dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
285
ff8080814502fa2401450bdf764d178f
[ "2014年全国迎春杯五年级竞赛初赛第7题" ]
2
single_choice
在下列算式的空格中填入互不相同的数字:$$\square \times \left( \square +\square \square \right)\times \left( \square +\square +\square +\square \square \right)=2014$$.其中五个一位数的和最大是(~~~~~~~ ).
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$24$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$35$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$2014=2\\times 19\\times 53$$,五个一位数之和最大,则两位数应最小 $$2\\times (a+\\overline{1b})\\times(c+d+e+\\overline{3f})=2014$$,$$\\Rightarrow \\left { \\begin{align}\\& a+b=9=9+0 \\& c+d+e+f=23=8+6+5+4 \\end{align} \\right.$$,$$\\Rightarrow{{(2+a+c+d+e)}_{\\max }}=2+9+8+6+5=30$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
773
9587efdace244e8e950ee5d56bbf9701
[ "2018年美国数学大联盟杯六年级竞赛初赛第35题5分" ]
1
single_choice
平方为$$6-$$位数,满足条件的最小的$$3-$$位数的位数之和是多少? What is the sum of the digits of the least $$3-$$digit integer whose square is a $$6-$$digit integer?
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->组合模块最值问题->枚举型最值问题", "Overseas Competition->知识点->数论模块->完全平方数" ]
[ "平方为六位数整数的最小三位数整数的位数之和是多少? 可以先进行尝试,确定这个三位数的大小范围,$$100$$的平方为$$10000$$,$$200$$的平方为$$40000$$,$$300$$的平方为$$90000$$,$$400$$的平方为$$160000$$, 所以这个数位于$$300$$与$$400$$之间,经试验,$$316$$的平方为$$99856$$,$$317$$的平方为$$100489$$,所以这个三位数最小是$$317$$,$$3+1+7=11$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1735
8995adcb75244f4fb75809b207c4693f
[ "2020年新希望杯二年级竞赛初赛(个人战)第6题", "2020年新希望杯二年级竞赛决赛(8月)第6题" ]
1
single_choice
李叔叔排队买票,他前面有$$11$$人,后面有$$12$$人.一共有人排队买票.
[ [ { "aoVal": "A", "content": "$$22$$ " } ], [ { "aoVal": "B", "content": "$$23$$ " } ], [ { "aoVal": "C", "content": "$$24$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "加上李叔叔自己,一共:$$11+1+12=24$$(人), 故选择:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
8
0162d08da2b8459b9fc4313d182ed5ab
[ "2015年全国中环杯二年级竞赛决赛第7题" ]
2
single_choice
一个盒子里有一些大小相同的球,其中白的有$$8$$个,黑的有$$9$$个。不许看球,每次拿一个,至少拿~\uline{~~~~~~~~~~}~次才能保证拿到黑球。
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$17$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "要保证拿出的球三种颜色都有,考虑倒霉的情况.最倒霉的是拿出的全部是黑色的球,那么这是$$9$$次,接着拿出的全部是白色的球,这是$$8$$次,最后随便拿一个肯定是黄色的,所以至少拿$$9+8+1=18$$(次)才能保证三种颜色的球都有. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1790
a8f0b97719bc45d1abbfc1b938b797fc
[ "2014年走美杯二年级竞赛初赛" ]
2
single_choice
一根$$30$$厘米长的木条,要锯成$$5$$厘米的小段,需要锯( )次。
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->封闭型->封闭型植树问题->封闭植树类型问题(段数小于等于10)" ]
[ "解:$$30\\div 5-1$$ $$=6-1$$ $$=5$$(次) 答:需要锯$$5$$次。 故答案为:$$5$$。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1223
2725ffa7611b473dada43b0588fd73e9
[ "2013年第11届创新杯四年级竞赛初赛第2题6分" ]
1
single_choice
一对双胞胎和一组三胞胎$$5$$个人年龄的总和是$$84$$.如果把双胞胎的年龄同三胞胎的年龄互换,那么这$$5$$人年龄的总和将是$$76$$.那么双胞胎的年龄是.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "根据题意,设双胞胎的年龄是$$x$$岁,三胞胎的年龄是$$y$$岁,由一对双胞胎和一组三胞胎$$5$$个人年龄的总和是$$84$$可得$$2x+3y=84$$;把双胞胎的年龄同三胞胎的年龄互换,那么这$$5$$人年龄的总和是$$76$$岁,可得$$2y+3x=76$$,联立方程组然后再进一步解答; 设双胞胎的年龄是$$x$$岁,三胞胎的年龄是$$y$$岁; 由题意可得:$$\\begin{cases} 2x+3y=84 2y+3x=76 \\end{cases}$$, 解得:$$x=12$$,$$y=20$$. 答:双胞胎的年龄是$$12$$岁. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2085
cb9c1805cc424af0890d10c5022d97c7
[ "2014年全国迎春杯六年级竞赛初赛第2题" ]
1
single_choice
一个半径为$$20$$厘米的蛋糕可以让$$4$$个人吃饱,如果半径增加了$$150 \%$$,同样高的蛋糕可以让个人吃饱.
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ] ]
[ "拓展思维->拓展思维->几何模块->曲线型->圆与扇形->圆的基本公式" ]
[ "由条件,面积变为原来的$${{\\left( 1+150 \\% \\right)}^{2}}$$,所以可供$$4\\times {{\\left( 1+150 \\% \\right)}^{2}}=25$$(个)人吃饱. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1314
30eec3435e814efaa30c119e0b1d2e26
[ "2017年河南郑州豫才杯小学高年级五年级竞赛初赛第15题" ]
2
single_choice
游览景区期间,爸爸将车放在停车场,收费标准为:不超过$$1$$小时收费$$3$$元,每多停半小时加收$$1.5$$元.爸爸最终一共交了$$13.5$$元的停车费,他们的车在停车场最多停了(~ )小时.
[ [ { "aoVal": "A", "content": "$$4$$小时 ~~~ " } ], [ { "aoVal": "B", "content": "$$4.5$$小时~~ " } ], [ { "aoVal": "C", "content": "$$5$$小时 " } ], [ { "aoVal": "D", "content": "$$8$$小时 " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->分段计价问题" ]
[ "设最多在停车场停了$$x$$小时,$$3+\\left( x-1 \\right)\\times 2\\times 1.5=13.5$$,解得$$x=4.5$$,所以他们的车在停车场最多停$$4.5$$小时. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1935
c9ec58ba993743429a22f7375e3b616f
[ "2022年第9届广东深圳鹏程杯四年级竞赛初赛第21题5分" ]
1
single_choice
2022年$$2$$月$$22$$日被广大网民称为``世界最爱日'',因为这个日期里面包含六个$$2.$$与它包含相同多$$2$$的日期是$$2022$$年$$12$$月$$22$$日,比它包含更多$$2$$的日期则是$$200$$年后的$$2222$$年$$2$$月$$22$$日. 今年$$2$$月$$22$$日又恰好是星期二,而$$12$$月$$22$$日是星期.
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "二 " } ], [ { "aoVal": "C", "content": "三 " } ], [ { "aoVal": "D", "content": "四 " } ], [ { "aoVal": "E", "content": "五 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->求某日期是周几问题" ]
[ "无 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2577
2c9ca1cb197a495a9844ff17a1579eef
[ "2018年湖北武汉新希望杯六年级竞赛训练题(一)第4题", "2017年新希望杯六年级竞赛训练题(一)第4题" ]
1
single_choice
(1)将四个分数按从小到大的顺序排列,正确的是.
[ [ { "aoVal": "A", "content": "$$\\frac{5}{14}\\textless{}\\frac{10}{27}\\textless{}\\frac{12}{31}\\textless{}\\frac{20}{53}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{5}{14}\\textless{}\\frac{10}{27}\\textless{}\\frac{20}{53}\\textless{}\\frac{12}{31}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{10}{27}\\textless{}\\frac{5}{14}\\textless{}\\frac{12}{31}\\textless{}\\frac{20}{53}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{10}{27}\\textless{}\\frac{5}{14}\\textless{}\\frac{20}{53}\\textless{}\\frac{12}{31}$$ " } ] ]
[ "知识标签->学习能力->七大能力->运算求解" ]
[ "通分子$$\\frac{5}{14}=\\frac{60}{168}$$, $$\\frac{10}{27}=\\frac{60}{162}$$, $$\\frac{12}{31}=\\frac{60}{155}$$, $$\\frac{20}{53}=\\frac{60}{159}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3104
d4993b875a2d4da4a444abcdc686529c
[ "2004年五年级竞赛创新杯", "2004年第2届创新杯五年级竞赛初赛第2题" ]
1
single_choice
一个数把小数点向左移动一位后,就比原数少2.844,这个数原来是( ).
[ [ { "aoVal": "A", "content": "0.316 " } ], [ { "aoVal": "B", "content": "3.16 " } ], [ { "aoVal": "C", "content": "31.6 " } ], [ { "aoVal": "D", "content": "316 " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->小数基础->小数点的移动规律" ]
[ "设新数为$$x$$,则原数为$$10x$$,$$10x-x=2.844$$,$$x=0.316$$.原数$$=0.316\\times 10=3.16$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2233
3b8e0c5fb6ad4b5bb00af4d1c63c5b7e
[ "2008年第8届希望杯六年级竞赛初赛第11题6分", "2019年四川绵阳涪城区绵阳东辰国际学校小升初(十三)第21题2分", "小学高年级五年级下学期其它时钟问题" ]
1
single_choice
在$$16$$点$$16$$分这个时刻,钟表盘面上时针和分针的夹角是~\uline{~~~~~~~~~~}~度.
[ [ { "aoVal": "A", "content": "$$24$$ " } ], [ { "aoVal": "B", "content": "$$28$$ " } ], [ { "aoVal": "C", "content": "$$32$$ " } ], [ { "aoVal": "D", "content": "$$36$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->拓展思维->行程模块->时钟问题->时钟上的追及问题->已知时间求角度" ]
[ "$$16$$点的时候夹角为$$120$$度,每分钟分针转$$6$$度,时针转$$0.5$$度,$$16$$:$$16$$的时候夹角为$$120-6\\times 16+0.5\\times 16=32$$度. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
732
51acb6c975324d839f1e3e594e3a0563
[ "2014年全国迎春杯五年级竞赛初赛第8题", "2014年全国迎春杯六年级竞赛初赛第9题" ]
2
single_choice
已知$$4$$个质数的积是它们和的$$11$$倍,则它们的和为.
[ [ { "aoVal": "A", "content": "$$46$$ " } ], [ { "aoVal": "B", "content": "$$47$$ " } ], [ { "aoVal": "C", "content": "$$48$$ " } ], [ { "aoVal": "D", "content": "以上都不对 " } ] ]
[ "知识标签->数学思想->逐步调整思想" ]
[ "由已知条件,$$4$$个质数中一定有$$11$$,那么则满足$$a\\times b\\times c=a+b+c+11$$,其中$$a$$、$$b$$、$$c$$都是质数.若$$a$$、$$b$$、$$c$$都是奇数,那么等式左边是奇数,右边为偶数,矛盾.若$$a$$、$$b$$、$$c$$中有$$1 $$个偶数,那么一定是$$2$$.即$$a\\times b\\times 2=a+b+2+11$$,此时,根据奇偶性,$$a$$、$$b$$中也必有一个偶数为$$2$$,解得$$a$$、$$b$$、$$c$$、$$d$$为$$2$$、$$2$$、$$5$$、$$11$$和为$$20$$.选项中$$ABC$$均不符合条件,故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
883
bb4f86143025459d9aef59a7ceb26bad
[ "2019年第7届湖北长江杯五年级竞赛复赛B卷第10题3分" ]
1
single_choice
$$120$$有~\uline{~~~~~~~~~~}~个因数.
