dataset_name
stringclasses 4
values | dataset_version
timestamp[s] | qid
stringlengths 1
5
| queId
stringlengths 32
32
| competition_source_list
sequence | difficulty
stringclasses 5
values | qtype
stringclasses 1
value | problem
stringlengths 6
1.51k
| answer_option_list
list | knowledge_point_routes
sequence | answer_analysis
sequence | answer_value
stringclasses 7
values |
---|---|---|---|---|---|---|---|---|---|---|---|
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1105 | 186caafcff2c40218b6077a84b0199af | [
"2014年第3届广东广州羊排赛六年级竞赛第8题1分"
] | 1 | single_choice | 一根绳子剪成两段,第一段长$$\frac{7}{13}$$米,第二段长占全长的$$\frac{7}{13}$$,那么这两段绳子, . | [
[
{
"aoVal": "A",
"content": "第一段长 "
}
],
[
{
"aoVal": "B",
"content": "第二段长 "
}
],
[
{
"aoVal": "C",
"content": "两段一样长 "
}
],
[
{
"aoVal": "D",
"content": "无法比较 "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"第二段占全长的$$\\frac{7}{13}$$,则第一段占全长的$$1-\\frac{7}{13}=\\frac{6}{13}$$,显然第二段长. 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1266 | 6bbbe28fda824d80a21b41b7c133fc4f | [
"小学中年级四年级其它第3讲用比例思想解应用题",
"2014年全国华杯赛小学高年级竞赛初赛A卷第4题"
] | 2 | single_choice | 小明所在班级的人数不足$$40$$人,但比$$30$$人多,那么这个班男、女生人数的比不可能是(~ ~ ). | [
[
{
"aoVal": "A",
"content": "$$2:3$$~ "
}
],
[
{
"aoVal": "B",
"content": "$$3:4$$ "
}
],
[
{
"aoVal": "C",
"content": "$$4:5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$3:7$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"$$\\left( 1 \\right)$$如果男女比为$$3:7$$,则总人数是$$3+7=10$$的倍数,而总人数是大于$$30$$小于$$40$$,不能是$$10$$的倍数. $$\\left( 2 \\right)$$当总人数为$$35$$人时,男生有$$14$$人,女生有$$21$$人,比为$$2:3$$. $$\\left( 3 \\right)$$当总人数为$$35$$人时,男生有$$15$$人,女生有$$20$$人,比为$$3:4$$. $$\\left( 4 \\right)$$当总人数为$$36$$人时,男生有$$16$$人,女生有$$20$$人,比为$$4:5$$. 所以选$$\\text{D}$$. ",
"<p>解:$$\\rm A$$:$$\\left({2+3}\\right)=5$$</p>\n<p>大于$$30$$小于$$40$$的数中$$35$$是$$5$$的倍数,所以这个班男、女生人数的比可能是$$2:3$$;</p>\n<p>$$\\rm B$$:$$3+4=7$$</p>\n<p>大于$$30$$小于$$40$$的数中$$35$$是$$7$$的倍数,所以这个班男、女生人数的比可能是$$3:4$$;</p>\n<p>$$\\rm C$$:$$4+5=9$$</p>\n<p>大于$$30$$小于$$40$$的数中$$36$$是$$9$$的倍数,所以这个班男、女生人数的比可能是$$4:5$$;</p>\n<p>$$\\rm D$$:$$3+7=10$$</p>\n<p>大于$$30$$小于$$40$$的数中没有数是$$10$$的倍数,所以这个班男、女生人数的比不可能是$$3:7$$;</p>\n<p>故选:$$\\rm D$$.</p>"
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2012 | e5cfc9a40d1148718b5bf8f0e921c60a | [
"2006年第4届创新杯四年级竞赛初赛A卷第5题",
"2006年四年级竞赛创新杯"
] | 1 | single_choice | 某月有三个星期日的日期都是偶数,这个月的15号是星期( ). | [
[
{
"aoVal": "A",
"content": "一 "
}
],
[
{
"aoVal": "B",
"content": "四 "
}
],
[
{
"aoVal": "C",
"content": "五 "
}
],
[
{
"aoVal": "D",
"content": "六 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->日期中的周期"
] | [
"在同一个月的日历牌中,左右相邻的日期号码相差1,而上下相邻的日期号码相差7,或者说,在日历牌中,一列的日期是公差为7的等差数列. 这样,1号、8号、15号、22号、29号为一列,共5天,3奇2偶; 2号、9号、16号、23号、30号为一列,共5天,3偶2奇; 3号、10号、17号、24号、31号为一列,共5天,3奇2偶. 对于本题,2号、9号、16号、23号、30号应为星期天才符合3个偶数的要求,故本题中16号为星期天,则15号为星期六,选D "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 374 | 66219bb394c34ab4a941b52dcea65cef | [
"2020年希望杯二年级竞赛模拟第19题"
] | 1 | single_choice | 把$$3$$、$$3$$、$$5$$、$$9$$分别放入方格中,和最小是. $$\square \square +\square \square $$ | [
[
{
"aoVal": "A",
"content": "$$56$$ "
}
],
[
{
"aoVal": "B",
"content": "$$74$$ "
}
],
[
{
"aoVal": "C",
"content": "$$92$$ "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"要使得和最小,那么两个因数应该尽可能的小; 如果要求两个因数尽可能的小,那么两个因数十位应该填入较小数, 即这两个因数应该是:$$35+39=74$$, 所以和最小是$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1316 | 94968f7a81ad4c78ba0c87f5c3fdd7c5 | [
"2006年第4届创新杯五年级竞赛初赛B卷第1题",
"2006年五年级竞赛创新杯"
] | 1 | single_choice | 一根长2米的木棍,锯成每段长0.4米的短木棍需要20分钟,那么锯成每段长0.5米的木棍需要( ). | [
[
{
"aoVal": "A",
"content": "15分钟 "
}
],
[
{
"aoVal": "B",
"content": "12分钟 "
}
],
[
{
"aoVal": "C",
"content": "10分钟 "
}
],
[
{
"aoVal": "D",
"content": "以上都不对 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->归一归总问题->单归一问题"
] | [
"锯一次需要:$$20\\div \\left( 2\\div 0.4-1 \\right)=5$$(分钟),锯成长0.5米的木棍需要锯$$2\\div 0.5-1=3$$(次),需要$$3\\times 5=15$$(分钟) "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1083 | 0f87229594744c8eb56d342c0afbb670 | [
"2019年世奥赛一年级竞赛决赛第12题7分"
] | 1 | single_choice | 第一个筐里有$$14$$个梨,第二个筐里有$$35$$个梨,从第一个筐里拿$$1$$个放到第二个筐里,现在一共有多少个梨? | [
[
{
"aoVal": "A",
"content": "$$47$$ "
}
],
[
{
"aoVal": "B",
"content": "$$48$$ "
}
],
[
{
"aoVal": "C",
"content": "$$49$$ "
}
],
[
{
"aoVal": "D",
"content": "$$50$$ "
}
]
] | [
"知识标签->拓展思维->应用题模块->加减法应用->加减法应用顺口溜"
] | [
"从第$$1$$个盘子里拿$$1$$个梨到第$$2$$个盘子里,但是梨的总数量不变,还是$$14+35=49$$(个). "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1253 | 39464b27b034493db260ea389b4a41c9 | [
"2019年第24届YMO二年级竞赛决赛第8题3分"
] | 1 | single_choice | 小$$Y$$和小$$M$$两人比赛爬楼梯,小$$Y$$跑到$$4$$楼时,小$$M$$恰好跑到$$3$$楼,照这样计算,小$$Y$$跑到$$16$$楼时,小$$M$$跑到了楼. | [
[
{
"aoVal": "A",
"content": "$$10$$ "
}
],
[
{
"aoVal": "B",
"content": "$$11$$ "
}
],
[
{
"aoVal": "C",
"content": "$$12$$ "
}
],
[
{
"aoVal": "D",
"content": "$$13$$ "
}
]
] | [
"拓展思维->能力->实践应用"
] | [
"$$4-1=3$$(层楼梯), $$3-1=2$$(层楼梯), $$16-1=15$$(层楼梯), $$15\\times \\frac{2}{3}=10$$(层楼梯), $$10+1=11$$(层), 答:小$$M$$跑到了$$11$$层楼. 故选:$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1535 | ff75f93ed1ce4b3d888aea71ed00259f | [
"2018年第22届广东世界少年奥林匹克数学竞赛三年级竞赛初赛第4题6分"
] | 0 | single_choice | 有一列数:$$3$$,$$3$$,$$1$$,$$1$$,$$2$$,$$3$$,$$3$$,$$1$$,$$1$$,$$2$$,$$\cdots \cdots $$那么第$$53$$个数是. | [
[
{
"aoVal": "A",
"content": "$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2$$ "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"这列数按照``$$3$$,$$1$$,$$2$$''的周期排列,则,$$53\\div 3=17\\cdots \\cdots 2$$, 所以第$$53$$个数位这个周期的第$$2$$个数,即为$$1$$. 故选择$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1465 | 9e53db3ee81247c2aa57046448824dd2 | [
"2018年环亚太杯六年级竞赛复赛第15题"
] | 4 | single_choice | $$A$$, $$B$$ and $$C$$ are three consecutive numbers that are divisible by $$5$$, $$8$$ and $$9$$ respectively. The smallest possible sum of these three numbers is . $$A$$、$$B$$、$$C$$是三个连续数,分别可被$$5$$、$$8$$及$$9$$整除.此三个数最小的和是~\uline{~~~~~~~~~~}~. | [
[
{
"aoVal": "A",
"content": "$$555$$ "
}
],
[
{
"aoVal": "B",
"content": "$$666$$ "
}
],
[
{
"aoVal": "C",
"content": "$$777$$ "
}
],
[
{
"aoVal": "D",
"content": "$$888$$ "
}
],
[
{
"aoVal": "E",
"content": "$$999$$ "
}
]
] | [
"海外竞赛体系->知识点->数论模块->整除->整除特征",
"拓展思维->思想->分类讨论思想"
] | [
"$$A$$能被$$5$$整除,个位就是$$0$$或$$5$$,$$A$$加$$1$$得$$B$$ 是$$8$$的倍数,个位不能是$$1$$,故只能是$$6$$,$$B$$再加$$1$$得$$C$$ 是$$9$$的倍数,个位数字是$$7$$,$$C$$的个位只能由$$3\\times 9=27$$得来. 假设$$C=3\\times 9=27$$,则$$B=26$$,$$26$$不能被$$8$$整除;故排除; 假设$$C=13\\times 9=127$$,则$$B=126$$,$$126$$不能被$$8$$整除;故排除; 假设$$C=23\\times 9=207$$,则$$B=206$$,$$206$$不能被$$8$$整除;故排除; 假设$$C=33\\times 9=297$$,则$$B=296$$,$$296\\div 8=37$$,且$$295\\div 5=59$$;因此,最小$$A=295$$,$$B=296$$,$$C=297$$,三个数的和为:$$295+296+297=888$$. 故选$$888$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2497 | 46b564d86dc34e2d8c258aab6114f4b0 | [
"2014年迎春杯四年级竞赛复赛"
] | 2 | single_choice | 对于任何自然数,定义$$ni=1\times 2\times 3\times \cdots \times n$$,如$$8i=1\times 2\times 3\times \cdots \times 8$$。那么,算式:$$2014i+2013i-2012i+2011i+\cdots -4i+3i-2i+1i$$,计算结果的个位数字是( ) | [
[
{
"aoVal": "A",
"content": "$$0$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3$$ "
}
],
[
{
"aoVal": "D",
"content": "$$9$$ "
}
]
] | [
"拓展思维->拓展思维->计算模块->定义新运算->直接运算型->普通型"
] | [
"解:由新定义$$ni=1\\times 2\\times 3\\times \\cdots \\times n$$可知: $$2014i=1\\times 2\\times 3\\times 4\\times 5\\times 6\\times \\cdots \\times 2012\\times 2013\\times 2014$$, $$2013i=1\\times 2\\times 3\\times 4\\times 5\\times 6\\times \\cdots \\times 2012\\times 2013$$, $$2012i=1\\times 2\\times 3\\times 4\\times 5\\times 6\\times \\cdots \\times 2012$$, $$\\cdots $$ $$5i=1\\times 2\\times 3\\times 4\\times 5$$, 由观察很容易知道,$$2014i$$,$$2013i$$,$$2012i$$,$$\\cdots $$,$$6i$$,$$5i$$的因式中均含有$$2\\times 5$$,所以他们的个位数都为$$0$$。 又因为: $$4i=1\\times 2\\times 3\\times 4=24$$, $$3i=1\\times 2\\times 3=6$$, $$2i=1\\times 2=2$$, $$1i=1$$, 所以$$2014i+2013i-2012i+2011i+\\cdots -4i+3i-2i+1i$$的个位数为:$$0-4+6-2+1=1$$。 故选:B。 "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 390 | 812a74cf0b014d0cac905915c398d52c | [
"2014年第25届亚太杯四年级竞赛决赛第18题5分"
] | 2 | single_choice | 如果$$Ellie$$懂英文那么她也懂法语. 如果上述断定为真,那么以下哪一项一定也为真? | [
[
{
"aoVal": "A",
"content": "Ellie懂英文但不懂法语. "
}
],
[
{
"aoVal": "B",
"content": "Ellie懂法语但不懂英文. "
}
],
[
{
"aoVal": "C",
"content": "Ellie既懂英文又懂法语. "
}
],
[
{
"aoVal": "D",
"content": "如果$$Ellie$$不懂法语,那么他一定懂英文. "
}
]
] | [
"拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->神推理",
"Overseas Competition->知识点->组合模块->逻辑推理"
] | [
"懂英文$\\to$懂法语 C项说明肯定充分条件也肯定必要条件. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3326 | 4e5b2fc3da6d41a19ac354135f35e0b6 | [
"2017年第15届全国希望杯小学高年级六年级竞赛"
] | 1 | single_choice | 把$$20$$个苹果分给$$3$$个小朋友,每个小朋友至少分$$1$$个,共有(~ ~ ~)种分法$$.$$如果可以有小朋友没分到苹果,共有(~ ~ ~)种分法. | [
[
{
"aoVal": "A",
"content": "$$190$$,$$253$$ "
}
],
[
{
"aoVal": "B",
"content": "$$171$$,$$253$$ "
}
],
[
{
"aoVal": "C",
"content": "$$171$$,$$231$$ "
}
],
[
{
"aoVal": "D",
