学高年级六年级竞赛复赛第1题4分" ]
1
single_choice
有$$16$$个小朋友,其中$$9$$岁的有$$11$$人,$$11$$岁的有$$2$$人,$$13$$岁的有$$3$$人,那么这$$16$$个小朋友的平均年龄是.
[ [ { "aoVal": "A", "content": "$$10$$岁 " } ], [ { "aoVal": "B", "content": "$$10.5$$岁 " } ], [ { "aoVal": "C", "content": "$$11$$岁 " } ], [ { "aoVal": "D", "content": "$$11.5$$岁 " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->公式类->加权平均数" ]
[ "$$\\left( 9\\times 11+11\\times 2+13\\times 3 \\right)\\div 16=10$$(岁). " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
167
1b8f3c3c402845fda15b5ad6771782d8
[ "2020年新希望杯三年级竞赛初赛(团战)第60题" ]
1
single_choice
$$6$$人围成一圈玩狼人游戏,他们中有狼人和平民,平民说真话,狼人说假话.在回答``你左边相邻的人是狼人吗?''这个问题时,有$$2$$人回答``是'',有$$4$$人回答``不是''.这$$6$$人中最多有个狼人?
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ], [ { "aoVal": "E", "content": "$$5$$ " } ] ]
[ "拓展思维->能力->推理推导->言语逻辑推理" ]
[ "暂无 " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
564
03388d396a5643298fcb9ac0f6cfedfb
[ "2018年美国数学大联盟杯三年级竞赛初赛第31题5分" ]
1
single_choice
下面结果哪个是奇数.
[ [ { "aoVal": "A", "content": "even $$\\times$$ odd " } ], [ { "aoVal": "B", "content": "odd $$\\times$$ even " } ], [ { "aoVal": "C", "content": "odd $$+$$ even " } ], [ { "aoVal": "D", "content": "odd $$+$$ odd " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "本题题意为``下面结果哪个是奇数'', $$\\text{A}$$选项是偶数$$\\times $$奇数$$=$$偶数, $$\\text{B}$$选项是奇数$$\\times $$偶数$$=$$偶数, $$\\text{C}$$选项是奇数$$+$$偶数$$=$$奇数, $$\\text{D}$$选项是奇数$$+$$奇数$$=$$偶数, 综上结果为奇数的只有$$\\text{C}$$选项. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2535
2beef333b33f42ba9030a64e216b8858
[ "2016年第7届广东广州羊排赛六年级竞赛第6题1分" ]
1
single_choice
下列数的正确读法中,能读出三个零的是.
[ [ { "aoVal": "A", "content": "$$2002.0$$ " } ], [ { "aoVal": "B", "content": "$$201602016$$ " } ], [ { "aoVal": "C", "content": "$$20160201$$ " } ], [ { "aoVal": "D", "content": "$$1001.0001$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->小数基础->小数的认识" ]
[ "选项$$\\text{A}$$读法为二千零二点零,选项$$\\text{B}$$读法为二亿零一百六十万二千零一十六,选项$$\\text{C}$$读法为二千零一十六万零二百零一,选项$$\\text{D}$$读法为一千零一点零零零一. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1565
8c584ddaa66d412698cd7b765bd63d44
[ "2016年新希望杯六年级竞赛训练题(四)第5题" ]
1
single_choice
三位小朋友一起跳绳,平均每人跳了$$130$$个,小明跳的个数是小亮跳的个数的$$\frac{1}{2}$$,小亮跳的个数是小强跳的个数的$$\frac{3}{2}$$,则小亮共跳了(~ )个.