[ [ { "aoVal": "A", "content": "$$16$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ] ]
[ "拓展思维->能力->运算求解", "Overseas Competition->知识点->数论模块->因数与倍数->因数个数定理" ]
[ "因为$$120$$的因数有:$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$8$$、$$10$$、$$12$$、$$15$$、$$20$$、$$24$$、$$30$$、$$40$$、$$60$$、$$120$$,所以一共有$$16$$个因数. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1363
62f74eaee41f43fbb25d72070b916c56
[ "2016年第14届全国创新杯五年级竞赛初赛第2题" ]
1
single_choice
$$2015$$减去它的$$\frac{1}{2}$$,再减去余下的$$\frac{1}{3}$$,再减去余下的$$\frac{1}{4}$$,$$\cdot \cdot \cdot \cdot \cdot \cdot $$,以此类推,直到减去余下的$$\frac{1}{2015}$$,最后的结果是(~ ).
[ [ { "aoVal": "A", "content": "$$2015$$ " } ], [ { "aoVal": "B", "content": "$$1042$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$1$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->量率对应已知单位1" ]
[ "$$2015\\times \\frac{1}{2}\\times \\frac{2}{3}\\times \\frac{3}{4}\\times \\cdot \\cdot \\cdot \\times \\frac{2014}{2015}=1$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1004
45cf29af50dc4d13b48d9c7a4cf9e3c5
[ "2014年迎春杯三年级竞赛" ]
2
single_choice
在一道没有余数的除法中,被除数、除数与商三个数的和是$$103$$,商是$$3$$。被除数是( )。
[ [ { "aoVal": "A", "content": "$$25$$ " } ], [ { "aoVal": "B", "content": "$$50$$ " } ], [ { "aoVal": "C", "content": "$$75$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->和倍问题->二量和倍问题->两量和倍" ]
[ "因为除数$$=$$被除数$\\div3$ 所以被除数是: $100\\div (3+1)\\times3$ $=100\\div4\\times3$ $=75$ 故选:$$\\text{C}$$. ", "<p>除数:$$(103-3)\\div (3+1)=25$$</p>\n<p>被除数:$$25\\times3=75$$</p>" ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
284
beddf9a04dc443d38eec0d91fa135a9d
[ "2020年希望杯二年级竞赛模拟第17题" ]
1
single_choice
小皮、小舒和小贝是同班同学,他们中一个是班长,一个是学习委员,一个是体育委员. (2020年希望杯二年级) 现在知道: ①小皮的年龄比体育委员的年龄大; ②小舒比学习委员的年龄大; ③小贝和学习委员年龄不同. 那么小皮、小舒和小贝分别担任.
[ [ { "aoVal": "A", "content": "班长,学习委员,体育委员 " } ], [ { "aoVal": "B", "content": "学习委员,体育委员,班长 " } ], [ { "aoVal": "C", "content": "学习委员,班长,体育委员 " } ], [ { "aoVal": "D", "content": "班长,体育委员,学习委员 " } ], [ { "aoVal": "E", "content": "体育委员,班长,学习委员 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "由②小舒比学习委员的年龄大;和③小贝和学习委员年龄不同.可知小舒和小贝都不是学习委员,所以学习委员是小皮; 已知小舒比小皮大,并且小皮的年龄比体育委员的年龄大,所以小舒不是体育委员,所以小舒是班长;那么小贝就是体育委员. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2693
5f5b21bf34c447dc9ea620f733ad3197
[ "2008年第6届创新杯四年级竞赛初赛B卷第1题5分", "2008年四年级竞赛创新杯" ]
1
single_choice
计算$$10001\times 3333+10001\times 6666=$$( ).
[ [ { "aoVal": "A", "content": "999999 " } ], [ { "aoVal": "B", "content": "9999999 " } ], [ { "aoVal": "C", "content": "99999999 " } ], [ { "aoVal": "D", "content": "999999999 " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数提取公因数->整数乘法巧算之提取公因数(普通型)" ]
[ "原式$$=10001\\times \\left( 3333+6666 \\right)=10001\\times 9999=99999999$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2506
272b4950e854488c9118c3ceacbad15d
[ "2017年第15届全国希望杯六年级竞赛" ]
2
single_choice
若$$\text{a}$$, $$\text{b}$$是非$$0$$的自然数,并且$$\text{a}$$\textless$$\text{b}$$,则$$\frac{\text{a+b}}{\text{b}}$$的值是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "是$$0$$和$$1$$之间的数 " } ], [ { "aoVal": "B", "content": "是$$1$$和$$2$$之间的数 " } ], [ { "aoVal": "C", "content": "可以是$$2$$ " } ], [ { "aoVal": "D", "content": "可以大于$$2$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "由$$\\frac{a+b}{b}=\\frac{a}{b}+1$$及$$\\text{a}$$\\textless$$\\text{b}$$,知$$1\\textless\\frac{a+b}{b}\\textless2$$,故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
294
ff8080814518d5240145201ad74d0a76
[ "2014年全国迎春杯三年级竞赛复赛第6题" ]
1
single_choice
甲、乙、丙、丁和戊参加$$100$$米比赛,比赛结束后丁说:``我比乙跑得快.''丙说:``戊在我前面冲过终点线.''甲说:``我的名次排在丁的前面,丙的后面.''请根据他们的话排出名次:(~~~~~ ).
[ [ { "aoVal": "A", "content": "戊>丙>丁>甲>乙 " } ], [ { "aoVal": "B", "content": "甲>乙>丙>丁>戊 " } ], [ { "aoVal": "C", "content": "乙>丁>甲>丙>戊 " } ], [ { "aoVal": "D", "content": "戊>丙>甲>丁>乙 " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "根据丁说的可得``丁>乙'',根据丙说的可得``戊>丙'',根据甲说的可得``丙>甲>丁'',综合可得``戊>丙>甲>丁>乙''. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1438
b0af3f23879a45c9884e47c1990e9ef4
[ "2013年IMAS小学中年级竞赛第一轮检测试题第12题4分" ]
3
single_choice
四位小朋友共有课外读物$$240$$本,甲给了乙$$3$$本,乙给了丙$$4$$本,丙给了丁$$5$$本,丁给了甲$$6$$本,这时他们$$4$$人课外读物的本数都相同.请问他们之中原来课外读物最少的人有多少本?
[ [ { "aoVal": "A", "content": "$$57$$ " } ], [ { "aoVal": "B", "content": "$$58$$ " } ], [ { "aoVal": "C", "content": "$$59$$ " } ], [ { "aoVal": "D", "content": "$$60$$ " } ], [ { "aoVal": "E", "content": "$$61$$ " } ] ]
[ "拓展思维->思想->逆向思想" ]
[ "可知这四位小朋友共有$$240$$本课外读物,所以当他们的书都相等时,每人各有$$240\\div 4=60$$(本). 而题意可知此时甲的书多了$$6-3=3$$(本)、乙的书少了$$4-3=1$$(本)、丙的书少了$$5-4=1$$(本)、丁的书少了$$6-5=1$$(本),因此甲原有$$57$$本书,而乙、丙、丁各原有$$61$$本书.故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
277
6433a0f865ae48c6919b806a75fb560d
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第4题3分" ]
1
single_choice
(1)一把钥匙只能开一把锁,现有$$4$$把钥匙和$$4$$把锁搞乱了,最多试开次就能确定哪把钥匙开哪把锁.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "第一把钥匙最坏的情况要试$$3$$次,把这把钥匙和这把锁拿出;剩下的$$3$$把锁和$$3$$把钥匙,最坏的情况要试$$2$$次,把这把钥匙和这把锁拿出;剩下的$$2$$把锁和$$2$$把钥匙,最坏的情况要试$$1$$次,把这把钥匙和这把锁拿出;剩下的$$1$$把锁和$$1$$把钥匙就不用试了;$$3+2+1=6$$(次). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
241
a788a820e8df4dd4924a4c18915c8f0a
[ "2017年第17届湖北武汉世奥赛五年级竞赛决赛第13题" ]
2
single_choice
保尔特、罗特、卢特三个人进行赛车比赛,最初的排名:第一是卢特,第二是罗特,第三是保尔特;在比赛过程中,保尔特和卢特三次相互超越,罗特和卢特五次相互超越,保尔特和罗特四次相互超越,经过这样的激战终于到达了终点线.三个人最终的排名,从高到低是(~ ~ ).
[ [ { "aoVal": "A", "content": "卢特一罗特一保尔特 " } ], [ { "aoVal": "B", "content": "罗特一保尔特一卢特 " } ], [ { "aoVal": "C", "content": "保尔特一罗特一卢特 " } ], [ { "aoVal": "D", "content": "罗特一卢特一保尔特 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "相互超越的次数若是偶数,那么两人的顺序不发生变化;两人互相超越的次数若奇数,则两人先后顺序互换. 保尔特和卢特$$3$$次相互超越,那么顺序互换:保尔特$$\\textgreater$$卢特 罗特和卢特的$$5$$次相互超越,先后顺序互换:罗特$$\\textgreater$$卢特 保尔特和罗特四次相互超越,先后顺序不发生变化:罗特$$\\textgreater$$保尔特 所以最后的排名是:罗特$$\\textgreater$$保尔特$$\\textgreater$$卢特 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2714
4504a4fcd58a4c0e9317c22193dd954f
[ "2020年第1届广东深圳超常思维竞赛六年级竞赛复赛第7题5分" ]
1
single_choice
有一列数,第一个数是$$105$$,第二个数是$$85$$.从第三个数开始,每个数都是它前面两个数的平均数,那么这列数中第$$2022$$个数的整数部分是.
[ [ { "aoVal": "A", "content": "$$90$$ " } ], [ { "aoVal": "B", "content": "$$91$$ " } ], [ { "aoVal": "C", "content": "$$92$$ " } ], [ { "aoVal": "D", "content": "$$93$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->公式类->直接求平均数" ]
[ "因为$$\\frac{105+85}{2}=95$$,$$\\frac{85+95}{2}=90$$,$$\\frac{95+90}{2}=92.5$$, $$\\frac{90+92.5}{2}=91.25$$,$$\\frac{92.5+91.25}{2}=91.875$$,$$\\cdots $$, 因为$$91.25$$与$$91.875$$的整数部分相同,而两个数的平均数一定介于两个数之间, 所以,后面各数的整数部分均为$$91$$. 当然第$$2022$$个数的整数部分也为$$91$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2189
d54b16aadebf4e3d8a89d591b07632e6
[ "2012年IMAS小学高年级竞赛第一轮检测试题第7题3分" ]
2
single_choice
甲、乙、丙、丁各有一只手表. ($$1$$)甲的手表快了$$10$$分钟,但他以为慢了$$5$$分钟; ($$2$$)乙的手表慢了$$5$$分钟,但他以为快了$$10$$分钟; ($$3$$)丙的手表快了$$5$$分钟,但他以为快了$$3$$分钟; ($$4$$)丁的手表慢了$$5$$分钟,但他以为慢了$$10$$分钟. 用他们的手表,每个人都认为自己恰好能准时到达学校,请问谁会迟到?
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "丁 " } ], [ { "aoVal": "E", "content": "都不会 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "甲早到$$5-(-10)=15$$分钟,丙早到$$5-3=2$$分钟,丁早到$$(-5)-(-10)=5$$分钟,乙迟到$$10-(-5)=15$$分钟. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2307
a604d3f3cd5d4f0495e96cc2e5cf0dc5
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛初赛第7题5分" ]
1
single_choice
(过程完整)某人骑自行车过一座桥,上桥速度为每小时$$12$$千米,下桥速度为每小时$$24$$千米.而且上桥与下桥所经过的路程相等,中间也没有停顿.问这个人骑车过这座桥,往返的平均速度是每小时千米.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->平均速度->公式法" ]
[ "设上桥的路程为$$24$$千米,则下桥的路程也为$$24$$千米. 所以上桥的时间为:$$24\\div12=2$$(小时), 下桥的时间为:$$24\\div24=1$$(小时), 所以全程的平均速度为:$$(24+24)\\div (1+2)=16$$(千米/小时). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2450
aff9e96cff944af9b578fc58e779c978
[ "2018年IMAS小学中年级竞赛(第一轮)第2题3分" ]
1
single_choice
(2018 IMAS,Question\#2) 若$$\left( \Delta \times 2-1 \right)\times 2=2018$$,请问$$\Delta $$代表的数是多少?
