dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2579
67663801e9e143a0afe4eb550459430a
[ "2018年IMAS小学中年级竞赛(第二轮)第4题4分" ]
1
single_choice
将一个两位数乘$$3$$再加上$$10$$,然后交换它的个位与十位,最后得到的是$$95$$、$$96$$、$$97$$、$$98$$、$$99$$之中的一个整数,请问原来的两位数是.
[ [ { "aoVal": "A", "content": "$$21$$ " } ], [ { "aoVal": "B", "content": "$$22$$ " } ], [ { "aoVal": "C", "content": "$$23$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ], [ { "aoVal": "E", "content": "$$25$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->位值原理与进制->位值原理运用->位值原理的综合应用" ]
[ "逆推回去,交换$$95$$、$$96$$、$$97$$、$$98$$、$$99$$的固位与十位,再减$$10$$,得到的数分别为$$49$$、$$59$$、$$69$$、$$79$$、$$89$$,这些数中只有$$69$$是$$3$$的倍数,故原来的两位数是$$69\\div3=23$$. 故选$$\\text{C}$$. ", "<p>将一个两位数乘以$$3$$再加上$$10$$,则所得的数除以$$3$$所得的余数为$$1$$.将这个数的个位与十位交换后所得的数除以$$3$$所得的余数仍然为$$1$$.在$$95$$、$$96$$、$$97$$、$$98$$、$$99$$这些数中只有$$97$$除以$$3$$所得的余数为$$1$$,故原来的两位数是$$\\left(79-10\\right)\\div3=23$$.</p>\n<p>故选$$\\text{C}$$.</p>" ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2797
95dd0a6757a745b093528cd870108fe3
[ "2016年全国学而思杯一年级竞赛样题第1题" ]
0
single_choice
这个算式要按照什么顺序计算呢. $$1+2-3+1$$
[ [ { "aoVal": "A", "content": "$$3-3$$ " } ], [ { "aoVal": "B", "content": "$$1-3$$ " } ], [ { "aoVal": "C", "content": "$$2-3$$ " } ], [ { "aoVal": "D", "content": "$$1+1$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "按照从左往右的顺序计算. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2725
ff8080814502fa2401450bc65f921593
[ "2014年全国迎春杯五年级竞赛复赛第5题" ]
1
single_choice
算式$$826446281\times11\times 11$$的计算结果是(~~~~~~~ ).
[ [ { "aoVal": "A", "content": "$$9090909091$$ " } ], [ { "aoVal": "B", "content": "$$909090909091$$ " } ], [ { "aoVal": "C", "content": "$$10000000001$$ " } ], [ { "aoVal": "D", "content": "$$100000000001$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数乘除->整数乘法运算->表外乘法计算" ]
[ "根据$$11$$乘法的特征``两边一拉,中间相加''可得到结果D " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3097
eb16598ef88948e8a7c062edadddaea0
[ "2018年陕西西安雁塔区西安铁一中小升初(二十六)第20题5分", "2015年世界少年奥林匹克数学竞赛六年级竞赛复赛A卷第10题10分", "六年级其它导引" ]
3
single_choice
计算:$$\frac{{{1}^{2}}+{{2}^{2}}}{1\times 2}+\frac{{{2}^{2}}+{{3}^{2}}}{2\times 3}+\cdots +\frac{{{18}^{2}}+{{19}^{2}}}{18\times 19}+\frac{{{19}^{2}}+{{20}^{2}}}{19\times 20}$$=~\uline{~~~~~~~~~~}~
[ [ { "aoVal": "A", "content": "$$37\\frac{19}{20}$$ " } ], [ { "aoVal": "B", "content": "$$28\\frac{19}{20}$$ " } ], [ { "aoVal": "C", "content": "$$38\\frac{19}{20}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->裂项与通项归纳->分数裂项->分数裂差->两分数间接裂差", "课内体系->思想->转化与化归的思想" ]
[ "算式中的分母是裂项计算的最基本形式,但分子比较复杂,我们可以从前几项找找规律: $$\\frac{{{1}^{2}}+{{2}^{2}}}{1\\times 2}=\\frac{5}{2}=2\\frac{1}{2}$$,$$\\frac{{{2}^{2}}+{{3}^{2}}}{2\\times 3}=\\frac{13}{6}=2\\frac{1}{6}$$,$$\\frac{{{3}^{2}}+{{4}^{2}}}{3\\times 4}=\\frac{25}{12}=2\\frac{1}{12}$$. 我们发现一规律:每一项减去$$2$$后,分子就变成了$$1$$. 再来试试最后一项:$$\\frac{{{19}^{2}}+{{20}^{2}}}{19\\times 20}=\\frac{761}{380}=2\\frac{1}{380}$$, 也满足这个规律,这是为什么呢? 观察每一项的分子和分母,我们发现分子的每个加数都与分母大小接近,可以做如下变形: $$\\frac{{{19}^{2}}+{{20}^{2}}}{19\\times 20}=\\frac{19\\times \\left( 20-1 \\right)+20\\times \\left( 19+1 \\right)}{19\\times 20}$$ $$=\\frac{19\\times 20\\times 2+\\left( 20-19 \\right)}{19\\times 20}$$ $$=2+\\frac{1}{19\\times 20}$$. 算式中的每一项都能像上面一样进行变形,再结合分数裂差,所以: 原式$$=2\\frac{1}{1\\times 2}+2\\frac{1}{2\\times 3}+\\cdots +2\\frac{1}{19\\times 20}$$ $$=2\\times 19+\\frac{1}{1\\times 2}+\\frac{1}{2\\times 3}+\\cdots +\\frac{1}{19\\times 20}$$ $$=38+1-\\frac{1}{2}+\\frac{1}{2}-\\frac{1}{3}+\\frac{1}{3}-\\frac{1}{4}+\\cdots +\\frac{1}{18}-\\frac{1}{19}+\\frac{1}{19}-\\frac{1}{20}$$ $$=38+1-\\frac{1}{20}$$ $$=38\\frac{19}{20}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3069
e18568104e1b4a60a075b06d0a8e5041
[ "2006年四年级竞赛创新杯", "2006年第4届创新杯四年级竞赛复赛第2题" ]
1
single_choice
小王老师外出开会,离开的时候撕下了当天的日历,之后$$9$$天没有回家$$.$$ 回来后一次撕下这$$9$$张日历,发现这$$9$$张日期数相加得$$99$$,那么,王老师回家这天是号.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$13$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ], [ { "aoVal": "E", "content": "$$16$$ " } ] ]
[ "Overseas Competition->知识点->应用题模块->周期问题", "拓展思维->拓展思维->计算模块->数列与数表->等差数列->中项和首项、末项的关系" ]
[ "因为$$99\\div 9=11$$,所以第五天也就是中间一天是$$11$$号,故这$$9$$天的日期为:$$7$$、$$8$$、$$9$$、$$10$$、$$11$$、$$12$$、$$13$$、$$14$$、$$15$$,因此,回家是$$15$$号 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
233
6383691f57e247de987b7cd927ea3ed9
[ "其它改编题", "2017年第15届全国希望杯五年级竞赛第1试试题第18题" ]
2
single_choice
$$A$$,$$B$$,$$C$$,$$D$$,$$E$$五人一同参加飞镖大赛,其中只有一人射中飞镖盘的中心,但不知是谁所射. $$A$$说:``不是我射中的,就是$$C$$射中的.'' $$B$$说:``不是$$E$$射中的.'' $$C$$说:``如果不是$$D$$射中的,那么一定是$$B$$射中的.'' $$D$$说:``既不是我射中的,也不是$$B$$射中的.'' $$E$$说:``既不是$$C$$射中的,也不是$$A$$射中的.'' 其中五人中只有两个人说的是对的,由此可以判断射中飞镖盘中心的人是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$A$$ " } ], [ { "aoVal": "B", "content": "$$B$$ " } ], [ { "aoVal": "C", "content": "$$C$$ " } ], [ { "aoVal": "D", "content": "$$D$$ " } ], [ { "aoVal": "E", "content": "$$E$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$A$$和$$E$$说的矛盾,$$C$$和$$D$$说的矛盾,必有两对两错,故$$B$$说的是错的,则是$$E$$射中的. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2876
cd4e53d7390f4f05a6beae81e0669d7e
[ "2013年第12届春蕾杯二年级竞赛初赛第3题6分" ]
1
single_choice
有一串数按照$$1$$,$$0$$,$$2$$,$$4$$,$$1$$,$$0$$,$$2$$,$$4$$$$\cdots \cdots $$的顺序排列,一共写了$$21$$个数,那么这$$21$$个数的和是多少?
[ [ { "aoVal": "A", "content": "$$35$$ " } ], [ { "aoVal": "B", "content": "$$36$$ " } ], [ { "aoVal": "C", "content": "$$37$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "周期是$$4$$,$$21\\div$$ 4=5(组)$$\\cdots \\cdots $$1(个),每组的和:$$1+0+2+4=7$$,共:$$5\\times$$ 7+1=36. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1480
75f478fdef314415b5e525bc90b00702
[ "2017年第15届湖北武汉创新杯六年级竞赛决赛第4题", "2018年四川成都锦江区四川师范大学附属第一实验中学小升初(四)第4题3分", "2018年浙江杭州西湖区小学高年级六年级上学期单元测试《第三单元》第8题3分" ]
1
single_choice
一种商品的利润率为$$20 \%$$,进价提高$$25 \% $$后,保持利润不变,那么,进价提价后的利润率为.
[ [ { "aoVal": "A", "content": "$$25 \\%$$ " } ], [ { "aoVal": "B", "content": "$$20 \\% $$ " } ], [ { "aoVal": "C", "content": "$$16 \\% $$ " } ], [ { "aoVal": "D", "content": "$$12.5 \\%$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->基本经济概念->利润基本公式->已知利润成本求利润率" ]
[ "利润问题.假设成本为$$100$$元,则利润为$$20$$元,现在成本是$$100\\times (1+25 \\%)=125$$(元),$$20\\div 125\\times 100 \\%=16 \\%$$. ", "<p>设这种商品原来的进价为$$x$$,利润为$$m$$,则原售价为$$\\left( \\frac{1}{20\\%} \\right)=\\frac{x}{m}$$,解得$$x=5m$$.因为这种商品的进价提高$$25\\%$$,所以新的进价为$$(1+25\\%)5m=6.25m$$.设提价后的利润率为$$y$$,则有$$6.25m\\times (1+y)=6.25m+m$$,解得$$y=16\\%$$.</p>" ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3220
1f75e9610e8f4f21bab99d1bc1b36542
[ "2016年第12届全国新希望杯五年级竞赛决赛第6题" ]
2
single_choice
从$$1$$至$$60$$中选出$$6$$个连续自然数,它们的乘积末尾恰有两个$$0$$的取法共有(~~~ )种.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$13$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "由于是连续的$$6$$个数,分解质因数只能合有$${{5}^{2}}$$,但是$$25、50$$中本身分解质因数为$${{5}^{2}}$$,所以共有以下几种情况: $$5-10$$、$$10-15$$、$$15-20$$、$$21-26$$、$$22-27$$、$$23-28$$、$$24-29$$、$$30-35$$、$$35-40$$、$$40-45$$、$$46-51$$、$$47-52$$、$$48-53$$、$$49-54$$、$$55-60$$ 共有$$11$$种. ~ " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
730
63b149c46ec1402aa7eae1f0de196d91
[ "2018年第12届湖北武汉学而思综合能力诊断小学高年级六年级竞赛第7题5分" ]
0
single_choice
一箱苹果有$$40$$多个,如果把这箱苹果每$$8$$个装一盒,还剩余$$3$$个;如果每$$10$$个装一盒,也剩余$$3$$个.这箱苹果有~\uline{~~~~~~~~~~}~个.
[ [ { "aoVal": "A", "content": "$$43$$ " } ], [ { "aoVal": "B", "content": "$$40$$ " } ], [ { "aoVal": "C", "content": "$$42$$ " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "去掉$$3$$个之后,剩余的是$$8$$和$$10$$的公倍数,由于只有$$40$$多个,那么去掉$$3$$个后就是$$40$$个,一共有$$43$$个. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1808
a47a71d4c792480f83133cc6d5018a30
[ "2014年第10届全国新希望杯五年级竞赛复赛第3题" ]
1
single_choice
小刚问:``小珍,你爸爸的年龄是多少?小珍风趣地说:``我爸爸现在的年龄等于四年后的岁数的$$3$$倍减去八年前的岁数的$$3$$倍.``小刚很决就回答:``你爸爸现在(~~~ )岁.
[ [ { "aoVal": "A", "content": "$$36$$ " } ], [ { "aoVal": "B", "content": "$$38$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ], [ { "aoVal": "D", "content": "$$32$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "四年后和八年前相隔$$12$$年,爸爸现在的年龄是$$12\\times 3=36$$(岁). " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3219
2c27e7c7f4b241a9b1e9c220211f2980
[ "2021年第8届鹏程杯四年级竞赛初赛第20题4分" ]
2
single_choice
在$$3\times 3$$方格中的每一个格中填入$$1$$或者$$2$$,如果要求每个$$2\times 2$$田字方格中$$4$$个数之和都是偶数,那么共有种不同的填数方法.
