Datasets:

zip
stringlengths
19
109
filename
stringlengths
4
185
contents
stringlengths
0
30.1M
type_annotations
sequencelengths
0
1.97k
type_annotation_starts
sequencelengths
0
1.97k
type_annotation_ends
sequencelengths
0
1.97k
archives/1098994933_python.zip
backtracking/sudoku.py
""" Given a partially filled 9×9 2D array, the objective is to fill a 9×9 square grid with digits numbered 1 to 9, so that every row, column, and and each of the nine 3×3 sub-grids contains all of the digits. This can be solved using Backtracking and is similar to n-queens. We check to see if a cell is safe or not and recursively call the function on the next column to see if it returns True. if yes, we have solved the puzzle. else, we backtrack and place another number in that cell and repeat this process. """ # assigning initial values to the grid initial_grid = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution no_solution = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def is_safe(grid, row, column, n): """ This function checks the grid to see if each row, column, and the 3x3 subgrids contain the digit 'n'. It returns False if it is not 'safe' (a duplicate digit is found) else returns True if it is 'safe' """ for i in range(9): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3): for j in range(3): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def is_completed(grid): """ This function checks if the puzzle is completed or not. it is completed when all the cells are assigned with a number(not zero) and There is no repeating number in any column, row or 3x3 subgrid. """ for row in grid: for cell in row: if cell == 0: return False return True def find_empty_location(grid): """ This function finds an empty location so that we can assign a number for that particular row and column. """ for i in range(9): for j in range(9): if grid[i][j] == 0: return i, j def sudoku(grid): """ Takes a partially filled-in grid and attempts to assign values to all unassigned locations in such a way to meet the requirements for Sudoku solution (non-duplication across rows, columns, and boxes) >>> sudoku(initial_grid) # doctest: +NORMALIZE_WHITESPACE [[3, 1, 6, 5, 7, 8, 4, 9, 2], [5, 2, 9, 1, 3, 4, 7, 6, 8], [4, 8, 7, 6, 2, 9, 5, 3, 1], [2, 6, 3, 4, 1, 5, 9, 8, 7], [9, 7, 4, 8, 6, 3, 1, 2, 5], [8, 5, 1, 7, 9, 2, 6, 4, 3], [1, 3, 8, 9, 4, 7, 2, 5, 6], [6, 9, 2, 3, 5, 1, 8, 7, 4], [7, 4, 5, 2, 8, 6, 3, 1, 9]] >>> sudoku(no_solution) False """ if is_completed(grid): return grid row, column = find_empty_location(grid) for digit in range(1, 10): if is_safe(grid, row, column, digit): grid[row][column] = digit if sudoku(grid): return grid grid[row][column] = 0 return False def print_solution(grid): """ A function to print the solution in the form of a 9x9 grid """ for row in grid: for cell in row: print(cell, end=" ") print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for grid in (initial_grid, no_solution): grid = list(map(list, grid)) solution = sudoku(grid) if solution: print("grid after solving:") print_solution(solution) else: print("Cannot find a solution.")
