dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
941
cad90299340348b2ad86bf7a794ecb38
[ "2016年全国美国数学大联盟杯小学中年级三年级竞赛初赛" ]
1
single_choice
前$$10$$个正整数的积,末尾有几个$$0$$?
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "求积末尾$$0$$的个数,需要看$$2$$和$$5$$的因数个数.$$2$$的个数多余$$5$$的个数,因此找出前$$10$$个数里有多少个$$5$$,$$5$$本身一个,$$10=2\\times 5$$,一共两个$$5$$,因此,末尾两个$$0$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2964
d2746124907e4161bfa8a2bcd456aea3
[ "2017年第15届全国希望杯六年级竞赛" ]
2
single_choice
求三个分数$$\frac{20122012}{20132013}$$,$$\frac{20132013}{20142014}$$,$$\frac{20142014}{20152015}$$中值最大的.
[ [ { "aoVal": "A", "content": "$$\\frac{20122012}{20132013}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{20132013}{20142014}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{20142014}{20152015}$$ " } ], [ { "aoVal": "D", "content": "三个一样大 " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->分数基准数法" ]
[ "因为$$\\frac{20122012}{20132013}=\\frac{2012\\times 1001}{2013\\times 1001}=\\frac{2012}{2013}$$, $$\\frac{20132013}{20142014}=\\frac{2013\\times 1001}{2014\\times 1001}=\\frac{2013}{2014}$$,$$\\frac{20142014}{20152015}=\\frac{2014\\times 1001}{2015\\times 1001}=\\frac{2014}{2015}$$,$$1-\\frac{2012}{2013}=\\frac{1}{2013}$$,$$1-\\frac{2013}{2014}=\\frac{1}{2014}$$, $$1-\\frac{2014}{2015}=\\frac{1}{2015}$$. 因为$$\\frac{1}{2015}\\textless{}\\frac{1}{2014}\\textless{}\\frac{1}{2013}$$,所以$$\\frac{2014}{2015}\\textgreater\\frac{2013}{2014}\\textgreater\\frac{2012}{2013}$$.因此,三个分数中,最大的是$$\\frac{20142014}{20152015}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1218
2b890396ad7b495f84d01392ca03a1d1
[ "2015年华杯赛六年级竞赛初赛" ]
2
single_choice
足球友谊比赛的票价是$$50$$元,赛前一小时还有余票,于是决定降价,结果售出的票增加了三分之一,而票房收入增加了四分之一,那么每张票售价降了( )元。
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{25}{2}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{50}{3}$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->认识单位1" ]
[ "解:设原来卖出的票数为$$1$$,则每张票售价降了: $$50-50\\times \\frac{1}{4}\\div \\frac{1}{3}$$ $$=50-\\frac{75}{2}$$ $$=\\frac{25}{2}$$(元) 答:每张票售价降了$$\\frac{25}{2}$$元。 故选:$$B$$。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2319
f3ed52289aca45e1ba6d78f3a213191b
[ "2016年创新杯小学高年级六年级竞赛训练题(一)第2题" ]
2
single_choice
汽车从甲地到乙地,先行上坡,后行下坡,共用$$9.4$$小时.如果甲、乙两地相距$$450$$千米,上坡车速为每小时$$45$$千米,下坡车速为每小时$$50$$千米,且返回时上坡和下坡速度保持不变,那么原路返回要小时.
[ [ { "aoVal": "A", "content": "$$9.4$$ " } ], [ { "aoVal": "B", "content": "$$9.5$$ " } ], [ { "aoVal": "C", "content": "$$9.6$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->单人简单行程问题" ]
[ "方法一: 从甲地到乙地共有$$450$$千米,共用$$9.4$$小时,上坡车速为每小时$$45$$千米,下坡车速为每小时 50千米,可得上坡所用的时间为$$ (50 \\times 9.4-450)\\div(50-45)=4(个, $$),那么上坡路为 $$ 45 \\times 4=180(千米 $$),下坡路为$$ 450-180=270(千米) $$原路返回时,原来的上坡路变成下 坡路,原来的下坡路变成上坡路,所用时间为$$ 270 \\div 45+180+50=6+3.6=9.6(小时) $$ 方法二: 本题也可以从整体上进行考虑,由于原路返回时,原来的上坡路变成下坡路,原来的下坡路变 成了上坡路,所以往返一次相当于共走了$$450$$千米的上坡路和$$450$$千米的下坡路,那么所用的 总时间为$$ 450 \\div 45+450 \\div 50=19(小+1+) $$,其中从甲地到乙地用了$$9.4$$小时,所以原路返回 要用$$ 19-9.4=9.6(.1,1= $$ 方法三:设原来上坡用了$$x$$小时,$$45x+50\\left( 9.4-x \\right)=450$$,解得$$x=4$$,那么原来上坡是$$45\\times 4=180$$千米,下坡就是$$450-180=270$$千米,返回时下坡变为上坡,上坡变为下坡,所以返回时时间是$$\\frac{270}{45}+\\frac{180}{50}=9.6$$(小时). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3271
e37301806df44e349d4a9c876d6a757c
[ "2017年全国小学生数学学习能力测评六年级竞赛复赛第10题3分" ]
1
single_choice
已知一个三位数的百位、十位和个位分别是:$$a$$,$$b$$,$$c$$,且$$a\times b\times c=a+b+c$$,那么满足上述条件的所有三位数的和为.
[ [ { "aoVal": "A", "content": "$$1332$$ " } ], [ { "aoVal": "B", "content": "$$1032$$ " } ], [ { "aoVal": "C", "content": "$$1000$$ " } ], [ { "aoVal": "D", "content": "$$998$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->枚举法->有序枚举" ]
[ "满足$$a\\times b\\times c=a+b+c$$的只有$$1$$,$$2$$,$$3$$,即$$1\\times 2\\times 3=1+2+3=6$$, 所以这些三位数是$$123$$,$$132$$,$$213$$,$$231$$,$$312$$,$$321$$; 和为$$123+132+213+231+312+321=1332$$. 故$$\\text{BCD}$$错误,$$\\text{A}$$正确. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1157
111de4c85bc84fb5aac581ce5cd2e2ec
[ "2018年湖北武汉新希望杯五年级竞赛训练题(五)第1题" ]
2
single_choice
一队学生排成$$9$$行$$9$$列的方阵,如果去掉最外层一圈,要减少人
[ [ { "aoVal": "A", "content": "$$32$$ " } ], [ { "aoVal": "B", "content": "$$34$$ " } ], [ { "aoVal": "C", "content": "$$36$$ " } ], [ { "aoVal": "D", "content": "$$38$$ " } ] ]
[ "拓展思维->思想->数形结合思想", "课内体系->思想->数形结合思想" ]
[ "$$9\\times 9-7\\times 7=32$$(人). " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
244
32c1a39e313c45f9a2caf4151a0bd714
[ "2021年第8届鹏程杯四年级竞赛初赛第15题4分" ]
2
single_choice
甲、乙、丙、丁$$4$$ 个人过桥,分别需要$$1$$分钟,$$2$$ 分钟,$$5$$分钟,$$10$$分钟.因为天黑,必须借助手电筒过桥,可是他们只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两人.那么他们过桥的最短时间是.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$17$$ " } ], [ { "aoVal": "D", "content": "$$18$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "甲乙先过去,甲回来,用时$$2+1=3$$分钟,丙丁过去乙回来,用时$$10+2=12$$分钟,甲乙过去用时$$2$$分钟,总共用时$$3+12+2=17$$分钟, 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
444
e04caf762432431d9e8d8591d1b982c6
[ "2019年广东深圳全国小学生数学学习能力测评六年级竞赛初赛第8题3分" ]
2
single_choice
周长都相等的圆,正方形和长方形,它们的面积相比.
[ [ { "aoVal": "A", "content": "圆最大 " } ], [ { "aoVal": "B", "content": "正方形最大 " } ], [ { "aoVal": "C", "content": "长方形最大 " } ], [ { "aoVal": "D", "content": "一样大 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "假设正方形、长方形、圆的周长都是$$16$$厘米,则: ($$1$$)正方形的边长:$$16\\div 4=4$$(厘米), 面积:$$4\\times 4=16$$(平方厘米); ($$2$$)假设长方形的长为$$6$$厘米,宽为$$2$$厘米, 则面积:$$2\\times 6=12$$(平方厘米); ($$3$$)圆的半径:$$16\\div 3.14\\div 2=\\frac{800}{314}$$(厘米), 面积:$$3.14\\times \\left( \\frac{800}{314} \\right)\\times \\left( \\frac{800}{314} \\right)$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=3.14\\times \\frac{800}{314}\\times \\frac{800}{314}$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=\\frac{6400}{314}$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=20\\frac{60}{157}$$(平方厘米); 所以,$$12$$平方厘米$$\\textless{}16$$平方厘米$$\\textless{}20\\frac{60}{157}$$平方厘米, 所以$$\\text{A}$$选项是正确的. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2965
a08c0edebf39465c8f10e5cdfe497cbb
[ "2019年第23届广东世界少年奥林匹克数学竞赛五年级竞赛初赛第7题5分" ]
1
single_choice
给小数$$0.0123456789$$添加表示循环节的两个圆点,得到一个循环小数.要使得这个循环小数的小数点后第$$100$$位数字是$$8$$,应该在数字和$$9$$上添加圆点.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "A~ 如果循环节是$$123456789$$,循环周期为$$9$$,除了已经有的$$10$$位小数以外,后面还有$$100-10=90$$(位)小数, $90\\div9=10\\cdots0$,所以最后一位是$$9$$,排除 A; B~ 如果循环节是$$23456789$$,循环周期为$$8$$,除了已经有的$$10$$位小数以外,后面还有$$100-10=90$$(位)小数, $90\\div8=11\\cdots2$,所以最后一位是$$3$$,排除 B; C 如果循环节是$$3456789$$,循环周期为$$7$$,除了已经有的$$10$$位小数以外,后面还有$$100-10=90$$(位)小数, $90\\div7=12\\cdots6$,所以最后一位是$$8$$,选择 C; D~ 如果循环节是$$456789$$,循环周期为$$6$$,除了已经有的$$10$$位小数以外,后面还有$$100-10=90$$(位)小数, $90\\div6=15\\cdots0$,所以最后一位是$$9$$,排除 D; 所以,选择 C. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3185
38bf3d9c9dbf48ed8b8078109b84be9f
[ "2017年北京学而思杯小学中年级三年级竞赛年度教学质量测评第17题3分" ]
1
single_choice
小胖和爸爸一起去超市购物.爸爸钱包里有$$2$$张$$100$$元和$$1$$张$$10$$元,他买了一些物品.当小胖四处张望的时候,只听到收银员说:``谢谢,这是找您的$$50$$元.''他看到爸爸的手里只有$$1$$张找回来的$$50$$元钱,请问爸爸买的物品可能是(~ )元钱.
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$60$$ " } ], [ { "aoVal": "C", "content": "$$80$$ " } ], [ { "aoVal": "D", "content": "$$30$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "因为找回的是$$50$$元,则有可能是$$100-50=50$$元,$$100+10-50=60$$元,$$100+100-50=150$$元,$$100+100+10-50=160$$元,则选项中只有$$B$$符合. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1277
7e43cecdcd764ed7b9d5d77ffcedd35c
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第8题5分" ]
0
single_choice
一只兔子$$4$$条腿,一只鸡有$$2$$条腿,已知鸡兔共有$$4$$个头,$$12$$条腿,请你枚举一下,有只兔.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题->假设法解鸡兔同笼->基本型->原型题" ]
[ "枚举法: 当有$$1$$只兔,$$3$$只鸡时,共$$1\\times4+3\\times2=10$$(条)腿. 当有$$2$$只兔,$$2$$只鸡时,共$$2\\times4+2\\times2=12$$(条)腿. 所以有$$2$$只兔. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
212
47f4da42d6df4c9793b21e5eaeb7fef9
[ "2014年全国迎春杯六年级竞赛初赛第2题" ]
1
single_choice
大力、大鹏、大生、大明、大林是天津某相声茶馆里的相声演员,今天,他们每两人要演一场相声.到目前为止,大鹏演了$$1$$场,大生演了$$3$$场,大林演了$$3$$场,大明演了$$4$$场,那么大力演了场
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "知识标签->课内知识点->测量->面积->圆的面积->圆的面积公式" ]
[ "$$C$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
15
01c7c35ea418481f84b998642b3f19bc
[ "2015年全国中环杯二年级竞赛决赛第5题" ]
2
single_choice
甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌徒.牧师从不说谎,骗子总是说谎,赌徒有时说真话有时说谎话.甲说:``我是牧师.''乙说:``我是骗子.''丙说:``我是赌徒.''那么,三人中,~\uline{~~~~~~~~~~}~是牧师.