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$31$$ " } ], [ { "aoVal": "C", "content": "$$32$$ " } ], [ { "aoVal": "D", "content": "$$33$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->能力->公式记忆->符号化数学原理" ]
[ "先从中间入手,中间的数可以放奇数或者偶数,有两种放法,假设放奇数, 则它的上下左右都可以放奇数或者偶数,共有$$2\\times 2\\times 2\\times 2=16$$种, 此时四个角都只有唯一一种放法,因为每个$$2\\times 2$$的田字格中都已经填了三个数, 和要么是奇数要么是偶数,和是奇数,则剩下的一个角放奇数, 和是偶数则剩下的一个角放偶数,都只有一种,所以一共有$$2\\times 16=32$$种. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
85
0d472d32d2a74a5682a25c1402580253
[ "2013年第9届全国新希望杯五年级竞赛复赛第4题" ]
1
single_choice
布袋中的球大小相同,其中黄球和红球各有$$9$$个,蓝球有$$4$$个,绿球有$$3$$个,从布袋中摸出若干个球,为保证摸出的球中至少有$$5$$个球颜色相同,至少要摸出(~~~ )个球.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$17$$ " } ], [ { "aoVal": "D", "content": "$$18$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$3+4+4+4+1=16$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1333
2437cb42797443d58bf2418cf997059e
[ "2016年创新杯小学高年级六年级竞赛训练题(四)第6题" ]
2
single_choice
四娃抄写一份报告,如果每分钟抄写$$30$$个字,则用若干小时可以抄完.当抄完$$\frac{2}{5}$$时,将工作效率提高$$20 \% $$,结果比原计划提前$$20$$分钟完成.问这份报告共有(~ )字.
[ [ { "aoVal": "A", "content": "$$5000$$ " } ], [ { "aoVal": "B", "content": "$$6000$$ " } ], [ { "aoVal": "C", "content": "$$7500$$ " } ], [ { "aoVal": "D", "content": "$$9000$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->合作工程问题->变速工程问题" ]
[ "抄完$$\\frac{2}{5}$$后,前后工作效率之比为$$1:\\left( 1+20 \\% \\right)=5:6$$,所以前后工作时间之比为$$6:5$$.时间相差$$20$$分钟,则按原计划做需要:$$20\\div \\left( 6-5 \\right)\\times 6=120$$(分).$$120\\div \\left( 1-\\frac{2}{5} \\right)=200$$(分钟)$$30\\times 200=6000$$(字). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
852
d1e9a828676e4d45b39a82d4bfc992b2
[ "2011年北京五年级竞赛" ]
2
single_choice
在$$7$$进制中有三位数$$\overline{abc}$$,化为$$9$$进制为$$\overline{cba}$$,求这个三位数在十进制中为.
[ [ { "aoVal": "A", "content": "$$148$$ " } ], [ { "aoVal": "B", "content": "$$248$$ " } ], [ { "aoVal": "C", "content": "$$348$$ " } ], [ { "aoVal": "D", "content": "$$648$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "首先还原为十进制: $${{(\\overline{abc})}_{7}}=a\\times{{7}^{2}}+b\\times {{7}^{1}}+c\\times {{7}^{0}}=49a+7b+c$$;$${{(\\overline{cba})}_{9}}=c\\times{{9}^{2}}+b\\times {{9}^{1}}+a\\times {{9}^{0}}=81c+9b+a$$. 于是$$49a+7b+c=81c+9b+a$$;得到$$48a=80c+2b$$,即$$24a=40c+b$$. 因为$$24a$$是$$8$$的倍数,$$40c$$也是$$8$$的倍数,所以$$b$$也应该是$$8$$的倍数,于是$$b=0$$或$$8$$. 但是在$$7$$进制下,不可能有$$8$$这个数字.于是$$b=0$$,$$24a=40c$$,则$$3a=5c$$. 所以$$a$$为$$5$$的倍数,$$c$$为$$3$$的倍数. 所以,$$a=0$$或$$5$$,但是,首位不可以是$$0$$,于是$$a=5$$,$$c=3$$; 所以$${{(\\overline{abc})}_{7}}={{(503)}_{7}}=5\\times 49+3=248$$ . 于是,这个三位数在十进制中为$$248$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1675
6e010259f8384fe7a2ce0290529e64b5
[ "2022年第9届广东深圳鹏程杯四年级竞赛初赛第21题5分" ]
1
single_choice
2022年$$2$$月$$22$$日被广大网民称为``世界最爱日'',因为这个日期里面包含六个$$2.$$与它包含相同多$$2$$的日期是$$2022$$年$$12$$月$$22$$日,比它包含更多$$2$$的日期则是$$200$$年后的$$2222$$年$$2$$月$$22$$日. 今年$$2$$月$$22$$日又恰好是星期二,而$$12$$月$$22$$日是星期.
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "二 " } ], [ { "aoVal": "C", "content": "三 " } ], [ { "aoVal": "D", "content": "四 " } ], [ { "aoVal": "E", "content": "五 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->求某日期是周几问题" ]
[ "无 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
317
7b6e6513fd054d61a2e2078ff46c055a
[ "2021年新希望杯三年级竞赛初赛第13题5分" ]
2
single_choice
五盘水果排成一排.苹果和橘子相邻,橘子和草莓相邻,苹果和香蕉不相邻,香蕉和芒果不相邻.那么一定和芒果相邻的是.
[ [ { "aoVal": "A", "content": "只有苹果 " } ], [ { "aoVal": "B", "content": "只有橘子 " } ], [ { "aoVal": "C", "content": "只有草莓 " } ], [ { "aoVal": "D", "content": "香蕉和草莓 " } ], [ { "aoVal": "E", "content": "橘子和香蕉 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "根据题意分析可知,苹果和草莓都与橘子相邻, 所以可以确定橘子在苹果和草莓的中间, 假设苹果、橘子、草莓这样排列, 则香蕉在草莓的右边,芒果在苹果的左边, 即苹果与芒果一定相邻, 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
216
4c864fb304a0488e9d1546a2c9a381c2
[ "2021年新希望杯三年级竞赛初赛第13题5分" ]
2
single_choice
五盘水果排成一排.苹果和橘子相邻,橘子和草莓相邻,苹果和香蕉不相邻,香蕉和芒果不相邻.那么一定和芒果相邻的是谁?
[ [ { "aoVal": "A", "content": "只有苹果 " } ], [ { "aoVal": "B", "content": "只有橘子 " } ], [ { "aoVal": "C", "content": "香蕉和草莓 " } ], [ { "aoVal": "D", "content": "橘子和香蕉 " } ] ]
[ "拓展思维->能力->逻辑分析", "Overseas Competition->知识点->组合模块->逻辑推理" ]
[ "根据题意分析可知,苹果和草莓都与橘子相邻, 所以可以确定橘子在苹果和草莓的中间, 假设苹果、橘子、草莓这样排列, 则香蕉在草莓的右边,芒果在苹果的左边, 即苹果与芒果一定相邻, 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2097
f02eea4451b748db87a6a7026ffbb4bd
[ "2014年迎春杯三年级竞赛复赛" ]
2
single_choice
在``神庙大逃亡''游戏中,吃一个黄色钱币可以得$$1$$元钱;吃一个红色钱币可以得$$3$$元钱;吃一个蓝色钱币可以得$$5$$元钱。已知阿奇在一次游戏中一共吃了$$2800$$个钱币,共获得$$7800$$元,并且吃到蓝色钱币比红色钱币多$$200$$个,那么阿奇吃到了( )个红色钱币。
[ [ { "aoVal": "A", "content": "$$700$$ " } ], [ { "aoVal": "B", "content": "$$900$$ " } ], [ { "aoVal": "C", "content": "$$1200$$ " } ], [ { "aoVal": "D", "content": "$$1500$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题" ]
[ "解:根据分析,把蓝色钱币比红色钱币多的$$200$$个在总数上减去,可以得到他一共吃了:$$2800-200=260$$个钱币, 共获得:$$7800-5\\times 200=6800$$(元),由于红色蓝色一样多后可以看做有两种钱币,一种1元的黄色钱币, 一种是:$$(3+5)\\div 2=4$$元的红蓝钱币,假设$$2600$$个钱币全部是一元的, 那么可得红蓝钱币一共有:$$(6800-2600\\times 1)\\div \\left( 4-1 \\right)=1400$$(个), 则红色钱币有:$$1400\\div 2=700$$(个)。 故选:A。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3369
737e5582d8c34ca6bce286ce2e8d0609
[ "2012年第10届创新杯四年级竞赛初赛第3题6分" ]
1
single_choice
艾丽丝的房间里有三条腿的凳子和四条腿的椅子.它们共有$$17$$条腿,那么艾丽丝的房间里有张三条腿的凳子.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->枚举法->有序枚举" ]
[ "根据整数进行枚举尝试,代入枚举法. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1713
6e496b31fa1542a0b52aa13ffbf71a5d
[ "2007年华杯赛六年级竞赛初赛", "2007年华杯赛五年级竞赛初赛" ]
1
single_choice
地球表面的陆地面积和海洋面积之比是$$29:71$$,其中陆地的四分之三在北半球,那么南、北半球海洋面积之比是( )。
[ [ { "aoVal": "A", "content": "$$284:29$$ " } ], [ { "aoVal": "B", "content": "$$284:87$$ " } ], [ { "aoVal": "C", "content": "$$87:29$$ " } ], [ { "aoVal": "D", "content": "$$171:113$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->比例应用题->按比分配" ]
[ "设地球表面积为$$1$$, 则北半球海洋面积为:$$0.5-0.29\\times \\frac{3}{4}=\\frac{2-0.87}{4}=\\frac{1.13}{4}$$ 南半球海洋面积为:$$0.71-\\frac{1.13}{4}=\\frac{2.84-1.13}{4}=\\frac{1.71}{4}$$ 南北半球海洋面积之比为:$$\\frac{1.71}{4}:\\frac{1.13}{4}=171:113$$ " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
959
efeac11d3a3c436fa5736ba7ad3a262d
[ "2008年四年级竞赛创新杯", "2008年第6届创新杯四年级竞赛复赛第2题4分" ]
2
single_choice
有一个77位数,它的各位数字都是1,这个数除以7,余数是( ).
[ [ { "aoVal": "A", "content": "6 " } ], [ { "aoVal": "B", "content": "4 " } ], [ { "aoVal": "C", "content": "2 " } ], [ { "aoVal": "D", "content": "$$0$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->整除->整除特征->差系整除特征" ]
[ "因为$$111111\\div 7=15873$$,所以由六个数字1组成的六位数必定是7的倍数,又77被6除余5从而$$\\underbrace{11\\cdots 1}_{77个1}\\text{=}\\underbrace{1\\cdots 1}_{6个1}\\underbrace{0\\cdots 0}_{71个0}\\text{+}\\underbrace{1\\cdots 1}_{6个1}\\underbrace{0\\cdots 0}_{65个0}\\text{+}\\cdots \\underbrace{1\\cdots 1}_{6个1}\\underbrace{0\\cdots 0}_{5个0}\\text{+}\\underbrace{1\\cdots 1}_{5个1}$$所以$$\\underbrace{11\\cdots 1}_{77个1}$$和$$\\underbrace{1\\cdots 1}_{5个1}$$被7除所得余数相同,而$$\\underbrace{1\\cdots 1}_{5个1}\\div 7\\text{=}1587$$余2,所以$$\\underbrace{11\\cdots 1}_{77个1}$$被7除,余数是2. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
423
92ebfb615a98433eb3ac539d1d7691ad
[ "2016年华杯赛六年级竞赛初赛" ]
2
single_choice
``凑$$24$$点''游戏规则是:从一副扑克牌中抽去大小王剩下$$52$$张(如果初练也可以只用$$1\sim10$$共$$40$$张牌),任意抽取$$4$$张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成$$24$$,每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数。如果抽出的牌是$$3$$,$$8$$,$$8$$,$$9$$,那么算式为$$\left( 9-8 \right)\times 8\times 3$$或$$\left( 9-8\div 8 \right)\times 3$$等。在下面$$4$$个选项中,唯一无法凑出$$24$$点的是( )
[ [ { "aoVal": "A", "content": "$$1$$,$$2$$,$$2$$,$$3$$ " } ], [ { "aoVal": "B", "content": "$$1$$,$$4$$,$$6$$,$$7$$ " } ], [ { "aoVal": "C", "content": "$$1$$,$$5$$,$$5$$,$$5$$ " } ], [ { "aoVal": "D", "content": "$$3$$,$$3$$,$$7$$,$$7$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->数字谜->巧填算符" ]
[ "解:选项B:$$\\left( 7+1-4 \\right)\\times 6=24$$ 选项C:$$\\left( 5-1\\div 5 \\right)\\times 5=24$$ 选项D:$$\\left( 3+3\\div 7 \\right)\\times 7=24$$ " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2723
5b3ace009b6d4f48aceb7b6ab6fe2756
[ "2014年IMAS小学高年级竞赛第一轮检测试题第6题3分" ]
2
single_choice
已知每袋面粉售价为$$800$$元、每袋白米售价为$$500$$元,小安花$$3400$$元买了几袋面粉和几袋白米,请问小安买了几袋面粉?