[ [ { "aoVal": "A", "content": "$$502$$ " } ], [ { "aoVal": "B", "content": "$$503$$ " } ], [ { "aoVal": "C", "content": "$$504$$ " } ], [ { "aoVal": "D", "content": "$$505$$ " } ], [ { "aoVal": "E", "content": "$$506$$ " } ] ]
[ "拓展思维->思想->对应思想", "Overseas Competition->知识点->计算模块->方程基础->一元一次方程" ]
[ "$$\\left( \\Delta \\times 2-1 \\right)\\times 2=2018$$, $$\\Delta \\times 2-1=2018\\div 2=1009$$, $$\\Delta \\times 2=1009+1=1010$$, $$\\Delta =1010\\div 2=505$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
742
3bcbfde0246548698cf21bad88cda332
[ "2017年第15届湖北武汉创新杯五年级竞赛初赛第4题" ]
1
single_choice
四位数$$\overline{A37B}$$能被$$88$$整除,则$$A$$表示的数是.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "由于$$88=8\\times 11$$,而且$$8\\textbar\\overline{A37B}$$,所以$$\\overline{37B}$$是$$8$$的倍数,则$$B=6$$;$$11\\textbar\\overline{A376}$$,所以$$(A+7)-(3+6)=0$$,则$$A=2$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
275
3c3e4efd259840b685a96fd1005117db
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第6题5分" ]
1
single_choice
$$4$$辆汽车进行了$$4$$场比赛,每场比赛结果如下: ($$1$$)$$1$$号汽车比$$2$$号汽车跑得快; ($$2$$)$$2$$号汽车比$$3$$号汽车跑得快; ($$3$$)$$3$$号汽车比$$4$$号汽车跑得慢; ($$4$$)$$4$$号汽车比$$1$$号汽车跑得快. 汽车跑得最快.
[ [ { "aoVal": "A", "content": "$$1$$号 " } ], [ { "aoVal": "B", "content": "$$2$$号 " } ], [ { "aoVal": "C", "content": "$$3$$号 " } ], [ { "aoVal": "D", "content": "$$4$$号 " } ] ]
[ "拓展思维->能力->推理推导->言语逻辑推理" ]
[ "根据($$1$$)可知,$$1$$号比$$2$$号快.根据($$2$$)可知,$$2$$号比$$3$$号快.根据($$3$$)可知,$$4$$号比$$3$$号快.根据($$4$$)可知,$$4$$号比$$1$$号快.所以$$4$$号快于$$1$$号,$$1$$号快于$$2$$号,$$2$$号快于$$3$$号.故最快的是$$4$$号.故$$\\text{ABC}$$错误,$$\\text{D}$$正确. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2330
1be35facd5284184a64ce9669061cec4
[ "2017年陕西西安碑林区西北工业大学附属中学小升初(二)第3题3分", "2018年湖南长沙雨花区中雅培粹中学小升初第3题3分", "2017年陕西西安碑林区西北工业大学附属中学小升初(十)第3题3分", "2017年陕西西安小升初某工大附中", "2016年创新杯六年级竞赛训练题(四)第4题", "2018年陕西西安小升初分类卷15第5题" ]
2
single_choice
盒子中原来有$$7$$个小球,魔术师从中任取几个小球,把每一个小球都变成$$7$$个小球放回盒中;他又从中任取一些小球,把每一个小球又都变成$$7$$个小球放回盒中;如此进行,到某一时刻魔术师停止取球变魔术,此时盒中球的总数可能是(~ ).
[ [ { "aoVal": "A", "content": "$$2018$$~~~~~~ " } ], [ { "aoVal": "B", "content": "$$2017$$~~~~~~ " } ], [ { "aoVal": "C", "content": "$$2016$$~~~~~~ " } ], [ { "aoVal": "D", "content": "$$2015$$~~~~~~ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "每取出$$1$$个,盒中就增加$$6$$个,有$$7+6n=2017$$,∴$$n=335$$. 而$$\\rm A$$中,$$7+6n=2018$$,$$\\rm C$$中$$7+6n=2016$$,$$\\text{D}$$中$$7+6n=2015$$,$$n$$都不为整数. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
387
bb2036e3a63848399f619d7d06cce45d
[ "2015年第13届全国创新杯五年级竞赛初赛第2题" ]
1
single_choice
已知$$3$$个质数的和是$$20$$,那么这$$3$$个质数乘积的最大值是(~ ~ ~).
[ [ { "aoVal": "A", "content": "$$130$$ " } ], [ { "aoVal": "B", "content": "$$154$$ " } ], [ { "aoVal": "C", "content": "$$182$$ " } ], [ { "aoVal": "D", "content": "$$312$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->组合模块最值问题->和一定型最值问题->多数之积的最值->拆分数的数目确定" ]
[ "其中一个一定为$$2$$,有$$2+7+11=20$$,$$2\\times 7\\times 11=154$$最大. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
866
e4665cafd72b4a48a93e992594db9b17
[ "2018年第6届湖北长江杯五年级竞赛初赛B卷第3题3分" ]
1
single_choice
下面四个数中可以写成$$3$$个连续两位数的乘积的是.
[ [ { "aoVal": "A", "content": "$$1321$$ " } ], [ { "aoVal": "B", "content": "$$12144$$ " } ], [ { "aoVal": "C", "content": "$$5812$$ " } ], [ { "aoVal": "D", "content": "$$44568$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->分解质因数->分解质因数的应用->已知乘积求因数" ]
[ "此题考查了乘积的个位数,明确三个连续两位数中必有一个偶数,一个数能被$$3$$整除,即这三个连续数的积是偶数,而且能被$$3$$整除,是解答此题的关键. 解:三个连续两位数中必有一个偶数,一个数能被$$3$$整除; 三个连续数的积是偶数,而且能被$$3$$整除,故排除($$\\text{A}$$)、($$\\text{C}$$);$$12144=2\\times 2\\times 2\\times 2\\times 3\\times 11\\times 23=22\\times 23\\times 24$$, $$44568=2\\times 2\\times 2\\times 3\\times 3\\times 619$$, 由此可知:$$12144$$正好是三个连续两位数的积,其余两个数不是三个连续两位数的积,故$$\\text{B}$$正确. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
331
89451a7024d94b24a0db0b1836609ce7
[ "2012年第10届创新杯四年级竞赛初赛第5题6分" ]
1
single_choice
显示在电子钟上的时间是$$5:55$$,下一次电子钟上显示的时间又是全部相同的数字,还要过分钟.
[ [ { "aoVal": "A", "content": "$$71$$ " } ], [ { "aoVal": "B", "content": "$$255$$ " } ], [ { "aoVal": "C", "content": "$$316$$ " } ], [ { "aoVal": "D", "content": "$$377$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->时间问题->时间计算" ]
[ "因为分钟的十位最大为$$5$$,所以下一次数字相同的时刻为$$11:11$$,$$11:11$$距$$5:55$$有$$5$$小时$$16$$分,即$$316$$分钟.所以选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2765
ac9e34e32d514a2f99676b7a434a5264
[ "2018年湖北武汉新希望杯六年级竞赛训练题(四)第6题" ]
3
single_choice
从$$0$$、$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$7$$、$$8$$、$$9$$这十个数字中选出九个数字,组成一个两位数、一个三位数和一个四位数,使这三个数的和等于$$2017$$,那么未被选中的数字是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ], [ { "aoVal": "E", "content": "$$8$$ " } ], [ { "aoVal": "F", "content": "$$9$$ " } ] ]
[ "知识标签->拓展思维->计算模块->整数->整数乘除->整数除法运算->带余除法" ]
[ "$$2017$$除以$$9$$余$$1$$,$$0+1+2+3+\\cdots +9=45$$,$$45$$是$$9$$的倍数,$$9-1=8$$,所以未被选中的数字是$$8$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
326
4ee313d027824491bd514fb7139f642d
[ "小学高年级六年级其它2015年数学思维能力等级测试初试第5题4分", "2015年第13届全国创新杯六年级竞赛第5题" ]
1
single_choice
某校买来$$36$$套单坐课桌椅,不料发票给墨水弄污了,单价只剩下两个数字:$$\square 23.\square \square $$元,总价只剩下四个数字:$$4\square 44.2\square $$元,那么总价应是(~ ~ ~ )元.
[ [ { "aoVal": "A", "content": "$$4944.24$$ " } ], [ { "aoVal": "B", "content": "$$4444.20$$ " } ], [ { "aoVal": "C", "content": "$$4544.28$$ " } ], [ { "aoVal": "D", "content": "$$4644.20$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$4\\square 44.2\\square =\\square 23.\\square \\square \\times 36$$,只有$$4444.20$$满足. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1086
afe51d8c846847c5b0b5f6f2901883b8
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第2题5分" ]
1
single_choice
小明与小红去摘桃,小明摘下$$13$$个桃,当小明将自己的桃分$$2$$个给小红时,两人的桃就一样多,小红摘了个桃.
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "小红接受小明的$$2$$个桃后有:$$13-2=11$$(个), 所以之前小红有桃:$$11-2=9$$(个). 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1852
adf90c1c6436468cafcaf17c58ae9ab7
[ "2013年IMAS小学中年级竞赛第一轮检测试题第16题4分" ]
1
single_choice
有三个旅行者结伴穿越沙漠,途中小明的水喝完了,小东还剩$$5$$瓶矿泉水,小杰剩$$4$$瓶矿泉水,三个人商量将水平分,由小明向小东、小杰总共支付矿泉水费用$$36$$元,请问小明向小东支付了矿泉水费用多少元?
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ], [ { "aoVal": "E", "content": "$$24$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "可知每人可分得$$(5+4)\\div 3=3$$瓶水,因此小明需为每瓶水付出$$36\\div 3=12$$元,且可判断出小东给小明$$5-3=2$$瓶矿泉水、小杰给小明$$4-3=1$$瓶矿泉水,故小明应该向小东支付矿泉水费用$$2\\times 12=24$$元. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
575
4144f286bf6043dd89b6ec0469c6b251
[ "2020年希望杯五年级竞赛模拟第29题", "2020年新希望杯五年级竞赛第29题" ]
0
single_choice
梅森质数是形如「$${{2}^{p}}-1$$」的质数,这里$${{2}^{p}}$$表示$$p$$个$$2$$相乘的积,而且$$p$$也是一个质数。目前用超级计算机已找到了$$51$$个梅森质数,其中第二大的梅森质数是$${{2}^{77232917}}-1$$,那麼以下各数中,哪個數能被$$15$$整除?
[ [ { "aoVal": "A", "content": "$${{2}^{77232917}}-2$$ " } ], [ { "aoVal": "B", "content": "$${{2}^{77232917}}+1$$ " } ], [ { "aoVal": "C", "content": "$${{2}^{77232917}}+2$$ " } ], [ { "aoVal": "D", "content": "$${{2}^{77232917}}+3$$ " } ] ]
[ "拓展思维->能力->运算求解", "海外竞赛体系->Knowledge Point->Calculation Modules" ]
[ "$${{2}^{n}}\\div 3$$的余数周期为$$2$$,$$1$$, $$77232917\\div 2\\cdots \\cdots 1$$,$${{2}^{77231917}}\\div 3\\cdots \\cdots 2$$, $${{2}^{n}}\\div 5$$的余数周期为$$2$$,$$4$$,$$3$$,$$1$$. $$77232917\\div 4\\cdots \\cdots 1$$,$${{2}^{77232917}}\\div 5\\cdots \\cdots 2$$, $$3\\times 5+2=17$$,$${{2}^{77232917}}\\equiv 17\\equiv 2\\left( \\bmod 15 \\right)$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2644
a2d1a591c57b49c5b04273af70cdc0d4
[ "2018~2019学年浙江杭州西湖区杭州市行知小学五年级上学期期中期中竞赛第13题1分" ]
1
single_choice
下列算式中,结果小于$$1$$的算式是.