[ [ { "aoVal": "A", "content": "$$90$$ " } ], [ { "aoVal": "B", "content": "$$120$$ " } ], [ { "aoVal": "C", "content": "$$130$$ " } ], [ { "aoVal": "D", "content": "$$180$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->一元一次方程解应用题" ]
[ "设小强跳了$$x$$个,则小亮跳了$$\\frac{3}{2}x$$个,小明跳了$$\\frac{3}{4}x$$个.$$x+\\frac{3}{2}x+\\frac{3}{4}x=130\\times 3$$,解得:$$x=120$$,$$\\frac{3}{2}x=180$$,小亮跳了$$180$$个. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2112
f99e0c818d0942b7a93edfa7e51211b6
[ "2011年世界少年奥林匹克数学竞赛六年级竞赛初赛第3题5分", "2021年陕西西安六年级下学期小升初模拟分类专题五十六(和差倍问题 盈亏问题)第6题", "2018年海南海口琼山区华中师范大学海南附属中学小升初华师杯第10题3分", "2018年浙江金华六年级下学期小升初模拟第8题2分", "2019年陕西西安灞桥区铁一中滨河中学小升初入学真卷2第12题3分", "2016年陕西西安小升初某西北大附中" ]
1
single_choice
两个桶里共盛水$$40$$斤,若把第一个桶里的水倒$$6$$斤到第$$2$$个桶里,两个桶里的水就一样多,则第一桶有~\uline{~~~~~~~~~~}~斤水.
[ [ { "aoVal": "A", "content": "$$23$$ " } ], [ { "aoVal": "B", "content": "$$17$$ " } ], [ { "aoVal": "C", "content": "$$26$$ " } ], [ { "aoVal": "D", "content": "$$14$$ " } ], [ { "aoVal": "E", "content": "都不对 " } ] ]
[ "拓展思维->能力->构造模型->模型思想", "Overseas Competition->知识点->应用题模块->和差倍问题->和差问题" ]
[ "由题意的第一个桶比第二个桶多$$12$$斤,所以利用和差关系: 第一桶水:$$(40+12)\\div 2=26$$(斤). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
682
2cca264bfb004f3bb44b0190ab7757e0
[ "2021年新希望杯五年级竞赛初赛第39题5分" ]
3
single_choice
$$2021$$年,疯狂动物城警察局为了表彰表现优异的警察,给他们授予特殊的警号,这些警号是形如$$\overline{\square 2021\square }$$的六位数,并且都能被$$21$$整除,这样的警号有~\uline{~~~~~~~~~~}~个.
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ], [ { "aoVal": "E", "content": "$$3$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->整除->整除特征->和系整除特征应用" ]
[ "$$21=3\\times 7$$,故能被$$21$$整除必能被$$3$$和$$7$$整除,满足被$$3$$整除为各位数字之和为$$3$$的倍数, 故$$2+0+2+1=5$$故余下$$2$$位数字和最大为$$9+9=18$$, 故可取$$1$$,$$4$$,$$7$$,$$10$$,$$13$$,$$16$$, $$1$$:$$1+0$$,$$4$$:$$4+0$$,$$3+1$$,$$2+2$$,$$7$$:$$7+0$$,$$6+1$$,$$5+2$$,$$4+3$$, $$10$$:$$9+1$$,$$8+2$$,$$7+3$$,$$6+4$$,$$5+5$$, $$13$$:$$9+4$$,$$8+5$$,$$7+6$$, $$16$$:$$9+7$$,$$8+8$$, 上述除$$0$$不能在首位外共有:$$1$$:$$1$$种;$$4$$:$$1+2+1=4$$种,$$7$$:$$1+2+2+2=7$$种;$$10$$:$$2+2+2+2+1=9$$种;$$13$$:$$2+2+2=6$$种;$$16$$:$$2+1=3$$种, 能被$$7$$整除特点为(除去个位数字后的数$$-2\\times $$个位)能被$$7$$整除, 故一共有:$$420210$$,$$520212$$,$$620214$$,$$720216$$,$$820218$$共$$5$$个. 故答案为:$$5$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
549
096312cc2bb446f3810751d690c6f53e
[ "2017年全国美国数学大联盟杯小学高年级六年级竞赛初赛第20题5分" ]
1
single_choice
\textbf{(2017 Math League, Priamry 6, Question \#20)} How many whole-number factors does $$8640$$ have? $$8640$$有多少个因数?