"content": "$$190$$,$$231$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"($$1$$)当每个小朋友至少分$$1$$个时,可以把$$20$$个苹果排成一排,在$$20$$个苹果的$$19$$个空中插 人$$2$$个板.一个空最多插一个板,把苹果分成$$3$$份,分给$$3$$个小朋友,因此有$$\\text{C}_{19}^{2}=171$$(种)方法. ($$2$$)当可以有小朋友没有分到苹果时,可以先给每个小朋友$$1$$个苹果,就变成了前面的问题, $$23$$个苹果.每个小朋友至少分$$1$$个,所以有$$\\text{C}_{22}^{2}=231$$(种)方法. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 712 | 31e80ab41dde4d7f9bcd81c5f86e277b | [
"2019年第23届广东世界少年奥林匹克数学竞赛六年级竞赛初赛第5题5分"
] | 1 | single_choice | 定义$$n!=1\times 2\times 3\times \cdots \times (n-1)\times n$$,读作$$N$$的阶乘$$2019!$$能被$$7$$整除,如果把这个乘积去反复除以$$7$$,直到不能被$$7$$整除为止,从第一次除以$$7$$开始算,共可除以$$7$$次. | [
[
{
"aoVal": "A",
"content": "$$288$$ "
}
],
[
{
"aoVal": "B",
"content": "$$329$$ "
}
],
[
{
"aoVal": "C",
"content": "$$334$$ "
}
],
[
{
"aoVal": "D",
"content": "$$335$$ "
}
]
] | [
"拓展思维->拓展思维->数论模块->余数问题->余数的性质->余数性质综合"
] | [
"求$$2019$$!能被$$7$$整除的次数,只需要计算出$$2019$$!中所有能被$$7$$,$${{7}^{2}}$$,$${{7}^{3}}$$整除的个数,最后相加即可. $$1-2019$$中是$$7$$的倍数共有$$2019\\div 7=288\\ldots \\ldots 3$$,共有$$288$$个.是$${{7}^{2}}$$的倍数共有$$2019\\div 49=41\\ldots \\ldots 10$$,共有$$41$$个,是$${{7}^{3}}$$的倍数共有$$2019\\div 343=5\\ldots \\ldots 304$$,共有$$5$$个,因此共有$$288+41+5=334$$(个),即共可除以$$7$$有$$334$$次,故选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1067 | 8f5bd4faf340411da4e57b67b5e98663 | [
"2008年三年级竞赛明心奥数挑战赛"
] | 0 | single_choice | 一桶油连桶重$$9$$千克,用去一半后,连桶重$$5$$千克,原来桶里的油重( )千克。 | [
[
{
"aoVal": "A",
"content": "$$4$$ "
}
],
[
{
"aoVal": "B",
"content": "$$8$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->加减法应用->同增同减应用题"
] | [
"一半重量为$$9-5=4$$(千克),则原来有油$$4\\times 2=8$$(千克)。 "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1753 | c419d34436834a259b3d0588066f8dbe | [
"2007年第5届创新杯四年级竞赛第3题5分",
"2007年四年级竞赛创新杯"
] | 1 | single_choice | 做一批零件,原计划每天生产40个,实际上每天比原计划多生产10个,结果提前5天完成任务,那么这批零件的个数是( )个. | [
[
{
"aoVal": "A",
"content": "500 "
}
],
[
{
"aoVal": "B",
"content": "1000 "
}
],
[
{
"aoVal": "C",
"content": "1500 "
}
],
[
{
"aoVal": "D",
"content": "2000 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->工程问题->合作工程问题->变速工程问题"
] | [
"$$40\\times 5\\text{=}200$$(个) ,$$200\\div 10\\text{=}20$$(天),$$40\\times \\left( 20\\text{+}5 \\right)\\text{=}1000$$(个). "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 721 | 2e0326ae090846bca3e93987fd5f85dc | [
"2017年第16届湖北武汉创新杯小学高年级五年级竞赛邀请赛训练题(四)"
] | 1 | single_choice | 两个数最大公因数为$$6$$,最小公倍数为$$180$$,满足条件的数一共有(~ )组. | [
[
{
"aoVal": "A",
"content": "$$2$$组 "
}
],
[
{
"aoVal": "B",
"content": "$$3$$组 "
}
],
[
{
"aoVal": "C",
"content": "$$4$$组 "
}
],
[
{
"aoVal": "D",
"content": "$$5$$组 "
}
]
] | [
"拓展思维->思想->枚举思想"
] | [
"依题意不妨假设这两个数分别为$$6a$$和$$6b$$($$a$$与$$b$$互质),则$$6ab=180$$,$$ab=30$$,$$a$$与$$b$$互质的正整数解有以下$$4$$组$$\\begin{cases} a=1 b=30 \\end{cases}$$,$$\\begin{cases} a=2 b=15 \\end{cases}$$,$$\\begin{cases} a=3 b=10 \\end{cases}$$,$$\\begin{cases} a=5 b=6 \\end{cases}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 987 | 29dab88e227f4e9aaaf1ad954ccfceb8 | [
"2008年四年级竞赛创新杯",
"2008年第6届创新杯四年级竞赛初赛A卷第9题5分"
] | 1 | single_choice | 传说中的九头鸟每只有9个头,1条尾巴;而九尾鸟每只9条尾巴,1个头.有一些九头鸟和九尾鸟在一起,数它们的头共有580个,数它们的尾巴共有900条.那么九头鸟和九尾鸟共有( )只. | [
[
{
"aoVal": "A",
"content": "138 "
}
],
[
{
"aoVal": "B",
"content": "148 "
}
],
[
{
"aoVal": "C",
"content": "158 "
}
],
[
{
"aoVal": "D",
"content": "168 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->鸡兔同笼问题"
] | [
"将所有九头鸟和九尾鸟的头数和尾巴数加起来,应该是它们只数和的10倍,所以九头鸟和九尾鸟共有$$\\left( 580+900 \\right)\\div 10=148$$只 "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 311 | 5757353e531148d5a5a01ec51c215850 | [
"2019年第24届YMO六年级竞赛决赛第7题3分"
] | 3 | single_choice | 有一个$$12$$级的楼梯.某人每次能登上$$1$$级或$$2$$级或$$3$$级,现在他要从地面登上第$$10$$级,有种不同的方式. | [
[
{
"aoVal": "A",
"content": "$$149$$ "
}
],
[
{
"aoVal": "B",
"content": "$$244$$ "
}
],
[
{
"aoVal": "C",
"content": "$$264$$ "
}
],
[
{
"aoVal": "D",
"content": "$$274$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"设第$$n$$级有$${{a}_{n}}$$种登的方式, 则第$$n-3$$,$$n-2$$,$$n-1$$级再分别登$$3$$,$$2$$,$$1$$级可到第$$n$$级, 则$${{a}_{n}}={{a}_{n-3}}+{{a}_{n-2}}+{{a}_{n-1}}$$, 而$${{a}_{1}}=1$$,$${{a}_{2}}=1+1=2$$,$${{a}_{3}}=1+1+2=4$$, 故$${{a}_{4}}=1+2+4=7$$, $${{a}_{5}}=2+4+7=13$$, $${{a}_{6}}=4+7+13=24$$, $${{a}_{7}}=7+13+24=44$$, $${{a}_{8}}=13+24+44=81$$, $${{a}_{9}}=24+44+81=149$$, $${{a}_{10}}=44+81+149=274$$. 故选:$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1900 | c088a3409bcf40c8b2b4db5b3fa94278 | [
"2014年全国迎春杯四年级竞赛初赛第8题"
] | 2 | single_choice | 有一种特殊的计算器,当输入一个$$10$ $49$$的自然数$$A$$后,计算器会先算$$A+A$$,然后将所得结果的十位和个位顺序颠倒,再加$$2$$后显示出最后的结果.那么,下列四个选项中,可能是最后显示的结果. | [
[
{
"aoVal": "A",
"content": "$$41$$ "
}
],
[
{
"aoVal": "B",
"content": "$$42$$ "
}
],
[
{
"aoVal": "C",
"content": "$$43$$ "
}
],
[
{
"aoVal": "D",
"content": "$$44$$ "
}
]
] | [
"拓展思维->思想->逆向思想"
] | [
"倒推.$$44$$ 对应的是$$44-2=42$$,颠倒后是$$24$$,除以$$2$$ 为$$12$$.符合条件.其他的均不符合条件. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1868 | b29d9f3f75754639b02f6359c72ca3cb | [
"2015年华杯赛五年级竞赛初赛",
"2015年华杯赛六年级竞赛初赛"
] | 2 | single_choice | 六位同学考试的平均成绩是$$92.5$$分,他们的成绩是互不相同的整数,最高的$$99$$分,最低的$$76$$分。那么,按分数从高到低居第三位的同学的分数至少是分。22西川 | [
[
{
"aoVal": "A",
"content": "$$94$$ "
}
],
[
{
"aoVal": "B",
"content": "$$95$$ "
}
],
[
{
"aoVal": "C",
"content": "$$96$$ "
}
],
[
{
"aoVal": "D",
"content": "$$97$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->平均数问题->综合题"
] | [
"六位同学的平均成绩为$$92.5$$分,因此这六人的总分为$$92.5\\times 6=555$$(分)。又最高分为$$99$$,最低分为$$76$$,因此剩下四人的分数和为$$380$$分。要使第三名的同学分数尽可能小,那么得使另外三人的分数尽可能大。而第二名最高为$$98$$分,而第四名第五名分数小于第三名,所以第三名至少为:$$(380-98)\\div3+1=95$$(分),选$$\\text{B}$$。 "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1514 | 83d1ae23327743feb4394a498709c53e | [
"2017年河南郑州豫才杯六年级竞赛"
] | 1 | single_choice | 某学校准备购买$$30$$个篮球,三家商店每个篮球的售价都是$$25$$元,但优惠方法不同,甲店``买九赠一'',乙店``打八八折'';丙店``满$$100$$元减现金$$10$$元'',为节约资金,应该到店购买. A school is going to buy 30 basketballs. The price of each basketball in the three stores is 25 yuan, but the preferential methods are different. Store A "buy nine and get one free", store B "give a 20\% discount";~Store C ~"full 100 yuan minus 10 yuan in cash", in order to save money, should go toshop to buy. | [
[
{
"aoVal": "A",
"content": "甲 "
}
],
[
{
"aoVal": "B",
"content": "乙 "
}
],
[
{
"aoVal": "C",
"content": "丙 "
}
],
[
{
"aoVal": "D",
"content": "任意一个店皆可 "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"甲店:只需付$$27$$个篮球的钱即可买到$$30$$个篮球,要$$27\\times 25=675$$元; 乙店:$$30\\times 25\\times 88 \\% =660$$元; 丙店:$$25\\times 30=750$$元,减$$7\\times 10=70$$元,花费$$750-70=680$$元. 因为$$660\\textless{}675\\textless{}680$$,所以应到乙店购买. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2508 | 1e8457573b924ce0b194107476792f61 | [
"2018年湖北武汉创新杯小学高年级五年级竞赛初赛数学思维能力等级测试第1题4分"
] | 0 | single_choice | 小数乘法:$$0.025\times 0.04$$的结果的小数位数有位. | [
[
{
"aoVal": "A",
"content": "$$2$$ "
}
],
[
{
"aoVal": "B",
"content": "$$3$$ "
}
],
[
{
"aoVal": "C",
"content": "$$4$$ "
}
],
[
{
"aoVal": "D",
"content": "$$5$$ "
}
]
] | [
"知识标签->课内知识点->数与运算->乘法->小数乘法->小数乘小数"
] | [
"$$0.025\\times 0.04=0.001$$ "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2136 | 33627dbeadff4a9d846e22511680f607 | [
"2018年全国华夏杯四年级竞赛数学奥林匹克邀请赛全国总决赛第14题5分"
] | 1 | single_choice | 小奥、小匹两人相距$$400$$米,他们向相同的方向行走,小奥在小匹的后面,小奥以每秒$$6$$米的速度追向小匹,小匹以每秒$$2$$米的速度向前行,那么小奥会在~\uline{~~~~~~~~~~}~秒后追上小匹. | [
[
{
"aoVal": "A",
"content": "$$100$$ "
}
],
[
{
"aoVal": "B",
"content": "$$50$$ "
}
],
[
{
"aoVal": "C",
"content": "$$25$$ "
}
]
] | [
"拓展思维->拓展思维->行程模块->直线型行程问题->两人相遇与追及问题->追及问题->同时出发"
] | [
"$$400\\div (6-2)=100$$(秒). "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1904 | d74ceeef5c2b484c8269c68bc8346e55 | [
"2016年北京学而思杯五年级竞赛冲刺讲义",
"六年级其它导引"
] | 3 | single_choice | 水果店进了一批水果,希望卖出去之后得到$$50 \%$$的利润.当售出六成数量的水果时,由于天气原因水果无法保存,于是商店决定打折处理,结果还是有一成数量的水果烂了,最终只得到了所期望利润的$$34 \%$$.请问:商店打折处理时打了几折? | [
[
{
"aoVal": "A",
"content": "五折 "
}
],
[
{
"aoVal": "B",
"content": "六折 "
}
],
[
{
"aoVal": "C",
"content": "七折 "
}
],
[
{
"aoVal": "D",
"content": "八折 "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"方法一:设水果店打了$$x$$折,把所有的水果看成$$10$$份,设总成本为$$10$$元,即$$1$$份水果的成本是$$1$$元,则原期望利润为$$5$$元.依题意,有六成是按原定价卖的,得到的利润为: $$6\\times 50 \\%=3$$(元); 三成打折卖掉,所得利润为: $$3\\times \\left( 1+50 \\% \\right)\\times x-3=4.5x-3$$; 还有一成坏掉了,不仅没有利润,还亏了$$1$$元.所以总共利润为: $$3+4.5x-3-1=4.5x-1$$. 实际利润为期望利润的$$34 \\%$$,由此列方程: $$4.5x-1=5\\times 34 \\%$$, 解得:$$x=0.6$$,即打六折. 方法二:设水果的进价为$$a$$,打折为$$x$$,则有:$$ \\left(1.5a\\times 0.6+1.5ax\\times 0.3 \\right)-a=0.34\\times 0.5a$$, 约掉等式两边的$$a$$得: $$1.5\\times 0.6+1.5x\\times 0.3-1=0.34\\times 0.5$$, 解得,$$x=0.6$$,即打了六折. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 301 | ff80808145ff6bf40146032a1134035a | [
"2011年全国华杯赛竞赛初赛第4题"
] | 2 | single_choice | 老师问$$5$$名学生:``昨天你们有几个人复习数学了?'' 张:``没有人.''李:``一个人.''王:``二个人.''赵:``三个人.''刘:``四个人.'' 老师知道,他们昨天下午有人复习,也有人没复习,复习了的人说的都是真话,没复习的人说的都是假话.那么,昨天这$$5$$个人中复习数学的有(~ ~ ~ ~)个人. | [
[
{
"aoVal": "A",
"content": "$$0$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2$$ "
}
],
[
{
"aoVal": "D",
"content": "$$3$$ "
}
]
] | [
"拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾"
] | [
"$$5$$名学生说的话相互矛盾,只能有$$1$$人说的是真话,则只有李复习了,说的是真话. 故选:$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 956 | f8ee359f577c421f9260a486aa48c716 | [
"2012年第8届全国新希望杯五年级竞赛复赛第6题"
] | 1 | single_choice | 二进制数$${{(101)}_{2}}$$,可用十进制表示为$$1\times {{2}^{2}}+0\times 2+1=5$$,二进制数$${{(1011)}_{2}}$$可用十进制表示为$${{(1011)}_{2}}=1\times {{2}^{3}}+0\times {{2}^{2}}+1\times 2+1=11$$,那么三进制数$${{(11011)}_{2}}$$,用十进制表示为(~ ). | [
[
{
"aoVal": "A",
"content": "$$15$$ "
}
],
[
{
"aoVal": "B",
"content": "$$27$$ "
}
],
[
{
"aoVal": "C",
"content": "$$29$$ "
}
],
[
{
"aoVal": "D",
"content": "$$31$$ "
}
]
] | [
"拓展思维->思想->转化与化归的思想"
] | [
"$${{(11011)}_{2}}=1\\times {{2}^{4}}+1\\times {{2}^{3}}+0\\times {{2}^{2}}+1\\times 2+1=27$$,因此选$$B$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1922 | ce4fd87703c1411ab13f5d6a69dc4469 | [
"2014年迎春杯三年级竞赛初赛"
] | 2 | single_choice | 奶奶折一个纸鹤用$$3$$分钟,每折好一个需要休息$$1$$分钟,奶奶从$$2$$时$$30$$分开始折,她折好第$$5$$个纸鹤时已经到了( ) | [
[
{
"aoVal": "A",
"content": "$$2$$时$$45$$分 "
}
],
[
{
"aoVal": "B",
"content": "$$2$$时$$49$$分 "
}
],
[
{
"aoVal": "C",
"content": "$$2$$时$$50$$分 "
}
],
[
{
"aoVal": "D",
"content": "$$2$$时$$53$$分 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->间隔问题"
] | [
"解:$$1\\times \\left( 5-1 \\right)=4$$(分钟) $$3\\times 5=15$$(分钟) $$2$$时$$30$$分$$+4$$分钟$$+15$$分钟$$=2$$时$$49$$分 答:她折好第$$5$$个纸鹤时已经到了$$2$$时$$49$$分。 故选:B。 "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1785 | a8e81ac69bce4f3db7c2c26765811fc7 | [
"2019年第23届广东世界少年奥林匹克数学竞赛六年级竞赛决赛第10题5分"
] | 1 | single_choice | 有两个同样的仓库,搬运完其中一个仓库的货物,甲需要$$6$$小时,乙需要$$7$$小时,丙需要$$14$$小时.甲、乙同时开始各搬运一个仓库的货物,开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完.丙从一个仓库到另一个仓库的时间忽略不计.则丙帮甲搬了小时.【本题欣赏题】答案:B | [
[
{
"aoVal": "A",
"content": "$$1.5$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1\\frac{3}{4}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2$$ "
}
],
[
{
"aoVal": "D",
"content": "$$3\\frac{1}{2}$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"本题主要考查分数的应用, 首先计算出三个人搬仓库用时,再分别计算甲、乙完成了多少, 然后可知丙完成的为$$1$$减去甲的完成量加上$$1$$减去乙的完成量, 再计算丙帮甲、乙分别用时即可, 三个人都搬了同样长的时间, 甲每小时搬$$\\frac{1}{6}$$,乙每小时搬$$\\frac{1}{7}$$,丙每小时搬$$\\frac{1}{14}$$, 三人每小时共可般$$\\frac{1}{6}+\\frac{1}{7}+\\frac{1}{14}=\\frac{8}{21}$$, 则搬完两个仓库共要$$2\\div \\frac{8}{21}=\\frac{21}{4}$$时, 即三人都同样工作了$$\\frac{21}{4}$$小时, 而$$\\frac{21}{4}$$小时内甲完成$$\\frac{21}{4}\\times \\frac{1}{6}=\\frac{7}{8}$$, 乙完成$$\\frac{21}{4}\\times \\frac{1}{7}=\\frac{3}{4}$$, 即甲有$$\\frac{1}{8}$$是丙完成的,乙有$$\\frac{1}{4}$$是丙帮忙完成的, 丙帮甲、乙分别用时$$\\frac{1}{8}\\div \\frac{1}{14}=\\frac{7}{4}$$时,$$\\frac{1}{4}\\div \\frac{1}{14}=\\frac{7}{2}$$小时. 答:丙帮甲、乙分别用时$$\\frac{7}{4}$$时、$$\\frac{7}{2}小时$$, $$\\frac{7}{4}=1\\frac{3}{4}$$. 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3110 | ddb76f8cd53a4dd781d4ef232d455e94 | [
"2008年五年级竞赛创新杯"
] | 1 | single_choice | 计算$$0.1+0.2+0.3+\cdots +9.8+9.9+10+9.9+9.8+\cdots +0.2+0.1=$$( ) . | [
[
{
"aoVal": "A",
"content": "990 "
}
],
[
{
"aoVal": "B",
"content": "1000 "
}
],
[
{
"aoVal": "C",
"content": "1010 "
}
],
[
{
"aoVal": "D",
"content": "1100 "
}
]
] | [
"拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列求和"
] | [
"原式$$=2\\times \\left( 0.1+0.2+\\cdots +10 \\right)-10=2\\times \\frac{0.1+10}{2}\\times 100-10=1000$$ "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 99 | b94b4958579747678cc031ca0663288c | [
"2016年第21届全国华杯赛小学高年级竞赛初赛B卷第1题"
] | 2 | single_choice | ``凑$$24$$点''游戏规则是:从一副扑克牌中抽去大小王剩下$$52$$张(如果初练也可以只用$$1-10$$这$$40$$张牌),任意抽去$$4$$张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成$$24$$.每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如果抽出的牌是$$3$$,$$8$$,$$8$$,$$9$$,那么算式为$$(9-8)\times 8\times 3$$或$$(9-8\div 8)\times 3$$等.在下面$$4$$个选项中,唯一无法凑出$$24$$点的是( ). | [
[
{
"aoVal": "A",
"content": "$$1$$,$$2$$,$$2$$,$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1$$,$$4$$,$$6$$,$$7$$ "
}
],
[
{
"aoVal": "C",
"content": "$$1$$,$$5$$,$$5$$,$$5$$ "
}
]
] | [
"知识标签->学习能力->七大能力->逻辑分析"
] | [
"选项$$B$$:$$(7+1-4)\\times 6=24$$; 选项$$C$$:$$(5-1\\div 5)\\times 5=24$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2675 | 3fe37abf96a1458e8588421fb8f29f43 | [
"2017年环亚太杯一年级竞赛初赛第4题"
] | 1 | single_choice | 找规律: $$6$$,$$12$$,$$18$$,$$24$$,~\uline{~~~~~~~~~~}~,$$36$$,~\uline{~~~~~~~~~~}~. | [
[
{
"aoVal": "A",
"content": "28,40 "
}
],
[
{
"aoVal": "B",
"content": "28,42 "
}
],
[
{
"aoVal": "C",
"content": "30,40 "
}
],
[
{
"aoVal": "D",
"content": "30,42 "
}
]
] | [
"知识标签->学习能力->七大能力->数据处理"
] | [
"每个数之间差了一个6 "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1742 | d1d095663ee74915b3547b2546a270b7 | [
"2020年新希望杯六年级竞赛初赛(团战)第10题"
] | 1 | single_choice | 火星叔叔马丁从火星来到地球.马丁发现地球上的一个昼夜比火星少$$40$$分钟,而火星上的一年包含$$668$$个昼夜.那么,一个火星年大约是一个地球年的倍. | [
[
{
"aoVal": "A",
"content": "$$3.24$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2.88$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2.26$$ "
}
],
[
{
"aoVal": "D",
"content": "$$1.88$$ "
}
],
[
{
"aoVal": "E",
"content": "$$1.78$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->和差倍问题->倍的基本计算->多量倍"
] | [
"火星一个昼夜有$$24$$小时$$40$$分,火星一年有$$668$$个昼夜, 则火星一年有($$24$$小时$$40$$分)$$\\times 668\\approx 16477.3$$(小时), 地球一共有$$24\\times 365=8760$$(小时), 一个火星年相当于地球$$16477.3\\div 8760\\approx 1.88$$(倍). 故选:$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2190 | 2c4b8de22bac448487cb5a016e483d8e | [
"2012年IMAS小学高年级竞赛第一轮检测试题第7题3分"
] | 2 | single_choice | 甲、乙、丙、丁各有一只手表. ($$1$$)甲的手表快了$$10$$分钟,但他以为慢了$$5$$分钟; ($$2$$)乙的手表慢了$$5$$分钟,但他以为快了$$10$$分钟; ($$3$$)丙的手表快了$$5$$分钟,但他以为快了$$3$$分钟; ($$4$$)丁的手表慢了$$5$$分红总,但他以为慢了$$10$$分钟. 用他们的手表,每个人都认为自己恰好能准时到达学校,请问谁会迟到? | [
[
{
"aoVal": "A",
"content": "甲 "
}
],
[
{
"aoVal": "B",
"content": "乙 "
}
],
[
{
"aoVal": "C",
"content": "丙 "
}
],
[
{
"aoVal": "D",
"content": "丁 "
}
],
[
{
"aoVal": "E",
"content": "都不会 "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"甲早到$$5-(-10)=15$$分钟,丙早到$$5-3=2$$分钟,丁早到$$(-5)-(-10)=5$$分钟,乙迟到$$10-(-5)=15$$分钟. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 26 | 12de7b1b675847f89116f392cf1f67e4 | [
"2012年第10届创新杯四年级竞赛初赛第5题6分"
] | 1 | single_choice | 显示在电子钟上的时间是$$5:55$$,下一次电子钟上显示的时间又是全部相同的数字,还要过分钟. | [
[
{
"aoVal": "A",
"content": "$$71$$ "
}
],
[
{
"aoVal": "B",
"content": "$$255$$ "
}
],
[
{
"aoVal": "C",
"content": "$$316$$ "
}
],
[
{
"aoVal": "D",
"content": "$$377$$ "
}
]
] | [
"拓展思维->能力->实践应用"
] | [
"因为分钟的十位最大为$$5$$,故下一次数字相同的时刻为$$11:11$$,$$11:11$$距$$5:55$$有$$5$$小时$$16$$分,即$$316$$分钟.所以选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1608 | ba579af7b16542fe83a96005aceadb50 | [
"2017年全国美国数学大联盟杯五年级竞赛初赛第37题"
] | 1 | single_choice | 苏珊花了一天中的$$\frac{1}{2}$$的时间做英语作业,$$\frac{1}{3}$$的时间做数学作业,请问她这一天还剩余多少个小时? | [
[
{
"aoVal": "A",
"content": "$$4$$ "
}
],
[
{
"aoVal": "B",
"content": "$$6$$ "
}
],
[
{
"aoVal": "C",
"content": "$$8$$ "
}
],
[
{
"aoVal": "D",
"content": "$$12$$ "
}
]
] | [
"知识标签->学习能力->七大能力->运算求解"
] | [
"$$24\\times \\left(1-\\frac{1}{2}-\\frac{1}{3}\\right)=4$$(小时). "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1375 | 79f8a60c99024a13ae9d98b06b318cf4 | [
"2014年全国迎春杯三年级竞赛初赛第8题"
] | 1 | single_choice | 祖玛游戏中,龙嘴里不断吐出很多颜色的龙珠,先$$4$$颗红珠,接着$$3$$颗黄珠,再$$2$$颗绿珠,最后$$1$$颗白珠,按此方式不断重复,从龙嘴里吐出的第$$200$$颗龙珠是. | [
[
{
"aoVal": "A",
"content": "红珠 "
}
],
[
{
"aoVal": "B",
"content": "黄珠 "
}
],
[
{
"aoVal": "C",
"content": "绿珠 "
}
],
[
{
"aoVal": "D",
"content": "白珠 "
}
]
] | [
"知识标签->拓展思维->应用题模块->周期问题->基本排列的周期问题"
] | [
"$$200\\div (4+3+2+1)=20$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1787 | ad7170f33df9463ab04bbc585c10e4a9 | [
"2018年湖北武汉创新杯小学高年级六年级竞赛初赛数学思维能力等级测试第1题4分"
] | 1 | single_choice | 甲、乙两人出售同一种商品,甲按$$20 \% $$的利润率定价,售出了$$15$$个;乙按照$$15 \% $$的利润率定价,售出了$$24$$个,比较甲乙所获利润的多少,你的结论为(~ ). | [
[
{
"aoVal": "A",
"content": "甲获利润多 "
}
],
[
{
"aoVal": "B",
"content": "乙获利润多 "
}
],
[
{
"aoVal": "C",
"content": "两人利润相同 "
}
],
[
{
"aoVal": "D",
"content": "无法比较谁多 "
}
]
] | [
"拓展思维->思想->赋值思想"
] | [
"假设成本为$$100$$元,则甲的利润$$ =100\\times 20{}^{0}/{}_{0}\\times 15 =300$$元,乙的利润$$=100\\times 15{}^{0}/{}_{0}\\times 24=360$$元. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1918 | aa24e2970e574c249d7fbb7095a3d0e7 | [
"2019年第24届YMO一年级竞赛决赛第10题3分"
] | 1 | single_choice | 小明原来有$$20$$个金币,如果小刚给小明$$5$$个金币,小刚就比小明少$$1$$个金币,小刚原来有个金币. | [
[
{
"aoVal": "A",
"content": "$$25$$ "
}
],
[
{
"aoVal": "B",
"content": "$$27$$ "
}
],
[
{
"aoVal": "C",
"content": "$$29$$ "
}
],
[
{
"aoVal": "D",
"content": "$$31$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->平均数问题->移多补少->不等变不等(给完还少)"
] | [
"小刚给小明$$5$$个金币, 小明有$$20+5=25$$(个)金币. 而此时小刚比小明少$$1$$个金币, 此时小刚有$$25-1=24$$(个)金币, 则原来小刚有$$24+5=29$$(个)金币, 选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2488 | 1256778036884c6ca2b19aa1de26f1ad | [
"2017年第15届全国希望杯六年级竞赛"
] | 2 | single_choice | 三个分数$$\frac{20122012}{20132013}$$,$$\frac{20132013}{20142014}$$,$$\frac{20142014}{20152015}$$中值最大的是. | [
[
{
"aoVal": "A",
