Datasets:
metadata
task_categories:
- question-answering
language:
- en
- fr
- de
- it
- es
- pt
pretty_name: mTRECQA
size_categories:
- 100K<n<1M
configs:
- config_name: default
data_files:
- split: train_en
path: eng-train.jsonl
- split: train_de
path: deu-train.jsonl
- split: train_fr
path: fra-train.jsonl
- split: train_it
path: ita-train.jsonl
- split: train_po
path: por-train.jsonl
- split: train_sp
path: spa-train.jsonl
- split: validation_en
path: eng-dev.jsonl
- split: validation_de
path: deu-dev.jsonl
- split: validation_fr
path: fra-dev.jsonl
- split: validation_it
path: ita-dev.jsonl
- split: validation_po
path: por-dev.jsonl
- split: validation_sp
path: spa-dev.jsonl
- split: test_en
path: eng-test.jsonl
- split: test_de
path: deu-test.jsonl
- split: test_fr
path: fra-test.jsonl
- split: test_it
path: ita-test.jsonl
- split: test_po
path: por-test.jsonl
- split: test_sp
path: spa-test.jsonl
- config_name: en
data_files:
- split: train
path: eng-train.jsonl
- split: validation
path: eng-dev.jsonl
- split: test
path: eng-test.jsonl
- config_name: de
data_files:
- split: train
path: deu-train.jsonl
- split: validation
path: deu-dev.jsonl
- split: test
path: deu-test.jsonl
- config_name: fr
data_files:
- split: train
path: fra-train.jsonl
- split: validation
path: fra-dev.jsonl
- split: test
path: fra-test.jsonl
- config_name: it
data_files:
- split: train
path: ita-train.jsonl
- split: validation
path: ita-dev.jsonl
- split: test
path: ita-test.jsonl
- config_name: po
data_files:
- split: train
path: por-train.jsonl
- split: validation
path: por-dev.jsonl
- split: test
path: por-test.jsonl
- config_name: sp
data_files:
- split: train
path: spa-train.jsonl
- split: validation
path: spa-dev.jsonl
- split: test
path: spa-test.jsonl
Dataset Description
mTRECQA originates from TREC-QA, which is created from the TREC 8 to TREC 13 QA tracks. TREC 8-12 constitutes the training set, while TREC 13 questions are set aside for development and testing.
The dataset has been translated into five European languages: French, German, Italian, Portuguese, and Spanish, as described in this paper: Datasets for Multilingual Answer Sentence Selection.
Splits:
For each language (English, French, German, Italian, Portuguese, and Spanish), we provide:
- train split
- validation split
- test split
How to load them:
To use these splits, you can use the following snippet of code replacing [LANG]
with a language identifier (en, fr, de, it, po, sp)
from datasets import load_dataset
# if you want the whole corpora
corpora = load_dataset("matteogabburo/mTRECQA")
"""
if you want the default splits of a specific language, replace [LANG] with an identifier in: en, fr, de, it, po, sp
dataset = load_dataset("matteogabburo/mTRECQA", "[LANG]")
"""
# example:
italian_dataset = load_dataset("matteogabburo/mTRECQA", "it")
Format:
Each example has the following format:
{
'eid': 42588,
'qid': 1003,
'cid': 4,
'label': 1,
'question': 'In welchem Land liegt die heilige Stadt Mekka?',
'candidate': 'Der französische Präsident Jacques Chirac hat heute sein Beileid ausgedrückt, wegen des Todes von 250 Pilgern bei einem Brand, der am Dienstag in einem Lager in der Nähe der heiligen Stadt Mekka in Saudi-Arabien ausbrach.'
}
Where:
- eid: is the unique id of the example (question, candidate)
- qid: is the unique id of the question
- cid: is the unique id of the answer candidate
- label: identifies whether the answer candidate
candidate
is correct for thequestion
(1 if correct, 0 otherwise) - question: the question
- candidate: the answer candidate
Citation
If you find this dataset useful, please cite the following paper:
BibTeX:
@misc{gabburo2024datasetsmultilingualanswersentence,
title={Datasets for Multilingual Answer Sentence Selection},
author={Matteo Gabburo and Stefano Campese and Federico Agostini and Alessandro Moschitti},
year={2024},
eprint={2406.10172},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2406.10172},
}