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ], [ { "aoVal": "E", "content": "$$5$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->方程基础->不定方程->加法不定方程", "Overseas Competition->知识点->计算模块->方程基础->不定方程" ]
[ "因为$$800\\times 5=4000\\textgreater3400$$,所以小安买面粉的袋数少于$$5$$袋,并且$$3400$$减去面粉的总价后必须是$$500$$的整倍数,所以小安买的面粉只能是$$3$$袋,购买的白米是$$2$$袋:$$800\\times 3+500\\times 2=3400$$元.故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
318
606f40394d4b484cb0a3f76b5690214e
[ "2017年第16届湖北武汉创新杯六年级竞赛邀请赛训练题(一)" ]
2
single_choice
已知$$\overline{7x}\times \overline{yz6}=41808$$,其中$$x$$、$$y$$、$$z$$ 代表非 0 数字,则$$x+y+z=$$(~ ~).
[ [ { "aoVal": "A", "content": "$$16$$ " } ], [ { "aoVal": "B", "content": "$$17$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$19$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "我们首先通过乘积的个位判断,乘积的个位取决于因数个位的乘积,那么必有$$6\\times x$$的个位数字是$$8$$,那么$$x=3$$或$$8$$;当$$x=3$$时,那么原式为$$73\\times \\overline{yz6}=41808$$,求得$$\\overline{yz6}\\approx 572.71$$,不符合题意,舍去;当$$x=8$$时,那么原式为$$78\\times \\overline{yz6}=41808$$,求得$$\\overline{yz6}=536$$,符合题意;综上所述,有且仅有$$78\\times 536=41808$$符合题意,那么$$x+y+z=8+5+3=16$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1802
85a9cc72f1be4ec3859fe127fa8cb73a
[ "其它改编自2012年全国希望杯六年级竞赛初赛第19题" ]
3
single_choice
王老师在黑板上写了若干个从$$1$$开始的连续自然数:$$1$$,$$2$$,$$3$$,$$4$$,$$\cdots$$,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是$$19\frac{8}{9}$$,那么王老师在黑板上共写了~\uline{~~~~~~~~~~}~个数,擦去的两个质数的和最大是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$39$$;$$40$$ " } ], [ { "aoVal": "B", "content": "$$48$$;$$40$$ " } ], [ { "aoVal": "C", "content": "$$39$$;$$60$$ " } ], [ { "aoVal": "D", "content": "$$48$$;$$60$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$1+2+3+\\ldots +n=\\frac{(1+n)n}{2}$$,这几个数的平均数是$$\\frac{(1+n)n}{2}\\div n=\\frac{1+n}{2}$$,因此平均数为$$20$$左右,$$n$$应为$$40$$左右,擦掉$$3$$个数后剩下的个数应为$$9$$的倍数,故$$n=39$$,$$1+2+3+\\ldots +39=780$$.$$39$$个数擦掉$$3$$个数后剩$$36$$个,和为$$19\\frac{8}{9}\\times36=716$$,$$780-716=64$$,$$39$$以下质数中两个质数和最大为$$37+23=60$$或$$31+29=60$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1245
22f091be73524e44b97d6fa4c3fabad4
[ "2021年第8届鹏程杯四年级竞赛初赛第16题4分" ]
1
single_choice
爷爷比爸爸大$$27$$岁,妈妈比小鹏也大$$27$$岁,小鹏一家$$4$$口今年的年龄之和为$$132$$岁,而$$5$$年前是$$113$$岁.则爸爸今年的年龄是岁.
[ [ { "aoVal": "A", "content": "$$29$$ " } ], [ { "aoVal": "B", "content": "$$32$$ " } ], [ { "aoVal": "C", "content": "$$35$$ " } ], [ { "aoVal": "D", "content": "$$38$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "五年前的年龄和是$$113$$,则今年应该是$$113+5\\times4=133$$岁,但是今年的年龄和为$$132$$岁,说明五年前,小鹏还没有出生,今年小鹏$$=5-(133-132)=4$$岁,妈妈的年龄$$=27+4=31$$岁,爷爷和爸爸一共$$132-4-31=97$$岁,根据和差公式,爸爸年龄$$=(97-27)\\div2=35$$岁. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2343
743fc60116b54a759afb46fefb97a0a9
[ "2018年湖北武汉新希望杯五年级竞赛训练题(四)第5题" ]
1
single_choice
已知$$3\odot 4=3\times 4\times 5\times 6=360$$,$$2\odot 5=2\times 3\times 4\times 5\times 6=720$$,则$$(3\odot 5)\div (2\odot 4)=$$.
[ [ { "aoVal": "A", "content": "$$21$$ " } ], [ { "aoVal": "B", "content": "$$28$$ " } ], [ { "aoVal": "C", "content": "$$35$$ " } ], [ { "aoVal": "D", "content": "$$42$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->定义新运算->直接运算型->普通型" ]
[ "$$(3\\odot 5)\\div (2\\odot 4)=(3\\times 4\\times 5\\times 6\\times 7)\\div (2\\times 3\\times 4\\times 5)=6\\times 7\\div 2=21$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
854
bb02a21fa16442dca3cb47be8ddf58be
[ "2013年第14届上海中环杯小学高年级五年级竞赛初赛第9题" ]
2
single_choice
在$$51$$个连续奇数$$1$$、$$3$$、$$5\cdots 101$$中选取$$k$$个数,使得他们的和为$$2013$$,那么$$k$$的最大值是.
[ [ { "aoVal": "A", "content": "$$41$$ " } ], [ { "aoVal": "B", "content": "$$42$$ " } ], [ { "aoVal": "C", "content": "$$43$$ " } ], [ { "aoVal": "D", "content": "$$44$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "要使$$k$$最大,则所选的数最好小.$$1+3+\\cdots +89={{45}^{2}}=2025\\textgreater2013$$,所以所选的数必须少于$$45$$个,而$$44$$个奇数的和为偶数,所以$$k$$的最大值理论上为$$43$$.下面开始构造$$1+3+\\cdots +83={{42}^{2}}=1764$$,$$2013-1764=249$$,$$249-101=148$$,将$$83$$换成$$99$$,和增大$$16$$,$$81$$换成$$97$$,和增大$$16$$,$$148\\div 16=9\\cdots 4$$,所以要替换$$9$$个数,再替换$$1$$个数使其大$$4$$即可.所以,可以选$$1$$至$$63$$、$$69$$,以及$$83$$至$$101$$这$$43$$个数. 所以,$$k$$最大为$$43$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2167
1534cd40e0194ff5a4164cc96e6c04ce
[ "2014年四川成都小升初七中嘉祥外国语学校第26题", "2016年河南郑州联合杯六年级竞赛复赛第15题2分", "六年级上学期其它北师大版53天天练" ]
1
single_choice
小明从$$A$$地到$$B$$地的平均速度为$$4$$米/秒,然后又从$$B$$地按原路以$$6$$米/秒的速度返回$$A$$地,那么小明在$$A$$地与$$B$$地之间行一个来回的平均速度应为米/秒.
[ [ { "aoVal": "A", "content": "$$4.2$$ " } ], [ { "aoVal": "B", "content": "$$4.8$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$5.5$$ " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "平均速度;$$1500\\times 2\\div \\left( 2+2.5 \\right)=3000\\div 4.5=\\frac{2000}{3}\\text{km/h}=666\\frac{2}{3}\\text{km/h}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1156
4afa2fde865a44f4a60460e66c2e6a19
[ "2019年第23届广东世界少年奥林匹克数学竞赛二年级竞赛决赛第2题5分" ]
1
single_choice
红花有$$22$$朵,蓝花比红花多$$16$$朵,蓝花比黄花少$$9$$朵.黄花有朵.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$27$$ " } ], [ { "aoVal": "C", "content": "$$29$$ " } ], [ { "aoVal": "D", "content": "$$47$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "根据题意分析可知,已知红花的数量是$$22$$朵,蓝花比红花多$$16$$朵,即是比$$22$$多$$16$$,所以蓝花的数量是:$$22+16=38$$(朵);蓝花比黄花少$$9$$朵也就是黄花比蓝花多$$9$$朵,所以黄花的数量是:$$38+9=47$$(朵). 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
651
d53392143e9f40388edba3700315a108
[ "2005年六年级竞赛创新杯", "2005年第3届创新杯六年级竞赛复赛第2题" ]
1
single_choice
一条公路由$$A$$经$$B$$到$$C$$,已知$$A$$.$$B$$相距$$280$$米,$$B$$.$$C$$相距$$315$$米,现要在路边植树.要求相邻两树间的距离相等,并在$$B$$点及$$AB$$.$$BC$$的中点上都要植一棵,那么两树间距离最多有.
[ [ { "aoVal": "A", "content": "$$35$$米 " } ], [ { "aoVal": "B", "content": "$$36$$米 " } ], [ { "aoVal": "C", "content": "$$17.5$$米 " } ], [ { "aoVal": "D", "content": "$$18$$米 " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->公因数与最大公因数->多数的最大公因数" ]
[ "依题,在$$140$$米、$$280$$米和$$437$$.$$5$$米处都要植上树,那么两树之间的距离能被$$140$$、$$280$$和$$437.5$$整除,又上述三个数的$$2$$倍的最大公约数为$$\\left( 280\\text{,}560\\text{,}875 \\right)=35$$,那么$$140$$、$$280$$和$$437.5$$这三个数的最大公约数为$$17.5$$,即两树之间的距离最大为$$17.5$$米,选$$C$$。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1901
a9f7e5c08bb24404a2636a06dd01cc0f
[ "2018~2019学年江西南昌湾里区六年级上学期期中第13题1分", "2008年陈省身杯小学高年级六年级竞赛", "2018~2019学年广东广州黄埔区六年级上学期期末第2题2分", "天津六年级上学期单元测试《第一单元3》" ]
1
single_choice
两根$$2$$米长的铁丝,一根用去了$$\frac{1}{3}$$,另一根用去$$\frac{1}{3}$$米,剩下的铁丝.
[ [ { "aoVal": "A", "content": "第一根长 " } ], [ { "aoVal": "B", "content": "第二根长 " } ], [ { "aoVal": "C", "content": "同样长 " } ], [ { "aoVal": "D", "content": "无法比较哪根长 " } ] ]
[ "知识标签->课内知识点->数与运算->数的运算的实际应用(应用题)->分数的简单实际问题" ]
[ "第一根减去$\\dfrac{2}{3}m$,剩下$\\dfrac{4}{3}m$;第二根减去$\\dfrac{1}{3}m$,剩下$\\dfrac{5}{3}m$.所以选择$B$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
398
b6b60925568e45fead1b8992d780dc4b
[ "2007年华杯赛五年级竞赛初赛", "2007年华杯赛六年级竞赛初赛" ]
2
single_choice
从和为$$55$$的$$10$$个不同的自然数中,取出$$3$$个数后,余下的数之和是$$55$$的$$\frac{7}{11}$$,则取出的三个数的积最大等于( )。
[ [ { "aoVal": "A", "content": "$$280$$ " } ], [ { "aoVal": "B", "content": "$$270$$ " } ], [ { "aoVal": "C", "content": "$$252$$ " } ], [ { "aoVal": "D", "content": "$$216$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->组合模块最值问题->和一定型最值问题->多数之积的最值" ]
[ "余下的数之和为:$$55\\times \\frac{7}{11}=35$$,取出的数之和为:$$55-35=20$$, 要使取出的三个数之积尽量大,则取出的三个数应尽量接近, 我们知道$$6+7+8=21$$,所以取$$5\\times 7\\times 8=280$$。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
615
5d5e5c616b3d4b0ab6513a36f125e1c9
[ "2015年美国数学大联盟杯六年级竞赛初赛(中国赛区)第39题5分", "2016年全国美国数学大联盟杯小学高年级六年级竞赛初赛" ]
2
single_choice
做家务是迪的兴趣.迪每$$8$$天进行一次大扫除,每$$11$$天洗一次衣服.如果星期天迪做了两件家务,那么下一次她做两件家务会是哪一天?
[ [ { "aoVal": "A", "content": "星期三 " } ], [ { "aoVal": "B", "content": "星期四 " } ], [ { "aoVal": "C", "content": "星期五 " } ], [ { "aoVal": "D", "content": "星期六 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$8\\times 11=88$$,$$88$$除以$$7$$余$$4$$,所以正好是周四. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2954
c94f40530b5343b58bb75c395938afd8
[ "2008年华杯赛六年级竞赛初赛", "2008年华杯赛五年级竞赛初赛", "2008年华杯赛四年级竞赛初赛" ]
3
single_choice
若$$a=\underbrace{1515\cdots 15}_{1004个15}\times \underbrace{333\cdots 3}_{2008个3}$$,则整数a的所有位数上的数字和等于( ).