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$38$$ " } ], [ { "aoVal": "D", "content": "$$56$$ " } ] ]
[ "拓展思维->能力->逻辑分析", "Overseas Competition->知识点->数论模块->因数与倍数->公因数与公倍数" ]
[ "$$8640$$有多少个因数? whole-number ~整数;$$factor$$ ~因数. 它的因数有$$\\left( 6+1 \\right)\\times \\left( 3+1 \\right)\\times \\left( 1+1 \\right)=56$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3234
39de7b89d09c4b558bf55e2264699072
[ "2018年第22届广东世界少年奥林匹克数学竞赛六年级竞赛决赛第1题5分" ]
1
single_choice
掷一大一小两个骰子,每次掷出的两个点数均为质数的概率是$$ \%$$.
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$25$$ " } ], [ { "aoVal": "C", "content": "$$75$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "骰子的点数为$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$. 其中质数有$$2$$,$$3$$,$$5$$, 故$$1$$个骰子掷出质数的概率为$$\\frac{1}{2}$$, 则两次均为质数的概率为$$\\frac{1}{2}\\times\\frac{1}{2}=\\frac{1}{4}=25 \\%$$, 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
217
5109689684284b2b988540cc3b390cd6
[ "2021年第8届鹏程杯五年级竞赛初赛第15题4分" ]
1
single_choice
在一次数学考试中,共有$$10$$道选择题,评分标准是:基础分为$$10$$分,答对一题得$$3$$分,答错一题倒扣$$1$$分,不答得$$0$$分.已知参赛的学生中,至少有$$3$$人得分相同,则参加考试的学生至少有人.
[ [ { "aoVal": "A", "content": "$$75$$ " } ], [ { "aoVal": "B", "content": "$$76$$ " } ], [ { "aoVal": "C", "content": "$$77$$ " } ], [ { "aoVal": "D", "content": "$$78$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "总分最高是$$10+10\\times3=40$$分,最低是$$10-10\\times1=0$$,$$0\\sim 40$$共$$41$$种得分都有可能取到,从两端极值考虑,最小端,$$1=10-9\\times1-0\\times1$$,$$2=10-8\\times1-0\\times2$$,$$3=10-7\\times1-0\\times3$$,则后面的分数都能取到,再考虑最大端,若做对$$9$$题,还有一题可以错,也可以不做,分别得到$$36$$分和$$37$$分,则$$38$$、$$39$$取不到,若做对$$8$$题,剩余两题可能全错,全不做,错一题不做一题,得分分别是$$32$$、$$34$$、$$33$$,则$$35$$分取不到,依次类推可以得到$$0\\sim 40$$中$$35$$、$$38$$、$$39$$三种得分取不到,所以得分情况只有$$41-3=38$$种,要想保证有$$3$$人分一样,则每种得分至少有$$2$$人,再多一人就可以满足至少有$$3$$人得分一样,所以是$$38\\times2+1=77$$人. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1000
01e9d1e733ed4a249da2845abb844775
[ "2017年第15届湖北武汉创新杯六年级竞赛决赛第4题", "2018年浙江杭州西湖区小学高年级六年级上学期单元测试《第三单元》第8题3分", "2018年四川成都锦江区四川师范大学附属第一实验中学小升初(四)第4题3分" ]
1
single_choice
一种商品的利润率为$$20 \%$$,进价提高$$25 \% $$后,保持利润不变,那么,进价提价后的利润率为.
[ [ { "aoVal": "A", "content": "$$25 \\%$$ " } ], [ { "aoVal": "B", "content": "$$20 \\% $$ " } ], [ { "aoVal": "C", "content": "$$16 \\% $$ " } ], [ { "aoVal": "D", "content": "$$12.5 \\%$$ " } ] ]
[ "课内体系->知识点->数的运算->估算->百分数的简单实际问题->折扣、成数、税率、利率", "拓展思维->知识点->应用题模块->经济问题->基本经济概念->利润基本公式->已知利润成本求利润率" ]
[ "方法一:利润问题.假设成本为$$100$$元,则利润为$$20$$元,现在成本是$$100\\times (1+25 \\%)=125$$元,$$20\\div 125\\times 100 \\%=16 \\%$$. 方法二:$$20\\%\\div (1+25\\%)=16\\%$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
236
487a03b15abe481fb146841d770fde68
[ "2015年湖北武汉世奥赛小学高年级六年级竞赛模拟训练题(三)第4题" ]
2
single_choice
写有$$0$$、$$1$$、$$2$$、$$3\cdots \cdots $$、$$9$$的卡片各一张.$$A$$、$$B$$、$$C$$、$$D$$、$$E$$分别拿走$$2$$张,然后报出自己所拿两张卡片上的数的和.已知$$A$$报$$5$$,$$B$$报$$12$$,$$C$$报$$10$$,$$D$$报$$12$$, $$E$$拿的.