"content": "$$\\frac{20122012}{20132013}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\frac{20132013}{20142014}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\frac{20142014}{20152015}$$ "
}
],
[
{
"aoVal": "D",
"content": "三个一样大 "
}
]
] | [
"知识标签->拓展思维->计算模块->分数->分数基础->分数的约分"
] | [
"因为$$\\frac{20122012}{20132013}=\\frac{2012\\times 1001}{2013\\times 1001}=\\frac{2012}{2013}$$, $$\\frac{20132013}{20142014}=\\frac{2013\\times 1001}{2014\\times 1001}=\\frac{2013}{2014}$$,$$\\frac{20142014}{20152015}=\\frac{2014\\times 1001}{2015\\times 1001}=\\frac{2014}{2015}$$,$$1-\\frac{2012}{2013}=\\frac{1}{2013}$$,$$1-\\frac{2013}{2014}=\\frac{1}{2014}$$, $$1-\\frac{2014}{2015}=\\frac{1}{2015}$$. 因为$$\\frac{1}{2015}\\textless{}\\frac{1}{2014}\\textless{}\\frac{1}{2013}$$,所以$$\\frac{2014}{2015}\\textgreater\\frac{2013}{2014}\\textgreater\\frac{2012}{2013}$$.因此,三个分数中,最大的是$$\\frac{20142014}{20152015}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2524 | b02ef4bea36443d19fc86a820e8f5d85 | [
"2018年第22届广东世界少年奥林匹克数学竞赛四年级竞赛初赛第3题6分"
] | 1 | single_choice | 已知等差数列$$13$$,$$18$$,$$23$$,$$28$$,$$\cdots $$,$$1003$$.这个等差数列共有项. | [
[
{
"aoVal": "A",
"content": "$$198$$ "
}
],
[
{
"aoVal": "B",
"content": "$$199$$ "
}
],
[
{
"aoVal": "C",
"content": "$$200$$ "
}
]
] | [
"拓展思维->能力->公式记忆->符号化数学原理"
] | [
"根据题意:公差为$$5$$, 所以项数:$$\\left( 1003-13 \\right)\\div 5+1=199$$. 故选:$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1017 | 2ea0bbea40ee45ed9ebc3d6c9a7f5a0f | [
"小学中年级三年级上学期其它",
"2017年全国华杯赛小学中年级竞赛初赛模拟第1题"
] | 1 | single_choice | 甲乙两人在春节一共得了$$200$$元压岁钱,甲给乙$$40$$元,还比乙多$$10$$元,那么,原来甲得了元压岁钱. | [
[
{
"aoVal": "A",
"content": "$$150$$ "
}
],
[
{
"aoVal": "B",
"content": "$$145$$ "
}
],
[
{
"aoVal": "C",
"content": "$$140$$ "
}
],
[
{
"aoVal": "D",
"content": "$$125$$ "
}
],
[
{
"aoVal": "E",
"content": "$$120$$ "
}
]
] | [
"Overseas Competition->知识点->应用题模块->和差倍问题",
"拓展思维->拓展思维->应用题模块->和差倍问题->和差问题->二量和差问题->明和暗差"
] | [
"因为甲给乙$$40$$元,还比乙多$$10$$元,所以甲比乙多$$40\\times 2+10=90$$(元), 所以甲:$$(200+90)\\div 2=145$$(元). "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2240 | 37b59df9fe384fb2a6ced65443c0cf18 | [
"2017年第16届湖北武汉创新杯小学高年级五年级竞赛邀请赛训练题(四)"
] | 2 | single_choice | 战士小王从$$A$$地前往$$B$$地,他每走$$40$$分钟就休息$$10$$分钟,到达$$B$$地共用$$4$$小时$$20$$分,从$$B$$地原路返回的速度是去时的$$2$$倍.如果他每走$$35$$分钟就休息$$5$$分钟,从$$B$$地返回$$A$$地用分钟. | [
[
{
"aoVal": "A",
"content": "$$109$$ "
}
],
[
{
"aoVal": "B",
"content": "$$110$$ "
}
],
[
{
"aoVal": "C",
"content": "$$115$$ "
}
],
[
{
"aoVal": "D",
"content": "$$140$$ "
}
]
] | [
"拓展思维->能力->实践应用"
] | [
"从$$A$$至$$B$$一共历时$$4$$时$$20$$分$$=260$$分,其中$$40+10=50$$(分)一个周期,由$$260\\div 50=5\\cdots \\cdots 10$$,可知从$$A$$至$$B$$的步行时间$$40\\times 5+10=210$$(分 ),根据返回时速度是去时的$$2$$倍,可得从$$B$$至$$A$$的步行时间为$$210\\div 2=105$$(分),其中$$35$$分为一个周期中的步行时间,得$$105\\div 35=3$$(个),所以从$$B$$返回至$$A$$的总时间为$$35\\times 3+5\\times 2=115$$(分). "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3327 | 9edf642268714579b365ea6ef835c4a1 | [
"2007年五年级竞赛创新杯",
"2007年第5届创新杯五年级竞赛第4题5分"
] | 2 | single_choice | 我们称数$$543$$和$$531$$具有位数值递减性,而$$322$$则没有,因为它的个位数等于十位数。在$$100$$与$$599$$之间有( )个具有位数值递减性的数。 | [
[
{
"aoVal": "A",
"content": "$$20$$ "
}
],
[
{
"aoVal": "B",
"content": "$$18$$ "
}
],
[
{
"aoVal": "C",
"content": "$$21$$ "
}
],
[
{
"aoVal": "D",
"content": "$$24$$ "
}
]
] | [
"拓展思维->拓展思维->计数模块->枚举法综合->字典排序法"
] | [
"$$100\\sim 199$$之间没有,$$200\\sim 299$$之间有$$1$$个:$$210$$;$$300\\sim 399$$之间有$$3$$个:$$310\\text{,}320\\text{,}321$$;$$400\\sim 499$$之间有$$6$$个:$$410\\text{,}420\\text{,}421\\text{,}430\\text{,}431\\text{,}432$$,$$500\\sim 599$$之间有$$10$$个:$$510\\text{,}520\\text{,}521\\text{,}530\\text{,}531\\text{,}532\\text{,}540\\text{,}541\\text{,}542\\text{,}543$$,共有$$1+3+6+10=20$$(个)。 "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1259 | 305f1dd02664430db79c70cff51ea07e | [
"2019年陕西延安宝塔区北大培文学校小升初入学真卷第2题3分",
"2006年第11届全国华杯赛竞赛初赛第3题"
] | 2 | single_choice | 妈妈告诉馨文同学:``$$2006$$年共有$$53$$个星期日''.聪敏的馨文立到告诉妈妈:$$2007$$年的元旦一定是. | [
[
{
"aoVal": "A",
"content": "星期一 "
}
],
[
{
"aoVal": "B",
"content": "星期二 "
}
],
[
{
"aoVal": "C",
"content": "星期六 "
}
],
[
{
"aoVal": "D",
"content": "星期日 "
}
]
] | [
"拓展思维->思想->整体思想"
] | [
"$$2006$$年有$$365$$天,而$$365=7\\times 52+1$$,又已知$$2006$$年有$$53$$个星期天,只能元旦是星期天,且$$12$$月$$31$$日也是星期日,所以,$$2007$$年月的元旦是星期一. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1993 | c1740269c7ab40d9895347bf871a053d | [
"2019年第23届广东世界少年奥林匹克数学竞赛三年级竞赛初赛第4题5分"
] | 1 | single_choice | 毛毛用围棋子摆成一个四层空心方阵,最外一层每边有围棋子$$10$$个.摆这个方阵共用围棋子个. | [
[
{
"aoVal": "A",
"content": "$$96$$ "
}
],
[
{
"aoVal": "B",
"content": "$$108$$ "
}
],
[
{
"aoVal": "C",
"content": "$$120$$ "
}
],
[
{
"aoVal": "D",
"content": "$$132$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"由题意知,用围棋子摆成一个三层空心方阵,最外一层每边有围棋子$$12$$个,由于相邻两层每边相差$$2$$个,则由外向里的两层每边分别是$$(12-2)$$个、$$(12-2\\times 2)$$个,根据``四周的个数$$=$$(每边的个数$$-1$$)$$\\times 4$$''可分别求得这三层棋子的个数,再相加就是所用的总个数,据此解答. 本题关键是求出每层的个数;方阵问题相关的知识点是:四周的个数$$=$$(每边的个数$$-1$$)$$\\times 4$$,每边的个数$$=$$四周的个数$$\\div 4+1$$,中实方阵的总个数$$=$$每边的个数$$\\times $$每边的个数,空心方阵的总个数$$=$$(最外层每边的个数$$-$$空心方阵的层数)$$\\times $$空心方阵的层数$$\\times 4$$,外层边长数$$^{2}-$$中空边长数$$^{2}=$$实面积数. 最外边一层棋子个数:$$(12-1)\\times 4=44$$(个), 第二层棋子个数:$$(12-2-1)\\times 4=36$$(个), 第三层棋子个数:$$(12-2\\times 2-1)\\times 4=28$$(个), 摆这个方阵共用棋子:$$44+36+28=108$$(个). 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3141 | 023f631f80954470b02a694ba84b946b | [
"2006年第4届创新杯六年级竞赛初赛A卷第5题"
] | 1 | single_choice | 为了让人们感受随地丢弃废电池对环境造成的影响,某班环保小组的$$6$$名同学记录了自己一学期内用完的电池数量,结果如下(单位:节):$$33$$,$$25$$,$$28$$,$$26$$,$$25$$,$$31$$.如果该班有$$45$$名学生,那么根据提供的数据,可以估计一学期内全班同学总共用完的电池数量约为. | [
[
{
"aoVal": "A",
"content": "$$900$$节 "
}
],
[
{
"aoVal": "B",
"content": "$$1080$$节 "
}
],
[
{
"aoVal": "C",
"content": "$$1260$$节 "
}
],
[
{
"aoVal": "D",
"content": "$$1800$$节 "
}
]
] | [
"拓展思维->拓展思维->计数模块->统计与概率"
] | [
"$$6$$名同学平均用完电池$$\\left( 33+25+28+26+25+31 \\right)\\div 6=28$$ 节, 全班共用完$$28\\times 45=1260$$ 节. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 141 | a6f12bb4be034fc793cd66af830d08ab | [
"2018年第22届广东世界少年奥林匹克数学竞赛四年级竞赛决赛第5题5分"
] | 1 | single_choice | \textbf{(2018 Youth Mathematics Olympics, Primary 4, Question \#5)~} A certain school district holds the "Xinmiao Cup" primary school football tournament, with a total of $$10$$ football teams participating. The tournament adopts a round-robin system, and each team has to play against all other teams. According to the points ranking, these matches are arranged to be played on the football fields of $$3$$ schools. On average, how many matches should be arranged for each school?($\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde$) 某学区举行``新苗杯''小学生足球赛,共有$$10$$个足球队比赛,比赛采取循环制,每个队都要和其他各队赛一场,根据积分排名次,这些比赛分别安排在$$3$$个学校的球场上进行,平均每个学校要安排($\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde$)场比赛. | [
[
{
"aoVal": "A",
"content": "$$45$$ "
}
],
[
{
"aoVal": "B",
"content": "$$15$$ "
}
],
[
{
"aoVal": "C",
"content": "$$10$$ "
}
]
] | [
"拓展思维->能力->运算求解",
"Overseas Competition->知识点->组合模块->逻辑推理->体育比赛"
] | [
"一共要进行的比赛场次:$$1+2+3+4+\\cdots \\cdots +9=45$$(场), 则平均每个学校安排的场次:$$45\\div 3=15$$(场). "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1782 | e451facf2fbe4ea98640d3211103e34c | [
"2006年四年级竞赛创新杯"
] | 1 | single_choice | 一个数加上$$8$$的和,再乘以$$8$$的积,再减去$$8$$的差,再除以$$8$$的商,等于$$80$$,那么,这个数是( )。 | [
[
{
"aoVal": "A",
"content": "$$37$$ "
}
],
[
{
"aoVal": "B",
"content": "$$59$$ "
}
],
[
{
"aoVal": "C",
"content": "$$73$$ "
}
],
[
{
"aoVal": "D",
"content": "$$86$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->还原问题->逆运算"
] | [
"一个数$$\\xrightarrow{+8}\\triangle \\xrightarrow{\\times8 }\\triangle \\xrightarrow{-8}\\triangle \\xrightarrow{\\div8 }80$$, 还原就是$$80\\xrightarrow{\\times8 }640\\xrightarrow{+8}648\\xrightarrow{\\div 8}81\\xrightarrow{-8}73$$,算式:$$\\left( 80\\times 8+8 \\right)\\div 8-8=73$$,所以选C。 "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1536 | a7ce7d0ca1494a5a82d8670f8ea79b75 | [
"2018年湖北武汉新希望杯六年级竞赛训练题(四)第5题"
] | 1 | single_choice | 一项工程,甲、乙两队合作需$$12$$天完成,现在甲队先做$$4$$天,然后乙队接着做$$6$$天,共完成这项工程的$$\frac{3}{7}$$,那么甲队和乙队的工作效率之比为. | [
[
{
"aoVal": "A",
"content": "$$4:3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$3:4$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3:2$$ "
}
],
[
{
"aoVal": "D",
"content": "$$2:3$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"乙队:$$\\left( \\frac{3}{7}-\\frac{4}{12} \\right)\\div (6-4)=\\frac{1}{21}$$, 甲队:$$\\frac{1}{12}-\\frac{1}{21}=\\frac{1}{28}$$, $$\\frac{1}{28}:\\frac{1}{21}=3:4$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1855 | fbbac8ad81cc43ec8e6dea42bdbb05c8 | [
"2020年长江杯五年级竞赛复赛A卷",
"2020年长江杯五年级竞赛复赛A卷第6题5分"
] | 1 | single_choice | $$2015$$年$$11$$月$$1$$日是星期日,问$$2016$$年$$11$$月$$1$$日是星期. | [
[
{
"aoVal": "A",
"content": "三 "
}
],
[
{
"aoVal": "B",
"content": "二 "
}
],
[
{
"aoVal": "C",
"content": "一 "
}
],
[
{
"aoVal": "D",
"content": "日 "
}
]
] | [
"拓展思维->能力->构造模型->模型思想"
] | [