[ [ { "aoVal": "A", "content": "18063 " } ], [ { "aoVal": "B", "content": "18072 " } ], [ { "aoVal": "C", "content": "18079 " } ], [ { "aoVal": "D", "content": "18054 " } ] ]
[ "拓展思维->能力->运算求解->程序性计算" ]
[ "法一:递推: $$15\\times 33=495$$;$$1515\\times 3333=5049495$$;$$151515\\times 333333=50504949495$$;$$15151515\\times 33333333=505050494949495$$,$$\\cdots \\cdots $$ 我们发现$$\\underbrace{1515\\cdots 15}_{n个1\\text{5}}\\times \\underbrace{\\text{33}\\cdots \\text{3}}_{\\text{2}n个\\text{3}}\\text{=}\\underbrace{\\text{50}\\cdots \\text{50}}_{n-1个50}\\underbrace{4949\\cdots 49}_{n个49}5$$ 则$$\\underbrace{1515\\cdots 15}_{1004个1\\text{5}}\\times \\underbrace{\\text{33}\\cdots \\text{3}}_{2008个\\text{3}}\\text{=}\\underbrace{\\text{50}\\cdots \\text{50}}_{1003个50}\\underbrace{4949\\cdots 49}_{1004个49}5$$ 则数字和为$$\\left( 5+0 \\right)\\times 1003+\\left( 4+9 \\right)\\times 1004+5=18072$$ 法二:凑整 $$\\underbrace{1515\\cdots 15}_{1004个15}\\times \\underbrace{333\\cdots 3}_{2008个3}$$ $$\\text{=}\\underbrace{5050\\cdots 50}_{1003个50}5\\times 3\\times \\underbrace{333\\cdots 3}_{2008个3}$$ $$\\text{=}\\underbrace{5050\\cdots 50}_{1003个50}5\\times \\underbrace{999\\cdots 9}_{2008个9}$$ $$=\\underbrace{5050\\cdots 50}_{1003个50}5\\times \\left( 1\\underbrace{000\\cdots 0}_{2008个0}-1 \\right)$$ $$\\text{=}\\underbrace{5050\\cdots 50}_{1003个50}5\\underbrace{000\\cdots 0}_{2008个0}-\\underbrace{5050\\cdots 50}_{1003个50}5$$ $$\\text{=}\\underbrace{5050\\cdots 50}_{1003个50}\\underbrace{4949\\cdots 49}_{1004个49}5$$ 则数字和为$$\\left( 5+0 \\right)\\times 1003+\\left( 4+9 \\right)\\times 1004+5=18072$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3263
b535c95982d84bb4bd28e2bfc9840ac6
[ "2018年第8届北京学而思综合能力诊断一年级竞赛年度教学质量第14题" ]
1
single_choice
【例4】薇儿今天要去公园玩,妈妈给薇儿准备了$$3$$件上衣、$$2$$条裙子,还有$$2$$顶帽子,薇儿出门必须挑选一件上衣和一条裙子,帽子可以戴也可以不戴.请问,薇儿一共有种不同的搭配方法.
[ [ { "aoVal": "A", "content": "$$6$$种 " } ], [ { "aoVal": "B", "content": "$$8$$种 " } ], [ { "aoVal": "C", "content": "$$12$$种 " } ], [ { "aoVal": "D", "content": "$$18$$种 " } ] ]
[ "拓展思维->拓展思维->计数模块->加乘原理->乘法原理->物品搭配(有特殊要求)" ]
[ "帽子可以戴也可以不带,那么在帽子上面就有$$3$$种选择,所以共有$$3\\times 2\\times 3=18$$(种). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1850
b2807a2eb6c44470981e8e48c233dbcf
[ "2017年全国小学生数学学习能力测评六年级竞赛初赛第10题3分" ]
1
single_choice
开学前$$6$$天,小明还没做寒假数学作业,而小强已完成了$$60$$道题.开学时,两人都完成了数学作业,在这$$6$$天中,小明做的题量是小强的$$3$$倍,小明平均每天做了道题.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "因为由题干可知, 开学前$$6$$天,小明还没做寒假数学作业, 小强已完成了$$60$$道题,在这$$6$$天中, 小明做的题量是小强的$$3$$倍, 设小明平均每天做了$$x$$道题, 则小强平均每天做$$\\frac{x}{3}$$道题,可列方程为:$$60+\\frac{6x}{3}=6x$$, 解得$$x=15$$, 所以小明平均每天做了$$15$$道题, 故本题答案为$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2035
caefc83b4bfe4a1c9fd7eab8577a69ca
[ "2018年第22届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第5题5分" ]
0
single_choice
小红今年$$7$$岁,她比爸爸小$$29$$岁.去年她比爸爸小岁.
[ [ { "aoVal": "A", "content": "$$28$$ " } ], [ { "aoVal": "B", "content": "$$29$$ " } ], [ { "aoVal": "C", "content": "$$22$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "在年龄问题中,小红与爸爸的年龄差不会变.所以去年小红仍然比爸爸小$$29$$岁. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1711
7bc7d34a1f66472ea7e2de4f40c87d18
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第7题5分" ]
1
single_choice
小黑兔有$$10$$个萝卜,如果小白兔给小黑兔$$4$$个萝卜,它俩的萝卜就一样多,小白兔原来有个萝卜.
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "小白兔给小黑兔四个萝卜,小白兔的萝卜减四个,小黑兔的萝卜加四个,它俩的萝卜一样多,说明小白兔开始的时候比小黑兔多八个萝卜,小黑兔有$$10$$个萝卜,则小白兔有$$10+8=18$$(个)萝卜. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1990
ab0982ec3a6548188836e8be28e6c319
[ "2017年IMAS小学高年级竞赛(第一轮)第17题4分" ]
1
single_choice
在一次考试中,某班的平均分数为$$70$$分,其中有两位学生缺考得了$$0$$分.若这两位学生成绩不计,则该班上其他学生的平均分数为$$74$$分,请问这个班上总共有位学生.
[ [ { "aoVal": "A", "content": "$$25$$ " } ], [ { "aoVal": "B", "content": "$$28$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$35$$ " } ], [ { "aoVal": "E", "content": "$$37$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->综合题普通型" ]
[ "由于把两位得$$0$$分的学生算进来时,平均分数由$$74$$分变为$$70$$分, 故可视为其他每一位学生都拿出$$74-70=4$$(分)给这两位学生, 此时共拿出$$70\\times 2=140$$(分), 即可判断出其他学生共有$$140\\div 4=35$$(位), 因此这个班上共有$$35+2=37$$(位)学生. 故选$$\\text{E}$$. ", "<p>设这个班上共有$$x$$位学生,</p>\n<p>由题意可得$$74\\left( x-2 \\right)=70x$$,</p>\n<p>解得$$x=37$$.</p>\n<p>故选$$\\text{E}$$.</p>" ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3333
ff80808147248448014724de17e80129
[ "2012年全国华杯赛小学高年级竞赛初赛网络版第6题" ]
1
single_choice
在由$$1$$,$$3$$,$$4$$,$$7$$,$$9$$组成的没有重复数字的数中,是$$9$$的倍数的有(~ ~ ~ ~)个.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "数字和是$$9$$的倍数才可以,只有$$9$$.所以只有$$1$$个. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2133
a68cb77b84de461eb1e3909320fbc217
[ "2008年第6届创新杯五年级竞赛初赛B卷第6题5分" ]
1
single_choice
甲、乙两辆汽车同时从$$A$$地开往$$B$$地,速度分别是每小时走$$42$$千米和$$38$$千米,甲车到达$$B$$地后立即返回,在距$$B$$地$$20$$千米的地方与乙车相遇,$$A$$、$$B$$两地相距千米.
[ [ { "aoVal": "A", "content": "$$360$$ " } ], [ { "aoVal": "B", "content": "$$390$$ " } ], [ { "aoVal": "C", "content": "$$385$$ " } ], [ { "aoVal": "D", "content": "$$400$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "设$$A$$、$$B$$两地相距$$x$$千米. $$\\begin{eqnarray} \\left( x+20 \\right)\\div 42\\&=\\&\\left( x-20 \\right)\\div 38 \\left( x+20 \\right)\\div 42\\times 38\\&=\\&x-20 \\left( x+20 \\right)\\times 38\\&=\\&\\left( x-20 \\right)\\times 42 38x+760\\&=\\&42x-840 38x+760+840\\&=\\&42x 38x+1600\\&=\\&42x 4x\\&=\\&1600 x\\&=\\&400.\\end{eqnarray}$$ 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
279
90eb70ff536d4e5cad2bc3bc4be8bf4a
[ "2014年IMAS小学高年级竞赛第一轮检测试题第12题4分" ]
2
single_choice
若一个非负整数的五分之一与另一个非负整数的三分之一的和是$$1$$,请问这两个数之和最大可能值是多少?
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ], [ { "aoVal": "E", "content": "$$9$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "设这两个非负整数分别为$$a$$和$$b$$,即$$\\frac{a}{5}+\\frac{b}{3}=1$$,因此,$$b$$只能取$$0$$、$$1$$、$$2$$、$$3$$. 若$$b=0$$,则$$a=5$$;若$$b=1$$,则$$a=\\frac{10}{3}$$不是整数;若$$b=2$$,则$$a=\\frac{5}{3}$$不是整数; 若$$b=3$$,则$$a=0$$.所以$$a+b$$只有两个可能的值:$$5+0=5$$、$$0+3=3$$,最大值为$$5$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1082
212a7d0e3e874dafb014c4e420688c65
[ "2015年湖北武汉世奥赛六年级竞赛模拟训练题(四)第2题" ]
2
single_choice
某公司准备进行促销,奖品总金额为$$2$$万元,中奖率为$$10 \% $$,每$$200$$元发奖券一张,获奖的总人次为$$500$$,如此促销则公司的销售总额至少为元.
[ [ { "aoVal": "A", "content": "$$10$$万 " } ], [ { "aoVal": "B", "content": "$$12$$万 " } ], [ { "aoVal": "C", "content": "$$80$$万 " } ], [ { "aoVal": "D", "content": "$$100$$万 " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->量率对应求单位1" ]
[ "$$500\\div 10 \\% \\times 200=100$$(万元) " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
184
9942b2a9aefc46759d72e8523121f325
[ "2021年新希望杯三年级竞赛初赛第13题5分" ]
2
single_choice
五盘水果排成一排.苹果和橘子相邻,橘子和草莓相邻,苹果和香蕉不相邻,香蕉和芒果不相邻.那么一定和芒果相邻的是.
[ [ { "aoVal": "A", "content": "只有苹果 " } ], [ { "aoVal": "B", "content": "只有橘子 " } ], [ { "aoVal": "C", "content": "只有草莓 " } ], [ { "aoVal": "D", "content": "香蕉和草莓 " } ], [ { "aoVal": "E", "content": "橘子和香蕉 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "根据题意分析可知,苹果和草莓都与橘子相邻, 所以可以确定橘子在苹果和草莓的中间, 假设苹果、橘子、草莓这样排列, 则香蕉在草莓的右边,芒果在苹果的左边, 即苹果与芒果一定相邻, 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
341
ed4a49f5bda442a4bf050d9c2bf1ba38
[ "2016年全国华杯赛小学中年级竞赛在线模拟第3题", "2013年全国华杯赛小学中年级竞赛初赛A卷第3题" ]
2
single_choice
小东、小西、小南、小北四个小朋友在一起做游戏时,捡到了一条红领巾,交给了老师.老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对.他们之中只有一个人说对了,这个人是.
[ [ { "aoVal": "A", "content": "小东 " } ], [ { "aoVal": "B", "content": "小西 " } ], [ { "aoVal": "C", "content": "小南 " } ], [ { "aoVal": "D", "content": "小北 " } ] ]
[ "知识标签->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾" ]
[ "首先发现矛盾,小东和小南的话存在矛盾,如果小南对,则小东不对因此小南和小东一真一假.其次,小北支持小东,如果小北对,则小南不对,小东对,因此小北和小东同真同假.而只有一个人说对了,那么小北和小东都为假,则小南为真,小南说对了,那么由小东说错可知小西捡到红领巾. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1727
ff808081498992ec01498ee74d2b0ba4
[ "2014年全国华杯赛小学高年级竞赛初赛A卷第2题" ]
2
single_choice
某次考试有$$50$$道试题,答对一道题得$$3$$分,答错一道题扣$$1$$分,不答题不得分,小龙得分$$120$$分,那么小龙最多答对了(~ ~ ~ ~)道试题.
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$42$$ " } ], [ { "aoVal": "C", "content": "$$48$$ " } ], [ { "aoVal": "D", "content": "$$50$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "因为要求小龙最多答对了几道题,又因为小龙最后得$$120$$分每对一道得$$3$$分,所以小龙错的题目数是$$3$$的倍数,所以答对与答错题目总数也是$$3$$的倍数且最大为$$48$$道, 所以 $$\\left { \\begin{matrix}\\& 3x-y=120 \\&x+y=48 \\end{matrix} \\right.$$ 解得, $$\\left { \\begin{matrix}\\& x=42 \\& y=6 \\end{matrix} \\right.$$ 所以选择B. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
546
feb42727cd2b4103827e146107325319
[ "2020年第24届YMO六年级竞赛决赛第9题3分", "2019年第24届YMO六年级竞赛决赛第9题3分" ]
2
single_choice
在下面的四个算式中,最大的得数是.
[ [ { "aoVal": "A", "content": "$$2017\\times 2022+2022$$ " } ], [ { "aoVal": "B", "content": "$$2018\\times 2021+2021$$ " } ], [ { "aoVal": "C", "content": "$$2019\\times 2020+2020$$ " } ], [ { "aoVal": "D", "content": "$$2020\\times 2019+2019$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$2017\\times 2022+2022=2022\\times 2018$$, $$2018\\times 2021+2021=2021\\times 2019$$, $$2019\\times 2020+2020=2020\\times 2020$$, $$2020\\times 2019+2019=2019\\times 2021$$, 发现每组两个数之和都为$$4040$$,由最值原理,和一定,差小积大,可知$$\\text{C}$$最大. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1969
ceb8312330b44da2b31e06b53b38e725
[ "2009年第7届创新杯六年级竞赛初赛第7题4分" ]
2
single_choice
五个互不相等的奇数之和等于$$85$$,其中最大的一个为$$M$$,则$$M$$的取值范围是.