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找一致(同伙)" ]
[ "根据条件,牧师不可能说假话,所以牧师一定会说自己是牧师,此题只有一个说自己是牧师.所以甲就是牧师. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1525
b0f1f7eb99d44835bfacd5fc9c7e2b2b
[ "2017年河南郑州K6联赛竞赛模拟第七套第3题4分" ]
1
single_choice
梨比苹果多$$50$$个.下面的关系式中,( ~ ~)是正确的.
[ [ { "aoVal": "A", "content": "梨的个数$$+50=$$苹果的个数 " } ], [ { "aoVal": "B", "content": "梨的个数$$=50+$$苹果的个数 " } ], [ { "aoVal": "C", "content": "梨的个数$$+$$苹果的个数$$=50$$ " } ], [ { "aoVal": "D", "content": "梨的个数$$=50$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "梨多,所以梨的个数$$=50+$$苹果的个数. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
625
fee6d2fd25c746c787fbc922639eeccf
[ "2018年迎春杯五年级竞赛初赛C卷第2题8分" ]
1
single_choice
有一个各位数字互不相同的四位数$$\overline{ABCD}$$,$$\overline{AB}$$、$$\overline{BC}$$、$$\overline{CD}$$都是质数,这个四位数最大是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$9874$$ " } ], [ { "aoVal": "B", "content": "$$9797$$ " } ], [ { "aoVal": "C", "content": "$$9753$$ " } ], [ { "aoVal": "D", "content": "$$9371$$ " } ], [ { "aoVal": "E", "content": "$$9731$$ " } ] ]
[ "拓展思维->能力->数据处理", "海外竞赛体系->知识点->数论模块->质数与合数" ]
[ "要使这个四位数最大,高位要尽可能大,$$\\overline{AB}$$为$$100$$以内最大的质数,即$$97$$,$$\\overline{BC}$$为质数,只能是$$79$$,$$73$$,$$71$$,因为各位数字互不相同,且尽可能大,$$\\overline{BC}=73$$,$$\\overline{CD}$$为质数,只能是$$37$$,$$31$$,因为数字互不相同,$$\\overline{CD}=31$$,所以$$\\overline{ABCD}$$最大是$$9731$$. 故答案为:$$9731$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2981
f2a65d87f78341348807ae3f01e398f0
[ "2020年新希望杯五年级竞赛第14题", "2020年希望杯五年级竞赛模拟第14题" ]
1
single_choice
【$$2020$$年五年级卷第$$14$$题】猪猪侠在闯关游戏中遇到一个计算题:$$0.004186\times 8812345.321$$,下列选项中最接近计算结果的是.
[ [ { "aoVal": "A", "content": "$$3200$$ " } ], [ { "aoVal": "B", "content": "$$3600$$ " } ], [ { "aoVal": "C", "content": "$$32000$$ " } ], [ { "aoVal": "D", "content": "$$36000$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$0.004186\\times 8812345.321\\approx 0.004\\times 9000000=36000$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1208
2b69d57da6a84ac6943a130dbd356f2f
[ "2010年第10届全国小机灵杯三年级竞赛复赛" ]
2
single_choice
由两个$$4$$和一个$$5$$组成的所有不同的三位数的平均数是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$481$$ " } ], [ { "aoVal": "B", "content": "$$471$$ " } ], [ { "aoVal": "C", "content": "$$454$$ " } ], [ { "aoVal": "D", "content": "$$544$$ " } ], [ { "aoVal": "E", "content": "$$445$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->公式类->直接求平均数", "Overseas Competition->知识点->应用题模块->平均数问题" ]
[ "组成的三位数分别为$$445$$,$$454$$,$$544$$,平均数为$$\\left( 445 + 454 + 544 \\right) \\div 3 = 481$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3278
3b3f591301474bccaae55da5f5636ab2
[ "2009年第7届创新杯四年级竞赛初赛第7题4分" ]
1
single_choice
师徒两人加工同一种零件,每人都把自己的产品装入自己的箩筐中,结果师傅产量是徒弟的两倍,现在装了$$6$$只箩筐,每只箩筐都标了零件的只数:$$78$$只,$$94$$只,$$86$$只,$$87$$只,$$82$$只,$$80$$只.那么( )这两筐是徒弟加工的.
[ [ { "aoVal": "A", "content": "$$87$$只与$$86$$只 " } ], [ { "aoVal": "B", "content": "$$87$$只与$$82$$只 " } ], [ { "aoVal": "C", "content": "$$80$$只与$$87$$只 " } ], [ { "aoVal": "D", "content": "$$94$$只与$$80$$只 " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->整数分拆->整数拆分应用->加法拆数(应用)" ]
[ "因为$$\\left( 78+94+86+87+82+80 \\right)\\div \\left( 1+2 \\right)=169$$,又$$87+82=169$$,所以$$87$$只与$$82$$只这两筐是徒弟加工的. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2023
ef042f46e0c24ccb86590422b7b69840
[ "2015年湖北武汉世奥赛五年级竞赛模拟训练题(二)第4题" ]
2
single_choice
小乐前几次数学测验的平均分为$$88$$分,这次要是能考$$100$$分,就能把平均分提高到$$91$$分,这是第次考试.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "根据``以多初少''可知,小乐之前考试的次数为$$\\left( 100-91 \\right)\\div \\left( 91-88 \\right)=3$$(次),这是第$$3+1=4$$(次). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2553
504d1514990442babfd9eef9515c87f0
[ "2015年六年级其它", "2010年第8届希望杯六年级竞赛复赛第2题5分" ]
3
single_choice
已知$$1-\dfrac{1}{6+\dfrac{1}{6+\dfrac{1}{6}}}=\dfrac{1}{A+\dfrac{1}{B+\dfrac{1}{C+\dfrac{1}{C}}}}$$其中$$A$$、$$B$$、$$C$$都是大于$$0$$且互不相同的自然数,则$$\left( A+B \right)\div C=$$.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$0$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "根据题意,容易解出$$1-\\dfrac{1}{6+\\dfrac{1}{6+\\dfrac{1}{6}}}=\\dfrac{191}{228}$$, 所以$$A+\\dfrac{1}{B+\\dfrac{1}{C+\\dfrac{1}{C}}}=1+\\dfrac{37}{191}$$, 而$$B+\\dfrac{1}{C+\\dfrac{1}{C}}$$大于$$1$$, 所以$$A=1$$,同理可知,$$B=5$$,$$C=6$$,则$$\\left( A+B \\right)\\div C=1$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1957
d7ad140b2d7e4ae8ab9d4501f6d2b39a
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第11题2分" ]
2
single_choice
张阿姨给幼儿园两个班的孩子分水果,大班每人分得$$5$$个橘子和$$2$$个苹果,小班每人分得$$3$$个橘子和$$2$$个苹果.张阿姨一共分出了$$135$$个橘子和$$70$$个苹果,那么小班有个孩子.
[ [ { "aoVal": "A", "content": "$$35$$ " } ], [ { "aoVal": "B", "content": "$$30$$ " } ], [ { "aoVal": "C", "content": "$$25$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题->假设法解鸡兔同笼->基本型->变型题" ]
[ "两班共有$$70\\div 2=35$$(个)孩子, 假设所有人都分得$$5$$个橘子,需要$$35\\times 5=175$$(个)橘子. 则小班有$$\\left( 175-135 \\right)\\div \\left( 5-3 \\right)=20$$(个)孩子. 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2602
35dd55b4d2b542acbf4d429fca3a57dd
[ "2016年全国AMC六年级竞赛8第15题" ]
1
single_choice
$${{13}^{4}}-{{11}^{4}}$$的因数中,只含有质因数$$2$$的最大的因数是($\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde$).
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$32$$ " } ], [ { "aoVal": "D", "content": "$$64$$ " } ], [ { "aoVal": "E", "content": "$$128$$ " } ] ]
[ "Overseas Competition->知识点->数论模块->分解质因数", "拓展思维->拓展思维->数论模块->分解质因数->分解质因数的应用->已知乘积求因数" ]
[ "$${{13}^{4}}-{{11}^{4}}$$ $$=({{13}^{2}}-{{11}^{2}})\\times ({{13}^{2}}+{{11}^{2}})$$ $$=(13-11)\\times (13\\times 11)\\times (169+121)$$ $$=2\\times 24\\times 290$$ $$=2\\times {{2}^{3}}\\times 3\\times 2\\times 145$$ $$={{2}^{5}}\\times 3\\times 145$$ $${{2}^{5}}=32$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
44
6b060bff71964305ab702406f2428b3a
[ "2017年安徽合肥庐江县小升初第19题1分", "2017年河南郑州豫才杯竞赛第14题", "2017年河南郑州小升初豫才杯第14题3分" ]
1
single_choice
下列说法正确的是(~~ ).
[ [ { "aoVal": "A", "content": "角的两边是两条直线 " } ], [ { "aoVal": "B", "content": "知道了物体的方向,就能确定物体的位置 " } ], [ { "aoVal": "C", "content": "平行四边形有一条对称轴 " } ], [ { "aoVal": "D", "content": "长方体、正方体、圆柱体的体积都能用``底面积✖️ 高''来计算 " } ] ]
[ "拓展思维->拓展思维->组合模块->方向与坐标->方向" ]
[ "$$A$$不对,角的两边是两条射线;$$B$$不对,缺少观察点无法确定物体的位置;$$C$$不对,平行四边形不是轴对称图形,所以没有对称轴;故选$$D$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3268
da2faefd92994e158815e84b841ed19e
[ "2017年全国希望杯六年级竞赛" ]
2
single_choice
茶商城推销某种产品,有如下优惠:每次第一件全价,第二件$$\frac{1}{2}$$价,第三件$$\frac{1}{3}$$价,\ldots,第十件$$\frac{1}{10}$$价.甲同学第一次购$$10$$件;乙同学第一次购$$5$$件,第二次购$$5$$件;丙同学第一次购$$4$$件,第二次购$$6$$件;问同样购$$10$$件,谁花的钱最多,谁花的钱最少?(~ ~)
[ [ { "aoVal": "A", "content": "甲同学花的钱最多,丙同学花的钱最少 " } ], [ { "aoVal": "B", "content": "乙同学花的钱最多,甲同学花的钱最少 " } ], [ { "aoVal": "C", "content": "乙同学花的钱最多,丙同学花的钱最少 " } ], [ { "aoVal": "D", "content": "丙同学花的钱最多,甲同学花的钱最少 " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "设商品单价为$$1$$,则甲同学花的钱为$$1+\\frac{1}{2}+\\frac{1}{3}+...+\\frac{1}{9}+\\frac{1}{10}=\\left( 1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\frac{1}{5} \\right)+\\left( \\frac{1}{6}+\\frac{1}{7}+\\frac{1}{8}+\\frac{1}{9}+\\frac{1}{10} \\right)$$;乙同学花的钱为$$\\left( 1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\frac{1}{5} \\right)\\times 2=\\left( 1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\frac{1}{5} \\right)+\\left( 1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\frac{1}{5} \\right)$$;丙同学花的钱为$$\\left( 1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4} \\right)+\\left( 1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\frac{1}{5}+\\frac{1}{6} \\right)=\\left( 1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\frac{1}{5} \\right)+\\left( 1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\frac{1}{6} \\right)$$. 因 为$$1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\frac{1}{5}\\textgreater1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\frac{1}{6}\\textgreater\\frac{1}{6}+\\frac{1}{7}+\\frac{1}{8}+\\frac{1}{9}+\\frac{1}{10}$$,所以乙同学花的钱最多,甲同学花的钱最少. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3155
6664bc0327c849078d89962fd8d6be1d
[ "2016年华杯赛六年级竞赛初赛" ]
2
single_choice
将$$1,2,3,4,5,6,7,8$$这$$8$$个数排成一行,使得$$8$$的两边各数之和相等,那么共有( )种不同的排法。
[ [ { "aoVal": "A", "content": "$$1152$$ " } ], [ { "aoVal": "B", "content": "$$864$$ " } ], [ { "aoVal": "C", "content": "$$576$$ " } ], [ { "aoVal": "D", "content": "$$288$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->加乘原理->乘法原理" ]
[ "首先求出$$1,2,3,4,5,6,7$$的和是$$28$$,判断出$$8$$的两边各数之和都是$$14$$,然后分为$$4$$种情况: ($$1$$)$$8$$的一边是$$1,6,7$$,另一边是$$2,3,4,5$$时; ($$2$$)$$8$$的一边是$$2,5,7$$,另一边是$$1,3,4,6$$时; ($$3$$)$$8$$的一边是$$3,4,7$$,另一边是$$1,2,5,6$$时; ($$4$$)$$8$$的一边是$$1,2,4,7$$,另一边是$$3,5,6$$时。 求出每种情况下各有多少种不同的排法,即可求出共有多少种不同的排法。 解:$$1+2+3+4+5+6+7=28$$ $$8$$的两边各数之和是:$$28\\div 2=14$$ ($$1$$)$$8$$的一边是$$1,6,7$$,另一边是$$2,3,4,5$$时, 不同的排法一共有: $$\\left( 3\\times 2\\times 1 \\right)\\times \\left( 4\\times 3\\times 2\\times 1 \\right)\\times 2$$ $$=6\\times 24\\times 2$$ $$=288$$(种) ($$2$$)$$8$$的一边是$$2,5,7$$,另一边是$$1,3,4,6$$时, 不同的排法一共有$$288$$种。 ($$3$$)$$8$$的一边是$$3,4,7,$$另一边是$$1,2,5,6$$时, 不同的排法一共有$$288$$种。 ($$4$$)$$8$$的一边是$$1,2,4,7,$$另一边是$$3,5,6$$时, 不同的排法一共有$$288$$种。 因为$$288\\times 4=1152$$(种), 所以共有$$1152$$种不同的排法。 答:共有$$1152$$种不同的排法。 故选:A " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
705
2929ca71e0314e6cbd32aa08ce434424
[ "2021年新希望杯五年级竞赛模拟(考前培训100题)第61题" ]
1
single_choice
自然数$$M$$乘$$13$$的积的末三位数是$$123$$,$$M$$最小是.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$19$$ " } ], [ { "aoVal": "C", "content": "$$32$$ " } ], [ { "aoVal": "D", "content": "$$471$$ " } ] ]
[ "拓展思维->能力->公式记忆->符号化数学原理" ]
[ "$$M$$取最小时乘积应为$$4$$位数,根据$$13$$的整除特征,三位截断,积的末$$3$$位$$123$$与最高位数字的差必为$$13$$的倍数,而$$123 \\div13$$$\\cdots\\cdots$$$6$$, 故取最高位数字为$$6$$,则$$M=6123\\div13=471$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2520
e7c7c8a3ffba4bf1aeafc6ea5199737d
[ "2008年第6届创新杯五年级竞赛初赛B卷第9题5分", "2008年五年级竞赛创新杯" ]
1
single_choice
某人沿$$1$$路电车路线行走,每$$12$$分钟有一辆$$1$$路电车从后边追上,每$$4$$分钟有一辆$$1$$路电车从对面同他相遇,假定此人与电车均为匀速,则$$1$$路电车每隔分钟发出一辆.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->发车问题" ]
[ "设人,电车的速度分别为$${{v}_{1}},{{v}_{2}}$$,两辆相邻电车之间的距离为$$s$$,则$$\\frac{s}{{{v}_{2}}-{{v}_{1}}}=12$$,$$\\frac{s}{{{v}_{1}}+{{v}_{2}}}=4$$,从而$$\\frac{{{v}_{2}}-{{v}_{1}}}{s}=\\frac{1}{12}$$,$$\\frac{{{v}_{2}}+{{v}_{1}}}{s}=\\frac{1}{4}$$,两等式相加得$$\\frac{2{{v}_{2}}}{s}=\\frac{1}{12}+\\frac{1}{4}=\\frac{1}{3}$$,所以$$\\frac{s}{{v}_{2}}=6$$,即电车每隔$$6$$分钟发出一辆. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
174
cc1ba1d6d1bf4fdb9ff102fa4a21df19
[ "2018年IMAS小学高年级竞赛(第一轮)第6题3分", "2018年IMAS小学中年级竞赛(第一轮)第17题4分" ]
0
single_choice
列车在某天早上$$8$$点$$30$$分从$$A$$地开出,第二天凌晨$$1$$点$$50$$分抵达$$B$$地.已知$$A$$地与$$B$$地没有时差﹐请问该列车全程共用了多少时间?