[]
[]
[]
archives/1098994933_python.zip
backtracking/sum_of_subsets.py
''' The sum-of-subsetsproblem states that a set of non-negative integers, and a value M, determine all possible subsets of the given set whose summation sum equal to given M. Summation of the chosen numbers must be equal to given number M and one number can be used only once. ''' def generate_sum_of_subsets_soln(nums, max_sum): result = [] path = [] num_index = 0 remaining_nums_sum = sum(nums) create_state_space_tree(nums, max_sum, num_index, path,result, remaining_nums_sum) return result def create_state_space_tree(nums,max_sum,num_index,path,result, remaining_nums_sum): ''' Creates a state space tree to iterate through each branch using DFS. It terminates the branching of a node when any of the two conditions given below satisfy. This algorithm follows depth-fist-search and backtracks when the node is not branchable. ''' if sum(path) > max_sum or (remaining_nums_sum + sum(path)) < max_sum: return if sum(path) == max_sum: result.append(path) return for num_index in range(num_index,len(nums)): create_state_space_tree(nums, max_sum, num_index + 1, path + [nums[num_index]], result, remaining_nums_sum - nums[num_index]) ''' remove the comment to take an input from the user print("Enter the elements") nums = list(map(int, input().split())) print("Enter max_sum sum") max_sum = int(input()) ''' nums = [3, 34, 4, 12, 5, 2] max_sum = 9 result = generate_sum_of_subsets_soln(nums,max_sum) print(*result)
[]
[]
[]
archives/1098994933_python.zip
boolean_algebra/quine_mc_cluskey.py
def compare_string(string1, string2): """ >>> compare_string('0010','0110') '0_10' >>> compare_string('0110','1101') -1 """ l1 = list(string1); l2 = list(string2) count = 0 for i in range(len(l1)): if l1[i] != l2[i]: count += 1 l1[i] = '_' if count > 1: return -1 else: return("".join(l1)) def check(binary): """ >>> check(['0.00.01.5']) ['0.00.01.5'] """ pi = [] while 1: check1 = ['$']*len(binary) temp = [] for i in range(len(binary)): for j in range(i+1, len(binary)): k=compare_string(binary[i], binary[j]) if k != -1: check1[i] = '*' check1[j] = '*' temp.append(k) for i in range(len(binary)): if check1[i] == '$': pi.append(binary[i]) if len(temp) == 0: return pi binary = list(set(temp)) def decimal_to_binary(no_of_variable, minterms): """ >>> decimal_to_binary(3,[1.5]) ['0.00.01.5'] """ temp = [] s = '' for m in minterms: for i in range(no_of_variable): s = str(m%2) + s m //= 2 temp.append(s) s = '' return temp def is_for_table(string1, string2, count): """ >>> is_for_table('__1','011',2) True >>> is_for_table('01_','001',1) False """ l1 = list(string1);l2=list(string2) count_n = 0 for i in range(len(l1)): if l1[i] != l2[i]: count_n += 1 if count_n == count: return True else: return False def selection(chart, prime_implicants): """ >>> selection([[1]],['0.00.01.5']) ['0.00.01.5'] >>> selection([[1]],['0.00.01.5']) ['0.00.01.5'] """ temp = [] select = [0]*len(chart) for i in range(len(chart[0])): count = 0 rem = -1 for j in range(len(chart)): if chart[j][i] == 1: count += 1 rem = j if count == 1: select[rem] = 1 for i in range(len(select)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(chart)): chart[k][j] = 0 temp.append(prime_implicants[i]) while 1: max_n = 0; rem = -1; count_n = 0 for i in range(len(chart)): count_n = chart[i].count(1) if count_n > max_n: max_n = count_n rem = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(chart)): chart[j][i] = 0 def prime_implicant_chart(prime_implicants, binary): """ >>> prime_implicant_chart(['0.00.01.5'],['0.00.01.5']) [[1]] """ chart = [[0 for x in range(len(binary))] for x in range(len(prime_implicants))] for i in range(len(prime_implicants)): count = prime_implicants[i].count('_') for j in range(len(binary)): if(is_for_table(prime_implicants[i], binary[j], count)): chart[i][j] = 1 return chart def main(): no_of_variable = int(input("Enter the no. of variables\n")) minterms = [int(x) for x in input("Enter the decimal representation of Minterms 'Spaces Seprated'\n").split()] binary = decimal_to_binary(no_of_variable, minterms) prime_implicants = check(binary) print("Prime Implicants are:") print(prime_implicants) chart = prime_implicant_chart(prime_implicants, binary) essential_prime_implicants = selection(chart,prime_implicants) print("Essential Prime Implicants are:") print(essential_prime_implicants) if __name__ == '__main__': import doctest doctest.testmod() main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/affine_cipher.py