[ [ { "aoVal": "A", "content": "$$0.99\\div 0.1$$ " } ], [ { "aoVal": "B", "content": "$$1\\div 0.99$$ " } ], [ { "aoVal": "C", "content": "$$0.99\\div 0.99$$ " } ], [ { "aoVal": "D", "content": "$$0.99\\times 0.99$$ " } ] ]
[ "知识标签->课内知识点->数与运算->除法" ]
[ "$$0.99\\times 0.99=0.9801$$,结果小于$$1$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1135
3d16e81a5b234934ba3ccfeeac8b5932
[ "2014年迎春杯三年级竞赛初赛" ]
2
single_choice
$$12$$枚硬币的总值是$$9$$角,其中只有$$5$$分和$$1$$角两种,那么每种硬币各( )枚。
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题" ]
[ "解:$$5$$分的数量: $$(12\\times 1-9)\\div \\left( 1-0.5 \\right)$$ $$=3\\div 0.5$$ $$=6$$(枚); $$1$$角的硬币数量为:$$12-6=6$$(枚)。 答:每种硬币各$$6$$枚。 故选:C。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2692
379269f608ca4aedb7cca5cf05dc6b9a
[ "2017年第1届重庆华杯赛竞赛" ]
2
single_choice
计算:$$1007\times \dfrac{1\dfrac{3}{4}\div \dfrac{3}{4}+3\div 2\dfrac{1}{4}+\dfrac{1}{3}}{\left( 1+2+3+4+5+6 \right)\times 6-73}\div 19$$
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->分数->繁分数->繁分数计算" ]
[ "$$\\begin{matrix}=1007\\div 19\\times \\dfrac{1\\dfrac{3}{4}\\div \\dfrac{3}{4}+3\\div 2\\dfrac{1}{4}+\\dfrac{1}{3}}{\\left( 1+2+3+4+5+6 \\right)\\times 6-73} =53\\times \\dfrac{\\dfrac{7}{4}\\times \\dfrac{4}{3}+3\\times \\dfrac{4}{9}+\\dfrac{1}{3}}{6\\times 21-73} =53\\times \\dfrac{\\dfrac{7}{3}+\\dfrac{4}{3}+\\dfrac{1}{3}}{126-73} =53\\times \\dfrac{4}{53} =4 \\end{matrix}$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2763
ba5bed0c677c4ab0af50d0725d0d7bcc
[ "2018年第6届湖北长江杯五年级竞赛初赛A卷第1题3分" ]
1
single_choice
用四舍五入法求$$9.9999$$的近似值,精确到百分位时,结果为.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$10.0$$ " } ], [ { "aoVal": "C", "content": "$$10.00$$ " } ], [ { "aoVal": "D", "content": "$$10.000$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "因为$$9.9999$$的千分位是$$9$$,根据四舍五入原则,$$9$$需要进位,所以精确到百分位时,结果为$$10.00$$,故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
194
deb031b3a5604895ab6cca363b2393cb
[ "2013年全国学而思杯三年级竞赛第6题" ]
2
single_choice
小何、小琳和小俊参加了一次数独比赛,赛后,他们对比赛结果进行了预测. 小何说:``我是第$$1$$,小琳是第$$2$$,小俊是第$$3$$.'' 小琳说:``我是第$$1$$,小何是第$$2$$,小俊是第$$3$$.'' 小俊说:``我是第$$1$$,小琳是第$$2$$,小何是第$$3$$.'' 如果他们$$3$$人中,有$$1$$人$$3$$句话都预测正确,其余两人都只预测正确了$$1$$句话,那么,$$3$$人的名次按小何、小琳、小俊的顺序组成的$$3$$位数是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "1,2,3 " } ], [ { "aoVal": "B", "content": "1,3,2 " } ], [ { "aoVal": "C", "content": "2,1,3 " } ], [ { "aoVal": "D", "content": "2,3,1 " } ], [ { "aoVal": "E", "content": "3,1,2 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾", "海外竞赛体系->Knowledge Point->Calculation Modules" ]
[ "方法一:由于$$3$$人中有且仅有$$1$$人全预测正确,故可枚举全正确的人的情况: 若小何全正确,则小琳只有第$$3$$句正确,小俊只有第$$2$$句正确,符合要求; 若小琳全正确,则小俊全错,不符合要求; 若小俊全正确,则小琳全错,不符合要求; 方法二:注意到小琳和小俊的预测全都不同,故知全正确的人不可能在这两人之中(否则另一个人就全错,不符合要求) 综上,小何全正确,答案为$$123$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2886
96bbdd44310f482887cf8ea3be01b82f
[ "2004年第2届创新杯五年级竞赛复赛第7题", "2004年五年级竞赛创新杯", "2005年第3届创新杯五年级竞赛初赛第5题" ]
2
single_choice
某月中有三个星期一的日期都是偶数,则该月的$$18$$日一定是( )。
[ [ { "aoVal": "A", "content": "星期一 " } ], [ { "aoVal": "B", "content": "星期三 " } ], [ { "aoVal": "C", "content": "星期五 " } ], [ { "aoVal": "D", "content": "星期日 " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数表规律->常见数表规律" ]
[ "因为此月有三个星期一为偶数,那么该月必有两个星期一为奇数,所以此月有五个星期一,那么第一个星期一只能为该月的$$2$$日(否则这个月没有五个星期一),故$$18$$日为星期三,故选B。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
396
8a3b41329e694f11bd9bd42c59e6592b
[ "2017年全国华杯赛小学中年级竞赛初赛模拟第5题", "其它改编题" ]
2
single_choice
从$$1$$至$$11$$这$$11$$个自然数中至少选出~\uline{~~~~~~~~~~}~个不同的数,才能保证其中一定有两个数的和为$$12$$?
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想", "课内体系->能力->逻辑分析" ]
[ "把和为$$12$$的两个数分成一组,这样就把这$$11$$个数分成$$6$$组:$$(1,11)$$,$$\\left( 2,10 \\right)$$,$$\\left( 3,9 \\right)$$,$$(4,8)$$,$$(5,7)$$,$$(6)$$.要保证一定有两个数的和为$$12$$,就要保证至少有两个数属于同一组.由抽屉原理可知,从这$$12$$个数中选出$$7$$个数,就一定有两个数属于同一组.此时这两个数的和就是$$12$$.如果从$$6$$组中各取一个数,则取出的这$$6$$个数中,没有两个数的和是$$12$$,因此本题的答案就是至少选出$$7$$个不同的数. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1919
c534fbb083874f5e94873400faadaf99
[ "2014年全国华杯赛小学中年级竞赛决赛第8题" ]
3
single_choice
王老师共买了$$53$$支铅笔,分给了$$A$$,$$B$$,$$C$$,$$D$$四个同学,分到最多的与最少的铅笔数相差不到$$5$$支,如果$$B$$把分到的铅笔全都给$$A$$,那么$$A$$的铅笔数是$$C$$的$$2$$倍;如果$$B$$把分到的铅笔全都给$$C$$,那么$$C$$的铅笔数是$$D$$的$$2$$倍,由此可知,$$B$$分到~\uline{~~~~~~~~~~}~支铅笔.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "设$$A$$,$$B$$,$$C$$,$$D$$分到的铅笔数分别是$$A$$,$$B$$,$$C$$,$$D$$,由$$B+C=2D$$,知$$C$$、$$D$$、$$B$$依次成等差数列,设公差为$$K$$;由$$A+B=2C$$,知$$A$$、$$C$$、$$B$$依次成等差数列,则公差为$$2K$$;由$$4$$人铅笔数相差不会超过$$4$$,所以$$K=0$$或$$1$$;若$$K=0$$,则$$4\\times B=53$$,但$$53$$不是$$4$$的整数倍; 若$$K=1$$,$$A\\textgreater C\\textgreater D\\textgreater B$$,则$$4\\times C-1=53$$,但$$54$$不是$$4$$的整数倍. 综上所述,$$B$$分到$$15$$支铅笔. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3079
bd7b8396c5c14e348a2b6530148fb6c6
[ "2013年第11届全国创新杯小学高年级五年级竞赛第2题5分" ]
1
single_choice
有一列数,第$$1$$个数是$$22$$,第$$2$$个数是$$12$$,从第$$3$$个开始,每个数是它前面两个数的平均数,这列数的第$$10$$个数的整数部分(~ ).
[ [ { "aoVal": "A", "content": "$$13$$ " } ], [ { "aoVal": "B", "content": "$$14$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "第$$3$$个数为$$17$$,第$$4$$个数为$$14.5$$,第$$5$$个数为$$15.75$$,第$$6$$个数为$$15.125\\cdot \\cdot \\cdot \\cdot \\cdot \\cdot $$整数部分一直都是$$15$$,所以第$$10$$个数的整数部分为$$15$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3330
f1be9adc45a443599a736ef0a818c717
[ "2020年第24届YMO四年级竞赛决赛第3题3分", "2019年第24届YMO四年级竞赛决赛第3题3分", "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第3题3分", "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第3题3分", "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第3题3分" ]
1
single_choice
从$$1$$至$$2020$$这$$2020$$个自然数中,每次取两个不同的数相加,和大于$$2020$$的取法共有.
[ [ { "aoVal": "A", "content": "$$1010000$$ " } ], [ { "aoVal": "B", "content": "$$1020000$$ " } ], [ { "aoVal": "C", "content": "$$1020100$$ " } ], [ { "aoVal": "D", "content": "$$1020200$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "若取了$$2020$$,则另一个可取$$1\\sim 2019$$,共$$2019$$种, 若取了$$2019$$,则另一个可取$$2\\sim 2018$$,共$$2017$$种, 若取了$$2018$$,则另一个可取$$3\\sim 2017$$,共$$2015$$种, $$\\vdots $$ 若取了$$1011$$,则另一个可取$$1010$$,共$$1$$种, 共有$$1+3+5+7+\\cdots +2019={{1010}^{2}}=1020100$$种. 选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2622
6330c0fc4e924c049ee18c1b889cecb9
[ "五年级下学期其它第16讲浓度问题", "2011年北京五年级竞赛" ]
2
single_choice
一容器内装有$$10$$升纯酒精,倒出$$2.5$$升后,用水加满,再倒出$$5$$升,再用水加满,这时容器内的溶液的浓度是多少?
[ [ { "aoVal": "A", "content": "37.5\\% " } ], [ { "aoVal": "B", "content": "40\\% " } ], [ { "aoVal": "C", "content": "62.5\\% " } ], [ { "aoVal": "D", "content": "50\\% " } ] ]
[ "拓展思维->拓展思维->计算模块->公式类运算->连续自然数非从1的平方需要补全再计算", "课内体系->能力->逻辑分析" ]
[ "第二次倒出的纯酒精为$$5\\times \\frac{10-2.5}{10}=3.75$$ 所以两次共倒出纯酒精为$$2.5+3.75=6.25$$(升), 此时容器内的溶液浓度为$$\\left( 10-6.25 \\right)\\div 10\\times 100 \\%=37.5 \\%$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2409
0fc24db754a1473eb650ce557623dc7a
[ "2018年福建福州河仁杯五年级竞赛第2题4分" ]
1
single_choice
(单选题)如果$$2\oplus 3=2+22+222$$,$$3\oplus 2=3+33$$,那么$$4\oplus 5$$等于.