[ [ { "aoVal": "A", "content": "$$5$$小时$$20$$分钟 " } ], [ { "aoVal": "B", "content": "$$10$$小时$$20$$分钟 " } ], [ { "aoVal": "C", "content": "$$15$$小时$$20$$分钟 " } ], [ { "aoVal": "D", "content": "$$16$$小时$$20$$分钟 " } ], [ { "aoVal": "E", "content": "$$17$$小时$$20$$分钟 " } ] ]
[ "拓展思维->能力->实践应用->度量单位认知" ]
[ "可知列车在出发当日共用了$$24$$小时减去$$8$$小时$$30$$分钟,即$$15$$小时$$30$$分钟;在第二日用了$$1$$小时$$50$$分钟,故全程所用的时间是$$16$$小时又$$80$$分钟,即$$17$$小时$$20$$分钟. 故选$$\\text{E}$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1694
57dc299d8dbe4c32ac99fca7f8d1a8a8
[ "2013年第25届广东广州五羊杯六年级竞赛第6题5分" ]
2
single_choice
敏华发现徐明在看一本故事书,想借来看.徐明说这本书很厚,页码共有$$741$$个数字.则这本书有页.
[ [ { "aoVal": "A", "content": "$$280$$ " } ], [ { "aoVal": "B", "content": "$$281$$ " } ], [ { "aoVal": "C", "content": "$$282$$ " } ], [ { "aoVal": "D", "content": "$$283$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "这本书有$$741$$个数字,故页码在$$100\\sim 999$$之间, $$\\frac{741-9-90 \\times 2}{3}=184$$,$$9+90+184=283$$(页). 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2707
4945e89891fe403084bfd5dd6a4d97ee
[ "2005年六年级竞赛创新杯", "2005年第3届创新杯六年级竞赛初赛第8题" ]
1
single_choice
长方体的体积是12,有两对侧面的面积分别是3和12,那么第3对侧面的面积是( ).
[ [ { "aoVal": "A", "content": "12 " } ], [ { "aoVal": "B", "content": "6 " } ], [ { "aoVal": "C", "content": "4 " } ], [ { "aoVal": "D", "content": "3 " } ] ]
[ "拓展思维->拓展思维->计算模块->方程基础->一元一次方程->整数系数方程" ]
[ "设这个长方体的长宽高分别为$$a,b,c$$,依题意有$$abc=12,ab=3,ac=12$$,那么$$b=1,a=3,c=4$$,所以另一对侧面的面积为$$bc=4$$,选$$C$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2557
473d091da328486984d49e00ee66db8b
[ "2020年北京迎春杯六年级竞赛模拟初赛第2题3分", "2017年四川成都锦江区四川师范大学附属第一实验中学小升初(六)第2题3分" ]
1
single_choice
脱式计算: ~$\dfrac{9}{13}\div7+\dfrac{1}{7}\times\dfrac{4}{13}=$~\uline{~~~~~~~~~~}~
[ [ { "aoVal": "A", "content": "$\\dfrac{1}{5}$ " } ], [ { "aoVal": "B", "content": "$\\dfrac{1}{6}$ " } ], [ { "aoVal": "C", "content": "$\\dfrac{1}{7}$ " } ], [ { "aoVal": "D", "content": "$\\dfrac{2}{7}$ " } ] ]
[ "课内体系->能力->逻辑分析", "拓展思维->拓展思维->计算模块->分数->分数运算->分小四则混合运算" ]
[ "$\\dfrac{1}{7}$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
701
d0d76eaf186643199ea985ef9657a6ae
[ "2013年全国华杯赛小学高年级竞赛初赛C卷第4题" ]
3
single_choice
已知正整数$$A$$分解质因数可以写成$$A={{2}^{\alpha }}\times {{3}^{\beta }}\times {{5}^{\gamma }}$$,其中$$\alpha $$、$$\beta $$、$$\gamma $$是自然数.如果$$A$$除以$$2$$的商是完全平方数,$$A$$除以$$3$$的结果是完全立方数,$$A$$除以$$5$$后是某个自然数的五次方,那么$$\alpha +\beta +\gamma $$的最小值是.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$17$$ " } ], [ { "aoVal": "C", "content": "$$23$$ " } ], [ { "aoVal": "D", "content": "$$31$$ " } ] ]
[ "拓展思维->七大能力->逻辑分析" ]
[ "根据``$$A$$的二分之一是完全平方数''可以知道,$$\\alpha -1$$、$$\\beta $$、$$\\gamma $$都是$$2$$的倍数. 根据``$$A$$的三分之一是完全立方数''可以知道,$$\\alpha $$、$$\\beta -1$$、$$\\gamma $$都是$$3$$的倍数. 根据``$$A$$的五分之一是某个自然数的五次方''可以知道,$$\\alpha $$、$$\\beta $$、$$\\gamma -1$$都是$$5$$的倍数. 同时满足三个条件的$$\\alpha $$的最小值恰好是$$\\left[ 3,5 \\right]=15$$;$$\\beta $$的最小值恰好是$$\\left[2,5 \\right]=10$$;$$\\gamma $$的最小值恰好是$$\\left[ 2,3 \\right]=6$$. 所以,$$\\alpha +\\beta +\\gamma $$的最小值是$$15+10+6=31$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1968
f323609fbb37457397af0a0e9f2d33eb
[ "2013年河南郑州中原网杯六年级竞赛初赛" ]
2
single_choice
某班统计数学考试成绩,平均成绩$$84.1$$分,后来发现小红的成绩是$$96$$分,被错写成了$$69$$分,重新计算后,平均成绩是$$84.7$$分,那么这个班有(~ )名学生. ~
[ [ { "aoVal": "A", "content": "$$41$$ " } ], [ { "aoVal": "B", "content": "$$43$$ " } ], [ { "aoVal": "C", "content": "$$45$$ " } ], [ { "aoVal": "D", "content": "$$47$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "第二次平均分比第一次平均分多$$84.7-84.1=0.6$$,其中小红第二次分数比第一次多$$96-69=27$$,显然,平均分的差$$\\times $$班级人数$$=$$小红少加的分数.故有$$27\\div 0.6=45$$人. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
611
5d543549447842de859245275e8f0567
[ "2009年希望杯四年级竞赛复赛", "2009年希望杯三年级竞赛复赛" ]
0
single_choice
某数被$$13$$除,商是$$9$$,余数是$$8$$,则某数等于( )。
[ [ { "aoVal": "A", "content": "$$115$$ " } ], [ { "aoVal": "B", "content": "$$120$$ " } ], [ { "aoVal": "C", "content": "$$125$$ " } ], [ { "aoVal": "D", "content": "$$130$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数问题带余除法" ]
[ "被除数$$\\div 13=9\\cdots\\cdots 8$$,则被除数$$=13\\times 9+8=125$$。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
203
87d44c560cad43bc9cf4250742293227
[ "2012年世界少年奥林匹克数学竞赛三年级竞赛初赛A卷第6题5分" ]
1
single_choice
爸爸、妈妈、哥哥、姐姐和我站成一排照相,我挨着爸爸,也挨着妈妈;姐姐挨着妈妈,也挨着哥哥.那么,站在正中间的人是谁?
[ [ { "aoVal": "A", "content": "爸爸 " } ], [ { "aoVal": "B", "content": "妈妈 " } ], [ { "aoVal": "C", "content": "哥哥 " } ], [ { "aoVal": "D", "content": "姐姐 " } ], [ { "aoVal": "E", "content": "我 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->神推理" ]
[ "由题干可推拍照顺序可能为爸爸~ 我~ 妈妈~ 姐姐~ 哥哥; 或者 哥哥~ 姐姐~ 妈妈~ 我~ 爸爸,因此妈妈在中间. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1415
3ad334339e354684a6d5f90ec108d227
[ "小学中年级三年级上学期其它", "2017年全国华杯赛小学中年级竞赛初赛模拟第1题" ]
1
single_choice
甲乙两人在春节一共得$$200$$元压岁钱,甲给乙$$40$$元,还比乙多$$10$$元,那么,原来甲得了~\uline{~~~~~~~~~~}~元压岁钱.
[ [ { "aoVal": "A", "content": "$$145$$ " } ], [ { "aoVal": "B", "content": "$$140$$ " } ], [ { "aoVal": "C", "content": "$$125$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->和差问题->二量和差问题->明和暗差" ]
[ "因为甲给乙$$40$$元,还比乙多$$10$$元,所以甲比乙多$$40\\times 2+10=90$$元, 所以甲:$$(200+90)\\div 2=145$$元. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1669
7b887d7572ef4014aa92e1a5914bdba9
[ "2014年全国迎春杯三年级竞赛初赛第5题", "2017年全国小升初八中入学备考课程" ]
1
single_choice
$$12$$枚硬币的总值是$$9$$角,其中只有$$5$$分和$$1$$角的两种,那么每种硬币各(~~~ )个.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题->假设法解鸡兔同笼->基本型->变型题" ]
[ "鸡兔同笼,假设$$12$$枚都是$$5$$分硬币,则1角硬币共$$(90-12\\times 5)\\div (10-5)=6$$枚,每种硬币各$$6$$枚. ", "<p>$$5$$分的数量:</p>\n<p>$$(12\\times 1-9)\\div \\left( 1-0.5 \\right)$$</p>\n<p>$$=3\\div 0.5$$</p>\n<p>$$=6$$(枚);</p>\n<p>$$1$$角的硬币数量为:$$12-6=6$$(枚).</p>\n<p>答:每种硬币各$$6$$枚.</p>\n<p>故选:$$\\text{C}$$.</p>" ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
195
59ce02acca194da38aba534c33856dc4
[ "2015年第14届春蕾杯一年级竞赛初赛第5题1分" ]
1
single_choice
小王说:小胖比我高;小胖说:我比园园矮;小朱说:我还没有小王高 呢;问四个小朋友哪个最高?答.
