Datasets:
license: apache-2.0
dataset_info:
- config_name: commonvoice
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 43744079378.659
num_examples: 948733
- name: valid
num_bytes: 722372503.994
num_examples: 16353
download_size: 39798988113
dataset_size: 44466451882.653
- config_name: gigaspeech
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 1032024261294.48
num_examples: 8282987
- name: valid
num_bytes: 1340974408.04
num_examples: 5715
download_size: 1148966064515
dataset_size: 1033365235702.52
- config_name: libris
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 63849575890.896
num_examples: 281241
- name: valid
num_bytes: 793442600.643
num_examples: 5559
download_size: 61361142328
dataset_size: 64643018491.539
- config_name: mustc
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 55552777413.1
num_examples: 248612
- name: valid
num_bytes: 313397447.704
num_examples: 1408
download_size: 52028374666
dataset_size: 55866174860.804
- config_name: tedlium
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 56248950771.568
num_examples: 268216
- name: valid
num_bytes: 321930549.928
num_examples: 1456
download_size: 52557126451
dataset_size: 56570881321.496
- config_name: voxpopuli
features:
- name: id
dtype: string
- name: text
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: words
sequence: string
- name: word_start
sequence: float64
- name: word_end
sequence: float64
- name: entity_start
sequence: int64
- name: entity_end
sequence: int64
- name: entity_label
sequence: string
splits:
- name: train
num_bytes: 118516424284.524
num_examples: 182463
- name: valid
num_bytes: 1144543020.808
num_examples: 1842
download_size: 98669668241
dataset_size: 119660967305.332
configs:
- config_name: commonvoice
data_files:
- split: train
path: commonvoice/train-*
- split: valid
path: commonvoice/valid-*
- config_name: gigaspeech
data_files:
- split: train
path: gigaspeech/train-*
- split: valid
path: gigaspeech/valid-*
- config_name: libris
data_files:
- split: train
path: libris/train-*
- split: valid
path: libris/valid-*
- config_name: mustc
data_files:
- split: train
path: mustc/train-*
- split: valid
path: mustc/valid-*
- config_name: tedlium
data_files:
- split: train
path: tedlium/train-*
- split: valid
path: tedlium/valid-*
- config_name: voxpopuli
data_files:
- split: train
path: voxpopuli/train-*
- split: valid
path: voxpopuli/valid-*
language:
- en
pretty_name: Speech Recognition Alignment Dataset
size_categories:
- 10M<n<100M
Speech Recognition Alignment Dataset
This dataset is a variation of several widely-used ASR datasets, encompassing Librispeech, MuST-C, TED-LIUM, VoxPopuli, Common Voice, and GigaSpeech. The difference is this dataset includes:
- Precise alignment between audio and text.
- Text that has been punctuated and made case-sensitive.
- Identification of named entities in the text.
Usage
First, install the latest version of the 🤗 Datasets package:
pip install --upgrade pip
pip install --upgrade datasets[audio]
The dataset can be downloaded and pre-processed on disk using the load_dataset
function:
from datasets import load_dataset
# Available dataset: 'libris','mustc','tedlium','voxpopuli','commonvoice','gigaspeech'
dataset = load_dataset("nguyenvulebinh/asr-alignment", "libris")
# take the first sample of the validation set
sample = dataset["train"][0]
It can also be streamed directly from the Hub using Datasets' streaming mode. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk:
from datasets import load_dataset
dataset = load_dataset("nguyenvulebinh/asr-alignment", "libris", streaming=True)
# take the first sample of the validation set
sample = next(iter(dataset["train"]))
Citation
If you use this data, please consider citing the ICASSP 2024 Paper: SYNTHETIC CONVERSATIONS IMPROVE MULTI-TALKER ASR:
@INPROCEEDINGS{synthetic-multi-asr-nguyen,
author={Nguyen, Thai-Binh and Waibel, Alexander},
booktitle={ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={SYNTHETIC CONVERSATIONS IMPROVE MULTI-TALKER ASR},
year={2024},
volume={},
number={},
}
License
This dataset is licensed in accordance with the terms of the original dataset.