[ [ { "aoVal": "A", "content": "$$0$$和$$6$$ " } ], [ { "aoVal": "B", "content": "$$1$$和$$6$$ " } ], [ { "aoVal": "C", "content": "$$0$$和$$7$$ " } ], [ { "aoVal": "D", "content": "$$1$$和$$5$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "$$E$$拿的两张卡片的和为$$\\left( 0+1+\\ldots \\ldots +9 \\right)\\left( 5+12+10+12 \\right)=6$$,则$$E$$拿的卡片有三种情况:①$$2+4$$;②$$1+5$$; ③$$0+6$$.而$$5=0+5=1+4=2+3$$,$$12=3+9=4+8=5+7$$,依次假设①②③种情况,进行推理得出矛盾,最后满足条件的是③. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1741
d66234c7a48d4b37b18658d54188658e
[ "2019年第24届YMO四年级竞赛决赛第1题3分", "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第1题3分", "2020年第24届YMO四年级竞赛决赛第1题3分", "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第1题3分", "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第1题3分" ]
1
single_choice
甲有桌子若干张,乙有椅子若干把.如果乙用全部椅子换回相同数量的桌子,那么需要补给甲$$640$$元;如果乙不补钱,就会少换回$$5$$张桌子.已知$$3$$张桌子比$$5$$把椅子的价钱少$$96$$元.乙原来有椅子把.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "桌子的价钱:$$640\\div 5=128$$(元), 椅子的价钱:$$(128\\times 3+96)\\div 5=480\\div 5=96$$(元), 所以乙有椅子的数量为$$640\\div (128-96)=640\\div 32=20$$(把). 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1452
b0b8bc2251df40798ed633b8b8dc4fca
[ "2008年第6届创新杯五年级竞赛初赛A卷第4题5分", "2008年五年级竞赛创新杯" ]
1
single_choice
小华玩射击游戏,打中一枪得$$5$$分,打不中倒扣$$2$$分,他打了$$20$$枪,共得$$51$$分,小华共打中了( )枪。
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$11$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$13$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题" ]
[ "当全打中时得$$20\\times 5=100$$(分),没打中$$\\left(100-51\\right) \\div \\left(5+2\\right) =7$$(枪),故打中$$20-7=13$$(枪)。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2550
8fdd61d34f4d4130a1872f2a0b06e43a
[ "2014年迎春杯六年级竞赛初赛" ]
2
single_choice
算式$$2014\times \left( \frac{1}{19}-\frac{1}{53} \right)$$的计算结果是( ).
[ [ { "aoVal": "A", "content": "$$34$$ " } ], [ { "aoVal": "B", "content": "$$68$$ " } ], [ { "aoVal": "C", "content": "$$144$$ " } ], [ { "aoVal": "D", "content": "$$72$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->分数->分数巧算->乘法分配律" ]
[ "原式$$=2014\\times \\frac{1}{19}-2014\\times \\frac{1}{53}=106-38=68$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2897
8a41bc86a34647249e52fe7cabd971e3
[ "2017年IMAS小学中年级竞赛(第一轮)第1题3分" ]
1
single_choice
请问算式$$25\times 99+55\times 5$$的值等于什么?