[ [ { "aoVal": "A", "content": "小王 " } ], [ { "aoVal": "B", "content": "小胖 " } ], [ { "aoVal": "C", "content": "小朱 " } ], [ { "aoVal": "D", "content": "园园 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "根据题意分析可知,小胖比小王高,所以小胖的身高高于小王,小胖说比园园矮,所以园园的身高高于小胖,小朱没有小王高,所以小王的身高高于小朱,由此可知,四个人的身高从高到低位:园园$$\\textgreater$$小胖$$\\textgreater$$小王$$\\textgreater$$小朱. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1635
913cee09003847e480302c818c29850f
[ "2012年IMAS小学中年级竞赛第一轮检测试题第1题3分" ]
2
single_choice
一根$$20\text{m}$$的木棍,要把它锯成每根$$4\text{m}$$的小木棍,每次只能锯一根木棍.请问一共要锯多少次?
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ], [ { "aoVal": "E", "content": "$$7$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "木棍被锯成了$$20\\div 4=5$$(根),因此只需要锯$$5-1=4$$(次). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
969
fe58f813b42343be89d33e985b490215
[ "2018年IMAS小学高年级竞赛(第二轮)第1题4分" ]
2
single_choice
请问算式$$\left( 2019-2018 \right)\times \left( 2019-2017 \right)\times \cdots \times \left( 2019-2012 \right)\times \left( 2019-2011 \right)$$的值之质因数分解包含多少个不同的质因数?
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ], [ { "aoVal": "E", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\left( 2019-2018 \\right)\\times \\left( 2019-2017 \\right)\\times \\cdots \\times \\left( 2019-2012 \\right)\\times \\left( 2019-2011 \\right)$$ $$=1\\times 2\\times 3\\times 4\\times 5\\times 6\\times 7\\times 8$$ $$=2\\times 3\\times \\left( 2\\times 2 \\right)\\times 5\\times \\left( 2\\times 3 \\right)\\times 7\\times \\left( 2\\times 2\\times 2\\times 2 \\right)$$. 包含不同的质因数有$$2$$、$$3$$、$$5$$、$$7$$,共有$$4$$个. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1150
19168869c06743ffbb63a55b6cfe6023
[ "2017年全国美国数学大联盟杯小学中年级三年级竞赛初赛第40题" ]
1
single_choice
约翰的钱比吉尔多$$20$$美元,他们两个总共有$$40$$美元,约翰有美元 .
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$30$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$40$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "$$(40+20)\\div 2=30$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
494
dcaf214d85d445f9a91898570f615a57
[ "2015年北京华杯赛小学高年级竞赛初赛A卷第1题" ]
2
single_choice
现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去.最后去参加活动的两个人是谁?
[ [ { "aoVal": "A", "content": "甲、乙 " } ], [ { "aoVal": "B", "content": "乙、丙 " } ], [ { "aoVal": "C", "content": "甲、丙 " } ], [ { "aoVal": "D", "content": "乙、丁 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾", "Overseas Competition->知识点->组合模块->逻辑推理" ]
[ "题目要求有两个人去,可以使用假设法,若甲去,则乙去,乙去则丙也去.三个人去,矛盾,所以甲不去.若丙不去则乙不去,那么只有丁去,矛盾,所以丙去.丙去则丁不去,由两个人去得到结论,乙要去. 所以答案是$$\\text{B}$$,丙和乙去. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1617
ff808081465a848401466a66a6cb1296
[ "2017年全国小升初八中入学备考课程", "2014年全国华杯赛小学高年级竞赛初赛B卷第5题" ]
2
single_choice
甲乙丙丁四个人今年的年龄之和是$$72$$岁.几年前(至少一年)甲是$$22$$岁时,乙是$$16$$岁.又知道,当甲是$$19$$岁的时候,丙的年龄是丁的$$3$$倍(此时丁至少$$1$$岁).如果甲乙丙丁四个人的年龄互不相同,那么今年甲的年龄可以有(~ ~ ~ ~)种情况.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题之差倍型" ]
[ "甲乙的年龄差是$$22-16=6$$(岁);当甲$$19$$岁时, $$13$$岁;至少一年前甲$$22$$岁,所以当甲$$19$$岁的时候,此时至少是$$4$$年前的年龄,那么甲今年至少是$$23$$岁;甲$$19$$岁时,丙的年龄是丁的$$3$$倍,假设丁为$$1$$岁,丙为$$3$$岁,此时四人的年龄和至少是$$19+13+1+3=36$$(岁);且甲今年的年龄至多为$$19+\\left(72-36 \\right)\\div 4=28$$(岁);所以甲今年的年龄可能是$$23$$,$$24$$,$$25$$,$$26$$,$$27$$,$$28$$;共$$6$$种,所以选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2597
832240c01ab847e5b1b72efa27e538f0
[ "2017年IMAS小学中年级竞赛(第一轮)第13题4分" ]
1
single_choice
规定$$*$$是一种运算符号,若$$4*2=86$$、$$6*3=189$$、$$8*4=3212$$、$$9*3=2712$$,请问$$10*2$$是多少?
[ [ { "aoVal": "A", "content": "$$128$$ " } ], [ { "aoVal": "B", "content": "$$208$$ " } ], [ { "aoVal": "C", "content": "$$2008$$ " } ], [ { "aoVal": "D", "content": "$$2012$$ " } ], [ { "aoVal": "E", "content": "$$2020$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "由题意与范例可判断出运算结果为先写出两个数的乘积后紧接着写下两个数的和.因$$10\\times2=20$$、$$10+2=12$$,所以$$10*2=2012$$.故选$$\\text{D}$$. 答案:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3142
029aa2ff2bdb4a6181c30a000622c0d6
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛初赛第2题5分" ]
2
single_choice
由数字$$1$$,$$2$$,$$3$$,$$4$$组成没有重复数字的四位数,所有这些四位数的和是.
[ [ { "aoVal": "A", "content": "$$666$$ " } ], [ { "aoVal": "B", "content": "$$22200$$ " } ], [ { "aoVal": "C", "content": "$$6660$$ " } ], [ { "aoVal": "D", "content": "$$66660$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "每一个数字在个位、十位、百位、千位均会出现$$3\\times2\\times1=6$$次. 故总和:$$(1+2+3+4)\\times6666=66660$$. 故选择$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2892
8dc4f872bdbd44a89cf8b54a74a71a37
[ "2012年IMAS小学中年级竞赛第一轮检测试题第2题3分" ]
0
single_choice
在算式$$\square +5=13-2$$中,$$\square $$中应填入什么数才能使算式成立?
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数减法运算->减法横式" ]
[ "13-2=11;11-5=6 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
731
90980869635a49c8b78224121af32335
[ "2013年华杯赛六年级竞赛初赛" ]
2
single_choice
已知正整数$$A$$分解质因数可以写成$$A={{2}^{\alpha }}\times {{3}^{\beta }}\times {{5}^{\gamma }}$$, 其中$$\alpha $$、$$\beta $$、$$\gamma $$ 是自然数。 如果$$A$$的二分之一是完全平方数,$$A$$的三分之一是完全立方数,$$A$$的五分之一是某个自然数的五次方,那么$$\alpha +\beta +\gamma $$的最小值是( )
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$17$$ " } ], [ { "aoVal": "C", "content": "$$23$$ " } ], [ { "aoVal": "D", "content": "$$31$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->完全平方数->平方数的简单应用" ]
[ "根据``$$A$$的二分之一是完全平方数''可以知道,$$\\left( \\alpha -1 \\right)$$、$$\\beta $$、$$\\gamma $$都是$$2$$的倍数。根据``$$A$$的三分之一是完全立方数''可以知道,$$\\alpha $$、$$\\left( \\beta -1 \\right)$$、$$\\gamma $$都是$$3$$的倍数。根据``$$A$$的五分之一是某个自然数的五次方''可以知道,$$\\alpha $$、$$\\beta $$、$$\\left( \\gamma -1 \\right)$$都是$$5$$的倍数。同时满足三个条件的$$\\alpha $$的最小值恰好是$$\\left[ 3 \\right.$$,$$\\left. 5 \\right]=15$$;$$\\beta $$的最小值恰好是$$\\left[ 2 \\right.$$,$$\\left. 5 \\right]=10$$;$$\\gamma $$的最小值恰好是$$\\left[ 2 \\right.$$,$$\\left. 3 \\right]=6$$.所以,$$\\alpha +\\beta +\\gamma $$的最小值是$$15+10+6=31$$。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1092
3cdd445910d34db49a8a95fe6b5c76b7
[ "2005年五年级竞赛创新杯", "2005年第3届创新杯五年级竞赛复赛第4题" ]
2
single_choice
某部83集的电视连续剧,从星期三开始在凤凰电视中文台播出,计划除星期六、星期日停播外,每天播出一集,那么最后一集将在星期( )播出.
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "二 " } ], [ { "aoVal": "C", "content": "四 " } ], [ { "aoVal": "D", "content": "五 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题" ]
[ "从星期三开始,每7天会播出5集,$$83\\div 5=16(周)\\ldots 3(集)$$那么16周后再播出三集就全部播放完毕,那么16周后从星期三开始,播放这最后3集中的第一集,星期四为第二集,星期五为最后一集,选D. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
764
40c57df2ee7846aea568637e3a019c67
[ "2016年全国华杯赛小学高年级竞赛在线模拟第6题" ]
1
single_choice
(2)在一个七位数中,任何三个连续排列的数字都构成一个能被$$11$$或$$13$$整除的三位数,那么这个七位数最大是.
[ [ { "aoVal": "A", "content": "$$9981733$$ " } ], [ { "aoVal": "B", "content": "$$9884737$$ " } ], [ { "aoVal": "C", "content": "$$9978137$$ " } ], [ { "aoVal": "D", "content": "$$9871773$$ " } ] ]
[ "拓展思维->七大能力->运算求解" ]
[ "任何三个连续排列的数字都构成一个三位数,说明没有数字$$0$$,$$\\left. 11 \\right\\textbar990$$,$$\\left. 13 \\right\\textbar988$$则首三位为$$988$$,选择题这是已经得到答案了!接着往下分析$$88$$,$$13\\left\\textbar{} 884 \\right.$$,$$11\\left\\textbar{} 880 \\right.$$,所以第四位最大为$$4$$,依次类推,得到答案,$$9884737$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
828
72b7183d1c4e4f35baae05b7262bca26
[ "2017年全国美国数学大联盟杯小学中年级四年级竞赛初赛" ]
1
single_choice
\textbf{(2017 Math League, Priamry 4, Question \#40)} A group of kids aged $$5$$ to $$12$$ went to the movies. The product of the ages of these children is $$3080$$. What is the sum of the ages of these children? 一群$$5$$至$$12$$岁的孩子去看电影.这些孩子的年龄的乘积是$$3080$$.请问这些孩子的年龄的和是多少?
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$31$$ " } ], [ { "aoVal": "C", "content": "$$32$$ " } ], [ { "aoVal": "D", "content": "$$33$$ " } ] ]
[ "Overseas Competition->知识点->数论模块->分解质因数", "拓展思维->思想->转化与化归的思想" ]
[ "$$3080=2^{3}\\times5\\times7\\times11$$, $$5+7+8+11=31$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1888
ee0c3f2f59e84112af147cc8409e83b9
[ "2016年创新杯六年级竞赛训练题(一)第3题" ]
1
single_choice
一件商品,如果将价格先降低$$20 \%$$,再提升$$30 \%$$,那么现在的价格比原来价格提升了(~ ).