[ [ { "aoVal": "A", "content": "$$5555$$ " } ], [ { "aoVal": "B", "content": "$$6170$$ " } ], [ { "aoVal": "C", "content": "$$44444$$ " } ], [ { "aoVal": "D", "content": "$$49380$$ " } ] ]
[ "拓展思维->能力->运算求解->程序性计算" ]
[ "根据题意,已知$$2\\oplus 3=2+22+222$$,$$3\\oplus 2=3+33$$,即用$$\\oplus $$前面的数加上十位个位都是这个数的两位数加上千位十位个位都是这个数的三位数,$$\\oplus $$后面是几就加几个数;据此求出$$4\\oplus 5$$. $$4\\oplus 5=4+44+444+4444+44444=49380$$. 故答案为:$$49380$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1450
75cd72f3a4944a46974c9f7785833ee4
[ "2012年IMAS小学高年级竞赛第一轮检测试题第17题4分" ]
2
single_choice
姐姐今年$$12$$岁,妹妹今年$$8$$岁,弟弟今年$$3$$岁,他们的生日恰好是同一天.当三人的年龄和为$$50$$岁时,妹妹为多少岁?
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ], [ { "aoVal": "D", "content": "$$17$$ " } ], [ { "aoVal": "E", "content": "$$18$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "今年他们三人的年龄之和为$$23$$岁,当他们的年龄之和为$$50$$岁时,已过了$$(50-23)\\div 3=9$$(年),所以这时妹妹为$$8+9=17$$(岁). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1204
6b7d26127e7e48d687ca1771204c5f54
[ "2020年第24届YMO三年级竞赛决赛第5题3分", "2019年第24届YMO三年级竞赛决赛第5题3分" ]
1
single_choice
有一个正方形的操场,在它的外面一圈插上小红旗,四个角上都插一面小红旗,每边都插$$16$$面,一共插了面小红旗.
[ [ { "aoVal": "A", "content": "$$56$$ " } ], [ { "aoVal": "B", "content": "$$58$$ " } ], [ { "aoVal": "C", "content": "$$60$$ " } ], [ { "aoVal": "D", "content": "$$62$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "根据题意分析可知,四个角都插上一面小红旗,每边都插$$16$$面, 所以除了端点,每一边有小红旗:$$16-2=14$$(面), 因为是正方形,每边都有$$14$$面,再加上四个端点,那么一共插了:$$14\\times4+4=60$$(面)红旗, 故答案为:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
944
c664095a04dd437ca5c1ce67d4506b99
[ "2013年华杯赛六年级竞赛初赛" ]
2
single_choice
一个四位数,各位数字互不相同,所有数字之和等于$$6$$,并且这个数是$$11$$的倍数,则满足这种要求的四位数共有( )个。
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->位值原理与进制->位值原理运用->位值原理的综合应用" ]
[ "解:由题意,组成四位数的四个数字分别为$$0$$、$$1$$、$$2$$、$$3$$,并且这个数是$$11$$的倍数,则奇数位上的数字和等于偶数位上的数字和,等于$$3$$。符合条件的四位数有$$3102$$、$$3201$$、$$1320$$、$$1023$$、$$2310$$、$$2013$$,共$$6$$个。 故选:A。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1441
3f849783c7be4a07b0663d5a531635b6
[ "2020年春蕾杯六年级竞赛第9题2分", "2021年春蕾杯六年级竞赛第4题2分" ]
1
single_choice
一杯$$100$$克盐水,盐和水的比是$$1:4$$,商家为了降低成本,往里面加了水,现在盐和盐水的比为$$1:10$$.加了克的水.
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$25$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ], [ { "aoVal": "D", "content": "$$90$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "$$100$$克盐水,盐比水为$$1:4$$,则盐的含量为:$$100\\times \\frac{1}{5} =20$$ (克). 加水后,盐的含量不变,而盐比盐水为$$1:10$$,则盐水的总质量为$$20\\times 10=200$$(克),增加的水为:$$200-100=100$$(克). " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1103
0c5d3e6d7c454f129b24251586ffa23d
[ "2015年湖北武汉世奥赛五年级竞赛模拟训练题(四)第5题" ]
2
single_choice
某年的二月份有$$4$$个星期一和$$5$$个星期二,则$$2$$月$$15$$号是星期.
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "二 " } ], [ { "aoVal": "C", "content": "三 " } ], [ { "aoVal": "D", "content": "四 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "因为这年的二月份有$$5$$个星期二,说明这是一闰年,且$$2$$月$$1$$号是星期二,$$15\\div 7=2$$(周)$$\\ldots \\ldots 1$$(天),所以$$2$$月$$15$$号也是星期二. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1225
5917ed654f034251818421fa0f1ea64d
[ "2014年迎春杯三年级竞赛初赛" ]
2
single_choice
同学们一起去划船,但公园船不够多,如果每船坐$$4$$人,会多出$$10$$人;如果每船坐$$5$$人,还会多出$$1$$人,共有( )人去划船。
[ [ { "aoVal": "A", "content": "$$36$$ " } ], [ { "aoVal": "B", "content": "$$46$$ " } ], [ { "aoVal": "C", "content": "$$51$$ " } ], [ { "aoVal": "D", "content": "$$52$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->盈亏问题->盈亏基本类型->盈盈问题" ]
[ "解:$$\\left( 10-1 \\right)\\div \\left( 5-4 \\right)$$ $$=9\\div 1$$ $$=9$$(条) $$4\\times 9+10$$ $$=36+10$$ $$=46$$(人) 答:共有$$46$$人去划船。 故选:B。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1816
7870de5c94144334bb19d26fc6f6408c
[ "2020年长江杯五年级竞赛复赛B卷第5题5分" ]
2
single_choice
有一篮苹果,第一天吃了总数的一半又半个,第二天吃了余下的一半又半个,第三天吃了第二天余下的一半又半个,这时篮子里只剩下一个苹果了.原来篮子里的苹果有个.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$21$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ], [ { "aoVal": "D", "content": "$$16.5$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "根据最后篮内的苹果个数是$$1$$,那第二天吃完后余下的苹果的个数是$$2\\times (1+0.5)$$,第一天吃完后余下的苹果的个数是$$2\\times [2\\times (1+0.5)+0.5]$$,同样道理可以求出原来苹果的个数, 第二天吃完后余下的苹果的个数是:$$2\\times (1+0.5)=3$$(个), 第一天吃完后余下的苹果的个数是:$$2\\times (3+0.5)=7$$(个), 原有苹果的个数是:$$2\\times (7+0.5)=2\\times 7.5=15$$(个). 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
626
7de53ed0f9864ebe819a873efb8bd5fc
[ "2017年江苏南京小升初三十六计之26第3题", "2011年北京五年级竞赛" ]
4
single_choice
有一类各位数字各不相同的五位数$$M$$,它的千位数字比左右两个数字大,十位数字也比左右两位数字大.另有一类各位数字各不相同的五位数$$W$$,它的千位数字比左右两个数字小,十位数字也比左右两位数字小.请问符合要求的数$$M$$与$$W$$,哪一类的个数多:~\uline{~~~~~~~~~~}~,多~\uline{~~~~~~~~~~}~个
[ [ { "aoVal": "A", "content": "M;630 " } ], [ { "aoVal": "B", "content": "M;126 " } ], [ { "aoVal": "C", "content": "W;630 " } ], [ { "aoVal": "D", "content": "W;126 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$M$$与$$W$$都是五位数,都有千位和十位与其它数位的大小关系,所以两类数有一定的对应关系.比如有一个符合要求的五位数$$M=\\overline{ABCDE}$$($$A$$不为$$0)$$,那么就有一个与之相反并对应的五位数$$\\overline{(9-A)(9-B)(9-C)(9-D)(9-E)}$$必属于$$4$$类,比如$$13254$$为$$M$$类,则与之对应的$$86754$$为$$W$$类. 所以对于$$M$$类的每一个数,$$n-1$$类都有一个数与之对应.但是两类数的个数不是一样多,因为$$M$$类中$$0$$不能做首位,而$$W$$类中$$9$$可以做首位.所以$$W$$类的数比$$M$$类的数要多,多的就是就是首位为$$\\underbrace{{{a}_{n-1}}+{{a}_{n}}=3\\times 3\\times \\ldots \\times3}_{(n-1)3}={{3}^{n-1}}$$的符合要求的数. 计算首位为$${{a}_{1}}=0$$的$$W$$类的数的个数,首先要确定另外四个数,因为要求各不相同,从除$$9$$外的其它$$9$$个数字中选出$$4$$个,有$$C_{9}^{4}=126$$种选法. 对于每一种选法选出来的$$4$$个数,假设其大小关系为$$5$$,由于其中最小的数只能在千位和十位上,最大的数只能在百位和个位上,所以符合要求的数有$$60$$类:①千位、十位排$${{A}_{1}}$$、$${{A}_{2}}$$,有两种方法,百位、十位排$${{A}_{3}}$$、$${{A}_{4}}$$,也有两种方法,故此时共有$$3$$种;②千位、十位排$$0$$、$${{A}_{3}}$$,只能是千位$${{A}_{3}}$$,百位$${{A}_{4}}$$,十位$$3$$,个位$$6$$,只有$$3$$种方法. 根据乘法原理,首位为$$9$$的$$W$$类的数有$$126\\times \\left( 4+1 \\right)=630$$个. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3021
e5456531473c462c8368276ee8ba86a2
[ "2018年IMAS小学高年级竞赛(第二轮)第5题4分" ]
1
single_choice
已知$$a$$、$$b$$、$$c$$、$$d$$是不为$$0$$且互不相同的数码﹐如果 $$\overline{ab}+ \overline{cd}= \overline{dc}+ \overline{ba}$$ ﹐则称这个等式为回文式﹐而能写成回文式的两个数则称为一对回文数﹐例如∶$$54+12=21+45=66$$﹐一对回文数的和称为回文和.请问最小的回文和是什么?
[ [ { "aoVal": "A", "content": "$$22$$ " } ], [ { "aoVal": "B", "content": "$$33$$ " } ], [ { "aoVal": "C", "content": "$$44$$ " } ], [ { "aoVal": "D", "content": "$$55$$ " } ], [ { "aoVal": "E", "content": "$$99$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "由$$\\overline{ab}+\\overline{cd}=\\overline{dc}+\\overline{ba}$$知$$10(a+c)+(b+d)=10(b+d)+(a+c)$$, 故$$a+c=b+d$$. 由于能用两种方式表示成两个不同正整数之和的最小数为$$5=1+4=2+3$$﹐ 故回文和的最小值为$$55$$﹐其中一个例子为$$12+43=34+21=55$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1380
35ee4e061d1d4688bf1e6f6efd4a4dd9
[ "2020年亚洲国际数学奥林匹克公开赛(AIMO)四年级竞赛决赛第29题8分" ]
2
single_choice
$$4$$ years ago, the sum of the ages of Amy and Bella is $$13$$ years old. The age of Bella after $$17$$ years is $$21$$ years older than the age of Chris $$19$$ years before. The age of Chris now is $$5$$ times the age of Amy. How old is Bella now? $$4$$年前,小艾和小贝的年龄加起来是$$13$$岁.小贝$$17$$年后的年龄比小克$$19$$年前的年龄大$$21$$岁.小克现在的年龄是小艾的$$5$$倍.小贝现在~\uline{~~~~~~~~~~}~岁.
[ [ { "aoVal": "A", "content": "$$13$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ], [ { "aoVal": "E", "content": "$$14$$ " } ] ]
[ "拓展思维->思想->对应思想", "Overseas Competition->知识点->应用题模块->年龄问题->年龄问题之差倍型" ]
[ "小艾和小贝现在的年龄加起来是$$13+4\\times 2=21$$(岁), 小贝现在的年龄比小克小$$17+19-21=15$$(岁), 所以小克和小艾现在的年龄加起来是$$21+15=36$$(岁), 小艾现在$$36\\div \\left( 5+1 \\right)=6$$(岁),小贝现在$$21-6=15$$(岁). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2094
dde1e86a4979445582e940394e5aa3ee
[ "2014年全国迎春杯三年级竞赛初赛第13题", "2018年四川成都锦江区四川师范大学附属第一实验中学小升初(四)第5题3分" ]
1
single_choice
同学们一起去划船,但公园船不够多,如果每船坐$$4$$人,会多出$$10$$人;如果每船坐$$5$$人,还会多出$$1$$人,共有人去划船.
