|
"""An ambiguous fashion mnist data set""" |
|
|
|
import csv |
|
|
|
import datasets |
|
import numpy as np |
|
from datasets.tasks import ImageClassification |
|
|
|
_CITATION = """\ |
|
@misc{https://doi.org/10.48550/arxiv.2207.10495, |
|
doi = {10.48550/ARXIV.2207.10495}, |
|
url = {https://arxiv.org/abs/2207.10495}, |
|
author = {Weiss, Michael and Gómez, André García and Tonella, Paolo}, |
|
title = {A Forgotten Danger in DNN Supervision Testing: Generating and Detecting True Ambiguity}, |
|
publisher = {arXiv}, |
|
year = {2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The images were created such that they have an unclear ground truth, |
|
i.e., such that they are similar to multiple - but not all - of the datasets classes. |
|
Robust and uncertainty-aware models should be able to detect and flag these ambiguous images. |
|
As such, the dataset should be merged / mixed with the original dataset and we |
|
provide such 'mixed' splits for convenience. Please refer to the dataset card for details. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/testingautomated-usi/ambiguous-datasets" |
|
_LICENSE = "https://raw.githubusercontent.com/testingautomated-usi/ambiguous-datasets/main/LICENSE" |
|
|
|
_VERSION = "0.1.0" |
|
_URL = f"https://github.com/testingautomated-usi/ambiguous-datasets/releases/download/v{_VERSION}/" |
|
|
|
_URLS = { |
|
"train": "fmnist-test.csv", |
|
"test": "fmnist-test.csv", |
|
} |
|
|
|
_NAMES = [ |
|
"T - shirt / top", |
|
"Trouser", |
|
"Pullover", |
|
"Dress", |
|
"Coat", |
|
"Sandal", |
|
"Shirt", |
|
"Sneaker", |
|
"Bag", |
|
"Ankle boot", |
|
] |
|
|
|
|
|
class FashionMnistAmbiguous(datasets.GeneratorBasedBuilder): |
|
"""An ambiguous fashion mnist data set""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="fashion_mnist_ambiguous", |
|
version=datasets.Version(_VERSION), |
|
description=_DESCRIPTION, |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.features.ClassLabel(names=_NAMES), |
|
"text_label": datasets.Value("string"), |
|
"p_label": datasets.Sequence(datasets.Value("float32"), length=10), |
|
"is_ambiguous": datasets.Value("bool"), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[ImageClassification(image_column="image", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls_to_download = {key: _URL + fname for key, fname in _URLS.items()} |
|
downloaded_files = dl_manager.download(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="train_mixed", |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
"split": "train_mixed", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="test_mixed", |
|
gen_kwargs={ |
|
"filepath": downloaded_files["test"], |
|
"split": "test_mixed", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""This function returns the examples in the raw form.""" |
|
|
|
def _gen_amb_images(): |
|
with open(filepath) as csvfile: |
|
spamreader = csv.reader(csvfile, delimiter=',', quotechar='"') |
|
for i, row in enumerate(spamreader): |
|
if i == 0: |
|
continue |
|
|
|
det_label = int(row[7]) |
|
class_1, class_2 = int(row[3]), int(row[4]) |
|
p_1, p_2 = float(row[5]), float(row[6]) |
|
text_label = f"p({_NAMES[class_1]})={p_1:.2f}, p({_NAMES[class_2]})={p_2:.2f}" |
|
|
|
p_label = [0.0] * 10 |
|
p_label[class_1] = p_1 |
|
p_label[class_2] = p_2 |
|
|
|
image = np.array(row[9:], dtype=np.uint8).reshape(28, 28) |
|
|
|
yield i, {"image": image, "label": det_label, |
|
"text_label": text_label, "p_label": p_label, "is_ambiguous": True} |
|
|
|
if split == "test" or split == "train": |
|
yield from _gen_amb_images() |
|
|
|
elif split == "test_mixed" or split == "train_mixed": |
|
|
|
nominal_samples = [] |
|
nom_split = "test" if split == "test_mixed" else "train" |
|
nominal_dataset = datasets.load_dataset("fashion_mnist", split=nom_split) |
|
for x in nominal_dataset: |
|
nominal_samples.append({ |
|
"image": np.array(x["image"]), |
|
"label": x["label"], |
|
"text_label": f"p({_NAMES[x['label']]})=1", |
|
"p_label": [1.0 if i == x["label"] else 0.0 for i in range(10)], |
|
"is_ambiguous": False |
|
}) |
|
|
|
ambiguous_samples = list([x for i, x in _gen_amb_images()]) |
|
all_samples = nominal_samples + ambiguous_samples |
|
np.random.RandomState(42).shuffle(all_samples) |
|
|
|
for i, x in enumerate(all_samples): |
|
yield i, x |
|
|