[ [ { "aoVal": "A", "content": "$$4 \\%$$ " } ], [ { "aoVal": "B", "content": "$$6 \\%$$ " } ], [ { "aoVal": "C", "content": "$$10 \\%$$ " } ], [ { "aoVal": "D", "content": "$$30 \\%$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "$$\\left( 1-20 \\% \\right)\\times \\left( 1+30 \\% \\right)-1=0.04=4 \\%$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
122
1a4479292ae14dc5995dff0377a739ad
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第12题2分" ]
1
single_choice
小熊、小马、小牛、和小鹿各拿一只水桶同时到一个水龙头前接水,它们只能一个接一个地接水.~ 小熊接一桶水要$$5$$分钟,小马要$$3$$分钟,小牛要$$7$$分钟,小鹿要$$2$$分钟.它们等候时间的总和最少是分钟.
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$32$$ " } ], [ { "aoVal": "C", "content": "$$34$$ " } ], [ { "aoVal": "D", "content": "$$36$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->统筹规划->简单时间统筹问题->时间总和问题" ]
[ "要使它们等候时间(等候时间包括接水时间)的总和最少,应该让接水用时少的先接水,即接水顺序是:小鹿、小马、小熊、小牛. 等候时间总和最少是: $$2\\times 4+3\\times 3+5\\times 2+7=8+9+10+7=34$$(分钟), 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
837
808342c77f504195bdc002483d7bfc38
[ "其它改编自2015年全国希望杯六年级竞赛初赛第6题" ]
2
single_choice
定义:符号$$\left { x \right }$$表示$$x$$的小数部分,如$$\left { 3.14 \right }=0.14$$,$$\left { 0.5 \right }=0.5$$.那么,$$\left { \frac{2015}{3} \right }+\left { \frac{315}{4} \right }+\left { \frac{412}{5} \right }=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$\\frac{1371}{30}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{322}{15}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{211}{60}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{109}{60}$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$\\left { \\frac{2015}{3} \\right }+\\left { \\frac{315}{4} \\right }+\\left { \\frac{412}{5} \\right }=\\frac{2}{3}+\\frac{3}{4}+\\frac{2}{5}=\\frac{109}{60}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1519
7624955dc94a44d88966ffaf11da3f36
[ "走美杯三年级竞赛", "走美杯四年级竞赛" ]
1
single_choice
幼儿园买了$$8$$辆玩具车,每辆玩具车需要$$92$$元,李老师带了$$720$$元够吗?下面的解答比较合理的是
[ [ { "aoVal": "A", "content": "因为$$92\\times 8\\approx$$ 720(元),$$92\\times$$ 8\\textgreater720,所以$$92\\times$$ 8\\textgreater720,够 " } ], [ { "aoVal": "B", "content": "因为$$92\\times 8\\approx$$ 800(元),$$92\\times$$ 8\\textless800,所以$$92\\times$$ 8\\textless720,够 " } ], [ { "aoVal": "C", "content": "因为$$92\\times 8\\approx$$ 720(元),$$92\\times$$ 8\\textgreater720,所以$$92\\times$$ 8\\textgreater720,不够 " } ], [ { "aoVal": "D", "content": "因为$$92\\times 8\\approx$$ 800(元),$$92\\times$$ 8\\textgreater800,所以$$92\\times$$ 8\\textgreater720,不够 " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题之差倍型" ]
[ "92\\textgreater90,总价大于$$720$$元,所以不够 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1886
bbe00ddc459d4bf4970c706be094c618
[ "2006年四年级竞赛创新杯" ]
1
single_choice
张师傅加工一批零件,原计划每天加工$$80$$个,$$5$$天加工完,实际张师傅只用$$4$$天就加工完了,实际每天比原计划每天多加工零件( )个。
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->归一归总问题->归总问题" ]
[ "实际每天加工零件的个数为$$80\\times 5\\div 4=100$$(个);实际每天比原计划每天多加工的个数是$$100-80=20$$(个),故选$$\\text{C}$$.错选$$\\text{A}$$选项是不能根据条件先算出零件的总数量,进而解决问题;错选$$\\text{B}$$、$$\\text{D}$$选项是计算出错. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1143
14d411094ee44edcadf9b41fd981ec74
[ "2009年第8届全国新希望杯三年级竞赛" ]
0
single_choice
~周末,妈妈去商场买了一些家庭用品,分别是洗衣机($$1258$$元)、台灯($$59$$元)、电饭煲($$365$$元)、电吹风($$230$$元),这些用品一共需要花费(~)元.
[ [ { "aoVal": "A", "content": "$$2012$$ " } ], [ { "aoVal": "B", "content": "$$2013$$ " } ], [ { "aoVal": "C", "content": "$$2014$$ " } ], [ { "aoVal": "D", "content": "$$2022$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "为了简化计算,我们常把一些数拆开来使它与其他数字之和是整十、整百、整千$$ \\cdots ~\\cdots $$这种方法叫作借数凑整法,我们发现如果将$$1258$$和$$159$$分别拆成$$1250 + 8$$和$$150 + 9$$时,便可以凑出整百,$$365$$可以拆成$$360 + 5$$,也可以拆成$$370 - 5$$,但是由于后面要加上$$230$$,所以拆成$$370 - 5$$时会与$$230$$凑成整百,所以总的花费 $$ = \\left( 1250 + 150 \\right) + \\left( 370 + 230 \\right) + \\left( 8 + 9 - 5 \\right) = 1400 + 600 + 12 = 2012$$(元). " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3301
5f7df6e3e7b54eb591dfc6d16cda4816
[ "2017年第16届湖北武汉创新杯小学高年级六年级竞赛邀请赛训练题(二)" ]
1
single_choice
用$$1$$、$$2$$、$$3$$、$$4$$、$$5$$这五个数字可组成(~ ~ ~ )个比$$20000$$大且百位数字不是$$3$$的无重复数字的五位数.
[ [ { "aoVal": "A", "content": "$$78$$ " } ], [ { "aoVal": "B", "content": "$$62$$ " } ], [ { "aoVal": "C", "content": "$$84$$ " } ], [ { "aoVal": "D", "content": "$$124$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "根据题意,要求这个五位数比$$20000$$大,则首位必须是$$2$$、$$3$$、$$4$$、$$5$$这四个数字,当首位是$$3$$时,百位数不会是数字$$3$$,共有$$A44=24$$种情况,当首位是$$2$$、$$4$$、$$5$$时,由于百位数不能是数字$$3$$,有$$3\\left( A44A33 \\right)=54$$种情况,有分步计数原理,共有$$54+24=78$$个数字. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
751
7633be4aa1444bcb85bc9d90f4c7bafb
[ "2019年第7届湖北长江杯五年级竞赛复赛B卷第10题3分" ]
1
single_choice
$$120$$有个偶因数.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$24$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "因为$$120$$的因数有:$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$8$$、$$10$$、$$12$$、$$15$$、$$20$$、$$24$$、$$30$$、$$40$$、$$60$$、$$120$$,所以一共有$$16$$个因数. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
525
d481474d4fa44909ba63765608e28828
[ "2012年IMAS小学中年级竞赛第一轮检测试题第8题3分" ]
1
single_choice
在算式$$2+8+3=2\bigcirc 8\square 3$$中,请问应该分别在$$\bigcirc $$、$$\square $$填上什么运算符号才可以使得算式正确?
[ [ { "aoVal": "A", "content": "$$\\bigcirc $$填入$$+$$,$$\\square $$填入$$\\times $$ " } ], [ { "aoVal": "B", "content": "$$\\bigcirc $$填入$$\\times $$,$$\\square $$填入$$-$$ " } ], [ { "aoVal": "C", "content": "$$\\bigcirc $$填入$$+$$~ ,$$\\square $$填入$$\\div $$ " } ], [ { "aoVal": "D", "content": "$$\\bigcirc $$填入$$\\times $$,$$\\square $$填入$$\\div $$ " } ] ]
[ "知识标签->学习能力->七大能力->运算求解" ]
[ "等式左边等于$$13$$,当算式右边依次填入$$\\times $$、$$-$$时,2\\times 8-3=13,等式成立.经验算,其余选项均不正确. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1750
b1c9b26ec8334de0a18f27b8b7a856f5
[ "2017年第15届湖北武汉创新杯六年级竞赛决赛第4题", "2018年浙江杭州西湖区小学高年级六年级上学期单元测试《第三单元》第8题3分", "2018年四川成都锦江区四川师范大学附属第一实验中学小升初(四)第4题3分" ]
1
single_choice
一种商品的利润率为$$20 \%$$,进价提高$$25 \% $$后,保持利润不变,那么,进价提价后的利润率为.
[ [ { "aoVal": "A", "content": "$$25 \\%$$ " } ], [ { "aoVal": "B", "content": "$$20 \\% $$ " } ], [ { "aoVal": "C", "content": "$$16 \\% $$ " } ], [ { "aoVal": "D", "content": "$$12.5 \\%$$ " } ] ]
[ "课内体系->知识点->数的运算->估算->百分数的简单实际问题->折扣、成数、税率、利率", "拓展思维->知识点->应用题模块->经济问题->基本经济概念->利润基本公式->已知利润成本求利润率" ]
[ "利润问题.假设成本为$$100$$元,则利润为$$20$$元,现在成本是$$100\\times (1+25 \\%)=125$$元,$$20\\div 125\\times 100 \\%=16 \\%$$. 以进价为单位``1'',利润为20\\%,第二次进价为1+25\\%=125\\%,则第二次利润率$$20 \\%\\div 125 \\%\\times 100 \\%=16 \\%$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
190
c788b6742f934097bfebdccfe53bf203
[ "2017年湖北武汉中环杯四年级竞赛初赛第14题" ]
2
single_choice
小明和小红有如下对话: 小明说:``我没有超过$$40$$岁.'' 小红说:``我$$38$$岁,你至少比我大$$5$$岁.'' 小明说:``你至少$$39$$岁.'' 已知这三句话都是假话,那么小红~\uline{~~~~~~~~~~}~岁.
[ [ { "aoVal": "A", "content": "$$37$$ " } ], [ { "aoVal": "B", "content": "$$38$$ " } ], [ { "aoVal": "C", "content": "$$39$$ " } ], [ { "aoVal": "D", "content": "$$41$$ " } ] ]
[ "知识标签->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾" ]
[ "逻辑推理.由第一句话可知,小明超过$$40$$岁; 由第二句话可知,小红不是$$38$$岁,且两人年龄相差不超过$$4$$岁,即小红的年龄大于$$36$$岁; 由第三句话可知,小红的年龄小于$$39$$岁. 则小红的年龄为$$37$$岁. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2158
4f879a9761b74a7e9ba5639b72e66dd2
[ "2019年第24届YMO一年级竞赛决赛第5题3分" ]
1
single_choice
小$$A$$、小$$B$$、小$$C$$、小$$D$$跑$$50$$米分别用时$$12$$秒、$$14$$秒、$$11$$秒、$$10$$秒,是第二名.
[ [ { "aoVal": "A", "content": ".小$$A$$ " } ], [ { "aoVal": "B", "content": "小$$B$$ " } ], [ { "aoVal": "C", "content": "小$$C$$ " } ], [ { "aoVal": "D", "content": "小$$D$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "路程一样,则用时越少,跑的越快.根据时间排序,从少到多为$$10$$秒,$$11$$秒,$$12$$秒,$$14$$秒,故第二名为$$11$$秒的,即小$$C$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1025
2ea39d8a4f494098bc248ab886b55ea3
[ "2015年上海走美杯三年级竞赛初赛", "2015年走美杯三年级竞赛初赛" ]
2
single_choice
小明说:``我妈妈比我大$$24$$岁,两年前妈妈的年龄是我的$$4$$倍。''那么小明今年( )岁。
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题之差倍型" ]
[ "$$24\\div \\left( 4-1 \\right)+2=24\\div 3+2=8+2=10$$ (岁) " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
925
ceb4d02a24314f638c78d8d2fadacb1a
[ "2016年IMAS小学高年级竞赛第一轮检测试题第15题4分" ]
2
single_choice
已知$$304$$除以一个两位数,余数为$$24$$,请问这样的两位数共有多少个?