[ [ { "aoVal": "A", "content": "$$23\\leqslant M\\leqslant 67$$ " } ], [ { "aoVal": "B", "content": "$$19\\leqslant M\\leqslant 67$$ " } ], [ { "aoVal": "C", "content": "$$21\\leqslant M\\leqslant 69$$ " } ], [ { "aoVal": "D", "content": "$$17\\leqslant M\\leqslant 69$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "如果这$$5$$个数比较接近,那么根据平均数$$85\\div5=17$$, 可以知道最大数的最小值是$$17+2+2=21$$, 当其他四个数较小时,最大数的最大值就是$$85-1-3-5+7=69$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1548
9573b5c8c78440849f5254affce5f534
[ "2017年IMAS小学中年级竞赛(第一轮)第14题4分", "2017年IMAS小学中年级竞赛(第一轮)第14题4分", "2017年IMAS小学中年级竞赛(第一轮)第14题4分" ]
1
single_choice
小明前几次数学考试的平均分是$$88$$分,这次数学考试结束后,小明努力学习,想把平均分提高,已知小明这次考试成绩为$$98$$分,平均分恰好达到$90$分,请问小明总共考了次数学考试.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->容斥求平均数" ]
[ "可知这次考试比所欲达到的平均分数多的$$98-90=8$$分要分配到前几次的考试才能使平均分数增加$$90-88=2$$分,因此小明之前共考了$$8\\div 2=4$$次数学考试,所以连同这一次他总共考了$$4+1=5$$次数学考试.故选$$\\text{C}$$. 可知最后一次考试要比所欲达到的平均分数多$$98-88=10$$分才能使平均分数从$$88$$分增加到$$90$$分,即须增加$$2$$分,因此连同这一次小明总共考了$$10\\div 2=5$$次数学考试.故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2619
87e3148c09464389aff9d6c64ba794a2
[ "2017年第4届广东深圳鹏程杯小学高年级竞赛第14题15分" ]
3
single_choice
$$1977$$除本身外有三个因数:$$1$$,$$3$$,$$659$$(注意:$$659$$是个质数,也叫素数).$$1977$$的数字和为$$1+9+7+7=24$$,它除本身外所有因数的数字和也是$$1+3+(6+5+9)=24$$,我们把具有这种特点的数叫鹏程数,以下是$$8000$$以内的鹏程数: $$6$$,$$33$$,$$87$$,~\uline{~~~~~~~~~~}~,$$303$$,$$519$$,$$573$$,$$681$$,$$843$$,$$951$$,$$1059$$,$$1329$$,$$1383$$,$$1923$$,$$1977$$,$$2463$$,$$2733$$,$$2787$$,$$2949$$,$$3057$$,$$3273$$,$$3327$$,$$3543$$,$$3651$$,$$3867$$,$$3921$$,$$4083$$,$$4353$$,$$4677$$,$$5163$$,$$5433$$,$$5703$$,$$5919$$,$$6081$$,$$6243$$,$$6297$$,$$6621$$,$$6891$$,$$7053$$,$$7323$$,$$7377$$,$$7647$$,$$7971$$.那么上面的鹏程数中缺少的数是.
[ [ { "aoVal": "A", "content": "$$178$$ " } ], [ { "aoVal": "B", "content": "$$198$$ " } ], [ { "aoVal": "C", "content": "$$218$$ " } ], [ { "aoVal": "D", "content": "$$249$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律->数列找规律填数" ]
[ "249的因数:1,3,83,249.$$1+3+8+3=15$$;$$2+4+9=15$$.所以$$249$$也是鹏程数. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2609
8b8c15951689440fa04fa237541621d1
[ "2017年第15届全国希望杯六年级竞赛" ]
2
single_choice
求三个分数$$\frac{20122012}{20132013}$$,$$\frac{20132013}{20142014}$$,$$\frac{20142014}{20152015}$$中值最大的是.
[ [ { "aoVal": "A", "content": "$$\\frac{20122012}{20132013}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{20132013}{20142014}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{20142014}{20152015}$$ " } ], [ { "aoVal": "D", "content": "三个一样大 " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "因为$$\\frac{20122012}{20132013}=\\frac{2012\\times 1001}{2013\\times 1001}=\\frac{2012}{2013}$$, $$\\frac{20132013}{20142014}=\\frac{2013\\times 1001}{2014\\times 1001}=\\frac{2013}{2014}$$,$$\\frac{20142014}{20152015}=\\frac{2014\\times 1001}{2015\\times 1001}=\\frac{2014}{2015}$$,$$1-\\frac{2012}{2013}=\\frac{1}{2013}$$,$$1-\\frac{2013}{2014}=\\frac{1}{2014}$$, $$1-\\frac{2014}{2015}=\\frac{1}{2015}$$. 因为$$\\frac{1}{2015}\\textless{}\\frac{1}{2014}\\textless{}\\frac{1}{2013}$$,所以$$\\frac{2014}{2015}\\textgreater\\frac{2013}{2014}\\textgreater\\frac{2012}{2013}$$.因此,三个分数中,最大的是$$\\frac{20142014}{20152015}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
920
bc351b0111ba443982d5c813ac8afe9a
[ "2017年第13届湖北武汉新希望杯五年级竞赛决赛第1题" ]
0
single_choice
下列说法正确的是(~ ).
[ [ { "aoVal": "A", "content": "互质的两个数没有公因数~~~~~~~~~~~~~~~~~~~~ " } ], [ { "aoVal": "B", "content": "$$12$$和$$18$$的最小公倍数是$$72$$ " } ], [ { "aoVal": "C", "content": "$$24$$和$$30$$的最大公因数是$$6$$~~~~ " } ], [ { "aoVal": "D", "content": "两个质数的和一定是偶数 " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$\\text{A}$$选项:互质的两个数公因数为$$1$$,$$\\text{B}$$选项:$$12$$和$$18$$的最小公倍数是$$36$$,$$\\text{D}$$选项:$$2+3=5$$为奇数. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3128
ec24207534c94c7c8719f8a2329fceb4
[ "2017年北京学而思杯六年级竞赛年度教学质量监测第4题5分" ]
1
single_choice
艾迪有一本书,他原计划每天看$$10$$页,$$10$$天看完.现在他已经看了$$5$$天,平均每天看$$8$$页.如果艾迪想按原计划$$10$$天把书看完,那么从现在开始他应该平均每天看~\uline{~~~~~~~~~~}~页.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$14$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->公式类->直接求平均数" ]
[ "这一本书一共有$$10\\times 10=100$$页,还剩下$$100-5\\times 8=60$$页要看,所以之后平均每天看$$60\\div 5=12$$页才能按原计划. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2006
cf1deff52bd44aa6bf30e03dbdf35f15
[ "2008年第6届创新杯四年级竞赛初赛A卷第2题5分", "2008年四年级竞赛创新杯" ]
1
single_choice
小华买1支钢笔和2支圆珠笔共用15元钱,小红买同样的钢笔2支和圆珠笔1支共用21元钱.那么,每支钢笔的价格是( )元.
[ [ { "aoVal": "A", "content": "8 " } ], [ { "aoVal": "B", "content": "9 " } ], [ { "aoVal": "C", "content": "10 " } ], [ { "aoVal": "D", "content": "11 " } ] ]
[ "拓展思维->能力->符号代换->代数运算" ]
[ "3支钢笔和3支圆珠笔共用$$15+21=36$$元,从而,每支钢笔和每支圆珠笔共用$$36\\div 3=12$$元,所以,每支钢笔的价格是$$21-12=9$$元 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2920
861170ebe9cd4f7fb7c3135d2defe865
[ "2018年第12届北京学而思综合能力诊断小学中年级三年级竞赛第14题" ]
3
single_choice
某个等差数列第$$8$$项是$$50$$,前$$10$$项的和为$$325$$.那么,在这个数列前$$99$$项中有~\uline{~~~~~~~~~~}~个奇数.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$33$$ " } ], [ { "aoVal": "C", "content": "$$49$$ " } ], [ { "aoVal": "D", "content": "$$50$$ " } ], [ { "aoVal": "E", "content": "$$99$$ " } ] ]
[ "Overseas Competition->知识点->计数模块->几何计数->分类枚举法数图形->常规图形枚举计数", "拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列与估算" ]
[ "根据题意: $$\\begin{cases}{{a}_{1}}+7d=50 ({{a}_{1}}+{{a}_{1}}+9d)\\times 5=325 \\end{cases}$$ 整理得:$$\\begin{cases}{{a}_{1}}+7d=50 2{{a}_{1}}+9d=65 \\end{cases}$$ 解得:$$\\begin{cases}{{a}_{1}}=1 d=7 \\end{cases}$$ 因此:该数列首项为奇数,公差为奇数, 故数列中奇数项为奇数,偶数项为偶数. 前$$99$$项中共有奇数$$(99+1)\\div 2=50$$(个). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2885
9fce1926296541e79443793bf75e5feb
[ "2004年第2届创新杯六年级竞赛复赛第5题" ]
2
single_choice
\textbf{2.~} 在下面四个算式中,得数最大的是.
[ [ { "aoVal": "A", "content": "$$\\left( \\frac{1}{17}-\\frac{1}{19} \\right)\\div 20$$ " } ], [ { "aoVal": "B", "content": "$$\\left( \\frac{1}{15}-\\frac{1}{21} \\right)\\div 60$$ " } ], [ { "aoVal": "C", "content": "$$\\left( \\frac{1}{13}-\\frac{1}{23} \\right)\\div 100$$ " } ], [ { "aoVal": "D", "content": "$$\\left( \\frac{1}{11}-\\frac{1}{25} \\right)\\div 140$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$\\left( \\frac{1}{17}-\\frac{1}{19} \\right)\\div 20=\\frac{2}{17\\times 19}\\div 20=\\frac{1}{17\\times 19}\\times \\frac{1}{10}$$;$$\\left( \\frac{1}{15}-\\frac{1}{21} \\right)\\div 60=\\frac{6}{15\\times 21}\\div 60=\\frac{1}{15\\times 21}\\times \\frac{1}{10}$$; $$\\left( \\frac{1}{13}-\\frac{1}{23} \\right)\\div 100=\\frac{10}{13\\times 23}\\div 100=\\frac{1}{13\\times 23}\\times \\frac{1}{10};$$$$\\left( \\frac{1}{11}-\\frac{1}{25} \\right)\\div 140=\\frac{14}{11\\times 25}\\div 140=\\frac{1}{11\\times 25}\\times \\frac{1}{10};$$ 只需比较$$\\frac{1}{17\\times 19}$$,$$\\frac{1}{15\\times 21}$$,$$\\frac{1}{13\\times 23}$$,$$\\frac{1}{11\\times 25}$$的大小,根据和一定,两数越接近乘 积越大,则$$11\\times 25 \\textless{} 13\\times 23 \\textless{} 15\\times 21 \\textless{} 17\\times 19$$,那么 $$\\frac{1}{11\\times 25}\\textgreater\\frac{1}{13\\times 23}\\textgreater\\frac{1}{15\\times 21}\\textgreater\\frac{1}{17\\times 19}$$,所以答案为$$D$$ " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2036
d883f5fb32344c20976ad51577b90dfa
[ "2017年四川成都六年级竞赛“全能明星”选拔赛第3题2分" ]
1
single_choice
一根$$4$$米长的钢材,先截掉总长的$$\frac{1}{4}$$,再截掉剩余长度的$$\frac{1}{4}$$,还剩.
[ [ { "aoVal": "A", "content": "$$2$$米 " } ], [ { "aoVal": "B", "content": "$$3$$米 " } ], [ { "aoVal": "C", "content": "$$2\\frac{3}{4}$$米 " } ], [ { "aoVal": "D", "content": "$$2\\frac{1}{4}$$米 " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->量率对应已知单位1" ]
[ "$$4\\times \\left( 1-\\frac{1}{4} \\right)\\times \\left( 1-\\frac{1}{4} \\right)=2\\frac{1}{4}$$(米). 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1814
73ef6c642e754ee4a59bcd70bb4f89d7
[ "2005年五年级竞赛创新杯" ]
1
single_choice
小华期末考试,数学、语文、英语三科的平均分是92分,语文、英语两科的平均分是90分;又英语比语文高3分,那么数学比语文高( ).
[ [ { "aoVal": "A", "content": "8分 " } ], [ { "aoVal": "B", "content": "7.5分 " } ], [ { "aoVal": "C", "content": "7分 " } ], [ { "aoVal": "D", "content": "6.5分 " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->公式类" ]
[ "数学、语文、英语三科的总成绩是$$92\\times 3=276$$分,语文、英语两科的总成绩是$$90\\times 2=180$$分,那么数学的得分为$$276-180=96$$分.又英语比语文高3分,那么语文的成绩为$$\\left( 180-3 \\right)\\div 2=88.5$$分,所以数学比语文高$$96-88.5=7.5$$分. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
915
8f448b90f8094596bbc6faf9d3106718
[ "2019年第23届广东世界少年奥林匹克数学竞赛五年级竞赛决赛第1题5分" ]
1
single_choice
完全平方数是指可以分解成两个相同自然数乘积的数.在整数$$1$$、$$2$$、$$3$$、$$\cdots \cdots 99$$、$$100$$中,合数的个数为$$x$$,偶数的个数为$$y$$,完全平方数的个数为$$z$$.则$$x+y+z$$等于.