"根据年份的判断,我们会发现$$2016$$年是闰年. 所以从$$2015$$年$$11$$月$$1$$日$$\\sim 2016$$年$$11$$月$$1$$日,一共是过了$$366$$天. 若算上$$2015$$年$$11$$月$$1$$日则是$$367$$天. 所以$$367\\div 7=52$$(周)$$\\cdots \\cdots 3$$(天)周期是:周日------周六, 所以$$2016$$年$$11$$月$$1$$日是周二. 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3248 | 3eb9d44ba0de4bfabec36c43fdb2e7b6 | [
"2014年迎春杯五年级竞赛初赛"
] | 2 | single_choice | 今天是$$2013$$年$$12$$月$$21$$日,七位数$$\overline{ABCDEFG}$$恰好满足:前五位数字组成的五位数$$\overline{ABCDE}$$是$$2013$$的倍数,后五位数字组成的五位数$$\overline{CDEFG}$$是$$1221$$的倍数。那么四位数$$\overline{ABFG}$$的最小值是( )。 | [
[
{
"aoVal": "A",
"content": "$$1034$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2021$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2815$$ "
}
],
[
{
"aoVal": "D",
"content": "$$3036$$ "
}
]
] | [
"拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->公倍数与最小公倍数->多数的最小公倍数"
] | [
"解:依题意可知,$$\\overline{ABFG}$$最小,$$\\overline{ABCDE}$$就尽量小,还是$$2013$$的倍数,这个倍数是大于$$10$$的倍数。$$2013\\times $$$$\\overline{mn}$$$$=2000\\times $$$$\\overline{mn}$$$$+13\\times $$$$\\overline{mn}$$,同时发现$$\\overline{CDE}$$是$$13$$的倍数。 $$\\overline{CDEFG}$$因为是五位数还是$$1221$$的倍数最小从$$10$$倍开始枚举。 $$1221\\times 10=12210$$,前三位$$122$$不是$$13$$的倍数, $$1221\\times 11=13431$$,前三位$$134$$不是$$13$$的倍数, $$1221\\times 12=14652$$,前三位$$146$$不是$$13$$的倍数, $$1221\\times 13=15873$$,前三位$$158$$不是$$13$$的倍数, $$1221\\times 14=17094$$,前三位$$170$$不是$$13$$的倍数, $$1221\\times 15=18315$$,前三位$$183$$不是$$13$$的倍数, $$1221\\times 16=19536$$,前三位数$$195\\div 13=15$$,满足条件。$$2013\\times 15=30195$$,$$\\overline{ABFG}$$$$=3036$$。 故选:D。 "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2143 | 138e438338a84a28b23209cbc7ccbb36 | [
"2019年第22届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第13题2分"
] | 2 | single_choice | 一列货车早晨$$6$$时从甲地开往乙地,平均每小时行$$45$$千米,一列客车从乙地开往甲地,平均每小时比货车快$$15$$千米,已知客车比货车迟发$$2$$小时,中午$$12$$时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有千米. | [
[
{
"aoVal": "A",
"content": "$$47.2$$ "
}
],
[
{
"aoVal": "B",
"content": "$$37.5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$24.5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$10.5$$ "
}
],
[
{
"aoVal": "E",
"content": "以上都不对 "
}
]
] | [
"拓展思维->能力->构造模型->模型思想"
] | [
"本题考查相遇问题; 客车比货车迟发$$2$$小时,所以客车是$$8$$时出发,到$$12$$时,经过$$4$$小时到达相遇点,而货车到达相遇点共用了$$4+2=6$$(小时),那么甲、乙两地之间的距离就可求出,用货车 速度乘相遇时货车总共用的时间加上客车速度乘相遇时客车所用时间,即$$45\\times \\left( 4+2 \\right)+60\\times 4=510$$(千米);客车行完全程所需的时间: $$510\\div \\left( 45+15 \\right)=8.5$$(小时);货车行完全程所需的时间:$$8.5+2=10.5$$(小时);客车到达甲地时,货车距乙地的距离,用全程减去货车已经行的路程,即$$510-45\\times 10.5=37.5$$(千米). 客车速度: $$45+15=60$$(千米$$/$$时) 两地距离: $$45\\times \\left( 12-6 \\right)+60\\times \\left( 12-6-2 \\right)=510$$(千米) 客车行完全程所需时间: $$510\\div 60=8.5$$(小时) 客车到达甲地时,货车距乙地的距离: $$510-45\\times \\left( 8.5+2 \\right)=37.5$$(千米) 答:客车到达甲地时,货车离乙地还有$$37.5$$千米. 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2977 | a9ce0f6214b047ff92dace2379bed966 | [
"2014年IMAS小学高年级竞赛第一轮检测试题第4题3分"
] | 2 | single_choice | 请问下列哪一项的值最小? | [
[
{
"aoVal": "A",
"content": "$$1-\\frac{1}{2}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\frac{1}{2}-\\frac{1}{3}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\frac{1}{3}-\\frac{1}{4}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\frac{1}{4}-\\frac{1}{5}$$ "
}
],
[
{
"aoVal": "E",
"content": "$$\\frac{1}{5}-\\frac{1}{6}$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"$$1-\\frac{1}{2}=\\frac{1}{2}\\textgreater\\frac{1}{2}-\\frac{1}{3}=\\frac{1}{6}\\textgreater\\frac{1}{3}-\\frac{1}{4}=\\frac{1}{12}\\textgreater\\frac{1}{4}-\\frac{1}{5}=\\frac{1}{20}\\textgreater\\frac{1}{5}-\\frac{1}{6}=\\frac{1}{30}$$. 故选$$\\text{E}$$. "
] | E |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3372 | 6f360731186d4ca48add7d17227896d0 | [
"2017年全国美国数学大联盟杯小学高年级六年级竞赛初赛第8题5分"
] | 1 | single_choice | 在$$101$$到$$199$$的整数中,有多少个十位数字和个位数字都是偶数的数? | [
[
{
"aoVal": "A",
"content": "$$24$$ "
}
],
[
{
"aoVal": "B",
"content": "$$25$$ "
}
],
[
{
"aoVal": "C",
"content": "$$49$$ "
}
],
[
{
"aoVal": "D",
"content": "$$50$$ "
}
]
] | [
"拓展思维->能力->运算求解",
"Overseas Competition->知识点->计数模块->加乘原理"
] | [
"在$$101$$到$$199$$的整数中,有多少个十位数字和个位数字都是偶数的数? whole numbers 整数;$$an$$ even tens digit 一个十位数是偶数的数; an even ones digit 一个个位数是偶数的数. 十位可以选择$$0$$、$$2$$、$$4$$、$$6$$、$$8$$,共$$5$$个数,个位可以选择$$0$$、$$2$$、$$4$$、$$6$$、$$8$$,共$$5$$个数,除去$$100$$这个数, 一共有$$5\\times 5-1=24$$个. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 131 | 46d5f6ba0a8a4562aec7b4829e89da2a | [
"2013年第11届全国创新杯五年级竞赛第4题5分"
] | 2 | single_choice | 在垒球比赛中,若赢$$1$$场得$$3$$分,平$$1$$场得$$1$$分,输$$1$$场不得分.每个队都与其他队交锋$$4$$场,这时四个参赛队的总积分为:$$A$$队$$22$$分,$$B$$队$$19$$分,$$C$$队$$14$$分,$$D$$队$$12$$分.那么有(~ )场比赛为平局. | [
[
{
"aoVal": "A",
"content": "$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$4$$ "
}
],
[
{
"aoVal": "C",
"content": "$$5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$7$$ "
}
]
] | [
"知识标签->学习能力->七大能力->逻辑分析"
] | [
"对于赛况分析试题,尤其对于与分数相关的试题,最重要的是思维方式,本题如果从整体上来考虑比赛所产生的总分值,问题将迎刃而解,依题意可知比赛总场次为$$24$$场比赛之中,若平局则将会让所有队伍的总分增加$$2$$分(比赛双方均得$$1$$分),若出现了胜败,则所有队伍的总分增加$$3$$分,而现在所有队伍获得的总分值为:$$22+19+14+12=67$$(分),$$24$$场比赛,总分最多24\\times 3=72分,平$$1$$场总分少$$1$$分,$$72-67=5$$分,所以平局$$5$$场. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1806 | 8dd5a33a27db4129a32b529de67a92eb | [
"2004年第2届创新杯六年级竞赛复赛第7题"
] | 2 | single_choice | 某商场的营业额$$2000$$年和$$2001$$年连续两年平均每年比上一年上升$$10 \%$$,而$$2002$$年和$$2003$$年连续两年平均每年比上一年下降$$10 \%$$.那么$$2003$$年的营业额与$$1999$$年的营业额相比较. | [
[
{
"aoVal": "A",
"content": "下降了$$2 \\%$$ "
}
],
[
{
"aoVal": "B",
"content": "下降了$$1-99 \\%$$ "
}
],
[
{
"aoVal": "C",
"content": "上升了$$2 \\%$$ "
}
],
[
{
"aoVal": "D",
"content": "没有变化 "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"可设$$1999$$年的营业额为$$1$$,那么$$2003$$年的营业额可表示$${{(1+10 \\%)}^{2}}{{(1-10 \\%)}^{2}}$$,即可求得. $$2003$$年的营业额为 $${{(1+10 \\%)}^{2}}{{(1-10 \\%)}^{2}}\\approx 98 \\%$$, 即$$2003$$年的营业额是$$1998$$年的$$98 \\%$$. 即$$2003$$年的营业额比$$1998$$年的营业额降低了$$1-98 \\%=2 \\%$$. 故选$$\\text{A}$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2618 | a2ac4f9c464c48f69101e73baec27dfc | [
"2008年全国迎春杯三年级竞赛初赛第1题"
] | 1 | single_choice | 计算. $$24+63+52+17+49+81+74+38=$$~\uline{~~~~~~~~~~}~ | [
[
{
"aoVal": "A",
"content": "$$398$$ "
}
],
[
{
"aoVal": "B",
"content": "$$408$$ "
}
],
[
{
"aoVal": "C",
"content": "$$393$$ "
}
]
] | [
"拓展思维->思想->转化与化归的思想"
] | [
"$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde$$$$24+63+52+17+49+81+74+38=$$ $$=(38+52)+(63+17)+(49+81)+74+24$$ $$= 90+80+130+98$$ $$=398$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 133 | 22e78288ac9446d2a68cc0a20071a308 | [
"2006年四年级竞赛创新杯"
] | 1 | single_choice | 如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的整数有( )个. | [
[
{
"aoVal": "A",
"content": "7 "
}
],
[
{
"aoVal": "B",
"content": "5 "
}
],
[
{
"aoVal": "C",
"content": "2 "
}
],
[
{
"aoVal": "D",
"content": "4 "
}
]
] | [
"拓展思维->拓展思维->组合模块->数字谜->巧填算符"
] | [
"4,5,6,7,8,9,10这7个数中,每个数都能与1,2,3这三个数通过加减乘除组成算式,结果都可以为24,所以可用的数有7个 ,故选A "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 405 | 85e263ab76fe4981944f67c1999de56d | [
"2006年四年级竞赛创新杯",
"2006年第4届创新杯四年级竞赛初赛B卷第6题"
] | 1 | single_choice | 在下列算式中加一对括号后,算式的最大值是. $$7\times 9+12\div 3-2$$ | [
[
{
"aoVal": "A",
"content": "$$65$$ "
}
],
[
{
"aoVal": "B",
"content": "$$77$$ "
}
],
[
{
"aoVal": "C",
"content": "$$89$$ "
}
],
[
{
"aoVal": "D",
"content": "$$90$$ "
}
]
] | [
"拓展思维->思想->逐步调整思想"
] | [
"$$7\\times 9+12\\div 3-2$$加上括号最大是: $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde7\\times (9+12\\div 3)-2$$ $$=7\\times 13-2$$ $$=91-2$$ $$=89$$,加上一个括号后算式的最大值是$$89$$, 故$$\\text{C}$$正确. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1961 | cea688f33ff44640871cbd28e0fcae76 | [
"2003年第1届创新杯六年级竞赛复赛第9题"
] | 2 | single_choice | 四个同学进行计算比赛,比赛内容是:在$$9$$、$$10$$、$$11$$、$$\cdots \cdots $$、$$67$$、$$68$$这$$60$$个自然数的相邻两数之间任意添加符号``$$+$$''或``$$-$$'',然后进行计算.四个同学得到的结果分别是$$2274$$、$$2003$$、$$2300$$、$$2320$$,老师看后指出.这四个结果中只有一个是正确的.这个正确的结果是. | [
[
{
"aoVal": "A",
"content": "$$2274$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2003$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2300$$ "
}
],
[
{
"aoVal": "D",
"content": "$$2320$$ "
}
]
] | [
"拓展思维->思想->逐步调整思想"
] | [
"由于$$9+10+11+\\cdots 68=2310$$,由此可知$$2320$$是错误的.由于$$2274$$、$$2003$$、$$2300$$都小于小于$$2310$$,所以减的数较多,由于减一个数,总和里面就要少这个数的$$2$$倍,如减$$2$$,则是$$2310-2\\times 2=2306$$,所以只要是小于$$2310$$.据此分析即 $$9+10+11+\\cdots 68=2310$$,$$2320\\textgreater2310$$,故$$\\text{D}$$错误; $$\\left( 2310-2274 \\right)\\div 2=18$$,$$18\\div 2=9$$,所以在$$9$$前是减号即可,符合题意. $$\\left( 2310-2003 \\right)=307\\textgreater68$$,错误 $$\\left( 2310-2000 \\right)\\div 2=155\\textgreater68$$,错误. 故选$$\\text{A}$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 647 | 8b10405e15c94145849a2fdb62aed1e4 | [
"2014年全国迎春杯六年级竞赛初赛第5题"
] | 1 | single_choice | 式子$$\frac{2019}{x-5}$$为整数,则正整数$$x$$有种取值. | [
[
{
"aoVal": "A",
"content": "$$1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3$$ "
}
],
[
{
"aoVal": "D",
"content": "$$9$$ "
}
]
] | [
"知识标签->课内知识点->数的认识->数的特征->因数->分解质因数"
] | [