[ [ { "aoVal": "A", "content": "$$36$$ " } ], [ { "aoVal": "B", "content": "$$46$$ " } ], [ { "aoVal": "C", "content": "$$51$$ " } ], [ { "aoVal": "D", "content": "$$52$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->盈亏问题->盈亏基本类型->盈亏基本类型盈亏问题" ]
[ "盈盈类问题:共有$$(10-1)\\div (5-4)=9$$(只)船,共有$$4\\times 9+10=46$$(人). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3072
e61efffae310499f955b976a41e61bed
[ "2006年四年级竞赛创新杯" ]
1
single_choice
一个数的小数点向右移动一位,比原数大59.94,这个数是( )
[ [ { "aoVal": "A", "content": "6.66 " } ], [ { "aoVal": "B", "content": "11.66 " } ], [ { "aoVal": "C", "content": "66.6 " } ], [ { "aoVal": "D", "content": "116.6 " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->差倍->两量差倍->暗倍型二量差倍问题" ]
[ "小数点向右移动1位,则新数比原数扩大10倍,即增加9倍,所以原数为$$59.94\\div \\left( 10-1 \\right)=6.66$$,选A. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
352
898de766850d4c81a7a5520b08e2b319
[ "2015年全国中环杯二年级竞赛决赛第7题" ]
2
single_choice
一个盒子里有一些大小相同的球,其中白的有$$8$$个,黑的有$$9$$个。不许看球,每次拿一个不放回,至少拿~\uline{~~~~~~~~~~}~次才能保证拿到黑球。
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$17$$ " } ] ]
[ "拓展思维->能力->公式记忆->符号化数学原理" ]
[ "要保证拿到黑球,考虑倒霉的情况.最倒霉的是拿出的全部是白色的球,那么这是$$8$$次,接着只剩黑球时,下一次一定能拿出黑球,所以至少拿$$8+1=9$$(次)才能保证拿到黑球. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
42
0ab3832a26a24e43b92b6f8e9d94a2bb
[ "2017年北京学而思杯四年级竞赛年度教学质量测评第20题3分" ]
2
single_choice
有一条长度为$$8$$的绳子,将它对折$$3$$次,用剪刀从正中间剪开,得到一些短绳子.那么长度为$$1$$的绳子有(~ )段.
[ [ { "aoVal": "A", "content": "$$5$$~~~~~ " } ], [ { "aoVal": "B", "content": "$$6$$~~~~~ " } ], [ { "aoVal": "C", "content": "$$7$$~~~~~ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->归纳递推" ]
[ "略 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2100
d4f635d4d0de45f091ba7eac5ecb8d58
[ "2015年湖北武汉世奥赛六年级竞赛模拟训练题(一)第2题" ]
2
single_choice
商店以每副$$30$$元的价格购进一批乒乓球拍,又以每副$$40$$元的价格售出,当剩下$$80$$副时,除已收回购进这批乒乓球拍所用的钱之外,还赚了$$100$$元.这批乒乓球拍共有副.
[ [ { "aoVal": "A", "content": "$$320$$ " } ], [ { "aoVal": "B", "content": "$$330$$ " } ], [ { "aoVal": "C", "content": "$$300$$ " } ], [ { "aoVal": "D", "content": "$$350$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->盈亏问题->盈亏基本类型->盈亏基本类型盈亏问题" ]
[ "假设全部卖出,总盈利为$$40\\times 80+100=3300$$(元),又每副盈利$$40-30=10$$(元),因此这批兵乓球拍共有$$3300\\div 10=330$$(副). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2895
6f5abb86d44c410a8b341de1abfea71a
[ "2016年创新杯五年级竞赛训练题(二)第1题" ]
2
single_choice
循环小数$$0.\dot{1}99251\dot{7}$$与$$0.\dot{3}456\dot{7}$$.这两个循环小数在小数点后第(~ )位,首次同时出现在该位中的数字都是$$7$$.
[ [ { "aoVal": "A", "content": "$$25$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$35$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->循环小数->循环小数的周期问题" ]
[ "$$0.\\dot{1}99251\\dot{7}$$的小数部分$$7$$出现在小数点后的第$$7$$位、第$$14$$位、第$$21$$位$$\\cdots $$ $$0.\\dot{3}456\\dot{7}$$的小数部分$$7$$出现在小数点后的第$$5$$位、第$$10$$位、第$$15$$位$$\\cdots $$ 由于$$\\left[ 5,7 \\right]=35$$,故两个循环小数在小数点后第$$35$$位,首次同时出现在该位中的数字都是$$7$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2612
deba86d3d0584d7e9361c3610e342a5c
[ "2011年全国世奥赛五年级竞赛第8题" ]
1
single_choice
在循环小数$$9.617628\dot{1}$$的某一位上再添一个循环点,使所产生的循环小数尽可能大,则得到的最大的新循环小数是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$9.61762{8}\\dot{1}$$ " } ], [ { "aoVal": "B", "content": "$$9.617\\dot62{8}\\dot{1}$$ " } ], [ { "aoVal": "C", "content": "$$9.6176\\dot2{8}\\dot{1}$$ " } ], [ { "aoVal": "D", "content": "$$9.61762\\dot{8}\\dot{1}$$ " } ] ]
[ "知识标签->拓展思维->计算模块->小数->循环小数->循环小数的概念" ]
[ "无论在何处添循环节,前八位不变,为$$9.6176281$$ 从下一位开始最大即可,因此在$$8$$上方添循环点. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
480
cec8977b09ea4551bc1007bc6c1411d1
[ "2011年第7届全国新希望杯五年级竞赛A卷第4题" ]
1
single_choice
杨老师、龙老师、郭老师各带$$1$$名学生参加希望之星数学夏令营,活动期间,六人进行了乒乓球双打友谊赛,规定师生不能搭档. 第一局:杨老师和小刚对龙老师和小王;第二局:龙老师带小雨对杨老师和郭老师的学生.那么郭老师的学生是(~~~ ).
[ [ { "aoVal": "A", "content": "小刚 " } ], [ { "aoVal": "B", "content": "小王~ " } ], [ { "aoVal": "C", "content": "小雨 " } ], [ { "aoVal": "D", "content": "无法确定 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->神推理" ]
[ "龙老师与小王和小丽都搭档过,所以龙老师的学生是小刚.从第二局比赛可以看出郭老师的学生不是小丽,所以郭老师的学生是小王. ~ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
356
7322c463fce047889e25a618f14216f6
[ "2014年华杯赛六年级竞赛初赛" ]
2
single_choice
在下列四个算式中:$$\overline{AB}\div \overline{CD}=2$$,$$E\times F=0$$,$$G-H=1$$,$$I+J=4$$,$$A\sim J$$代表$$0\sim 9$$中的不同数字,那么两位数$$\overline{AB}$$不可能是( )
[ [ { "aoVal": "A", "content": "$$54$$ " } ], [ { "aoVal": "B", "content": "$$58$$ " } ], [ { "aoVal": "C", "content": "$$92$$ " } ], [ { "aoVal": "D", "content": "$$96$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->数字谜" ]
[ "解:由条件可知:$$E$$、$$F$$中至少有一个为$$0$$,假设$$E$$为$$0$$,另一个可以是任何数。$$I$$和$$J$$有一个是$$3$$,有一个是$$1$$,那么$$0\\sim 9$$中的数字还剩下$$2$$、$$4$$、$$5$$、$$6$$、$$7$$、$$8$$、$$9$$。 因为$$G-H=1$$, $$G$$、$$H$$是$$9$$,$$8$$时,则$$54\\div 27=2$$,此时$$F=6$$; $$G$$、$$H$$是$$8$$,$$7$$时,则$$92\\div 46=2$$,此时$$F=5$$; $$G$$、$$H$$是$$7$$,$$6$$时,则$$58\\div 29=2$$,此时$$F=4$$; $$G$$、$$H$$是$$6$$,$$5$$时,此时不满足条件; $$G$$、$$H$$是$$5$$,$$4$$时,此时不满足条件。 所以两位数$$\\overline{AB}$$可能是$$54$$、$$58$$、$$92$$,不可能是$$96$$。 故选:D " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2486
7e007883bd5741da9519731eed95d847
[ "2012年IMAS小学中年级竞赛第一轮检测试题第12题4分" ]
1
single_choice
请问算式$$20\times 30\times 40\times 50$$的乘积末尾有多少个连续的零?
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ], [ { "aoVal": "E", "content": "$$6$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数乘除->整数乘法运算->表外乘法计算" ]
[ "解法一:$$20\\times 30\\times 40\\times 50=1200000$$.乘积末尾共$$5$$个零. 解法二:$$20$$、$$30$$、$$40$$、$$50$$末尾各有一个零,而$$2$$乘$$5$$又会产生一个零,故末尾共有$$5$$个零. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
983
008e465193634d95b732a805020dda3a
[ "2007年四年级竞赛创新杯", "2007年第5届创新杯四年级竞赛第5题5分" ]
1
single_choice
四年级(1)班50名同学帮助老师把20捆教科书搬到200米外的图书馆,两人抬一捆,大家轮流休息,平均每人抬( )米.
[ [ { "aoVal": "A", "content": "80 " } ], [ { "aoVal": "B", "content": "160 " } ], [ { "aoVal": "C", "content": "180 " } ], [ { "aoVal": "D", "content": "200 " } ] ]
[ "拓展思维->拓展思维->应用题模块->归一归总问题->归总问题" ]
[ "$$200\\times 20\\div 25\\text{=}160$$米 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2321
dd4032d908dc482cb0f84cf90879a7aa
[ "2011年六年级竞赛创新杯" ]
0
single_choice
钟表上$$12$$点$$15$$分,时针与分针夹角为( )
[ [ { "aoVal": "A", "content": "$${{90}^{{}^{}\\circ }}$$ " } ], [ { "aoVal": "B", "content": "$${{82.5}^{{}^{}\\circ }}$$ " } ], [ { "aoVal": "C", "content": "$${{67.5}^{{}^{}\\circ }}$$ " } ], [ { "aoVal": "D", "content": "$${{60}^{{}^{}\\circ }}$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->时钟问题->时钟上的追及问题->已知时间求角度" ]
[ "$$12$$点时,夹角为$${{0}^{{}^{}\\circ }}$$;$$15$$分钟后,分针往前走了$${{90}^{{}^{}\\circ }}$$,时针走了$${{7.5}^{{}^{}\\circ }}$$,此时夹角为$${{82.5}^{{}^{}\\circ }}$$。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3131
fa1b19e129cf475c86e750f68fd57454
[ "2018年福建福州河仁杯五年级竞赛第2题4分" ]
1
single_choice
(单选题)如果$$2\oplus 3=2+22+222$$,$$3\oplus 2=3+33$$,那么$$4\oplus 5$$等于.改编单选题
[ [ { "aoVal": "A", "content": "$$5555$$ " } ], [ { "aoVal": "B", "content": "$$6170$$ " } ], [ { "aoVal": "C", "content": "$$44444$$ " } ], [ { "aoVal": "D", "content": "$$49380$$ " } ] ]
[ "知识标签->数学思想->对应思想" ]
[ "根据题意,已知$$2\\oplus 3=2+22+222$$,$$3\\oplus 2=3+33$$,即用$$\\oplus $$前面的数加上十位个位都是这个数的两位数加上千位十位个位都是这个数的三位数,$$\\oplus $$后面是几就加几个数;据此求出$$4\\oplus 5$$. $$4\\oplus 5=4+44+444+4444+44444=49380$$. 故答案为:$$49380$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
633
41ee5493dcf24aa88c8e0ebc4b126da4
[ "2018年第6届湖北长江杯六年级竞赛初赛B卷第3题3分" ]
1
single_choice
某创客小组突发奇想,以每$$12$$摄氏度为$$1$$个温度单位,零下$$24$$摄氏度记作$$0$$,那么$$96$$摄氏度应记为.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$14$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "这是新定义的问题,主要是要读懂题意, 对于这道题,以每$$12$$摄氏度为$$1$$个温度单位,零下$$24$$摄氏度记作$$0$$, 那么$$96$$摄氏度到零下$$24$$摄氏度一共有: $$96-\\left( -24 \\right)=120$$(摄氏度), $$120\\div 12=10$$, 那么$$96$$摄氏度应记为$$10$$, 也就是选择$$\\text{B}$$选项. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1596
4e14dba856b04f52905f13c04443355b
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第5题2分" ]
1
single_choice
阳光小学派一些学生去搬树苗,如果每人搬$$6$$棵,则差$$4$$棵,如果每人搬$$8$$棵,则差$$18$$棵,这批树苗有棵.