[ [ { "aoVal": "A", "content": "$$85$$ " } ], [ { "aoVal": "B", "content": "$$130$$ " } ], [ { "aoVal": "C", "content": "$$134$$ " } ], [ { "aoVal": "D", "content": "$$135$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "合数是指在大于$$1$$的整数中除了能被$$1$$和本身整除外,还能被其他数($$0$$除外)整除的数.与之相对的是质数,$$1$$到$$100$$中,合数的个数有:$$74$$个;所以$$x=74$$; 偶数有$$50$$个,所以$$y=50$$; 完全平方数分别是:$$1$$、$$4$$、$$9$$、$$16$$、$$25$$、$$36$$、$$49$$、$$64$$、$$81$$、$$100$$这$$10$$个;即$$z=10$$; $$x+y+z=74+50+10=134$$;所以选择$$\\text{C}$$选项. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
30
036895656b96400ab97e9fb5f7f833e7
[ "2015年第20届全国华杯赛小学中年级四年级竞赛初赛A卷", "2016年第20届四川成都华杯赛小学中年级竞赛B卷第1~6题60分" ]
1
single_choice
森林里举行比赛,要派出狮子、老虎、豹子和大象中的两个动物去参加.如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是.
[ [ { "aoVal": "A", "content": "狮子、老虎 " } ], [ { "aoVal": "B", "content": "老虎、豹子 " } ], [ { "aoVal": "C", "content": "狮子、豹子 " } ], [ { "aoVal": "D", "content": "老虎、大象 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->连线法" ]
[ "在逻辑推理中,原命题成立,则逆否命题也成立. 从题意出发: (1)狮子去则老虎去,逆否命题;老虎不去则狮子也不去 (2)不派豹子则不派老虎,逆否命题:派老虎则要派豹子 (3)派豹子则大象不愿意去,逆否命题;大象去则不能派豹子 从(2)出发可以看出答案为$$B$$ 题目要求有两个动物去,可以使用假设法,若狮子去,则老虎去,老虎去则豹子也去,三个动物去,矛盾,所以狮子不去,若豹子不去则老虎不去,那么只有大象去,矛盾,所以豹子去,豹子去则大象不去,由两骄气去得到结论,老虎要去,所以答案是$$B$$,豹子和老虎去. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3200
390b26f1dc2f4f82b8cc05c495dec35c
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第14题2分" ]
1
single_choice
由数字$$0$$,$$1$$,$$2$$,$$3$$,$$4$$组成三位数,可以组成个不同的三位数.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$25$$ " } ], [ { "aoVal": "C", "content": "$$80$$ " } ], [ { "aoVal": "D", "content": "$$100$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->加乘原理->组数问题->一般组数问题" ]
[ "$4\\times5\\times5=100(个)$ " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1238
9da2808a8b494e73a262c6cb6af6e0c3
[ "其它改编自 2014年全国华杯赛小学高年级竞赛复赛A卷第10题" ]
2
single_choice
有一杯子装满了浓度为$$16 \%$$的盐水.有大、中、小铁球各一个,它们的体积比为$$10:4:3$$.首先将小球沉入盐水杯中,结果盐水溢出$$10 \%$$,取出小球;其次把中球沉入盐水杯中,又将它取出;接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止.此时杯中盐水的浓度是~\uline{~~~~~~~~~~}~$$ \%$$.(保留一位小数)
[ [ { "aoVal": "A", "content": "$$5.3$$ " } ], [ { "aoVal": "B", "content": "$$10.7$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$5.5$$ " } ] ]
[ "课内体系->知识点->数的运算->估算->百分数的简单实际问题->百分数浓度问题", "拓展思维->知识点->应用题模块->浓度问题->浓度基本题型->已知溶质溶液求浓度" ]
[ "大、中、小球体积比为$$10:4:3$$,盐水的$$10 \\%$$对应小球``$$3$$份''体积,则大球``$$10$$份''体积对应盐水的$$10 \\%\\div 3\\times 10=\\frac{1}{3}$$,因此最终溢出的盐水量为杯子容积的$$\\frac{1}{3}$$,此时杯中盐水的浓度为$$16 \\%\\times (1-\\frac{1}{3})\\div 1\\approx 10.7 \\%$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
298
527dbf2eaa2f4621a275ff83233b9952
[ "2015年第14届春蕾杯一年级竞赛初赛第5题1分" ]
1
single_choice
已知学而思有女老师:简简,柚子,嘉嘉;男老师有:小南,橙子,小易。 (1) 喜欢点珍珠奶茶外卖的是所有女老师和小南老师; (2) 学而思喜欢点外卖的老师不喜欢臭豆腐; (3) 小易老师最不喜欢的就是臭豆腐了; 那么,聪明的你知道今天中午的臭豆腐外卖最有可能是谁点的吗?
[ [ { "aoVal": "A", "content": "小南 " } ], [ { "aoVal": "B", "content": "橙子 " } ], [ { "aoVal": "C", "content": "简简 " } ], [ { "aoVal": "D", "content": "柚子 " } ], [ { "aoVal": "E", "content": "嘉嘉 " } ], [ { "aoVal": "F", "content": "小易 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "根据题意分析可知,小胖比小王高,所以小胖的身高高于小王,小胖说比园园矮,所以园园的身高高于小胖,小朱没有小王高,所以小王的身高高于小朱,由此可知,四个人的身高从高到低位:园园$$\\textgreater$$小胖$$\\textgreater$$小王$$\\textgreater$$小朱. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3471
d929b788a5ae4b40bd4fa473010a6d62
[ "2008年中环杯六年级竞赛决赛", "2008年中环杯五年级竞赛决赛", "2008年第9届中环杯五年级竞赛决赛第8题", "2008年中环杯四年级竞赛决赛" ]
3
single_choice
有$$49$$个孩子,每人胸前有一个号码,号码从$$1$$到$$49$$各不相同.~ 请你挑出若干个小孩排成一个圆圈,使任 何相邻两个孩子号码数乘积小于100.~ 你最多能够选出个孩子.
[ [ { "aoVal": "A", "content": "$$17$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$19$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->排列组合->组合->组合的基本运算" ]
[ "任意两位数乘积都小于$$100$$,所以相邻两个数必须有一个$$1$$位数,$$1$$位数共有$$9$$个,所以两位数最多也只能挑$$9$$个,因此最多能挑$$18$$个孩子. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
859
b68db2d07b634e9cbdcd79e4d2b347b4
[ "2022年广东深圳华杯赛小学高年级竞赛(惠州市)第6题10分" ]
2
single_choice
设$$1\leqslant n\leqslant 100$$,且$$8n+1$$为完全平方数,则符合条件的整数$$n$$的个数为~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$11$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$13$$ " } ], [ { "aoVal": "E", "content": "$$14$$ " } ] ]
[ "拓展思维->能力->逻辑分析", "Overseas Competition->知识点->数论模块" ]
[ "易知$$8n+1$$只能为奇数的平方,设$$8n+1={{\\left( 2l+1 \\right)}^{2}}$$, 其中$$l$$为非负整数,则$$n=\\frac{l\\left( l+1 \\right)}{2}$$, 所以$$1\\leqslant \\frac{l\\left( l+1 \\right)}{2}\\leqslant 100$$, 故$$1\\leqslant l\\leqslant 13$$,所以,满足条件的整数$$n$$有$$13$$个. ∵$$1\\leqslant n\\leqslant 100$$, ∴$$9\\leqslant 8n+1\\leqslant 801$$, ∴$$n$$为如下几个整数时, $$1$$,$$3$$,$$6$$,$$10$$,$$15$$,$$21$$,$$28$$,$$36$$,$$45$$,$$55$$,$$66$$,$$78$$,$$91$$, $$8n+1$$为完全平方数,整数$$n$$的个数为$$13$$. 故答案为:$$13$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2596
432913240d4a4026a699b3890b52052e
[ "2004年六年级竞赛创新杯" ]
1
single_choice
在下面四个算式中,得数最大的是( ).
[ [ { "aoVal": "A", "content": "$$\\left( \\frac{1}{17}-\\frac{1}{19} \\right)\\div 20$$ " } ], [ { "aoVal": "B", "content": "$$\\left( \\frac{1}{15}-\\frac{1}{21} \\right)\\div 60$$ " } ], [ { "aoVal": "C", "content": "$$\\left( \\frac{1}{13}-\\frac{1}{23} \\right)\\div 100$$ " } ], [ { "aoVal": "D", "content": "$$\\left( \\frac{1}{11}-\\frac{1}{25} \\right)\\div 140$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->整数比较大小" ]
[ "$$A=\\frac{1}{17\\times 19\\times 10}$$,$$B=\\frac{1}{15\\times 21\\times 10}$$,$$C=\\frac{1}{13\\times 23\\times 10}$$,$$D=\\frac{1}{11\\times 25\\times 10}$$,显然最大的为$$D$$,选$$D$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1716
5812a1fe732e456286483580b67c7a57
[ "2019年陕西延安宝塔区北大培文学校小升初入学真卷第2题3分", "2006年第11届全国华杯赛竞赛初赛第3题" ]
2
single_choice
奶奶告诉小明$$2006$$年共有$$53$$个星期日,聪敏的小明立到告诉奶奶:$$2007$$年的元旦一定是.
[ [ { "aoVal": "A", "content": "星期一 " } ], [ { "aoVal": "B", "content": "星期二 " } ], [ { "aoVal": "C", "content": "星期六 " } ], [ { "aoVal": "D", "content": "星期日 " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "$$2006$$年有$$365$$天,而$$365=7\\times 52+1$$,又已知$$2006$$年有$$53$$个星期天,只能元旦是星期天,且$$12$$月$$31$$日也是星期日,所以,$$2007$$年月的元旦是星期一. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2713
3c607ca6222142aaafcbffaf260938c3
[ "2006年第4届创新杯四年级竞赛复赛第5题" ]
1
single_choice
某数的小数点向右移一位,则小数值比原来大$$25.65$$,原小数是.
[ [ { "aoVal": "A", "content": "$$2.565$$ " } ], [ { "aoVal": "B", "content": "$$2.56$$ " } ], [ { "aoVal": "C", "content": "$$2.855$$ " } ], [ { "aoVal": "D", "content": "$$2.85$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "某数的小数点向右移动一位,相当于此数扩大了$$10$$倍,原数是$$1$$份数,现在的数就是$$10$$份数,现在的数比原数大$$9$$份数,再根据这个数就比原来大$$25.65$$, $$25.65\\div (10-1)=25.65\\div9=2.85$$. 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2345
059b7f9fbac64ea3aa75d25d85e0835f
[ "2007年六年级竞赛创新杯", "2007年第5届创新杯六年级竞赛第8题5分" ]
2
single_choice
某次数学考试共$$5$$道题,全班$$52$$人参加,共做对$$181$$题,已知每人至少做对$$1$$题,做对$$1$$道题的有$$7$$人,做对$$2$$道题的人和做对$$3$$道题的人一样多,做对$$5$$道题的有$$6$$人,那么做对$$4$$道题的人数是( ).
[ [ { "aoVal": "A", "content": "$$29$$ " } ], [ { "aoVal": "B", "content": "$$31$$ " } ], [ { "aoVal": "C", "content": "$$33$$ " } ], [ { "aoVal": "D", "content": "$$35$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->方程基础->多元一次方程组->整数系数方程组" ]
[ "解法一:做对两道、三道、四道题的人共有$$52-7-6=39$$人,他们共做对了$$181-1\\times 7-5\\times 6=144$$题.由于做对两道题和三道题的人一样多,我们将他们都看做是做对$$2.5$$道题的人,若这$$39$$人全部都做对$$2.5$$道题,共做对$$2.5\\times 39=97.5$$题,比$$144$$道题少了$$144-97.5=46.5$$道题,这时将做对四道题的同学不看作做对$$2.5$$道题的结果,于是做对四道题的学生有$$46.5\\div \\left( 4-2.5 \\right)=31$$人. 解法二:设做对四道题的人有$$x$$人,做对二道、三道的人各有$$y$$人,则 $$\\begin{cases}x+2y+7+6=52 4x+\\left( 2+3 \\right)y+7+30=181 \\end{cases}$$ 化简得到$$\\begin{cases}x+2y=39 4x+5y=144 \\end{cases}$$, 解得$$x=31$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1344
28905983bb934ad897e52d7e4a219b5d
[ "2005年第3届希望杯四年级竞赛复赛第13题6分" ]
1
single_choice
$$2005$$年$$4$$月$$10$$日是星期日,则$$2005$$年$$6$$月$$1$$日是星期~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "二 " } ], [ { "aoVal": "C", "content": "三 " } ], [ { "aoVal": "D", "content": "四 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->求某日期是周几问题" ]
[ "$$4$$月$$10$$日到$$4$$月$$30$$日经过了$$20$$天,$$5$$月有$$31$$天, 再到$$6$$月$$1$$日又经过$$1$$天; 共经过:$$20+31+1=52$$(天), $$52\\div 7=7$$(周)$$\\cdots \\cdots3$$(天); 即$$6$$月$$1$$日是星期三. 故答案为:三. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2272
6a551c45fb724bbcbcc9780f4d303b83
[ "2011年四年级竞赛创新杯", "2011年第9届创新杯四年级竞赛初赛第5题6分" ]
1
single_choice
一辆小汽车每秒行驶$$20$$米,刚驶入隧道时,发现一辆客车正在前面$$180$$米处向前行驶。如果两车速度保持不变,$$90$$秒后两车同时驶出隧道,那么客车每秒行驶米。
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->两人相遇与追及问题->相遇问题->同时出发相向而行" ]
[ "速度差:$$180\\div 90=2$$(米/秒), 客车的速度:$$20-2=18$$(米/秒)。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1884
c4f8c6f742a04757b872d54877151cc9
[ "2020年广东广州海珠区广州为明学校卓越杯六年级竞赛初赛第1题2分" ]
1
single_choice
丽人服装厂去年产值$$240$$万元,比前年增加$$\frac{1}{5}$$,丽人服装厂这两年产值共有多少万元?应列式为.