[ [ { "aoVal": "A", "content": "$$2750$$ " } ], [ { "aoVal": "B", "content": "$$2850$$ " } ], [ { "aoVal": "C", "content": "$$2900$$ " } ], [ { "aoVal": "D", "content": "$$2950$$ " } ], [ { "aoVal": "E", "content": "$$3000$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$25\\times 99+55\\times 5=25\\times (99+11)=25\\times 110=2750$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2507
46cb1d4d2c954550a1de6dd0246d4fc1
[ "2018~2019学年浙江杭州西湖区杭州市行知小学五年级上学期期中期中竞赛第17题1分" ]
1
single_choice
小机灵在用计算器计算``$$6.9\times 7$$''时,发现计算器的键``$$6$$''坏了,小机灵想到了四种不同的输入方法.请你判断一下,下面选项中的方法是错误的
[ [ { "aoVal": "A", "content": "$$2.3\\times 3\\times 7$$ " } ], [ { "aoVal": "B", "content": "$$13.8\\times 7\\div 2$$ " } ], [ { "aoVal": "C", "content": "$$2\\times 3\\times 7+0.9\\times 7$$ " } ], [ { "aoVal": "D", "content": "$$7\\times 7-7$$ " } ] ]
[ "知识标签->拓展思维->计算模块->小数->小数乘除->小数乘法运算" ]
[ "$$7\\times 7-7=7\\times \\left( 7-1 \\right)=7\\times 6=42$$,提取公因数后发现$$\\text{D}$$式变为$$7\\times 6$$,而非原式的$$6.9\\times 7$$,所以错误. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1022
45d607aad5a548e0b17bdfb8dc488d57
[ "2011年北京五年级竞赛" ]
1
single_choice
石灰水是把石灰和水按照$$1∶100$$配制而成,要配制$$4545$$千克石灰水,需要石灰多少千克?
[ [ { "aoVal": "A", "content": "$$35$$千克 " } ], [ { "aoVal": "B", "content": "$$45$$千克 " } ], [ { "aoVal": "C", "content": "$$55$$千克 " } ] ]
[ "知识标签->数学思想->对应思想" ]
[ "相当于把石灰水分成了$$101$$份,石灰占$$1$$份.所以石灰有$$4545\\times \\frac{1}{{1{ + }100}}{ = }45$$(千克). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
402
a0006f0cc1c64f2a9a9e328114af2d15
[ "2014年迎春杯三年级竞赛复赛" ]
2
single_choice
甲、乙两人玩拿火柴棍游戏,桌上共有$$10$$根火柴棍,谁取走最后一根谁胜。甲每次可以取走$$1$$根、$$3$$根或$$4$$根(只能取恰好的数量,如果最后剩$$2$$根火柴棍,甲只能取$$1$$根),乙每次可以取$$1$$根或$$2$$根。如果甲先取,那么甲为了取胜,第一次应( )。
[ [ { "aoVal": "A", "content": "取$$1$$根 " } ], [ { "aoVal": "B", "content": "取$$3$$根 " } ], [ { "aoVal": "C", "content": "取$$4$$根 " } ], [ { "aoVal": "D", "content": "无论怎么取都无法获胜 " } ] ]
[ "拓展思维->拓展思维->组合模块->智巧趣题->数学趣题->火柴棒问题" ]
[ "解:无论甲怎么取,乙只要让最后火柴棍剩两根,甲这时只能取$$1$$根,乙胜; 在这之前只要保证火柴剩下$$5$$根,甲取$$1$$根,则乙取$$2$$根,剩$$2$$根,乙胜; 或者甲取$$3$$根,乙取$$2$$根,乙胜;或者甲取$$4$$根,乙取$$1$$根,乙胜。 所以甲无论怎么取都无法获胜。 故选:D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1586
ff8080814526d2f401452f9088cd2443
[ "2014年全国迎春杯五年级竞赛初赛第4题", "2017年全国小升初八中入学备考课程" ]
1
single_choice
已知$$a$$、$$b$$、$$c$$、$$d$$四个数的平均数是$$12.345$$,$$a\textgreater b\textgreater c\textgreater d$$,那么$$b$$(~ ~ ~ ~).