"因为$$2014=2\\times 19\\times 53$$,$$x+1$$可能的取值为:$$2$$、$$19$$、$$53$$、$$38$$、$$106$$、$$1007$$、$$2014$$共七种. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2118 | f9be0bc26a2446ecad6235b1aad2c1cb | [
"2020年第3届山东青岛市南区京山杯六年级竞赛决赛A卷第3题"
] | 2 | single_choice | 某商店卖出两件衣服,每件$$60$$元,其中一件赚$$25 \%$$,另一件亏$$25 \%$$,那么这两件衣服卖出后,商店是. | [
[
{
"aoVal": "A",
"content": "不赚不亏 "
}
],
[
{
"aoVal": "B",
"content": "赚$$8$$元 "
}
],
[
{
"aoVal": "C",
"content": "亏$$8$$元 "
}
],
[
{
"aoVal": "D",
"content": "赚$$15$$元 "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"设盈利的进价是$$x$$元,亏损的进价是$$y$$元,根据每件$$60$$元, 其中一件赚$$25 \\%$$,另一件亏$$25 \\%$$,可列出方程求解. 本题考查一元一次方程的应用,关键知道利润$$=$$售价$$-$$进价, 根据此可列方程求解. 设盈利的进价是$$x$$元,则 $$x+25 \\%x=60$$, $$x=48$$. 设亏损的进价是$$y$$元,则 $$y-25 \\%y=60$$, $$y=80$$. $$60+60-48-80=-8$$, ∴亏了$$8$$元. 所以$$\\text{C}$$选项是正确的. 故选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 849 | c41b939c273f4ed584e17ec01c217271 | [
"2016年全国世奥赛小学高年级五年级竞赛A卷第4题5分"
] | 2 | single_choice | 在一个天平的两边分别放上以下重量的物体,唯一平衡的一组是(~ ~ ~). | [
[
{
"aoVal": "A",
"content": "左边$$312\\times 2598$$克,右边$$820576$$克 "
}
],
[
{
"aoVal": "B",
"content": "左边$$137\\times 4725$$克,右边$$647335$$克 "
}
],
[
{
"aoVal": "C",
"content": "左边$$110\\times 3457$$克,右边$$380270$$克 "
}
],
[
{
"aoVal": "D",
"content": "左边$$261\\times 1231$$克,右边$$300291$$克 "
}
]
] | [
"拓展思维->思想->转化与化归的思想"
] | [
"$$\\text{A}$$选项左边是$$3$$的倍数,右边数字之和不是$$3$$的倍数; $$\\text{B}$$选项左边是$$25$$的倍数,右边末位两位不是$$25$$的倍数; $$\\text{D}$$选项左边是$$9$$的倍数,右边数字之和不是$$9$$的倍数; 故选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2798 | 531b496dbad1451dbcf846d4f4ecd158 | [
"2014年迎春杯五年级竞赛初赛",
"2014年迎春杯三年级竞赛初赛"
] | 2 | single_choice | 在所有分母小于$$10$$的最简分数中,最接近$$20.14$$的分数是( )。 | [
[
{
"aoVal": "A",
"content": "$$\\frac{101}{5}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\frac{141}{7}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\frac{181}{9}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\frac{161}{8}$$ "
}
]
] | [
"拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->分数化小数法"
] | [
"解:A.$$\\frac{101}{5}\\textasciitilde=20.2$$,$$20.2-20.14=0.06$$ B.$$\\frac{141}{7}\\approx 20.14$$,$$20.14-20.14=0$$ C.$$\\frac{181}{9}\\approx 20.11$$,$$20.14-20.11=0.03$$ D.$$\\frac{161}{8}=20.125$$,$$20.14-20.125=0.015$$ 故选:B。 "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1201 | 420dd458d2bc45d786f285a5cd0281ae | [
"2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第9题5分"
] | 0 | single_choice | 有一筐梨,它的一半的一半是$$4$$,这筐梨有个. | [
[
{
"aoVal": "A",
"content": "$$1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$8$$ "
}
],
[
{
"aoVal": "D",
"content": "$$16$$ "
}
]
] | [
"拓展思维->七大能力->运算求解"
] | [
"一个数的一半的一半是$$4$$,则这个数的一半为$$4\\times 2=8$$,则这个数为$$8\\times 2=16$$,故选$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2862 | 8d4c02897b09466d94da4261570b0b64 | [
"2014年IMAS小学中年级竞赛第一轮检测试题第1题3分"
] | 2 | single_choice | 请问算式$$2+0+1+4+2\times 0\times 1\times 4$$的值是多少? | [
[
{
"aoVal": "A",
"content": "$$0$$ "
}
],
[
{
"aoVal": "B",
"content": "$$5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$7$$ "
}
],
[
{
"aoVal": "D",
"content": "$$9$$ "
}
],
[
{
"aoVal": "E",
"content": "$$15$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"$$2+0+1+4+2\\times 0\\times 1\\times 4=7$$.故选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1497 | 564e65d0cfc24e149de776141f5b4d85 | [
"2020年希望杯二年级竞赛模拟第3题"
] | 1 | single_choice | 学校买回来$$10$$个足球和一些排球.过了一段时间丢失了$$3$$个足球,排球数量不变,这时排球比足球多$$4$$个.学校原来买了个排球. | [
[
{
"aoVal": "A",
"content": "$$7$$ "
}
],
[
{
"aoVal": "B",
"content": "$$9$$ "
}
],
[
{
"aoVal": "C",
"content": "$$11$$ "
}
],
[
{
"aoVal": "D",
"content": "$$14$$ "
}
],
[
{
"aoVal": "E",
"content": "$$17$$ "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"学校买回来$$10$$个足球和一些排球.过了一段时间丢失了$$3$$个足球,此时还剩足球$$10-3=7$$(个),这时排球比足球多$$4$$个,排球有$$7+4=11$$(个),故$$\\text{C}$$正确. 故选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 976 | 04c29a8d1e064ad580144ede86b10b87 | [
"2020年四川绵阳涪城区绵阳东辰国际学校超越杯四年级竞赛第9题2分"
] | 1 | single_choice | $$2018$$年$$9$$月$$10$$日教师节是星期一,$$2018$$年$$10$$月$$1$$日国庆节是. | [
[
{
"aoVal": "A",
"content": "星期一 "
}
],
[
{
"aoVal": "B",
"content": "星期三 "
}
],
[
{
"aoVal": "C",
"content": "星期四 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->日期中的周期"
] | [
"$$9$$月$$10$$日到$$10$$月$$1$$日过了$$30-10+1=21$$(天), 而星期是$$7$$天一周期, 则$$21\\div 7$$余$$0$$,故仍为星期一,选$$\\text{A}$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2084 | fda7dacca69042199789ef9560eb4023 | [
"2016年IMAS小学高年级竞赛第一轮检测试题第14题4分"
] | 1 | single_choice | 图书馆典藏的书籍中有$$12.1 \%$$是小说,已知有$$1800$$本小说与$$2400$$本其它书籍被借走,这时留在图书馆的书籍有$$12 \%$$是小说.请问这家图书馆原来典藏的书籍总共有多少本? | [
[
{
"aoVal": "A",
"content": "$$1296000$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1582200$$ "
}
],
[
{
"aoVal": "C",
"content": "$$1800000$$ "
}
],
[
{
"aoVal": "D",
"content": "$$1586400$$ "
}
],
[
{
"aoVal": "E",
"content": "$$1291800$$ "
}
]
] | [
"拓展思维->思想->方程思想"
] | [
"设图书馆原有藏书共$$x$$本,则可列方程$$(12.1 \\%x-1800)\\div (x-1800-2400)=12 \\%$$,解得$$x=1296000$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1495 | 7a9f3365412c48d68f3e5dc1eb9b8bcf | [
"2018年第22届广东世界少年奥林匹克数学竞赛五年级竞赛决赛第4题5分"
] | 1 | single_choice | $${{2019}^{2018}}$$的个位数是. | [
[
{
"aoVal": "A",
"content": "$$1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"$${{9}^{1}}$$的个位为$$9$$,$${{9}^{2}}$$的个位为$$1$$,$${{9}^{3}}$$的个位为$$9$$,$${{9}^{4}}$$的个位为$$1\\cdots \\cdots $$,所以$${{9}^{2018}}$$的个位为$$1$$,即$${{2019}^{2018}}$$的个位为$$1$$. 故选:$$\\text{A}$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1542 | 8c4133fe55074be69d07aed23f630e6f | [
"2016年第15届春蕾杯四年级竞赛决赛第11题5分"
] | 1 | single_choice | 某人想用长绳吊一重物来测量井深,当他将绳子$$2$$折时,露出井口的绳比井深还长$$6$$米,当他把绳子$$4$$折时,露出井口的绳比井深长出$$1$$米,井深多少米?下面方程正确的是. | [
[
{
"aoVal": "A",
"content": "$$2x+6=4x+1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2x+2\\times 6=4x+1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2x+2\\times 6=4x+4$$ "
}
],
[
{
"aoVal": "D",
"content": "$$2x+2\\times 6=4x-1$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"把绳子折成$$2$$段时绳比井深长出$$6$$米,这说明,绳长比井深的$$2$$倍多$$12$$米;把绳子折成$$4$$段时,则绳比井深长$$1$$米,这说明绳长比井深的$$4$$倍多$$4$$米, 所以井深是$$\\left( 12-4 \\right)\\div \\left( 4-2 \\right)=4$$(米). "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2696 | 955009e1379149b980ae385551b265e0 | [
"2018年IMAS小学中年级竞赛(第一轮)第2题3分"
] | 1 | single_choice | 若$$\left( \Delta \times 2-1 \right)\times 2=2018$$,请问$$\Delta $$代表的数是多少? | [
[
{
"aoVal": "A",
"content": "$$502$$ "
}
],
[
{
"aoVal": "B",
"content": "$$503$$ "
}
],
[
{
"aoVal": "C",
"content": "$$504$$ "
}
],
[
{
"aoVal": "D",
"content": "$$505$$ "
}
],
[
{
"aoVal": "E",
"content": "$$506$$ "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"$$\\left( \\Delta \\times 2-1 \\right)\\times 2=2018$$, $$\\Delta \\times 2-1=2018\\div 2=1009$$, $$\\Delta \\times 2=1009+1=1010$$, $$\\Delta =1010\\div 2=505$$. 故选$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3446 | ea53c7b0267d483f9e2f694edd2b81f8 | [
"2015年全国AMC小学高年级六年级竞赛8第10题"
] | 2 | single_choice | 2015年全国$$AMC$$小学高年级六年级竞赛$$8$$第$$10$$题 How many integers between $$1000$$ and $$9999$$ have four distinct digits? | [
[
{
"aoVal": "A",
"content": "$$3024$$ "
}
],
[
{
"aoVal": "B",
"content": "$$4536$$ "
}
],
[
{
"aoVal": "C",
"content": "$$5040$$ "
}
],
[
{
"aoVal": "D",
"content": "$$6480$$ "
}
],
[
{
"aoVal": "E",
"content": "$$6561$$ "
}
]
] | [
"拓展思维->思想->整体思想",
"Overseas Competition->知识点->计数模块->枚举法综合->字典排序法"
] | [
"翻译:$$1000$$至$$9999$$中有多少个位数字互不相同的四位数? 组数问题:千位数字有$$1\\sim 9$$共$$9$$种选法,百、十、个位分别有$$9$$、$$8$$、$$7$$种选法,一共有$$9\\times 9\\times 8\\times 7=4536$$(个)数字互不相同的四位数. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1928 | e51d914817c549788928a8d2749836c6 | [
"2013年第11届全国小机灵杯三年级竞赛决赛第6题"
] | 2 | single_choice | 某年的三月份正好有$$4$$个星期三和$$4$$个星期六,那么这年$$3$$月$$1$$日是星期. | [
[
{
"aoVal": "A",
"content": "一 "
}
],
[
{
"aoVal": "B",
"content": "二 "
}
],
[
{
"aoVal": "C",
"content": "三 "
}
],
[
{
"aoVal": "D",
"content": "四 "
}
],
[
{
"aoVal": "E",
"content": "五 "
}
],
[
{
"aoVal": "F",
"content": "六 "
}
],
[
{
"aoVal": "G",
"content": "日 "
}
]
] | [
"知识标签->课内知识点->数学广角->简单的周期->简单的周期计算"
] | [
"$$3$$月有$$31$$天,从中任取连续$$28$$天,正好是四周,恰好有$$4$$个周三和$$4$$个周六, 因此,剩下的$$3$$天中不能有周三和周六 不妨取$$3$$月$$4$$日到$$3$$月$$31$$日,这$$28$$天中恰有$$4$$个周三和$$4$$个周六 剩下的$$1$$日到$$3$$日是连续的三天,其中有不能有周三和周六,发现这三天只能是周日、周一、周二 因此,$$3$$月$$1$$日是周日. "
] | G |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1162 | 151b4677e0074284937a0b48cbb6efe8 | [
"2017年第15届湖北武汉创新杯五年级竞赛初赛第2题"
] | 2 | single_choice | $$2016$$个$$2017$$连乘,积的个位数是. | [
[
{
"aoVal": "A",
"content": "$$9$$ "
}
],
[
{
"aoVal": "B",
"content": "$$7$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3$$ "
}
],
[
{
"aoVal": "D",
"content": "$$1$$ "
}
]
] | [
"拓展思维->拓展思维->应用题模块->周期问题->数列操作周期问题->数的周期"
] | [
"找规律,$${{7}^{1}}$$个位为$$7$$,$${{7}^{2}}$$个位为$$9$$,$${{7}^{3}}$$个位为$$3$$,$${{7}^{4}}$$个位为$$1$$,$${{7}^{5}}$$个位为$$7$$,$${{7}^{6}}$$个位为$$9$$,即四个数为一周期,$$2016\\div 4=504$$(组)$$\\cdots\\cdots0$$(个),即个位为$$1$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3082 | d896d1a82cbf4282bb8706c1a23e1b80 | [