[ [ { "aoVal": "A", "content": "$$240+240\\times \\frac{1}{5}$$ " } ], [ { "aoVal": "B", "content": "$$240+240\\times \\left( 1+\\frac{1}{5} \\right)$$ " } ], [ { "aoVal": "C", "content": "$$240+240\\div \\left( 1+\\frac{1}{5} \\right)$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "丽人服装厂去年产值$$240$$万元, 比前年增加$$\\frac{1}{5}$$,则这两个年产值共有$$240\\div \\left( 1+\\frac{1}{5} \\right)+240$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1463
951cb9be42a046d597f2af252b42cf6f
[ "2020年希望杯五年级竞赛模拟第11题", "2020年新希望杯五年级竞赛第11题" ]
1
single_choice
大头儿子给小头爸爸计算每天的交通费用.大头儿子说:``您的车百公里油耗为$$8$$升,每天上下班共行驶$$30$$公里,油价按每升$$7.2$$元计算,您每天上下班需要支付的油费为元.''
[ [ { "aoVal": "A", "content": "$$27$$ " } ], [ { "aoVal": "B", "content": "$$17.28$$ " } ], [ { "aoVal": "C", "content": "$$1.92$$ " } ], [ { "aoVal": "D", "content": "$$19.2$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "因为由题干可知,车百公里油耗为$$8$$升,每天上下班共行驶$$30$$公里,则上下班共耗油$$30\\div 100\\times 8=2.4$$(升),油价按每升$$7.2$$元计算,所以每天上下班需要支付的油费为$$7.2\\times 2.4=17.28$$(元). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
865
6f4e09ecca6347a59937d0c217da77a0
[ "2013年IMAS小学高年级竞赛第一轮检测试题第4题3分" ]
2
single_choice
请问下列哪一个数可被$$6$$整除?
[ [ { "aoVal": "A", "content": "$$98$$ " } ], [ { "aoVal": "B", "content": "$$163$$ " } ], [ { "aoVal": "C", "content": "$$192$$ " } ], [ { "aoVal": "D", "content": "$$212$$ " } ], [ { "aoVal": "E", "content": "$$254$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "被$$6$$整除的数同时被$$2$$和$$3$$整除. 被$$2$$整除的数的末位是偶数,所以$$\\text{B}$$不合; 被$$3$$整除的数之数码和必须被$$3$$整除,$$9+8=17$$、$$1+9+2=12$$、$$2+1+2=5$$、$$2+5+4=11$$故只有$$\\text{C}$$选项符合要求. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3179
41cb700127e54f6b80dac5b35f56ce46
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第3题5分" ]
1
single_choice
十位数字和个位数字相加,和是$$11$$的两位数有个.
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "根据题意分析可知,$$11=2+9=3+8=4+7=5+6$$, 所以这样的两位数有:$$29$$;$$92$$;$$38$$;$$83$$;$$47$$;$$74$$;$$56$$;$$65$$一共$$8$$个. 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2690
6860a388dae34471a7114cffc3104f36
[ "2017年四川成都六年级竞赛“全能明星”选拔赛第2题2分", "2019年山东青岛市南区山东省青岛育才中学小升初第22题2分" ]
1
single_choice
当$$\frac{3}{5}:4=x:5$$时,$$x$$的值是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$1\\frac{1}{3}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{3}{4}$$ " } ], [ { "aoVal": "C", "content": "$$2\\frac{3}{4}$$ " } ], [ { "aoVal": "D", "content": "$$3\\frac{3}{4}$$ " } ] ]
[ "知识标签->学习能力->七大能力->运算求解" ]
[ "$$4x=\\frac{3}{5}\\times 5$$,则$$x=\\frac{3}{4}$$. 利用比例基本性质,内项积等于外项积解方程即可,$$x=\\frac{3}{4}$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2284
f2522cf04fa84e41bac8282e472dc63f
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第9题2分" ]
1
single_choice
北京、天津相距$$140$$千米,客车和货车同时从北京出发驶向天津,客车每小时行$$70$$千米,货车每小时行$$50$$千米,客车到达天津后停留$$15$$分钟,又以原速度返回北京.则两车首次相遇的地点距离北京千米.(结果保留整数)
[ [ { "aoVal": "A", "content": "$$120$$ " } ], [ { "aoVal": "B", "content": "$$122$$ " } ], [ { "aoVal": "C", "content": "$$123$$ " } ], [ { "aoVal": "D", "content": "$$124$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "客车从北京到天津需要$$140\\div70=2$$(时), 当客车正要返回时,货车已开出 $$2+15\\div60=2.25$$(时), 行驶了$$50\\times2.25=112.5$$(千米), 此时两车相距$$140-112.5=27.5$$(千米), 还要$$27.5 \\div(70+50)= \\frac{11}{48}$$(小时)才能相遇. 从而相遇地点与天津的距离是客车行$$\\frac{11}{48}$$小时, 所走过的路程为$$70 \\times \\frac{11}{48}\\approx 16$$(千米). 所以,相遇地点与北京的距离是 $$140-16=124$$(千米). 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1088
3837d62febcf4254b4c6f35cff425528
[ "2013年全国希望杯六年级竞赛初赛第21题" ]
1
single_choice
小红整理零钱包时发现,包中有面值为$$1$$分、$$2$$分、$$5$$分的硬币共$$25$$枚,总值为$$0.60$$元,则$$5$$分的硬币最多有枚.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设$$1$$、$$2$$、$$5$$分硬币分别有$$xyz$$枚,由题意可知$$\\left { \\begin{align}\\& x+y+z=25 \\& x+2y+5z=60 \\end{align}\\right.$$,两式相减可得$$y+4z=35$$,由此可得$$z$$最多有$$8$$枚. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2625
75863f5a92ff4ec0afa00012ce59a6ca
[ "2013年IMAS小学高年级竞赛第一轮检测试题第2题3分" ]
0
single_choice
请问下列哪一项时间最接近一天的时间?
[ [ { "aoVal": "A", "content": "$$0.9$$天 " } ], [ { "aoVal": "B", "content": "$$1.2$$天 " } ], [ { "aoVal": "C", "content": "$$23$$小时 " } ], [ { "aoVal": "D", "content": "$$26$$小时 " } ], [ { "aoVal": "E", "content": "$$1410$$分钟 " } ] ]
[ "拓展思维->拓展思维->组合模块->时间问题->时间计算" ]
[ "我们首先把所有时间都化成以分钟为单位.一天$$=1440$$分钟,$$0.9$$天$$=1296$$分钟,$$1.2$$天$$=1728$$分钟,$$23$$小时$$=1380$$分钟,$$26$$小时$$=1560$$分钟.而: $$1440-1296=144$$ $$1728-1440=288$$ $$1440-1380=60$$ $$1560-1440=120$$ $$1440-1410=30$$ 所以$$1410$$分钟最接近于一天的时间.故选$$\\text{E}$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1422
55bdd385b8474795aef19c4bafa1897b
[ "2014年全国迎春杯四年级竞赛初赛第8题" ]
2
single_choice
有一种特殊的计算器,当输入一个$$10$ $49$$的自然数后,计算器会先将这个数乘$$2$$,然后将所得结果的十位和个位顺序颠倒,再加$$2$$后显示出最后的结果.那么,下列四个选项中,可能是最后显示的结果.
[ [ { "aoVal": "A", "content": "$$44$$ " } ], [ { "aoVal": "B", "content": "$$43$$ " } ], [ { "aoVal": "C", "content": "$$42$$ " } ], [ { "aoVal": "D", "content": "$$41$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->还原问题->逆运算" ]
[ "倒推.$$44$$ 对应的是$$44-2=42$$,颠倒后是$$24$$,除以$$2$$ 为$$12$$.符合条件.其他的均不符合条件. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1293
2c45fe1695d64306a2f12a8662713fef
[ "2017年河南郑州联合杯竞赛附加赛第一场第6题2分" ]
0
single_choice
如果规定电梯运行时上升为``$$+$$'',那么电梯运行``$$-10$$米''表示(~ ).
[ [ { "aoVal": "A", "content": "电梯上升$$10$$米 " } ], [ { "aoVal": "B", "content": "电梯下降$$10$$米 " } ], [ { "aoVal": "C", "content": "电梯上升$$0$$米 " } ], [ { "aoVal": "D", "content": "电梯没有动 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "用正负数来表示具有相反意义的两种量:上升记为正,则下降记为负,所以``$$-10$$米''表示下降$$10$$米. 故选$$\\rm B$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
770
ff8080814518d5240145192b34440567
[ "2014年全国迎春杯六年级竞赛复赛第7题" ]
2
single_choice
甲乙二人进行下面的游戏.二人先约定一个整数$$N$$,然后由甲开始,轮流把$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$,$$8$$,$$9$$这九个数字之一填入下面任一方格中:$$\square$$$$\square$$$$\square$$$$\square$$$$\square$$$$\square$$,每一方格只填入一个数字,形成一个数字可以重复的六位数.若这个六位数能被$$N$$整除,乙胜;否则甲胜.当$$N$$小于$$15$$时,使得乙有必胜策略的$$N$$有(~~~~~ )个.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "若$$N$$是偶数,甲只需第一次在个位填个奇数,乙必败只需考虑$$N$$是奇数. $$N=1$$,显然乙必胜. $$N=3 9$$,乙只需配数字和$$1-8$$,$$2-7$$,$$3-6$$,$$4-5$$,$$9-9$$即可. $$N=5$$,甲在个位填不是$$5$$的数,乙必败. $$N=7 11 13$$,乙只需配成$$\\overline{abcabc}=\\overline{abc}\\times1001=\\overline{abc}\\times 7\\times 11\\times 13$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1402
4383941a7192484b93d8b7b5dd4747ac
[ "2014年迎春杯四年级竞赛复赛" ]
2
single_choice
两根同样长的绳子,第一根平均剪成$$4$$段,第二根平均剪成$$6$$段,已知第一根剪成的每段长度与第二根剪成的每段长度相差$$2$$米,那么,原来两根绳子的长度之和是( )米。
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$24$$ " } ], [ { "aoVal": "C", "content": "$$36$$ " } ], [ { "aoVal": "D", "content": "$$48$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->差倍->两量差倍->暗倍型二量差倍问题" ]
[ "解:第二根绳子的长度为: $$(2\\times 4)\\div \\left( 6-4 \\right)\\times 6$$ $$=8\\div 2\\times 6$$ $$=4\\times 6$$ $$=24$$(米) 原来两根绳子的长度之和是: $$24\\times 2=48$$(米) 答:原来两根绳子的长度之和是$$48$$米。 故选:D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
536
f9a02f36568e41d0a723e3841c4f2453
[ "2015年华杯赛六年级竞赛初赛" ]
2
single_choice
现在从甲、乙、丙、丁四个人中选出两个人参加一项活动。规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去。最后去参加活动的两个人是( )
[ [ { "aoVal": "A", "content": "甲、乙 " } ], [ { "aoVal": "B", "content": "乙、丙 " } ], [ { "aoVal": "C", "content": "甲、丙 " } ], [ { "aoVal": "D", "content": "乙、丁 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->比较型逻辑推理", "课内体系->知识模块->综合与实践" ]
[ "解:根据``如果甲去,那么乙也去''可得:甲在,乙必然也在; 又根据``如果丙不去,那么乙也不去''可得:如果乙去了,丙也一定去了; ``如果丙去;那么丁不去''可得:如果丁去;那么丙不去,同时乙也不去。则根据``甲去,那么乙也去''可得:甲也不去,这样只有丁去,这与两个人参加一项活动相矛盾。 同时满足条件只能是乙、丙参加了活动。 故选:$$B$$。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1483
48c84e7fd19e47bfb111a531a93c6903
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛决赛第9题5分" ]
1
single_choice
幼儿园老师给小朋友分糖果,如果每个小朋友分$$4$$颗糖果,则多出$$28$$颗糖果;如果有$$4$$个小朋友每人分$$6$$颗,$$6$$个小朋友每人分$$4$$颗,其余的分$$5$$颗,则正好分完.那么原来有颗糖果.