[ [ { "aoVal": "A", "content": "大于$$12.345$$ " } ], [ { "aoVal": "B", "content": "小于$$12.345$$ " } ], [ { "aoVal": "C", "content": "等于$$12.345$$ " } ], [ { "aoVal": "D", "content": "无法确定 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "排除法,A、B、C三个选项均可找到反例,故无法确定. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
708
3a8a78451e924f19951be2d791168446
[ "2020年春蕾杯六年级竞赛第10题2分", "2021年春蕾杯六年级竞赛第5题2分" ]
2
single_choice
某班有一个小图书馆,共有$$300$$多本书,从$$1$$开始,图书按自然数的顺序编号,即$$1$$,$$2$$,$$3\cdots $$.小光看了这图书馆里都被$$2$$,$$3$$和$$8$$整除的书号,共$$16$$本,这个图书馆里至少有 本图书.
[ [ { "aoVal": "A", "content": "$$381$$ " } ], [ { "aoVal": "B", "content": "$$382$$ " } ], [ { "aoVal": "C", "content": "$$383$$ " } ], [ { "aoVal": "D", "content": "$$384$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->公倍数与最小公倍数->多数的最小公倍数" ]
[ "$$2$$、$$3$$、$$8$$的最小公倍数是$$24$$,所以这些书号都是$$24$$的倍数, $$24\\times 16=384$$(本). 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2068
d46cfc9a0fe04b46b473df5f8f63d61e
[ "2013年第12届上海小机灵杯小学中年级四年级竞赛初赛第4题1分" ]
1
single_choice
一只青蛙掉到了$$20$$米深的井里.每天白天它可以沿着湿滑的井壁向上爬$$3$$米,但它晚上休息时会掉下$$2$$米.青蛙第天才能爬出这口井.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$17$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "蜗牛爬井问题. 若最后一天青蛙向上爬$$3$$米到达井口,就不会向下掉了,则之前至少爬$$20-3=17$$(米); 每天向上爬$$3$$米,晚上休息时会掉下$$2$$米,实际每天向上$$1$$米; $$17\\div 1+1=18$$(天); 青蛙第$$18$$天才能爬出这口井; 选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
74
d9aed025a8f64c03adef18393280886d
[ "2014年第10届全国新希望杯小学高年级六年级竞赛复赛第6题4分" ]
4
single_choice
某足球联赛积分规则如下:每队赛$$30$$场,胜一场得$$3$$分,平一场得$$1$$分,负一场得$$0$$分.在$$2013$$赛季中,希望队以总积分$$77$$分位居积分榜首位,且负的场数比平的场数少,则这个赛季该队共胜了(~ )场比赛.
[ [ { "aoVal": "A", "content": "$$22$$ " } ], [ { "aoVal": "B", "content": "$$24$$ " } ], [ { "aoVal": "C", "content": "$$23$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->体育比赛->3-1-0 积分制" ]
[ "设胜了$$x$$场,平$$y$$场,负$$\\left( 30-x-y \\right)$$ 有$$3x+y=77$$ $$30-\\left( x+y \\right)\\textless{}y$$,则$$x=24$$ 选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
115
46a85ef9d6634b19b7616e8e69f11c1c
[ "2015年第20届全国华杯赛小学中年级四年级竞赛初赛A卷", "2016年第20届四川成都华杯赛小学中年级竞赛B卷第1~6题60分" ]
1
single_choice
一次考试共有$$6$$道选择题,评分规则如下:每人先给$$6$$分,答对一题加$$4$$分,答错一题减$$1$$分,不答得$$0$$分.现有$$51$$名同学参加考试,那么,至少有(~ ~ ~ ~ ~)人得分相同.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->思想->分类讨论思想" ]
[ "设答对了$$x$$题,答错$$y$$题,$$x+y$$≤$$6$$; 当$$x=6$$时,得分$$30$$分; 当$$x=5$$时,$$y=0$$,$$1$$,对应得分$$26$$,$$25$$; 当$$x=4$$时,$$y=0$$,$$1$$,$$2$$,对就得分$$22$$,$$21$$,$$20$$; 当$$x=3$$时,$$y=0$$,$$1$$,$$2$$,$$3$$,对应得分$$18$$,$$17$$,$$16$$,$$15$$; 当$$x=2$$时,$$y=0$$,$$1$$,$$2$$,$$3$$,$$4$$,对应得$$14$$,$$13$$,$$12$$,$$11$$,$$10$$; 当$$x=1$$时,$$y=0$$,$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,对应得$$10$$,$$9$$,$$8$$,$$7$$,$$6$$,$$5$$; 当$$x=0$$时,$$y=0$$,$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,对应得分$$6$$,$$5$$,$$4$$,$$3$$,$$2$$,$$1$$,$$0$$; 共计$$25$$种得分,$$51\\div 25=2\\cdots 1$$,则至少$$2+1=3$$人得分相同. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
763
6d4923af93604af58417e7dea91c601e
[ "2005年第3届创新杯六年级竞赛初赛第9题", "2005年六年级竞赛创新杯" ]
2
single_choice
盒中原有7个小球,魔术师从中取出若干个小球,把每个小球都变成7个小球,将其放回盒中,他又由其中取出若干个小球,把每个小球变成7个小球,再将其放回盒中$$\cdots \cdots $$,如此进行到某一时刻,当魔术师停止变魔术时,盒中球的总数可能是( ).