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ], [ { "aoVal": "E", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数问题带余除法->除法中四量关系" ]
[ "被除数$$=$$商$$\\times $$除数$$+$$余数,用$$304-24=280$$,$$280$$一定是该两位数的倍数, 将$$280$$分解因数:$$280=2\\times 2\\times 2\\times 5\\times 7$$, 则符合条件的两位数有$$70$$、$$56$$、$$40$$、$$35$$、$$28$$,共$$5$$种. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2109
e74a54f02e91402680069dd6e0d4802b
[ "2014年迎春杯三年级竞赛初赛" ]
2
single_choice
有$$3$$盒同样重的苹果,如果从每盒中都取出$$4$$千克,那么盒子里剩下的苹果的重量正好等于原来$$1$$盒苹果的重量,原来每盒苹果重( )千克。
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->列方程解应用题等量代换" ]
[ "解:$$3\\times 4\\div 2$$ $$=12\\div 2$$ $$=6$$(千克) 答:每盒苹果重$$6$$千克。 故选:B。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1599
5294e33d48634577aaf9f2c7ed8b68df
[ "2011年北京五年级竞赛" ]
1
single_choice
甲、乙两瓶盐水,甲瓶盐水的浓度是乙瓶盐水的$$3$$倍.将$$100$$克甲瓶盐水与$$300$$克乙瓶盐水混合后得到浓度为$$15 \% $$的新盐水,那么甲瓶盐水的浓度是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "30\\% " } ], [ { "aoVal": "B", "content": "25\\% " } ], [ { "aoVal": "C", "content": "20\\% " } ], [ { "aoVal": "D", "content": "15\\% " } ] ]
[ "知识标签->数学思想->对应思想" ]
[ "设乙瓶盐水的浓度是$$x \\% $$,甲瓶盐水的浓度是$$3x \\% $$,有$$100 \\times 3x \\%~ + 300\\times x \\%~ = (100 + 300) \\times 15 \\% $$,解得$$x = 10$$,即甲瓶盐水的浓度是$$30 \\% $$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1403
abf3a45cadef4ced9c42f54c33313bf4
[ "2021年春蕾杯六年级竞赛第2题2分", "2020年春蕾杯六年级竞赛第7题2分" ]
1
single_choice
父亲的年龄是女儿现在的年龄时,女儿刚$$4$$岁;当父亲$$79$$岁时,女儿的年龄恰好是父亲现在的年龄,则父亲现在的年龄是~\uline{~~~~~~~~~~}~岁.
[ [ { "aoVal": "A", "content": "$$54$$ " } ], [ { "aoVal": "B", "content": "$$64$$ " } ], [ { "aoVal": "C", "content": "$$52$$ " } ], [ { "aoVal": "D", "content": "$$56$$ " } ], [ { "aoVal": "E", "content": "$$60$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "$$\\left( 79-4 \\right)\\div 3=75\\div 3=25$$(岁), $$79-25=54$$(岁), 答:父亲现在的年龄是$$54$$岁. 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1049
4a8d3aaab35a4a8290d52e5707ab0eb4
[ "2016年新希望杯六年级竞赛训练题(六)第2题" ]
2
single_choice
将一个分数的分母减去$$7$$得$$\frac{7}{9}$$,分母加上$$3$$得$$\frac{3}{4}$$,这个分数的分母比分子多(~ ).
[ [ { "aoVal": "A", "content": "$$53$$ " } ], [ { "aoVal": "B", "content": "$$57$$ " } ], [ { "aoVal": "C", "content": "$$63$$ " } ], [ { "aoVal": "D", "content": "$$67$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "这个分数的分母比分子的$$\\frac{9}{7}$$倍多$$7$$,比分子的$$\\frac{4}{3}$$倍少$$3$$. 设分子为$$x$$,$$\\frac{9}{7}x+7=\\frac{4}{3}x-3$$,解得$$x=210$$,分母$$\\frac{4}{3}x-3=277$$. 分母比分子多$$277-210=67$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1027
1781528084144b3abcb64a15533fd2d1
[ "2011年其它", "2011年北京五年级竞赛" ]
3
single_choice
一项工程,甲单独做要$$12$$小时完成,乙单独做要$$18$$小时完成.若甲先做$$1$$小时,然后乙接替甲做$$1$$小时,再由甲接替乙做$$1$$小时,$$\cdots$$,两人如此交替工作,请问:完成任务时,共用了多少小时?
[ [ { "aoVal": "A", "content": "$$14\\frac{1}{5}$$ " } ], [ { "aoVal": "B", "content": "$$14\\frac{1}{3}$$ " } ], [ { "aoVal": "C", "content": "$$7\\frac{1}{5}$$ " } ], [ { "aoVal": "D", "content": "$$14$$ " } ] ]
[ "知识标签->数学思想->整体思想" ]
[ "① 若甲、乙两人合作共需多少小时? ~~ $$1 \\div \\left( {\\frac{1}{{12}} + \\frac{1}{{18}}} \\right) = 1 \\div \\frac{5}{{36}} = 7\\frac{1}{5}$$(小时). ~②甲、乙两人各单独做$$7$$小时后,还剩多少? ~~ $$1 - 7 \\times \\left( {\\frac{1}{{12}} + \\frac{1}{{18}}} \\right) = 1 - \\frac{{35}}{{36}} = \\frac{1}{{36}}$$. ~③余下的$$\\frac{1}{{36}}$$由甲独做需要多少小时? ~~ $$\\frac{1}{{36}} \\div \\frac{1}{{12}} = \\frac{1}{3}$$(小时). ~④共用了多少小时? ~~ $$7 \\times 2 + \\frac{1}{3} = 14\\frac{1}{3}$$(小时). 在工程问题中,转换条件是常用手法. 本题中,甲做$$1$$小时,乙做$$1$$小时,相当于他们合作$$1$$小时,也就是每$$2$$小时,相当于两人合做$$1$$小时. 这样先算一下一共进行了多少个这样的$$2$$小时,余下部分问题就好解决了. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
117
12742aee661e46c49eaf1c28f40ce06a
[ "2017年第16届湖北武汉创新杯六年级竞赛邀请赛训练题(三)" ]
2
single_choice
甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛$$1$$场,规定胜者得$$2$$分,平局各得$$1$$分,输者得$$0$$分.如果最后结果甲得第一,乙,丙并列第二,丁是最后一名,那么乙得分.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "知识标签->拓展思维->组合模块->逻辑推理->体育比赛->2-1-0 积分制" ]
[ "无论每场比赛的结果如何,每场比赛两队的总得分都是$$2$$分,一共有$$4$$个队,会有$$6$$场比赛,共$$2\\times 6=12$$分.每个人打$$3$$场比赛,第一名甲最多全胜得$$6$$分,乙$$+$$丙$$+$$丁$$=6$$分,所以乙和丙大于$$6\\div 3=2$$分.如果乙$$=$$丙$$=4$$分,那么甲$$4$$分,此时总分数大于$$12$$分,不可能,所以乙丙只能得$$3$$分. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
897
78e7a3da6c5d40f59e1c77edd90e6864
[ "2011年五年级竞赛明心奥数挑战赛" ]
1
single_choice
小丽用一排地砖创造了一种跳跃游戏.她将地砖标上1,2,3,4,\ldots 并沿这一排地砖跳跃,每两块地砖着地一次,第一步落在第2块地砖上,最后停在倒数第2块地砖上.转身后她从倒数第2块地砖开始向回跳跃,这一次是每三块地砖着地一次,最后停在第1块地砖上.最后她又转身从第1块地砖开始跳跃,每五块地砖着地一次.这一次她又停在倒数第2块地砖上.那么这一排地砖共有( )块(从下列选项中选出符合条件的答案).
[ [ { "aoVal": "A", "content": "39 " } ], [ { "aoVal": "B", "content": "40 " } ], [ { "aoVal": "C", "content": "47 " } ], [ { "aoVal": "D", "content": "49 " } ], [ { "aoVal": "E", "content": "53 " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->中国剩余定理->逐级满足法" ]
[ "这个数除以2余1,除以3余2,除以5余2,是$$17+30k\\left( k=0,1,2\\cdots \\right)$$ 类型的数,选项中47符合,所以选C. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1827
adc148dfc8114969a2dac1b97782b1fd
[ "2020年第1届广东深圳超常思维竞赛五年级竞赛初赛第21题4分" ]
1
single_choice
在$$1914$$年至$$1918$$年的战争期间,在意大利波河山谷($$\text{PoValley}$$)发现了一具骸骨,一件损坏的制服和一支戟(不长于$$10$$英尺的一种武器,$$1$$英尺=$$0.3048\text{m}$$).考古学家发现它们是属于一个法国上尉的.该戟的长度(整数)乘该法国上尉被杀死时的那个月份的天数,乘该上尉的死期到其骸骨被发现之间的年数的一半,再乘该上尉死时年龄的一半,等于$$451066$$.该上尉死于战役.
[ [ { "aoVal": "A", "content": "$$\\text{Torino}$$($$1522$$年$$2$$月) " } ], [ { "aoVal": "B", "content": "$$\\text{Cremona}$$($$1712$$年$$3$$月) " } ], [ { "aoVal": "C", "content": "$$\\text{Pavia}$$($$1512$$年$$2$$月) " } ], [ { "aoVal": "D", "content": "$$\\text{Marengo}$$($$1800$$年$$6$$月) " } ], [ { "aoVal": "E", "content": "$$\\text{Castiglione}$$($$1796$$年$$8$$月) " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设$$h=$$载的长度; $$n=$$该战役的月份中的天数; $$p=$$死期与发现日期之间的年数; 且$$a=$$该上尉死时的年龄. 则 $$h\\times n\\times \\frac{p}{2}\\times \\frac{a}{2}=451066$$,或$$h\\times n\\times p\\times a={{2}^{3}}\\times 7\\times 11\\times 29\\times 101$$,对$$n$$仅有的可能性是$$n=28$$或$$n=29$$,因此该月必是二月,首先设$$n=28$$,$$n={{2}^{2}}\\times 7$$. 我们注意到$$p$$不可能是$$2$$,$$29$$,$$11$$,$$22$$,$$58$$也不能是$$29\\times 101$$,仅有的其他可能性是: ($$1$$)$$p=2\\times 101$$,这种情况下$$a\\times h=29\\times 11$$, 但$$a\\ne 11$$(太年轻)且$$h\\ne 11$$(太长). ($$2$$)$$p=29\\times 11$$,这种情况下$$a=2$$或$$101$$,这两者均不可能, 所以$$n\\ne 28$$. 因此$$n$$必须是$$29$$,且这年是闰年.故选$$\\text{C}$$. 注:尽管上述理由已足以回答此问题,以下的理由也说明该年是$$1512$$年.猜测$$p$$必须接近于$$400$$,唯一的可能性是$$p={{2}^{2}}\\times 101=404$$, 所以该上尉死于$$1914-404$$和$$1918-404$$之间,即$$1510$$年和$$1514$$年之间,仅有的闰年是$$1512$$年.注意,这也给出$$a\\times h=2\\times 7\\times 11$$,得出$$a=22$$,$$h=7$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1501
56526885079349619f8c78d92095f777
[ "2017年第13届湖北武汉新希望杯六年级竞赛决赛第5题" ]
2
single_choice
《小学计算秘籍》的正文共$$193$$页,页码是从$$1$$到$$3$$位的连续自然数,这本书正文的页码共有个数码``$$1$$''.
[ [ { "aoVal": "A", "content": "$$131$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$133$$ " } ], [ { "aoVal": "D", "content": "$$134$$ " } ] ]
[ "拓展思维->思想->分类讨论思想" ]
[ "百位上是$$1$$:$$100$ $193$$共$$94$$个; 十位上是$$1$$:$$10$ $19$$,$$110$ $119$$共$$20$$个; 个位上是$$1$$:$$1,11,21,31,\\cdot \\cdot \\cdot \\cdot \\cdot \\cdot 191$$共$$20$$个; 总共$$94+20+20=134$$(个). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1285
f121863db17a4d638db29aa3a57d5ea2
[ "2020年新希望杯五年级竞赛第11题", "2020年希望杯五年级竞赛模拟第11题" ]
1
single_choice
【2020五年级卷第$$11$$题】大头儿子给小头爸爸计算每天的交通费用.大头儿子说:``您的车百公里油耗为$$8$$升,每天上下班共行驶$$30$$公里,油价按每升$$7.2$$元计算,您每天上下班需要支付的油费为元.''
[ [ { "aoVal": "A", "content": "$$27$$ " } ], [ { "aoVal": "B", "content": "$$17.28$$ " } ], [ { "aoVal": "C", "content": "$$1.92$$ " } ], [ { "aoVal": "D", "content": "$$19.2$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "因为由题干可知,车百公里油耗为$$8$$升,每天上下班共行驶$$30$$公里,则上下班共耗油$$30\\div 100\\times 8=2.4$$(升),油价按每升$$7.2$$元计算,所以每天上下班需要支付的油费为$$7.2\\times 2.4=17.28$$(元). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3406
f735ed99132c4db69972e7cb0439c0a2
[ "2016年创新杯五年级竞赛训练题(一)第3题" ]
1
single_choice
用$$0$$、$$1$$、$$2$$三个数可以组成很多的自然数,将其从小到大依次排列起来,分别是:$$0$$,$$1$$,$$2$$,$$10$$,$$11$$,$$\cdots $$,则$$2012$$是其中的第(~ ~ )个数.