[ [ { "aoVal": "A", "content": "$$120$$ " } ], [ { "aoVal": "B", "content": "$$140$$ " } ], [ { "aoVal": "C", "content": "$$148$$ " } ], [ { "aoVal": "D", "content": "$$150$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->盈亏问题->盈亏基本类型->盈亏基本类型盈亏问题" ]
[ "本题的关键是用假设法求出每人分$$5$$颗糖果时少的糖果数,再根据(盈$$+$$亏)$$\\div $$两次分的糖果差$$=$$人数,求出人数. 假设第二次分糖果时每个小朋友都分$$5$$颗,则少$$(5-4)\\times 6-(6-5)\\times 4=2$$(颗),此题则变为每个小朋友多分$$5-4=1$$(颗)糖,则需要$$28+2=30$$(颗)糖,据此可求出小朋友人数,进而可求出糖果数. $$(5-4)\\times 6-(6-5)\\times 4$$ $$=1\\times 6-1\\times 4$$ $$=2$$(颗), $$(28+2)\\div (5-4)$$ $$=30\\div 1$$ $$=30$$(个), $$30\\times 4+28$$ $$=120+28$$ $$=148$$(颗). 答:一共有$$30$$个小朋友和$$148$$颗糖果. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
154
35051a9e6e514d83a4d55a7a77811b10
[ "2008年第6届创新杯五年级竞赛初赛B卷第8题5分" ]
2
single_choice
有$$1$$克,$$2$$克、$$4$$克、$$8$$克的砝码各一个,从这四个砝码中每次任选$$2$$个砝码使用,能称种不同的重量(砝码也可以放在天平的两边).
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "从$$1$$、$$2$$、$$4$$、$$8$$克中任取两个,其和为$$3$$、$$5$$、$$9$$、$$6$$、$$10$$、$$12$$克,从$$1$$、$$2$$、$$4$$、$$8$$克任取两个,大的减去小的,其差为$$1$$、$$3$$、$$7$$、$$2$$、$$6$$、$$4$$克,又因为和与差中的$$3$$克、$$6$$克重复,所以可称出$$6+6-2=10$$ (种)不同重量. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1456
b0b9f617eca9416d933226aa37cc0126
[ "2018年第21届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第7题5分" ]
1
single_choice
王朋的语文、数学、英语三科成绩的平均分是$$90$$分,其中语文、数学两科的平均是$$95$$分,他的英语考了分.
[ [ { "aoVal": "A", "content": "$$70$$ " } ], [ { "aoVal": "B", "content": "$$80$$ " } ], [ { "aoVal": "C", "content": "$$90$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "(语文$$+$$数学$$+$$英语)$$\\div 3=90$$(分), 语文$$+$$数学$$+$$英语$$=270$$(分), (语文$$+$$数学)$$\\div 2=95$$(分), 语文$$+$$数学$$=190$$(分), 英语:$$270-190=80$$(分), 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1887
9c533e62db1d4cbaa3ac419229258703
[ "2017年第20届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第5题3分" ]
1
single_choice
小芳、小王、小刘三个人共有画片$$90$$张,如果小王向小芳借$$10$$张后,又借给小刘$$8$$张,结果三个人的画片张数正好相等.那么下列表述正确的是.
[ [ { "aoVal": "A", "content": "小芳的画片比小王多$$12$$张 " } ], [ { "aoVal": "B", "content": "小芳的画片比小刘多$$12$$张 " } ], [ { "aoVal": "C", "content": "小芳的画片比小王少$$12$$张 " } ], [ { "aoVal": "D", "content": "小王的画片比小刘少$$6$$张 " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "因为$$90\\div 3=30$$(张),可得此时每人手里有$$30$$张画片, $$30+8-10=28$$(张),故小王有$$28$$张画片, $$30+10=40$$(张),故小芳有$$40$$张画片, $$30-8=22$$(张),故小刘有$$22$$张画片. 故$$\\text{A}$$:小芳比小王多$$40-28=12$$张画片,$$\\text{A}$$正确,$$\\text{C}$$错误; $$\\text{B}$$:小芳比小刘多$$40-22=18$$张画片,故$$\\text{B}$$错误; $$\\text{D}$$:小王的画片比小刘多,故$$\\text{D}$$错误. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1070
25a67a1716a2425289e11ba9b2a97f31
[ "2017年河南郑州联合杯小学高年级六年级竞赛初赛" ]
1
single_choice
一根铜线长$$21$$厘米,一根铝线长$$16$$厘米,把这两根金属线剪掉同样长,使剩下的铜线长度恰好是铝线长度的$$2$$倍,问各剪去多少厘米?
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "铜线比铝线长$$21-16=5\\left(\\text{cm} \\right)$$,剪掉同样长的一段后,铜线还是比铝线长$$5\\text{cm}$$,剩下的铝线长度:$$5\\div \\left( 2-1 \\right)=5\\left(\\text{cm} \\right)$$,剪去的长度:$$16-5=11\\left(\\text{cm} \\right)$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1603
88c9d0647a4648f3b3ddde57dfccc94e
[ "2020年长江杯五年级竞赛复赛B卷第6题5分" ]
2
single_choice
小明拿来一根$$1$$米长的绳子,他从绳子的一端开始每隔$$4$$厘米染一个红点,然后他又从绳子的另一端开始,每隔$$5$$厘米染一个黑点,最后,小明用剪刀沿染有点的地方剪断.问这根绳子被剪成了段.
[ [ { "aoVal": "A", "content": "$$45$$ " } ], [ { "aoVal": "B", "content": "$$40$$ " } ], [ { "aoVal": "C", "content": "$$39$$ " } ], [ { "aoVal": "D", "content": "$$41$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->直线型两端都没有->剪绳子" ]
[ "从一端开始每隔$$4$$厘米做一个记号, 有记号:$$\\frac{100}{4}-1=24$$, 从一端开始每隔$$5$$厘米做一个记号, 有记号:$$\\frac{100}{5}-1=19$$ , $$4$$和$$5$$的最小公倍数为$$20$$, 所以每隔$$20$$厘米处的记号重合,有记号:$$\\frac{100}{20}-1=4$$, 一共有记号:$$24+19-4=39$$, 有记号的地方切断,绳子共剪成$$39+1=40$$段, 答:绳子共剪成$$40$$段. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2114
e75ac34e997a45b0a822bd87bda40160
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(二)" ]
0
single_choice
一个数,它减去$$2$$,然后除以$$2$$,再加上$$2$$,最后乘$$2$$,得到的结果是$$2014$$.这个数原来是(~ ).
[ [ { "aoVal": "A", "content": "$$2011$$ " } ], [ { "aoVal": "B", "content": "$$2012$$ " } ], [ { "aoVal": "C", "content": "$$2013$$ " } ], [ { "aoVal": "D", "content": "$$2014$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->还原问题->单一变量还原问题" ]
[ "$$( 2014\\div 22\\div2 )\\times 2+2=2012$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1486
b570f15082564ca39a789cc3bdbd8d63
[ "2018年第22届广东世界少年奥林匹克数学竞赛二年级竞赛初赛第5题6分" ]
0
single_choice
$$20$$个同学排成一队做操,从左边数小文排在第$$12$$个,从右边数小文排在第个.
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "小文的左边有人:$$12-1=11$$(人), 所以从右边数小文排在:$$20-11=9$$(个). 故选择$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3070
e18c40d8b5b940098204434be7f82fe7
[ "2019年福建泉州鲤城区泉州师范附属小学三年级竞赛模拟第17题" ]
2
single_choice
一条大街上原有路灯$$201$$盏,相邻两盏路灯相距$$50$$米;现在换新路灯增加了$$50$$盏,相邻两盏路灯的距离是~\uline{~~~~~~~~~~}~米.
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$35$$ " } ], [ { "aoVal": "C", "content": "$$45$$ " } ], [ { "aoVal": "D", "content": "$$50$$ " } ], [ { "aoVal": "E", "content": "$$30$$ " } ] ]
[ "Overseas Competition->知识点->计算模块", "拓展思维->思想->对应思想" ]
[ "先利用原有的路灯盏数和间隔长度, 求出这条大街的总长度是$$\\left( 201-1 \\right)\\times 50=10000$$(米),换新路灯后,一共有路灯$$201+50=251$$盏,此时的间隔数是$$251-1=250$$,由此即可求出$$1$$个间隔的长度是$$10000\\div 250=40$$(米). $$\\left( 201-1 \\right)\\times 5\\div \\left( 201+50-1 \\right)=200\\times 50\\div 250=40$$(米). 所以相邻的两盏路灯的距离是$$40$$米. 故答案为:$$40$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
282
ff8080814502fa24014507b673810ba4
[ "2014年全国迎春杯三年级竞赛初赛第10题" ]
1
single_choice
一只大熊猫从$$A$$地往$$B$$地运送竹子,他每次可以运送$$50$$根,但是他从$$A$$地走到$$B$$地和从$$B$$地返回$$A$$地都要吃$$5$$根,$$A$$地现在有$$200$$根竹子,那么大熊猫最多可以运到$$B$$地(~~~~~~~ )根.
[ [ { "aoVal": "A", "content": "$$150$$ " } ], [ { "aoVal": "B", "content": "$$155$$ " } ], [ { "aoVal": "C", "content": "$$160$$ " } ], [ { "aoVal": "D", "content": "$$165$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "运四次,去四次回三次,吃掉了$$5\\times (4+3)=35$$根,则最多可以运到$$B$$地$$200-35=165$$根. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2878
ad605ea9b8e3432cb6e92654391027ed
[ "2016年第14届全国创新杯五年级竞赛初赛第8题" ]
3
single_choice
根据``三角形两边之和大于第三边''的知识,解答本题: 有不同长度的七条线段,其长度均为整数厘米,最短的是$$1$$厘米,最长的是$$21$$厘米,其中以任何三条线段作``边''都不能组成一个三角形,那么这七条线段中第二长的线段长厘米.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$13$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "知识标签->拓展思维->计算模块->数列与数表->数列规律" ]
[ "斐波那契数串从第三项开始,等于前两项的和,即$$1$$、$$2$$、$$3$$、$$5$$、$$8$$、$$13$$、$$21$$. 即第二长的为$$13$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
113
66dae4df3e2e41e1b3e4e42aabc3a525
[ "2004年五年级竞赛创新杯", "2004年六年级竞赛创新杯" ]
1
single_choice
在某次足球比赛中,每个球队需要打6场比赛,其得分规则是:赢一场得5分,输一场得0分,平一场得2分.某队共得14分,则该球队( )
[ [ { "aoVal": "A", "content": "至多赢一场 " } ], [ { "aoVal": "B", "content": "至少赢三场 " } ], [ { "aoVal": "C", "content": "至少平三场 " } ], [ { "aoVal": "D", "content": "赢两场 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->体育比赛->2-0 积分制" ]
[ "该球队6场比赛得分为14分,所以该队不可能一场未胜也不可能胜3场,也不可能胜1场(因为$$14-5=9$$分,剩下的比赛不可能得9分),那么该队一定是胜两场.$$14-5\\times 2=4$$分,$$4\\div 2=2$$场,那么该队还平两场,输两场,选D. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
93
111da7821b194f4a93a0f9c02b11dfe3
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(三)" ]
3
single_choice
有一天,彭老师和陈老师约好去打乒乓球,结果彭老师以$$4:0$$完虐陈老师.乒乓球比赛为$$11$$分制,即每局$$11$$分,$$7$$局$$4$$胜制,打成$$10:10$$后必须净胜而且只能净胜$$2$$分.经计算,彭老师四局的总得分为$$48$$分,陈老师总得分为$$39$$分,且每一局比赛分差不超过$$3$$分,则一共有种情况.(不考虑这四局比分之间的顺序)
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "知识标签->拓展思维->组合模块->逻辑推理->体育比赛->单循环赛" ]
[ "每周比赛要分出胜负分差必须在$$2$$分或以上,题中又给出每局比赛分差不超过$$3$$分,故每局比赛的分差只有两种可能:差$$2$$分或$$3$$分.且分差为$$3$$分的那局彭老师得分为$$11$$分,总分差为$$48-39=9$$分,故必有$$3$$场分差为$$2$$分,另一场分差为$$3$$分;即有一场的比分为$$118$$,另两场的总比分为$$37:31$$,有以下四种情况:①$$11:9$$,$$11:9$$,$$15:13$$②$$11:9$$,$$12:10$$,$$14:12$$③$$11:9$$,$$13:11$$,$$13:11$$④$$12:10$$,$$12:10$$,$$13:11$$.故一共有$$4$$种情况. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
719
c316ae1840f34fb0961a94c9270ebbd0
[ "2011年北京五年级竞赛" ]
2
single_choice
一个长方体的长、宽、高都是整数厘米,它的体积是$$1998$$立方厘米,那么它的长、宽、高的和的最小可能值厘米?
[ [ { "aoVal": "A", "content": "$$66$$ " } ], [ { "aoVal": "B", "content": "$$48$$ " } ], [ { "aoVal": "C", "content": "$$58$$ " } ], [ { "aoVal": "D", "content": "$$52$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->分解质因数->分解质因数(式)" ]
[ "我们知道任意个已确定个数的数的乘积一定时,它们相互越接近,和越小.如$$3$$个数的积为$$18$$,则三个数为$$2$$、$$3$$、$$3$$时和最小,为$$8.1998=2\\times 3\\times 3\\times 3\\times 37$$,$$37$$是质数,不能再分解,所以$$2\\times 3\\times 3\\times 3$$对应的两个数应越接近越好.有$$2\\times 3\\times 3\\times 3=6\\times 9$$时,即$$1998=6\\times 9\\times 37$$时,这三个自然数最接近.它们的和为$$6+9+37=52($$厘米). " ]
D