[ [ { "aoVal": "A", "content": "2003个 " } ], [ { "aoVal": "B", "content": "2004个 " } ], [ { "aoVal": "C", "content": "2005个 " } ], [ { "aoVal": "D", "content": "2006个 " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数问题带余除法" ]
[ "把1个球变成7个球,那么球的数量就增加了6个,则无论这个魔术师怎么变,球增加的数量为6的倍数,又原有7个球,那么球的总数被6除的余数总是1,而$$A,B,C,D$$这4个选项中,只有$$C$$选项的2005除以6的余数为1,所以选$$C$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1825
d23559f76679428e9da53416a9f03634
[ "2013年第25届广东广州五羊杯六年级竞赛第3题5分" ]
1
single_choice
某学校派发儿童节礼物,其中一种是魔方,全校$$300$$个学生共派发$$510$$个魔方,已知男生每人两个魔方,女生每人一个魔方,则该学校的女生人数是.
[ [ { "aoVal": "A", "content": "$$90$$ " } ], [ { "aoVal": "B", "content": "$$105$$ " } ], [ { "aoVal": "C", "content": "$$150$$ " } ], [ { "aoVal": "D", "content": "$$180$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "设全校有男生有$$x$$人,则$$2x+300-x=510$$, 可解得$$x=210$$, 所以女生有$$90$$人. 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
137
82c2237cfa954124a0b0b1472d1638cc
[ "2021年鹏程杯六年级竞赛初赛第9题" ]
2
single_choice
算式$$a+\frac{1}{b+\dfrac{1}{c}}+d+\frac{1}{e+\dfrac{1}{f}}+g+\frac{1}{h+\dfrac{1}{i}}$$的最大值为,其中每个不同的字母代表不同的非零数码.
[ [ { "aoVal": "A", "content": "$$25\\frac{1003}{1008}$$ " } ], [ { "aoVal": "B", "content": "$$25\\frac{611}{1014}$$ " } ], [ { "aoVal": "C", "content": "$$25\\frac{609}{1026}$$ " } ], [ { "aoVal": "D", "content": "$$25\\frac{597}{1040}$$ " } ], [ { "aoVal": "E", "content": "$$25\\frac{620}{1001}$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "要使算式的值尽可能大,则$$a$$,$$d$$,$$g$$应尽可能大,可取$$a=9$$,$$d=8$$,$$g=7$$.而$$b$$,$$e$$,$$h$$则应尽可能小,所以可取$$b=1$$,$$e=2$$,$$A=3$$, 由于$$\\frac{1}{m+\\dfrac{1}{n+1}}\\textgreater\\frac{1}{(m+1)+\\dfrac{1}{n}}$$,故取$$c=6$$,而$$f$$,$$i$$只剩下$$4$$和$$5$$可供选择,故可取$$f=5$$,$$i=4$$,故最大值为$$9+\\frac{1}{1+\\dfrac{1}{6}}+8+\\frac{1}{2+\\dfrac{1}{5}}+7+\\frac{1}{3+\\dfrac{1}{4}}=25\\frac{620}{1001}$$. 故选$$\\text{E}$$. " ]
E