"2013年第12届全国小机灵杯小学中年级三年级竞赛初赛第2题1分"
] | 0 | single_choice | 家中电度表上的一度电表示的耗电量为( ~~). | [
[
{
"aoVal": "A",
"content": "$$0.1$$千瓦小时 "
}
],
[
{
"aoVal": "B",
"content": "$$1$$千瓦小时 "
}
],
[
{
"aoVal": "C",
"content": "$$100$$瓦小时 "
}
]
] | [
"拓展思维->思想->对应思想"
] | [
"家中电度表上的一度电表示的耗电量为$$1$$千瓦小时. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2157 | e7a6c79e6c9b4db1a3c88b552fa99d0c | [
"2014年全国迎春杯四年级竞赛初赛第3题"
] | 1 | single_choice | 亮亮早上$$8:00$$从甲地出发去乙地,速度是每小时$$8$$千米.他在中间休息了$$1$$小时,结果中午$$12:00$$到达乙地.那么,甲、乙两地之间的距离是( )千米. | [
[
{
"aoVal": "A",
"content": "$$16$$ "
}
],
[
{
"aoVal": "B",
"content": "$$24$$ "
}
],
[
{
"aoVal": "C",
"content": "$$32$$ "
}
],
[
{
"aoVal": "D",
"content": "$$40$$ "
}
]
] | [
"拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->单人变速问题"
] | [
"解:$$12$$时$$-8$$时$$=4$$小时 $$8\\times \\left( 4-1 \\right)$$ $$=8\\times 3$$ $$=24$$(千米) 答:甲、乙两地之间的距离是$$24$$千米. 故选:B. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3270 | 55af4879c2be4b46b812772af3a799cf | [
"2016年全国华杯赛小学高年级竞赛初赛第4题"
] | 1 | single_choice | 将$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$,$$8$$这$$8$$个数排成一行,使得$$8$$的两边各数之和相等,那么共有( )种不同的排法. | [
[
{
"aoVal": "A",
"content": "$$1152$$ "
}
],
[
{
"aoVal": "B",
"content": "$$864$$ "
}
],
[
{
"aoVal": "C",
"content": "$$576$$ "
}
],
[
{
"aoVal": "D",
"content": "$$288$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"首先求出$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$的和是$$28$$,判断出$$8$$的两边各数之和都是$$14$$,然后分为$$4$$种情况: ($$1$$)$$8$$的一边是$$1$$,$$6$$,$$7$$,另一边是$$2$$,$$3$$,$$4$$,$$5$$时; ($$2$$)$$8$$的一边是$$2$$,$$5$$,$$7$$,另一边是$$1$$,$$3$$,$$4$$,$$6$$时; ($$3$$)$$8$$的一边是$$3$$,$$4$$,$$7$$,另一边是$$1$$,$$2$$,$$5$$,$$6$$时; ($$4$$)$$8$$的一边是$$1$$,$$2$$,$$4$$,$$7$$,另一边是$$3$$,$$5$$,$$6$$时. 求出每种情况下各有多少种不同的排法,即可求出共有多少种不同的排法. 解:$$1+2+3+4+5+6+7=28$$ $$8$$的两边各数之和是:$$28\\div 2=14$$ ($$1$$)$$8$$的一边是$$1$$,$$6$$,$$7$$,另一边是$$2$$,$$3$$,$$4$$,$$5$$时, 不同的排法一共有: $$\\left( 3\\times 2\\times 1 \\right)\\times \\left( 4\\times 3\\times 2\\times 1 \\right)\\times 2$$ $$=6\\times 24\\times 2$$ $$=288$$(种) ($$2$$)$$8$$的一边是$$2$$,$$5$$,$$7$$,另一边是$$1$$,$$3$$,$$4$$,$$6$$时, 不同的排法一共有$$288$$种. ($$3$$)$$8$$的一边是$$3$$,$$4$$,$$7$$另一边是$$1$$,$$2$$,$$5$$,$$6$$时, 不同的排法一共有$$288$$种. ($$4$$)$$8$$的一边是$$1$$,$$2$$,$$4$$,$$7$$另一边是$$3$$,$$5$$,$$6$$时, 不同的排法一共有$$288$$种. 因为$$288\\times 4=1152$$(种), 所以共有$$1152$$种不同的排法. 答:共有$$1152$$种不同的排法. 故选:$$\\rm A$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3443 | c5fb11324cf04685bc55b62830c70bc2 | [
"2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第1题5分"
] | 1 | single_choice | 从小华家到学校有$$3$$条路可走,从学校到红领巾公园有$$2$$条路可走,从小华家经过学校到红领巾公园,有种不同的走法. | [
[
{
"aoVal": "A",
"content": "$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$4$$ "
}
],
[
{
"aoVal": "C",
"content": "$$5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$6$$ "
}
]
] | [
"拓展思维->拓展思维->计数模块->加乘原理->加法原理->加法原理里的其他类型"
] | [
"小华从家到学校有$$3$$条路可选,从学校到公园有$$2$$条路可选,所以小华从家到学校再到公园就有$$3$$个$$2$$种情况可选,即$$2+2+2=6$$(种). 故选择$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 250 | a794d511a59b4a46b2f7e47f3572eac4 | [
"2020年长江杯五年级竞赛复赛A卷",
"2020年长江杯五年级竞赛复赛A卷第5题5分"
] | 2 | single_choice | 现有$$1$$克、$$2$$克、$$4$$克、$$8$$克、$$16$$克的砝码各一个和一个天平,最多能称出种不同的质量. | [
[
{
"aoVal": "A",
"content": "$$10$$ "
}
],
[
{
"aoVal": "B",
"content": "$$20$$ "
}
],
[
{
"aoVal": "C",
"content": "$$30$$ "
}
],
[
{
"aoVal": "D",
"content": "$$31$$ "
}
]
] | [
"拓展思维->能力->构造模型->模型思想"
] | [
"($$1$$)$$1$$个砝码可以称出的重量有$$5$$种:$$1$$克,$$2$$克,$$4$$克,$$8$$克,$$16$$克; ($$2$$)$$2$$个砝码可以称出的重量有$$10$$种: $$1+2=3$$(克),$$1+4=5$$(克),$$1+8=9$$(克), $$1+16=17$$(克); $$2+4=6$$(克),$$2+8=10$$(克),$$2+16=18$$(克); $$4+8=12$$(克),$$4+16=20$$(克), $$8+16=24$$(克); ($$3$$)$$3$$个砝码可以称出的重量有$$10$$种: $$1+2+4=7$$(克),$$1+2+8=11$$(克), $$1+2+16=19$$(克), $$1+4+8=13$$(克),$$1+4+16=21$$(克), $$1+8+16=25$$(克), $$2+4+8=14$$(克),$$2+4+16=22$$(克), $$2+8+16=26$$(克), $$4+8+16=28$$(克); ($$4$$)$$4$$个砝码可以称出的重量有$$5$$种: $$1+2+4+8=15$$(克),$$1+2+4+16=23$$(克), $$1+2+8+16=27$$(克), $$1+4+8+16=29$$(克),$$2+4+8+16=30$$(克); ($$5$$)$$5$$个砝码可以称出的重量有$$1$$种: $$1+2+4+8+16=31$$(克). 因为$$5+10+10+5+1=31$$(种), 所以最多可以称出$$31$$种不同的重量,它们是$$1$$克$$-31$$克. 答:最多能称出$$31$$种不同重量的物体. 故选$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1601 | a7fe009e6d5e42ba82a412ff2418b5dc | [
"2006年第4届创新杯五年级竞赛初赛A卷第10题"
] | 2 | single_choice | 一根长木棍上刻有三种刻度,第一种刻度将木棍十等分,第二种刻度将木棍十二等分,第三种刻度将木棍十五等分,如果沿每条刻度线将木棍锯开,木棍总共被锯成. | [
[
{
"aoVal": "A",
"content": "$$20$$段 "
}
],
[
{
"aoVal": "B",
"content": "$$24$$段 "
}
],
[
{
"aoVal": "C",
"content": "$$28$$段 "
}
],
[
{
"aoVal": "D",
"content": "$$30$$段 "
}
]
] | [
"拓展思维->能力->实践应用"
] | [
"由于$$10$$、$$12$$、$$15$$的最小公倍数是$$60$$, 假定这根木棍的长为$$60$$, 于是,各等分的刻度线的标记处是: 十等分:$$6$$、$$12$$、$$18$$、$$24$$、$$30$$、$$36$$、$$42$$、$$48$$、$$54$$、$$60$$, 十二等分:$$5$$、$$10$$、$$15$$、$$20$$、$$25$$、$$30$$、$$35$$、$$40$$、$$45$$、$$50$$、$$55$$、$$60$$, 十五等分:$$4$$、$$8$$、$$12$$、$$16$$、$$20$$、$$24$$、$$28$$、$$32$$、$$36$$、$$40$$、$$44$$、$$48$$、$$52$$、$$56$$、$$60$$, 这样,把有三个刻度线标记处重合的($$60$$)去掉, 把有两个刻度线标记处的($$12$$、$$24$$、$$36$$、$$48$$、$$20$$、$$30$$、40)只算一个, 然后在$$4$$、$$5$$、$$6$$、$$8$$、$$10$$、$$12$$、$$15$$、$$16$$、$$18$$、$$20$$、$$24$$、$$25$$、$$28$$、$$30$$、$$32$$、$$35$$、$$36$$、$$40$$、$$42$$、$$44$$、$$45$$、$$48$$、$$50$$、$$52$$、$$54$$、$$55$$、$$56$$处将木棍锯断,共锯了$$27$$次. 根据植树问题的原理可知: 这根木棍共锯成$$27+1=28$$(段). 所以$$\\text{C}$$选项是正确的. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1032 | 06bc890f40e8498b952cbec5ee234c7d | [
"2013年第9届全国新希望杯小学高年级六年级竞赛复赛第1题4分"
] | 2 | single_choice | 有$$16$$个小朋友,其中$$9$$岁的有$$11$$人,$$11$$岁的有$$2$$人,$$13$$岁的有$$3$$人,那么这$$16$$个小朋友的平均年龄是(~ ). | [
[
{
"aoVal": "A",
"content": "$$10$$岁 "
}
],
[
{
"aoVal": "B",
"content": "$$10.5$$岁 "
}
],
[
{
"aoVal": "C",
"content": "$$11$$岁 "
}
],
[
{
"aoVal": "D",
"content": "$$11.5$$岁 "
}
]
] | [
"拓展思维->拓展思维->应用题模块->平均数问题->公式类->加权平均数"
] | [
"$$\\left( 9\\times 11+11\\times 2+13\\times 3 \\right)\\div 16=10$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3045 | bcd22aa627b84c479008dfba18b52add | [
"2017年全国美国数学大联盟杯小学中年级四年级竞赛初赛"
] | 2 | single_choice | 五个连续正整数的和总是可以被下面哪个数整除? | [
[
{
"aoVal": "A",
"content": "$$2$$ "
}
],
[
{
"aoVal": "B",
"content": "$$3$$ "
}
],
[
{
"aoVal": "C",
"content": "$$5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$7$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"连续五个正整数一定是分别除以$$5$$余$$1$$,除以$$5$$余$$2$$,除以$$5$$余$$3$$,除以$$5$$余$$4$$,除以$$5$$余$$0$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 196 | 50bf22cadf16416e9bc25410f0b1f25d | [
"2017年第15届湖北武汉创新杯五年级竞赛初赛第7题"
] | 2 | single_choice | 盒中有形状、大小、质料相同的红、白、黑颜色的球各$$10$$个,摸出若干个,要保证摸出的球中至少有$$3$$个球同色,摸出球的个数至少为个. | [
[
{
"aoVal": "A",
"content": "$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$6$$ "
}
],
[
{
"aoVal": "D",
"content": "$$7$$ "
}
]
] | [
"拓展思维->知识点->组合模块->抽屉原理->最不利原则"
] | [
"最不利原则.要保证拿到一种颜色至少有$$3$$个,则根据最不利原则,可先取每种颜色$$2$$个,最后取一个不论取哪种颜色,都一定可以满足条件,即需要$$2\\times 3+1=7$$个. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 152 | d9e95eec88e649b78334f802d72a04ab | [
"2016年全国华杯赛小学中年级竞赛在线模拟第3题",
"2013年全国华杯赛小学中年级竞赛初赛A卷第3题"
] | 2 | single_choice | 小东、小西、小南、小北四个小朋友在一起做游戏时,捡到了一条红领巾,交给了老师.老师问是谁捡到的? 小东说:``不是小西.'' 小西说:``是小南.'' 小南说:``小东说的不对.'' 小北说:~~``小南说的也不对.'' 他们之中只有一个人说对了,这个人是. | [
[
{
"aoVal": "A",
"content": "小东 "
}
],
[
{
"aoVal": "B",
"content": "小西 "
}
],
[
{
"aoVal": "C",
"content": "小南 "
}
],
[
{
"aoVal": "D",
"content": "小北 "
}
]
] | [
"拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾"
] | [
"由于只有一个人说对了,而小北支持小东,那么他们俩都错了,所以反对小东的小南说对了. ",
"<p>根据题干分析可得,小南与小北说的话是相互矛盾的,所以两人中一定有一个人说的是正确的,假设小北说的是正确的,则小南说“小东说的不对”是错,可得,小东说的对,这样与已知只有一个人说对了相矛盾,所以此假设不成立,故小南说的是正确的.</p>\n<p>故选:$$\\text{C}$$.</p>"
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2901 | 7cde35930bdd4c5b84f836bea0bb067a | [
"2013年河南郑州中原网杯六年级竞赛初赛",
"2017年河北邯郸邯山区凌云中学小升初(县城卷)第15题2分"
] | 1 | single_choice | 一堆钢管最上层有$$14$$根,最下层有$$26$$根,每层相差$$1$$根,共有$$13$$层,这堆钢管共有(~ )根. | [
[
{
"aoVal": "A",
"content": "$$210$$ "
}
],
[
{
"aoVal": "B",
"content": "$$220$$ "
}
],
[
{
"aoVal": "C",
"content": "$$240$$ "
}
],
[
{
"aoVal": "D",
"content": "$$260$$ "
}
]
] | [
"拓展思维->思想->转化与化归的思想"
] | [
"运用等差数列求和公式:$$\\left( 14+26 \\right)\\times 13\\div 2=260$$根. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 923 | b369149727f44f99a8ac00652377b49b | [
"2015年第13届全国创新杯小学高年级五年级竞赛初赛第3题"
] | 1 | single_choice | 有$$A$$、$$B$$两个整数,$$A$$的各位数字之和为$$36$$,$$B$$的各位数字之和为$$25$$,且两数相加时进位三次,那么$$A+B$$的各位数字之和是. | [
[
{
"aoVal": "A",
"content": "$$33$$ "
}
],
[
{
"aoVal": "B",
"content": "$$34$$ "
}
],
[
{
"aoVal": "C",
"content": "$$35$$ "
}
],
[
{
"aoVal": "D",
"content": "$$36$$ "
}
]
] | [
"知识标签->数学思想->逐步调整思想"
] | [
"进三次位数字和少$$3\\times 9=27$$,则$$36+25-27=34$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 102 | 9439d12f0eff488cb9a312e5fddec0d3 | [
"2020年四川绵阳涪城区绵阳东辰国际学校超越杯四年级竞赛第6题2分"
] | 1 | single_choice | 一部电影共放映了$$85$$分钟,结束时正好是$$20:40$$分.这部电影是开始放映的. | [
[
{
"aoVal": "A",
"content": "$$18:15$$ "
}
],
[
{
"aoVal": "B",