[ [ { "aoVal": "A", "content": "$$26$$ " } ], [ { "aoVal": "B", "content": "$$38$$ " } ], [ { "aoVal": "C", "content": "$$42$$ " } ], [ { "aoVal": "D", "content": "$$56$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "从每人差$$8-6=2$$棵,就导致总数从差$$4$$棵到差$$18$$棵,总共差了$$18-4=14$$棵,所以$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde(18-4)\\div (8-6)$$, $$=14\\div 2$$, $$=7$$(人), $$6\\times 7-4=38$$(棵), 答:这批树苗有$$38$$棵. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
332
ff80808148880257014888b117d50a1b
[ "2014年全国华杯赛小学高年级竞赛初赛B卷第1题", "2014年全国华杯赛小学高年级竞赛初赛A卷第1题" ]
1
single_choice
平面上的四条直线将平面分割成八个部分,则这四条直线中至多有(~ ~ ~ ~)条直线互相平行.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->能力->创新思维" ]
[ "这是一道考前公开题.当四条直线相互平行的时候把平面分成五个部分,当三条直线平行,另一条直线与它们相交的时候四条直线恰好把平面分成八个部分.所以选择$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1127
6b3b9936bb46492e8dbc0d0a5ecdb150
[ "2020年新希望杯五年级竞赛第11题", "2020年希望杯五年级竞赛模拟第11题" ]
1
single_choice
【$$2020$$五年级卷第$$11$$题】大头儿子给小头爸爸计算每天的交通费用.大头儿子说:``您的车百公里油耗为$$8$$升,每天上下班共行驶$$30$$公里,油价按每升$$7.2$$元计算,您每天上下班需要支付的油费为元.''
[ [ { "aoVal": "A", "content": "$$27$$ " } ], [ { "aoVal": "B", "content": "$$17.28$$ " } ], [ { "aoVal": "C", "content": "$$1.92$$ " } ], [ { "aoVal": "D", "content": "$$19.2$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->归一归总问题->先归一再归总" ]
[ "因为由题干可知,车百公里油耗为$$8$$升,每天上下班共行驶$$30$$公里,则上下班共耗油$$30\\div 100\\times 8=2.4$$(升),油价按每升$$7.2$$元计算,所以每天上下班需要支付的油费为$$7.2\\times 2.4=17.28$$(元). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1695
91857126ecd94685995eb1f85b0cc1a9
[ "2016年北京学而思杯六年级竞赛第14题7分" ]
2
single_choice
有$$4$$个小于$$60$$的合数,且两两互质,那么这$$4$$个合数之和的最大值为.
[ [ { "aoVal": "A", "content": "$$217$$ " } ], [ { "aoVal": "B", "content": "$$219$$ " } ], [ { "aoVal": "C", "content": "$$221$$ " } ], [ { "aoVal": "D", "content": "$$223$$ " } ], [ { "aoVal": "E", "content": "$$225$$ " } ] ]
[ "拓展思维->能力->数据处理", "Overseas Competition->知识点->应用题模块->分百应用题->认识单位1" ]
[ "$$4$$个合数之和最大,需要每个合数都尽量大,小于$$60$$的合数最大是$$58$$, 且$$58=2\\times 29$$,因为$$4$$个合数要两两互质, 所以接下来找的合数不能含有质因数$$2$$和$$29$$, 可以依次找到符合要求且最大的合数分别为$$58=2\\times 29$$,$$57=3\\times 19$$,$$55=5\\times 11$$,$$49=7\\times 7$$, 所以这$$4$$个合数之和最大为$$58+57+55+49=219$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1313
1fcc4932976945b5b37244d854b76dd4
[ "2018年第22届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第1题5分" ]
1
single_choice
小东看叔叔锯木头,锯一次要$$3$$分钟,最后叔叔把木头锯成$$4$$段,叔叔请小东算算,他一共锯了分钟.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "锯成$$4$$段,则需要锯$$3$$次,则所花时间为:$$3+3+3=9$$(分). 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
744
37a42e492cbb4c6d81d8d4f942be0375
[ "2020年长江杯五年级竞赛复赛A卷", "2020年长江杯五年级竞赛复赛A卷第3题5分" ]
1
single_choice
有一个$$200$$位的自然数,每个数位上的数字都是$$8$$,这个数除以$$7$$后的余数是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$7$$的整除特征是:从右往左三位一段,奇数段减偶数段的差能够被$$7$$整除, 则这个数就能够被$$7$$整除. 因此我们可以得到$$888888$$一定可以被$$7$$整除.($$888888\\div 7=126984$$)这个自然数有$$200$$个$$8$$, $$200\\div 6=33$$(组)$$\\cdots \\cdots 2$$(个). $$88\\div 7=12\\cdots \\cdots 4$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3232
507005d5a3d24c698d23dfa9abe12afa
[ "2007年第5届创新杯四年级竞赛第7题5分" ]
1
single_choice
五位老朋友$$A$$,$$B$$,$$C$$,$$D$$,$$E$$在公园聚会,见面时候握手致意间侯,已知:$$A$$握了$$4$$次,$$B$$握了$$1$$次,$$C$$握了$$3$$次,$$D$$握了$$2$$次,到此为止,$$E$$握了次.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$A$$握了$$4$$次手,即分别与$$B$$、$$C$$、$$D$$、$$E$$各握了一次,此时$$E$$握了$$1$$次, 由于$$B$$握了$$1$$次手,只能和$$A$$握过,和$$E$$没有握手, $$C$$握了$$3$$次手,和$$B$$没握,所以$$C$$是与$$A$$、$$D$$、$$E$$握的;此时$$E$$又握了$$1$$次, 此时$$D$$已与$$A$$、$$C$$握了$$2$$次手,和$$E$$没有握手, 所以此时$$E$$也握了$$2$$次,即是与$$A$$、$$C$$握的手. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2511
30252a1dde2b4ce08974a962b8c0e024
[ "2012年IMAS小学中年级竞赛第一轮检测试题第2题3分" ]
0
single_choice
在算式$$ +5=13-2$$中,括号中应填入什么数才能使算式成立?
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数减法运算->减法横式" ]
[ "13-2=11;11-5=6 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1391
87d77837ef244186b92c8ab3ec9a6407
[ "2016年全国世奥赛竞赛A卷第1题", "2016年第16届世奥赛六年级竞赛决赛第1题" ]
2
single_choice
熊大和熊二分一块蛋糕,熊二因为分的太少而哭闹,于是熊大把自己蛋糕的$$\frac{1}{3}$$给了熊二,使熊二的蛋糕增加到原来的$$3$$倍.那么,最终熊二分得整块蛋糕的(~ ).
[ [ { "aoVal": "A", "content": "$$\\frac{3}{5}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{4}{7}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{3}{7}$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->认识单位1" ]
[ "找对数量之间的关系是本题的关键,熊大把自己蛋糕的$$\\frac{1}{3}$$给了熊二,使得熊二的蛋糕增加到原来的三倍,即熊大给熊二的相当于熊二原来的$$2$$倍.假设熊二原来分得了$$1$$份,那么熊大原来分得的$$\\frac{1}{3}$$就是$$2$$份,即熊大原来分得$$6$$份.所以熊二原来分得整块蛋糕的$$\\frac{1}{7}$$,最终熊二分的蛋糕的$$\\frac{3}{7}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2848
7770e130039f42afab97cec8a3aefd70
[ "2012年IMAS小学中年级竞赛第一轮检测试题第2题3分" ]
0
single_choice
在算式$$()+5=13-2$$中,括号中应填入什么数才能使算式成立?
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数减法运算->减法横式" ]
[ "13-2=11;11-5=6 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2440
5413bc5a8f8e4ef2b041908b21fa10fb
[ "2011年第7届全国新希望杯小学高年级六年级竞赛第1题4分" ]
0
single_choice
下列选择中,正确的是(~ ~ ~ ).
[ [ { "aoVal": "A", "content": "$$-7\\textgreater-3.27$$ " } ], [ { "aoVal": "B", "content": "$$0\\textless{}-11$$ " } ], [ { "aoVal": "C", "content": "$$3\\textgreater-27$$ " } ], [ { "aoVal": "D", "content": "$$-7=7$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "正数大于负数. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
35
4a7dfea5e1404eb8aeb1d73c9db9e8a5
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第10题5分" ]
0
single_choice
明明、亮亮和刚刚三个好朋友的爸爸,一位是工人,一位是医生,一位是解放军战士.请你根据下面三句话,猜一猜的爸爸是解放军. ($$1$$)明明的爸爸不是工人. ($$2$$)亮亮的爸爸不是医生. ($$3$$)明明的爸爸和亮亮的爸爸正听一位当解放军的爸爸讲战斗故事.
[ [ { "aoVal": "A", "content": "明明 " } ], [ { "aoVal": "B", "content": "亮亮 " } ], [ { "aoVal": "C", "content": "刚刚 " } ], [ { "aoVal": "D", "content": "不确定 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "根据第($$3$$)句话可知,明明的爸爸和亮亮的爸爸都不是解放军,所以刚刚的爸爸是解放军. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2567
23eda4fa773d446ba5344eea41a64f2b
[ "2008年第6届创新杯五年级竞赛初赛B卷第7题5分", "2008年五年级竞赛创新杯" ]
2
single_choice
小红、小军和小明三人参加一次数学竞赛,一共有$$100$$道题,每个人各解出其中的$$60$$道题,有些题目三人全都解出来了,我们称之为``容易题'',有些题目只有两人解出来我们称之为``中等题'',有些题目只有一人解出来,我们称之为``难题'',每个题都至少被他们中的一人解出,则难题比容易题多道题.
[ [ { "aoVal": "A", "content": "$$16$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->方程基础->不定方程->不定方程组" ]
[ "设容易题、中等题和难题分别有$$x$$,$$y$$,$$z$$道题,则 $$\\begin{cases} x+y+z=100\\textasciitilde\\textasciitilde\\textasciitilde① 3x+2y+z=180\\textasciitilde\\textasciitilde\\textasciitilde② \\end{cases}$$, $$2\\times ①-②$$可以得到$$z-x=20$$,所以难题比容易题多$$20$$道题. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1378
3ec35bf983a748eb9d918bf94f6819b2
[ "2017年第15届湖北武汉创新杯六年级竞赛初赛第5题" ]
1
single_choice
小刚、小强、小明一起买文具,小刚买$$3$$枝铅笔和$$5$$枝圆珠笔共用$$5.4$$元,小强买$$5$$枝铅笔和$$7$$枝圆珠笔共用$$7.8$$元,小明买$$4$$枝铅笔和$$4$$枝圆珠笔共用元.