[ [ { "aoVal": "A", "content": "$$57$$ " } ], [ { "aoVal": "B", "content": "$$58$$ " } ], [ { "aoVal": "C", "content": "$$59$$ " } ], [ { "aoVal": "D", "content": "$$60$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "我们首先考虑在$$2012$$之前有多少个数,在$$2012$$之前的数考虑其各个数位可以选择的数字,我们把$$2012$$前面的所有数当做是四位数,没有的数位拿$$0$$占位置,此时千位数字:$$0$$或$$1$$;百位、十位、个位数字为$$0$$,$$1$$,$$2$$;共$$2\\times 3\\times 3\\times 3=54$$(个).当千位数字为$$2$$时:即自第$$55$$个开始:$$2000$$,$$2001$$,$$2002$$,$$2010$$,$$2011$$,$$2012$$为第$$60$$个数. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1287
4bbba07e4071471f8caa97e4bb1d3805
[ "2021年世界少年奥林匹克数学竞赛六年级竞赛初赛第15题" ]
1
single_choice
在外玩耍的奇奇回到家从冰箱里拿出一瓶$$100 \%$$的纯果汁,一口气喝了$$\frac{1}{5}$$后又放回了冰箱.第二天妈妈拿出来喝了剩下的 $$\frac{1}{5}$$ ,觉得太浓,于是就加水兑满,摇匀之后打算明天再喝.第三天奇奇拿出这瓶果汁,一口气喝得只剩一半了.妈妈担心他喝得太多,于是就加了些水把果汁兑满.这时果汁的浓度是~\uline{~~~~~~~~~~~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$10$$\\% " } ], [ { "aoVal": "B", "content": "$$30$$\\% " } ], [ { "aoVal": "C", "content": "$$32$$\\% " } ], [ { "aoVal": "D", "content": "$$40$$\\% " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "第一天剩下纯果汁:$$1-\\frac{1}{5}=\\frac{4}{5}$$, 第二天剩下纯果汁:$$:\\frac{4}{5}\\times \\left( 1-\\frac{1}{5} \\right)=\\frac{16}{25}$$, 第三天剩下纯果汁:$$\\frac{16}{25}\\times \\left( 1-\\frac{1}{2} \\right)=\\frac{8}{25}$$, 这时果汁的浓度是:$$\\frac{8}{25}\\div 1\\times 100 \\%=32 \\%$$. 答:这时果汁的浓度是$$32 \\%$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1606
9a38e3acfb1342d1be9e0fb09f7853ae
[ "2015年湖北武汉世奥赛六年级竞赛模拟训练题(一)第3题" ]
2
single_choice
某校学生到郊外植树,已知老师是学生人数的$$\frac{1}{3}$$.若每位男学生种$$13$$棵树,每位女学生种$$10$$棵树,每位老师种$$15$$棵树,他们共种了$$186$$棵树,那么老师有人.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "设男学生有$$a$$人,女学生有$$b$$人,则老师人数为$$\\frac{a+b}{3}$$. 可得不定方程$$13a+10b+15\\times \\frac{a+b}{3}=186$$,化简得到$$6a+5b=62$$,考虑到$$a+b$$为$$3$$的倍数,只有一组解$$a=2$$,$$b=10$$.那么老师有$$\\left( 2+10 \\right)\\div 3=4$$人. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2338
209919afa44b4ab691ce9bb80607a2c3
[ "2017年第20届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第1题3分" ]
1
single_choice
求等差数列:$$1$$,$$6$$,$$11$$,$$16$$,$$\cdots $$的第$$61$$项是.
[ [ { "aoVal": "A", "content": "$$296$$ " } ], [ { "aoVal": "B", "content": "$$301$$ " } ], [ { "aoVal": "C", "content": "$$306$$ " } ], [ { "aoVal": "D", "content": "$$311$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列求通项" ]
[ "根据题意,这个等差数列的首项是$$1$$,公差是$$6-1=5$$,项数是$$61$$, 根据末项$$=$$首项$$+$$公差$$\\times $$(项数$$-1$$)来计算:$$1+5\\times (61-1)=301$$, 所以第$$61$$项是$$301$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1834
cdab317522a2406e9fc68f6d149a3bd9
[ "2018年第6届湖北长江杯六年级竞赛初赛A卷第3题3分" ]
1
single_choice
商店有$$A$$,$$B$$两件衣服,都获得$$200$$元的收入.$$A$$赚了$$10 \%$$,$$B$$亏了$$10 \%$$,总体上是.
[ [ { "aoVal": "A", "content": "赚了 " } ], [ { "aoVal": "B", "content": "亏了 " } ], [ { "aoVal": "C", "content": "不亏不赚 " } ], [ { "aoVal": "D", "content": "不能确定 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "售价为$$200$$元,$$A$$赚了$$10 \\%$$, $$A$$的进价为: $$200\\div (1+10 \\%)=\\frac{2000}{11}$$(元), $$B$$亏了$$10 \\%$$,$$B$$的进价为: $$200\\div (1-10 \\%)=\\frac{2000}{9}$$(元), $$\\frac{2000}{11}+\\frac{2000}{9}=\\frac{40000}{99}$$(元)$$\\textgreater400$$元. 进价$$\\textgreater$$售价,亏了.选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3164
1414343afe034b0ba73b9c966f2c0f2a
[ "2017年第22届全国华杯赛小学高年级竞赛初赛第1题10分" ]
1
single_choice
两个有限小数的整数部分分别是$$7$$和$$10$$,那么这两个有限小数的积的整数部分有(~ ~ )种可能的取值.
[ [ { "aoVal": "A", "content": "$$16$$ " } ], [ { "aoVal": "B", "content": "$$17$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$19$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->枚举法->有序枚举" ]
[ "设这两个数为$$a$$、$$b$$,则有$$7\\times 10\\textless{}ab\\textless{}8\\times 11$$,所以$$70\\textless{}ab \\textless{}88$$,其中的整数部分有$$70$$,$$71$$,$$72$$,$$\\ldots $$,$$87$$,共有$$18$$种. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1515
449cf9911bc540918b21865658db5f59
[ "2017年第15届湖北武汉创新杯六年级竞赛决赛第1题" ]
2
single_choice
在$$A$$地植树$$1000$$棵,$$B$$地植树$$1250$$棵,甲、乙、丙每天分别能植树$$28$$、$$32$$、$$30$$棵,甲在$$A$$地、乙在$$B$$地、丙跨$$A$$与$$B$$两地,同时开始、同时结束,整个过程所用的时间是天.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$25$$ " } ], [ { "aoVal": "C", "content": "$$45$$ " } ], [ { "aoVal": "D", "content": "$$60$$ " } ] ]
[ "拓展思维->知识点->应用题模块->工程问题->合作工程问题->双工程问题" ]
[ "工程问题.从开始到结束三人一共用了$$(1000+1250)\\div (28+32+30)=2250\\div 90=25$$天. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
135
16c2083f466845c2b5a5cb00bde5d723
[ "2019年新加坡高级学府数学竞赛(SASMO)五年级竞赛第14题" ]
1
single_choice
四个好朋友发言如下: Kieran:我不是最矮的. Franklin:我不是最高的也不是最矮的. Mabel:我是最矮的. Jeff:我是最高的. 如果他们中只有一个人说谎了,那谁是最高的?
[ [ { "aoVal": "A", "content": "$$Kieran$$ " } ], [ { "aoVal": "B", "content": "$$Franklin$$ " } ], [ { "aoVal": "C", "content": "$$Mabel$$ " } ], [ { "aoVal": "D", "content": "$$Jeff$$ " } ] ]
[ "Overseas Competition->知识点->组合模块->逻辑推理->条件型逻辑推理->表格法", "拓展思维->拓展思维->组合模块->逻辑推理" ]
[ "如果$$Kieran$$说谎,那么他最矮,则和$$Mabel$$矛盾,同理$$Mabel$$也不能说谎,$$Franklin$$如果说谎的话则和$$Jeff$$或者$$Kieran$$矛盾,所以只能$$Jeff$$说谎,那么$$Jeff$$和$$Franklin$$ 不是最高,$$Mabel$$最矮,所以$$Kieran$$最高. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3026
9d29382b4ef549d0adfcdae100750f10
[ "2014年迎春杯三年级竞赛复赛" ]
2
single_choice
找出规律,将你认为合适的数填入( ),$$2$$、$$4$$、$$3$$、$$9$$、$$4$$、$$16$$、$$5$$、( )、( )、$$36$$、$$7$$、$$\cdots $$ 那么正确的数是( )
[ [ { "aoVal": "A", "content": "$$18$$、$$6$$ " } ], [ { "aoVal": "B", "content": "$$22$$、$$6$$ " } ], [ { "aoVal": "C", "content": "$$25$$、$$6$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律->数列找规律填数" ]
[ "解:注意到: $$4$$是$$2$$的平方, $$9$$是$$3$$的平方, $$16$$是$$4$$的平方, $$25$$是$$5$$的平方, $$36$$是$$6$$的平方, $$\\cdots $$ 根据这个规律,可知中间两个括号分别应填$$25$$和$$6$$。 故选:C。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1205
15f86cf9cb0e435dbbaf1a0968b068aa
[ "2014年全国迎春杯三年级竞赛初赛第8题" ]
1
single_choice
祖玛游戏中,龙嘴里不断吐出很多颜色的龙珠,先$$4$$颗红珠,接着$$3$$颗黄珠,再$$2$$颗绿珠,最后$$1$$颗白珠,按此方式不断重复,从龙嘴里吐出的第$$2021$$颗龙珠是.
[ [ { "aoVal": "A", "content": "红珠 " } ], [ { "aoVal": "B", "content": "黄珠 " } ], [ { "aoVal": "C", "content": "绿珠 " } ], [ { "aoVal": "D", "content": "白珠 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "$$2021\\div (4+3+2+1)=201(组)\\ldots\\ldots1(个)$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3290
ba04d534e6e7442ea88fa8cc88b9e3e8
[ "2018年河南郑州K6联赛竞赛初赛第23题3分" ]
1
single_choice
给正方体的六个面分别涂上红黄蓝三种颜色,任意抛$$30$$次,要想红色朝上次数最少,蓝色朝上次数最多,~\uline{~~~~~~~~~~}~面涂红色,~\uline{~~~~~~~~~~}~涂黄色.
[ [ { "aoVal": "A", "content": "$$2,2$$ " } ], [ { "aoVal": "B", "content": "$$1,2$$ " } ], [ { "aoVal": "C", "content": "$$1,3$$ " } ], [ { "aoVal": "D", "content": "$$2,3$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->统计与概率->概率->基本概率->可能的情况" ]
[ "可能性;要想红色朝上次数最少,则$$1$$面涂红色,$$2$$面染黄色. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2700
762a0d3d4e5541c4b3ce99fceebf2ecd
[ "2019年第7届湖北长江杯五年级竞赛复赛B卷第1题3分" ]
1
single_choice
算式$$\frac{1}{\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+\cdots +\dfrac{1}{29}}$$ 的整数部分是.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$2$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$\\frac{1}{29}\\times 10\\textless{}\\frac{1}{20}+\\frac{1}{21}+\\cdots +\\frac{1}{29}\\textless{}\\frac{1}{20}\\times 10$$, $$\\frac{10}{29}\\textless{}\\frac{1}{20}+\\frac{1}{21}+\\cdots +\\frac{1}{29}\\textless{}\\frac{1}{2}$$, $$\\frac{2}{1}\\textless{}\\frac{1}{\\dfrac{1}{20}+\\dfrac{1}{21}+\\cdots +\\dfrac{1}{29}}\\textless{}\\frac{29}{10}$$, 所以它的整数部分应是$$2$$,故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3347
7293b9904328449788b991b276797446
[ "2011年北京五年级竞赛" ]
2
single_choice
$$A$$、$$B$$、$$C$$、$$D$$、$$E$$、$$F$$六人抽签推选代表,公证人一共制作了六枚外表一模一样的签,其中只有一枚刻着``中'',六人按照字母顺序先后抽取签,抽完不放回,谁抽到``中''字,即被推选为代表,那么这六人中,谁被抽中的概率谁最大?