"content": "$$19:15$$ "
}
],
[
{
"aoVal": "C",
"content": "$$20:15$$ "
}
],
[
{
"aoVal": "D",
"content": "$$21:15$$ "
}
],
[
{
"aoVal": "E",
"content": "$$22:05$$ "
}
]
] | [
"Overseas Competition->知识点->组合模块->时间问题",
"拓展思维->拓展思维->组合模块->时间问题->时间计算"
] | [
"根据题意分析可知,$$60$$分钟$$=1$$小时,$$85$$分钟$$=1$$小时$$25$$分钟, 用结束的时间减去放映的时长即可得到开始放映的时间, 故列式为:$$20:40-1:25=19:15$$. 故选$$\\text{B}$$. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 720 | 43c80ff7fd09450aa604c3dc120139fb | [
"2006年第4届创新杯六年级竞赛初赛B卷第3题"
] | 1 | single_choice | 三个质数$$p$$,$$q$$,$$r$$满足$$p+q=r$$,且$$p\textless9$$,那么$$p$$等于. | [
[
{
"aoVal": "A",
"content": "$$13$$ "
}
],
[
{
"aoVal": "B",
"content": "$$7$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3$$ "
}
],
[
{
"aoVal": "D",
"content": "$$2$$ "
}
]
] | [
"拓展思维->拓展思维->数论模块->质数与合数->特殊质数运用->特殊质数2"
] | [
"依题意可知:质数的只有$$2$$是偶质数. 其余的就是奇质数, 所以$$p+q=r$$中含有一个偶质数. $$2$$是最小的质数.且$$p\\textless{}q$$. 所以$$p$$是唯一确定是偶质数$$2$$. 故选$$\\text{D}$$. "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3068 | c665adacea3d42579645f883a733cce6 | [
"2020年新希望杯三年级竞赛初赛(团战)第35题"
] | 1 | single_choice | 下面哪个算式的计算结果是偶数? | [
[
{
"aoVal": "A",
"content": "$$\\left( 784-455 \\right)\\times 39+44\\times 11$$ "
}
],
[
{
"aoVal": "B",
"content": "$$11\\times 1+22\\times 2+33\\times 3+44\\times 4+55\\times 5+66\\times 6+77\\times 7+88\\times 8+99\\times 9$$ "
}
],
[
{
"aoVal": "C",
"content": "$$11\\times 1+22\\times 2+33\\times 3+44\\times 4+55\\times 5+66\\times 6+77\\times 7+88\\times 8+99\\times 9$$ "
}
],
[
{
"aoVal": "D",
"content": "$$123\\times 456+789$$ "
}
],
[
{
"aoVal": "E",
"content": "$$2\\times 4\\times 6\\times \\cdots \\times 2018\\times 2020-1\\times 3\\times 5\\times \\cdots \\times 2017\\times 2019$$ "
}
]
] | [
"拓展思维->能力->运算求解->程序性计算"
] | [
"暂无 "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 604 | 1d07e18777a3486786e49079a638ad29 | [
"2018年湖北武汉新希望杯五年级竞赛训练题(三)第6题"
] | 1 | single_choice | 学校举行团体操表演,有$$2310$$名学生参加,分成人数相等的若干队,要求每队人数在$$100$$至$$200$$之间,共有种分法. | [
[
{
"aoVal": "A",
"content": "$$2$$ "
}
],
[
{
"aoVal": "B",
"content": "$$3$$ "
}
],
[
{
"aoVal": "C",
"content": "$$4$$ "
}
],
[
{
"aoVal": "D",
"content": "$$5$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"$$2310=2\\times 3\\times 5\\times 7\\times 11$$,$$2310$$在$$100$$至$$200$$之间的因数有:$$2\\times 5\\times 11$$、$$2\\times 7\\times 11$$、$$3\\times 5\\times 7$$、$$3\\times 5\\times 11$$共$$4$$个,所以共有$$4$$种分法. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2173 | 38e39d8d0a604b09ad8eb52c16ee249d | [
"2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(三)"
] | 1 | single_choice | 一列火车通过一座长$$320$$米的桥用了$$21$$秒,当它通过$$860$$米的隧道时,速度是过桥速度的$$2$$倍,结果用了$$24$$秒,火车通过大桥时的速度是每秒米;火车的车身长度为米. | [
[
{
"aoVal": "A",
"content": "$$10$$;$$100$$ "
}
],
[
{
"aoVal": "B",
"content": "$$20$$;$$100$$ "
}
],
[
{
"aoVal": "C",
"content": "$$40$$;$$100$$ "
}
],
[
{
"aoVal": "D",
"content": "$$80$$;$$200$$ "
}
]
] | [
"拓展思维->拓展思维->行程模块->火车问题->火车过桥->连续过两桥"
] | [
"若通过$$860$$米隧道时速度不变则需要$$24\\times 2=48$$(秒),火车过桥速度:$$\\left( 860-320 \\right)\\div \\left( 48-21 \\right)=20$$(米/秒):火车车身长:$$21\\times 20-320=100$$(米). "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 552 | 05314ef75b83424eb2e172305c765c2b | [
"2016年华杯赛六年级竞赛初赛",
"2016年华杯赛六年级竞赛初赛"
] | 2 | single_choice | 在一个七位整数中,任何三个连续排列的数字都能构成一个被$$11$$或$$13$$整除的三位数,那么这个七位数最大是( ) | [
[
{
"aoVal": "A",
"content": "$$9981733$$ "
}
],
[
{
"aoVal": "B",
"content": "$$9884737$$ "
}
],
[
{
"aoVal": "C",
"content": "$$9978197$$ "
}
],
[
{
"aoVal": "D",
"content": "$$9871733$$ "
}
]
] | [
"拓展思维->拓展思维->数论模块->整除->整除特征->基础复合数字的整除特征"
] | [
"解:在$$7$$位数中,首先分析前三位数字,最大的$$11$$的倍数是$$990$$,最大的$$13$$的倍数是$$988$$,因为$$0$$不能做首位。所以$$7$$位数中不能含有数字$$0$$,$$11$$的倍数的第二大数字是$$979$$,小于$$988$$。所以前三位数字是$$988$$。 第$$4$$位,根据如果是$$11$$的倍数,数字就是$$880$$;如果是$$13$$的倍数就是$$884$$。最大是$$884$$。 第$$5$$位,根据如果是$$11$$的倍数,数字就是$$847$$;如果是$$13$$的倍数就是$$845$$。最大是$$847$$。 第$$6$$位,根据如果是$$11$$的倍数,数字就是$$473$$,如果是$$13$$的倍数,在$$470\\sim479$$之间没有$$13$$的倍数。所以是$$473$$。 第$$7$$位,根据如果是$$11$$的倍数,数字就是$$737$$;如果是$$13$$的倍数,没有符合的数字。 所以这个$$7$$位数是$$9884737$$。 故选:B。 "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2617 | 67b7219d39014a228fef920b53503083 | [
"2018年第6届湖北长江杯五年级竞赛初赛B卷第7题3分"
] | 1 | single_choice | $$21$$个数排成一排:$$0$$,$$1$$,$$3$$,$$8$$,$$21$$,$$\cdots \cdots $$,除了两头的两个数外,每个数的$$3$$倍都等于它两边的两个数之和,那么这$$21$$个数中有个奇数. | [
[
{
"aoVal": "A",
"content": "$$9$$ "
}
],
[
{
"aoVal": "B",
"content": "$$11$$ "
}
],
[
{
"aoVal": "C",
"content": "$$14$$ "
}
],
[
{
"aoVal": "D",
"content": "$$15$$ "
}
]
] | [
"拓展思维->能力->数据处理"
] | [
"这道题主要考查学生对排列规律的知识点的掌握情况.我们要根据题目中的数字的排列规律首先确定这组数是偶奇奇的规律,偶数两边肯定都是奇数,奇数两边必然一个奇一个偶.根据规律即可解答. $$1$$、这道题主要考查学生奇数与偶数的知识,我们根据排列规律来解答; $$2$$、根据能被$$2$$整除的数叫做偶数,不能被$$2$$整除的叫做奇数.$$0$$也是偶数.我们发现排列规律是偶奇奇的规律,偶数两边肯定都是奇数,奇数两边必然一个奇一个偶; $$3$$、根据一共有$$21$$个数,所以$$21\\div 3=7$$,$$7\\times 2$$即可解答. $$21\\div 3=7$$,$$7\\times 2=14$$(个). 所以这$$21$$个数中有$$14$$个奇数. 故选:$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1005 | 09d3cd89203e48c5900b7e19c3ea5eba | [
"2015年天津陈省身杯四年级竞赛第2题"
] | 1 | single_choice | 冬至又称``冬节''、``贺冬'',是华夏二十四节气之一,与二十四节气中的``夏至''相对.$$2014$$的``冬至''是$$12$$月$$22$$日星期一,那么$$2015$$年``冬至''(也在$$12$$月$$22$$日)是星期~\uline{~~~~~~~~~~}~. | [
[
{
"aoVal": "A",
"content": "一 "
}
],
[
{
"aoVal": "B",
"content": "二 "
}
],
[
{
"aoVal": "C",
"content": "三 "
}
],
[
{
"aoVal": "D",
"content": "四 "
}
]
] | [
"知识标签->拓展思维->应用题模块->周期问题->时间中的周期问题->日期中的周期"
] | [
"从$$2014$$年``冬至''到$$2015$$年``冬至''共$$365$$天,而$$365\\div 7=52\\cdots \\cdots 1$$,因为$$2014$$年``冬至''是星期一,所以$$2015$$年的``冬至''是星期二. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 2844 | 6e681ea975ec4ae5953c822bbf3588f8 | [
"2007年走美杯五年级竞赛初赛",
"2007年走美杯六年级竞赛初赛"
] | 1 | single_choice | $$173\times 173\times 173-162\times 162\times 162$$的计算结果为( ) | [
[
{
"aoVal": "A",
"content": "$$926183$$ "
}
],
[
{
"aoVal": "B",
"content": "$$926185$$ "
}
],
[
{
"aoVal": "C",
"content": "$$926187$$ "
}
],
[
{
"aoVal": "D",
"content": "$$926189$$ "
}
]
] | [
"拓展思维->拓展思维->数论模块->余数问题->余数的性质->余数性质综合"
] | [
"$$173\\times 173\\times 173$$ 的个位数是$$7$$,$$162\\times 162\\times 162$$的个位数是$$8$$,所以结果的个位数是$$9$$,只有D符合。 "
] | D |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1182 | 11932257cd884e439f86036291c12193 | [
"2018年第6届湖北长江杯五年级竞赛初赛A卷第8题3分"
] | 1 | single_choice | 甲、乙、丙三个数的平均数是$$6$$,甲、乙两个数的平均数是$$4$$,乙、丙两个数的平均数是$$5.3$$,乙数是,甲、丙两个数的平均数是. | [
[
{
"aoVal": "A",
"content": "$$0.6$$,$$8.7$$ "
}
],
[
{
"aoVal": "B",
"content": "$$0.6$$,$$8.3$$ "
}
],
[
{
"aoVal": "C",
"content": "$$0.4$$,$$8.7$$ "
}
],
[
{
"aoVal": "D",
"content": "$$0.4$$,$$8.3$$ "
}
]
] | [
"拓展思维->能力->运算求解"
] | [
"甲、乙、丙三个数的平均数是$$6$$,那么甲、乙、丙三个数的和等于$$6\\times 3=18$$,甲、乙两个数的平均数是$$4$$,甲、乙两数的和是$$2\\times 4=8$$,那么丙数等于$$18-8=10$$,乙、丙两数的平均数是$$5.3$$,乙、丙两数的和是$$5.3\\times 2=10.6$$,那么甲数等于$$18-10.6=7.4$$,丙数等于$$10$$,甲数等于$$7.4$$.那么乙数等于$$18-10-7.4=0.6$$,甲、丙的平均数等于$$(7.4+10)\\div 2=8.7$$. 故选$$\\text{A}$$. "
] | A |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 1691 | 729a905981f24b97a96fac6942846872 | [
"2014年全国华杯赛小学高年级竞赛初赛A卷第2题"
] | 2 | single_choice | 某次考试有$$50$$道试题,答对一道题得$$3$$分,答错一道题或不答题会扣$$1$$分,小龙得分$$118$$分,则小龙答对了道试题. | [
[
{
"aoVal": "A",
"content": "$$40$$ "
}
],
[
{
"aoVal": "B",
"content": "$$42$$ "
}
],
[
{
"aoVal": "C",
"content": "$$48$$ "
}
],
[
{
"aoVal": "D",
"content": "$$50$$ "
}
]
] | [
"知识标签->拓展思维->应用题模块->鸡兔同笼问题->假设法解鸡兔同笼->基本型->变型题"
] | [
"假设小龙所有的题目都做对了,则小龙的得分为:$$50\\times 3=150$$(分);实际上小龙的得分为$$118$$分,假设与实际相差:$$150-118=32$$(分);小龙一道题由对变错会损失:$$3+1=4$$(分),所以小龙错了:$$32\\div 4=8$$(道)题,则小龙答对了:$$50-8=42$$(道)题. "
] | B |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 788 | 72162667f19943b29f1f26fb93a6dbbf | [
"2014年IMAS小学中年级竞赛第一轮检测试题第9题3分"
] | 1 | single_choice | 有$$25$$位小朋友看电视,一条长凳最多可坐$$3$$个小朋友,请问最少需要多少条长凳? | [
[
{
"aoVal": "A",
"content": "$$7$$ "
}
],
[
{
"aoVal": "B",
"content": "$$8$$ "
}
],
[
{
"aoVal": "C",
"content": "$$9$$ "
}
],
[
{
"aoVal": "D",
"content": "$$10$$ "
}
],
[
{
"aoVal": "E",
"content": "$$11$$ "
}
]
] | [
"拓展思维->能力->逻辑分析"
] | [
"$$25=8\\times 3+1$$,如果有$$8$$条长凳,最多可坐$$24$$人,还有$$1$$位小朋友没有位置可坐. 所以最少需要$$9$$条长凳.故选$$\\text{C}$$. "
] | C |
prime_math_competition_ch_single_choice_3.2K_dev | 2023-07-07T00:00:00 | 3407 | b74ac0626c454193827f57cfdb247691 | [
"2018年第6届湖北长江杯六年级竞赛初赛B卷第9题3分"
] | 1 | single_choice | 从分别写有数字$$1$$、$$2$$、$$3$$、$$4$$、$$5$$的$$5$$张卡片中,任取两张,把第一张卡片上的数字作为十位数,第二张卡片上的数字作为个位数,组成一个两位数,则组成的数是偶数的概率. | [
[
{
"aoVal": "A",
"content": "$$\\frac{1}{5}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\frac{3}{10}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\frac{2}{5}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\frac{1}{2}$$ "
}
]
] | [
"拓展思维->拓展思维->计数模块->统计与概率->概率->计数求概率"
] | [
"两位数有$$12$$,$$13$$,$$14$$,$$15$$,$$21$$,$$23$$,$$24$$,$$25$$,$$31$$,$$32$$,$$33$$,$$35$$,$$41$$,$$42$$,$$43$$,$$45$$,$$51$$,$$52$$,$$53$$,$$54$$,共$$20$$种, 偶数有$$12$$,$$14$$,$$24$$,$$32$$,$$34$$,$$42$$,$$52$$,$$54$$,共有$$8$$种, $$8\\div 20=\\frac{4}{10}=\\frac{2}{5}$$, 故选$$\\text{C}$$. "
] | C |