[ [ { "aoVal": "A", "content": "$$3.4$$ " } ], [ { "aoVal": "B", "content": "$$6.6$$ " } ], [ { "aoVal": "C", "content": "$$6.0$$ " } ], [ { "aoVal": "D", "content": "$$4.8$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->多元一次方程解应用题->整数系数二元一次方程组解应用题" ]
[ "设每支铅笔$$x$$元,每支圆珠笔$$y$$元,则$$3x+5y=5.4$$,$$5x+7y=7.8$$,得$$2x+2y=2.4$$,所以$$4x+4y=4.8$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
499
afc71f39920c4726a6e9af79aa45fc5e
[ "2018年第22届广东世界少年奥林匹克数学竞赛五年级竞赛决赛第3题5分" ]
1
single_choice
一个长方形的长和宽长度都是整数,如果它的周长是$$22$$,那么,这长方形面积的最大值是.
[ [ { "aoVal": "A", "content": "$$28$$ " } ], [ { "aoVal": "B", "content": "$$30$$ " } ], [ { "aoVal": "C", "content": "$$24$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->组合模块最值问题->和一定型最值问题->两数之积的最值" ]
[ "长$$+$$宽$$=22\\div 2=11$$.由于长和宽都是整数,欲求面积的最大值,则长和宽越接近越好,即长$$=6$$,宽$$=5$$,故面积为:$$5\\times 6=30$$.所以选择$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
641
38f86964f61845b385ed1a0c6ac0c1c5
[ "2011年五年级竞赛明心奥数挑战赛" ]
1
single_choice
$$42$$的因数共有( )个。
[ [ { "aoVal": "A", "content": "3 " } ], [ { "aoVal": "B", "content": "6 " } ], [ { "aoVal": "C", "content": "8 " } ], [ { "aoVal": "D", "content": "10 " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->因数个数定理" ]
[ "方法一:枚举法。$$42$$的因数有$$1$$、$$2$$、$$3$$、$$6$$、$$7$$、$$14$$、$$21$$、$$42$$。共$$8$$个。 方法二:$$42=2\\times 3\\times 7$$,因数个数等于指数加$$1$$再连乘,$$\\left( 1+1\\right) \\times\\left(1+1\\right) \\times\\left(1+1\\right) =8$$个。故选C。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3424
9cedf28367094132b54d3658a92c82d1
[ "2011年五年级竞赛创新杯" ]
0
single_choice
将各位数字的和为$$4$$的所有自然数由小到大排成一列,$$2011$$是第( )个。
[ [ { "aoVal": "A", "content": "$$23$$ " } ], [ { "aoVal": "B", "content": "$$24$$ " } ], [ { "aoVal": "C", "content": "$$25$$ " } ], [ { "aoVal": "D", "content": "$$27$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->枚举法->有序枚举" ]
[ "枚举法。各位数字和为$$4$$的自然数依次为:$$4\\text{,}13\\text{,}22\\text{,}31\\text{,}40\\text{,}103\\text{,}112\\text{,}121\\text{,}130\\text{,}202\\text{,}211\\text{,}220\\text{,}301\\text{,}310\\text{,}400\\text{,}1003\\text{,}1012\\text{,}1021\\text{,}1030\\text{,}1102\\text{,}1111\\text{,}1120\\text{,}1201\\text{,}1210\\text{,}1300\\text{,}2002\\text{,}2011$$,即$$2011$$是第$$27$$个。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
556
0e26e3e575ba460d96651a1532c2ebf5
[ "2011年六年级竞赛创新杯" ]
0
single_choice
符号$$\left[ x \right]$$表示不大于$$x$$的最大整数,例如$$\left[ 5 \right]=5$$、$$\left[ 6.31 \right]=6$$。如果$$\left[ \frac{3x+7}{7} \right]=4$$,这样的正整数$$x$$有( )
[ [ { "aoVal": "A", "content": "3个 " } ], [ { "aoVal": "B", "content": "4个 " } ], [ { "aoVal": "C", "content": "5个 " } ], [ { "aoVal": "D", "content": "2个 " } ] ]
[ "拓展思维->拓展思维->数论模块->高斯记号->高斯记号的基本运算" ]
[ "根据高斯函数的性质,可得$$4 \\leqslant \\frac{3x+7}{7} \\textless{} 5$$,解得$$ 7 \\leqslant x \\textless{} \\frac{28}{3}$$,对应的整数共$$3$$个数. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
518
f8ba1c04c7a747848dca0711ba94c134
[ "2018年第22届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第2题6分" ]
0
single_choice
$$2$$个人同时吃$$2$$个馒头用$$2$$分钟,$$10$$个人同时吃$$10$$个馒头用分钟.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ] ]
[ "知识标签->课内知识点->数学广角->优化->解决问题策略" ]
[ "两人同时吃两个馒头的时间与一个人吃一个馒头时间相同,与$$10$$个人同时吃$$10$$个馒头时间不同,都是两分钟. 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3307
ccac6ecf35254740b3e280eb420f1f43
[ "2018年IMAS小学中年级竞赛(第一轮)第14题4分" ]
2
single_choice
将一个正整数的各位数码以相反的顺序排列后,若所得的数与原来的数相同,则称这个数为回文数(例如$$909$$与$$1221$$都是回文数).请问在$$10$$与$$1000$$之间总共有多少个回文数?
[ [ { "aoVal": "A", "content": "$$90$$ " } ], [ { "aoVal": "B", "content": "$$99$$ " } ], [ { "aoVal": "C", "content": "$$100$$ " } ], [ { "aoVal": "D", "content": "$$106$$ " } ] ]
[ "拓展思维->思想->对应思想", "Overseas Competition->知识点->计数模块->枚举法综合->字典排序法->组数->回文数" ]
[ "如果回文数为两位数,则它的个位数码与十位数码必须相同,但十位数码不能为$$0$$, 即共有$$9$$个两位数的回文数. 如果回文数为三位数,则它的个位数码与百位数码必须相同,但百位数码不能为$$0$$,而十位数码可自由选择数码,即共有$$9\\times 10=90$$个三位数的回文数. 而$$1000$$不是回文数,故在$$1$$与$$1000$$之间总共有$$9+90=99$$个回文数. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3438
d7de8f193557475085c056751de16bc1
[ "2019年第24届YMO二年级竞赛决赛第4题3分" ]
1
single_choice
把$$10$$个玻璃球分成数量不同的$$3$$堆,共有种不同的分法.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "根据题意可得: $$15=1+2+3+9$$;$$15=1+2+4+8$$; $$15=1+2+5+7$$;$$15=1+3+4+7$$; $$15=1+3+5+6$$;$$15=2+3+4+6$$; 一共有$$6$$种. 答:共有$$6$$种不同的分法. 故选:$$\\text{C}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1257
5dd8260d1b704801a88c7ec17b59e801
[ "2017年全国华杯赛小学中年级竞赛初赛模拟第1题", "小学中年级三年级上学期其它" ]
1
single_choice
甲乙两人在春节一共得$$210$$元压岁钱,甲给乙$$40$$元,还比乙多$$10$$元,那么,原来甲得了~\uline{~~~~~~~~~~}~元压岁钱.
[ [ { "aoVal": "A", "content": "$$150$$ " } ], [ { "aoVal": "B", "content": "$$140$$ " } ], [ { "aoVal": "C", "content": "$$125$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "知识标签->拓展思维->应用题模块->和差倍问题->和差问题->二量和差问题->明和暗差" ]
[ "因为甲给乙$$40$$元,还比乙多$$10$$元,所以甲比乙多$$40\\times 2+10=90$$元, 所以甲:$$(210+90)\\div 2=150$$ " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1300
fa6fc59a946e4856b6a621ee73c3158e
[ "2014年全国迎春杯五年级竞赛初赛第3题" ]
1
single_choice
一辆大卡车一次可以装煤$$2.5$$吨,现在要一次运走$$48$$吨煤,那么至少需要辆这样的大卡车.
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$19$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$21$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$48\\div 2.5=19.2$$,所以$$19$$辆不够,至少需要$$20$$辆.选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2815
c85b9c1f6b5d4e87b057ef688a5c9f8e
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第1题5分" ]
1
single_choice
下列数中,最接近$$80$$的数是.
[ [ { "aoVal": "A", "content": "$$75$$ " } ], [ { "aoVal": "B", "content": "$$76$$ " } ], [ { "aoVal": "C", "content": "$$78$$ " } ], [ { "aoVal": "D", "content": "$$83$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数减法运算->减法横式" ]
[ "对于$$\\text{A}$$选项:$$80-75=5$$;也就是$$75$$与$$80$$的距离是$$5$$; 对于$$\\text{B}$$选项:$$80-76=4$$;也就是$$76$$与$$80$$的距离是$$4$$; 对于$$\\text{C}$$选项:$$80-78=2$$;也就是$$78$$与$$80$$的距离是$$2$$; 对于$$\\text{D}$$选项:$$83-80=3$$;也就是$$83$$与$$80$$的距离是$$3$$. 那么距离$$80$$最近的也就是$$\\text{C}$$选项$$78$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
971
f08f6b8fbd03400797d2874cf07589b9
[ "2019年四川成都青白江区外国语小学小升初(一)第15题2分", "2016年河南郑州联合杯六年级竞赛初赛第14题3分", "2018年陕西西安雁塔区西安交通大学第二附属中学小升初第10题2分" ]
1
single_choice
如果一个数恰好等于它的所有因数(本身除外)相加之和,那么这个数就是``完美数''.例如:$$6$$有四个因数$$1$$,$$2$$,$$3$$,$$6$$,除本身$$6$$以外,还有$$1$$,$$2$$,$$3$$三个因数.$$6=1+2+3$$,恰好是所有因数之和,所以$$6$$就是``完美数''.下面的数中是``完美数''的是(~ ).
[ [ { "aoVal": "A", "content": "$$9$$~~~~ " } ], [ { "aoVal": "B", "content": "$$12$$~~~~ " } ], [ { "aoVal": "C", "content": "$$15$$~~~~ " } ], [ { "aoVal": "D", "content": "$$28$$~~~~ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$9\\ne 1+3$$,排除$$9$$;$$12\\ne 1+2+3+4+6$$,排除$$12$$;$$15\\ne 1+3+5$$,排除$$15$$;$$28=1+2+4+7+14$$,故选D. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1569
ff8080814518d524014519081d2002f2
[ "2014年全国迎春杯六年级竞赛初赛第13题" ]
2
single_choice
$$A$$在$$B$$地西边$$60$$千米处.甲乙从$$A$$地,丙丁从$$B$$地同时出发.甲、乙、丁都向东行驶,丙向西行驶.已知甲乙丙丁的速度依次成为一个等差数列,甲的速度最快.出发后经过$$n$$小时乙丙相遇,再过$$n$$小时甲在$$C$$地追上丁.则$$B$$、$$C$$两地相距(~~~~~~)千米.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$30$$ " } ], [ { "aoVal": "C", "content": "$$60$$ " } ], [ { "aoVal": "D", "content": "$$90$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "由$n$小时乙丙相遇,知$$n$$小时内$${{S}_{乙}}+{{S}_{丙}}=60$$千米,因此在$$2n$$小时内$${{S}_{乙}}+{{S}_{丙}}=120$$千米.由$$2n$$小时甲追上丁,知$$2n$$小时内$${{S}_{甲}}-{{S}_{丁}}=60$$.由于甲乙丙丁的速度成等差数列,因此甲乙丙丁在$$2n$$小时内的路程也成等差数列,于是由$${{S}_{甲}}-{{S}_{丁}}=60$$知路程的公差为$$60\\div3=20$$千米.再由$${{S}_{乙}}+{{S}_{丙}}=120$$容易解出$${{S}_{乙}}=70$$,$${{S}_{丙}}=50$$千米,进而求出$${{S}_{丁}}=30$$千米.而$${{S}_{丁}}$$恰为$$BC$$两地之间的距离. " ]
B