[ [ { "aoVal": "A", "content": "一样大 " } ], [ { "aoVal": "B", "content": "$$A$$ " } ], [ { "aoVal": "C", "content": "$$D$$ " } ], [ { "aoVal": "D", "content": "$$E$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "抽中的概率为$$\\frac{1}{6}$$,没抽到的概率为$$\\frac{5}{6}$$,如果$$A$$没抽中,那么$$B$$有$$\\frac{1}{5}$$的概率抽中,如果$$A$$抽中,那么$$B$$抽中的概率为$$0$$,所以$$B$$抽中的概率为$$\\frac{5}{6}\\times \\frac{1}{5}=\\frac{1}{6}$$. 同理,$$C$$抽中的概率为$$\\frac{5}{6}\\times \\frac{4}{5}\\times \\frac{1}{4}=\\frac{1}{6}$$,$$D$$抽中的概率为$$\\frac{5}{6}\\times\\frac{4}{5}\\times \\frac{3}{4}\\times \\frac{1}{3}=\\frac{1}{6}$$, $$E$$抽中的概率为$$\\frac{5}{6}\\times\\frac{4}{5}\\times \\frac{3}{4}\\times \\frac{2}{3}\\times \\frac{1}{2}=\\frac{1}{6}$$,$$F$$抽中的概率为$$\\frac{5}{6}\\times\\frac{4}{5}\\times \\frac{3}{4}\\times \\frac{2}{3}\\times \\frac{1}{2}\\times1=\\frac{1}{6}$$. 由此可见六人抽中的概率相等,与抽签的先后顺序无关. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
186
3e7b6c18a3774f0d86eafe0e308110d3
[ "2018年湖北武汉新希望杯小学高年级五年级竞赛训练题(四)第6题" ]
2
single_choice
把$$19$$分成几个自然数的和,这几个自然数的乘积最大是.
[ [ { "aoVal": "A", "content": "$$512$$ " } ], [ { "aoVal": "B", "content": "$$729$$ " } ], [ { "aoVal": "C", "content": "$$768$$ " } ], [ { "aoVal": "D", "content": "$$972$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$3\\times 3=9$$,$$2\\times 2\\times 2=8$$,$$9\\textgreater8$$,所以分成$$2$$个$$3$$比分成$$3$$个$$2$$乘积大; $$3\\times 1=3$$,$$2\\times 2=4$$,$$3\\textless{}4$$,所以分成两个$$2$$比分成$$1$$个$$3$$和$$1$$个$$1$$乘积大,$$19=3+3+3+3+3+2+2$$,乘积为$$3\\times 3\\times 3\\times 3\\times 3\\times 2\\times 2=972$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
527
eb482cd1c4f9488e87d5d156fc6d23d8
[ "2013年IMAS小学中年级竞赛第一轮检测试题第6题3分" ]
2
single_choice
小王从家到学校只有两种方式可供选择:($$a$$)步行$$8$$分钟到离家较近的公车站,然后乘$$15$$分钟的公车可导学校;($$b$$)步行$$10$$分钟到离家较近的地铁站,然后乘$$10$$分钟的地铁可到学校.如果不计等车的时间,请问小王从家到学校至少需要多少分钟?
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$23$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ], [ { "aoVal": "E", "content": "$$33$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "从家到学校,若小王选择第一种方式需要$$8+15=23$$分钟,选择第二种方式则需要$$10+10=20$$分钟,所以小王从家到学校至少需要$$20$$分钟.故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2771
b13f290d7d9b4de7809702c154b58ad6
[ "2017年第15届湖北武汉创新杯六年级竞赛初赛第1题" ]
1
single_choice
计算:$$1\div (3\div 5)\div (5\div 7)\div (7\div 9)\div (9\div 13)\div (13\div 15)=$$.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{5}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{3}$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "原式$$=1\\div 3\\times 5\\div 5\\times 7\\div 7\\times 9\\div 9\\times 13\\div 13\\times 15$$$$=1\\div 3\\times 15$$$$=5$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1987
dc8297b650ad49e5af60027f34ff0a3e
[ "2021年新希望杯一年级竞赛初赛第14题5分" ]
1
single_choice
$$5$$ animals in a row, dogs and cats are adjacent to chickens, and cats and rats are adjacent to rabbits, so are adjacent to cats. $$5$$只动物排成一排,狗和猫都与鸡相邻,猫和鼠都与兔相邻,那么都与猫相邻.
[ [ { "aoVal": "A", "content": "Rat and Rooster鼠和鸡 " } ], [ { "aoVal": "B", "content": "Chicken and Rabbit鸡和兔 " } ], [ { "aoVal": "C", "content": "Rabbit and dog兔和狗 " } ], [ { "aoVal": "D", "content": "Rabbit and Rat兔和鼠 " } ], [ { "aoVal": "E", "content": "Rat and dog鼠和狗 " } ] ]
[ "拓展思维->能力->实践应用", "Overseas Competition->知识点->应用题模块->分百应用题->认识单位1" ]
[ "根据题意分析可知,狗和猫都与鸡相邻,即鸡的左右两边是猫和狗,又因为猫与老鼠都与兔相邻,所以猫的旁边是兔子和老鼠,兔子和老鼠在猫的同一侧,由此可知,与猫相邻的是鸡和兔. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1580
bee4316c365949798e2baad788e77b6d
[ "2008年第6届创新杯四年级竞赛初赛A卷第8题5分" ]
2
single_choice
在一条长$$2008$$米公路的两侧栽树,每隔$$8$$米栽一棵,一共要栽.
[ [ { "aoVal": "A", "content": "$$251$$棵 " } ], [ { "aoVal": "B", "content": "$$252$$棵 " } ], [ { "aoVal": "C", "content": "$$502$$棵 " } ], [ { "aoVal": "D", "content": "$$504$$棵 " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde(2008\\div 8+1)\\times 2$$ $$=(251+1)\\times 2$$ $$=252\\times 2$$ $$=504$$(棵) 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3113
e256fe01f40745dbb6b338e0d8b8e00b
[ "2015年第13届全国创新杯六年级竞赛第1题", "小学高年级六年级其它2015年数学思维能力等级测试初试第1题4分" ]
0
single_choice
五楼的王老师病了,小孙帮王老师送早点,从一楼到二楼用了$$\frac{3}{4}$$分钟,用同样的速度从一楼走到五楼王老师家要用(~ )分钟.
[ [ { "aoVal": "A", "content": "$$\\frac{15}{4}$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{20}{3}$$ " } ], [ { "aoVal": "D", "content": "以上都不对 " } ] ]
[ "拓展思维->拓展思维->计算模块->分数->分数运算->分数乘法运算" ]
[ "$$\\frac{3}{4}\\times 4=3$$分钟. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1995
b873333b2e5248cc86cffaa460b1a8e5
[ "2013年IMAS小学高年级竞赛第一轮检测试题第15题4分" ]
1
single_choice
有甲、乙两个水桶,甲桶中装了$$\frac{1}{6}$$满的水,乙桶中装了$$60$$升的水,如果把乙桶中的水全部倒到甲桶中,那么甲桶将装有$$\frac{1}{2}$$满的水;如果现在把甲桶中的水全部倒到乙桶中,那么乙桶刚好装满水.请问乙桶的容量为多少升?
[ [ { "aoVal": "A", "content": "$$70$$ " } ], [ { "aoVal": "B", "content": "$$80$$ " } ], [ { "aoVal": "C", "content": "$$90$$ " } ], [ { "aoVal": "D", "content": "$$100$$ " } ], [ { "aoVal": "E", "content": "$$180$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "由题意可知甲桶的容量的$$\\frac{1}{2}-\\frac{1}{6}=\\frac{1}{3}$$为$$60$$升,因此甲桶的容量为$$60\\div \\frac{1}{3}=180$$升,故乙桶的容量为$$180\\times \\frac{1}{2}=90$$升. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2822
651034d3d9214d6590f6747a6803d197
[ "2012年IMAS小学中年级竞赛第一轮检测试题第3题3分" ]
1
single_choice
以下哪一个选项中的数小于$$2010000$$?
[ [ { "aoVal": "A", "content": "$$201$$万 " } ], [ { "aoVal": "B", "content": "$$2100000$$ " } ], [ { "aoVal": "C", "content": "$$102$$万 " } ], [ { "aoVal": "D", "content": "$$20100000$$ " } ], [ { "aoVal": "E", "content": "$$210$$万 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$\\text{A}$$等于数$$2010000$$、$$\\text{B}$$大于数$$2010000$$、$$\\text{C}$$小于数$$2010000$$、$$\\text{D}$$大于数$$2010000$$、$$\\text{E}$$大于数$$2010000$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2348
09e9d058f6e74700ab8017c1412cc278
[ "2017年新希望杯六年级竞赛训练题(一)第4题", "2018年湖北武汉新希望杯六年级竞赛训练题(一)第4题" ]
1
single_choice
将四个分数按从小到大的顺序排列,正确的是.
[ [ { "aoVal": "A", "content": "$$\\frac{5}{14}\\textless{}\\frac{10}{27}\\textless{}\\frac{12}{31}\\textless{}\\frac{20}{53}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{5}{14}\\textless{}\\frac{10}{27}\\textless{}\\frac{20}{53}\\textless{}\\frac{12}{31}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{10}{27}\\textless{}\\frac{5}{14}\\textless{}\\frac{12}{31}\\textless{}\\frac{20}{53}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{10}{27}\\textless{}\\frac{5}{14}\\textless{}\\frac{20}{53}\\textless{}\\frac{12}{31}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->分数通分法->通分母", "课内体系->能力->运算求解" ]
[ "通分子$$\\frac{5}{14}=\\frac{60}{168}$$, $$\\frac{10}{27}=\\frac{60}{162}$$, $$\\frac{12}{31}=\\frac{60}{155}$$, $$\\frac{20}{53}=\\frac{60}{159}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
557
056b4b73cc964b44b2ff4d4c3debe1c9
[ "2019年第23届广东世界少年奥林匹克数学竞赛六年级竞赛初赛第9题5分" ]
1
single_choice
已知一个质数的三倍与另一个质数的五倍的和是$$301$$,则这两个质数的和是.
[ [ { "aoVal": "A", "content": "$$61$$ " } ], [ { "aoVal": "B", "content": "$$85$$ " } ], [ { "aoVal": "C", "content": "$$99$$ " } ], [ { "aoVal": "D", "content": "$$61$$或$$99$$ " } ] ]
[ "拓展思维->思想->逆向思想" ]
[ "质数是指在大于$$1$$的自然数中,除了$$1$$和它本身以外不再有其他因数的自然数. 在所有质数中,只有$$2$$这一个偶数;其他质数都是奇数; 但是奇数的$$3$$倍或者$$5$$倍都是奇数;两个奇数之和不可能是奇数; 所以这两个质数必然有$$2$$; 若第一个质数是$$2$$,$$2\\times 3+$$质数$$\\times 5=301$$,第二个质数$$=\\left( 301-6 \\right)\\div 5=59$$; 若第二个质数是$$2$$,质数$$\\times 3+2\\times 5=301$$,第一个质数$$=\\left( 301-10 \\right)\\div 3=97$$; 所以这两个质数的和$$61$$或$$99$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1764
77d7d5191eb8443b9dc4ba483e085119
[ "2017年第20届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第10题3分" ]
2
single_choice
有一幢$$10$$层的大楼,由于停电,电梯停开,某人从$$1$$层走到$$3$$层需要$$30$$秒,照这样计算,他从$$3$$层走到$$10$$层需要秒.
[ [ { "aoVal": "A", "content": "$$70$$秒 " } ], [ { "aoVal": "B", "content": "$$80$$秒 " } ], [ { "aoVal": "C", "content": "$$105$$秒 " } ], [ { "aoVal": "D", "content": "$$120$$秒 " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->直线型两端都有->爬楼梯问题" ]
[ "从$$1$$层走到$$3$$层走的楼梯层数是:$$3-1=2$$个,走一个楼层用时为:$$30\\div2=15$$秒,那么从$$3$$层走到$$10$$层走的楼梯层数是:$$10-3=7$$个,要用时为:$$15\\times7=105$$秒,据此解答. $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde30\\div (3-1)\\times (10-3)$$ $$=15\\times7$$ $$=105$$(秒), 答:他从$$3$$层走到$$10$$层需要$$105$$秒. 故答案为:$$105$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2678
75f97c9c69e24fcbb973a7351c81f465
[ "2018年第22届广东世界少年奥林匹克数学竞赛四年级竞赛初赛第3题6分" ]
1
single_choice
已知等差数列$$13$$,$$18$$,$$23$$,$$28$$,$$\cdots $$,$$1003$$.这个等差数列共有项.
[ [ { "aoVal": "A", "content": "$$198$$ " } ], [ { "aoVal": "B", "content": "$$199$$ " } ], [ { "aoVal": "C", "content": "$$200$$ " } ], [ { "aoVal": "D", "content": "$$201$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "根据题意:公差为$$5$$, 所以项数:$$\\left( 1003-13 \\right)\\div 5+1=199$$. 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
884
970acb6c2fb8488685ae45b7744170e1
[ "2019年第23届广东世界少年奥林匹克数学竞赛五年级竞赛初赛第2题5分" ]
1
single_choice
用两个质数之和来表示$$100$$有许多种方法,在这些方法中,两个质数中大数减小数的差最小是.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "欲求两个质数中大数减小数的差的最小值即这两个质数越接近越好. 则这两个质数分别为$$47$$和$$53$$. 则差:$$53-47=6$$. 故选$$\\text{D}$$. " ]
D