import sys, random, cryptomath_module as cryptoMath SYMBOLS = r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~""" def main(): message = input('Enter message: ') key = int(input('Enter key [2000 - 9000]: ')) mode = input('Encrypt/Decrypt [E/D]: ') if mode.lower().startswith('e'): mode = 'encrypt' translated = encryptMessage(key, message) elif mode.lower().startswith('d'): mode = 'decrypt' translated = decryptMessage(key, message) print('\n%sed text: \n%s' % (mode.title(), translated)) def getKeyParts(key): keyA = key // len(SYMBOLS) keyB = key % len(SYMBOLS) return (keyA, keyB) def checkKeys(keyA, keyB, mode): if keyA == 1 and mode == 'encrypt': sys.exit('The affine cipher becomes weak when key A is set to 1. Choose different key') if keyB == 0 and mode == 'encrypt': sys.exit('The affine cipher becomes weak when key A is set to 1. Choose different key') if keyA < 0 or keyB < 0 or keyB > len(SYMBOLS) - 1: sys.exit('Key A must be greater than 0 and key B must be between 0 and %s.' % (len(SYMBOLS) - 1)) if cryptoMath.gcd(keyA, len(SYMBOLS)) != 1: sys.exit('Key A %s and the symbol set size %s are not relatively prime. Choose a different key.' % (keyA, len(SYMBOLS))) def encryptMessage(key, message): ''' >>> encryptMessage(4545, 'The affine cipher is a type of monoalphabetic substitution cipher.') 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi' ''' keyA, keyB = getKeyParts(key) checkKeys(keyA, keyB, 'encrypt') cipherText = '' for symbol in message: if symbol in SYMBOLS: symIndex = SYMBOLS.find(symbol) cipherText += SYMBOLS[(symIndex * keyA + keyB) % len(SYMBOLS)] else: cipherText += symbol return cipherText def decryptMessage(key, message): ''' >>> decryptMessage(4545, 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi') 'The affine cipher is a type of monoalphabetic substitution cipher.' ''' keyA, keyB = getKeyParts(key) checkKeys(keyA, keyB, 'decrypt') plainText = '' modInverseOfkeyA = cryptoMath.findModInverse(keyA, len(SYMBOLS)) for symbol in message: if symbol in SYMBOLS: symIndex = SYMBOLS.find(symbol) plainText += SYMBOLS[(symIndex - keyB) * modInverseOfkeyA % len(SYMBOLS)] else: plainText += symbol return plainText def getRandomKey(): while True: keyA = random.randint(2, len(SYMBOLS)) keyB = random.randint(2, len(SYMBOLS)) if cryptoMath.gcd(keyA, len(SYMBOLS)) == 1: return keyA * len(SYMBOLS) + keyB if __name__ == '__main__': import doctest doctest.testmod() main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/atbash.py
def atbash(): output="" for i in input("Enter the sentence to be encrypted ").strip(): extract = ord(i) if 65 <= extract <= 90: output += chr(155-extract) elif 97 <= extract <= 122: output += chr(219-extract) else: output += i print(output) if __name__ == '__main__': atbash()
[]
[]
[]
archives/1098994933_python.zip
ciphers/base16.py
import base64 def main(): inp = input('->') encoded = inp.encode('utf-8') #encoded the input (we need a bytes like object) b16encoded = base64.b16encode(encoded) #b16encoded the encoded string print(b16encoded) print(base64.b16decode(b16encoded).decode('utf-8'))#decoded it if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/base32.py
import base64 def main(): inp = input('->') encoded = inp.encode('utf-8') #encoded the input (we need a bytes like object) b32encoded = base64.b32encode(encoded) #b32encoded the encoded string print(b32encoded) print(base64.b32decode(b32encoded).decode('utf-8'))#decoded it if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/base64_cipher.py
def encodeBase64(text): base64chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" r = "" #the result c = 3 - len(text) % 3 #the length of padding p = "=" * c #the padding s = text + "\0" * c #the text to encode i = 0 while i < len(s): if i > 0 and ((i / 3 * 4) % 76) == 0: r = r + "\r\n" n = (ord(s[i]) << 16) + (ord(s[i+1]) << 8 ) + ord(s[i+2]) n1 = (n >> 18) & 63 n2 = (n >> 12) & 63 n3 = (n >> 6) & 63 n4 = n & 63 r += base64chars[n1] + base64chars[n2] + base64chars[n3] + base64chars[n4] i += 3 return r[0: len(r)-len(p)] + p def decodeBase64(text): base64chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" s = "" for i in text: if i in base64chars: s += i c = "" else: if i == '=': c += '=' p = "" if c == "=": p = 'A' else: if c == "==": p = "AA" r = "" s = s + p i = 0 while i < len(s): n = (base64chars.index(s[i]) << 18) + (base64chars.index(s[i+1]) << 12) + (base64chars.index(s[i+2]) << 6) +base64chars.index(s[i+3]) r += chr((n >> 16) & 255) + chr((n >> 8) & 255) + chr(n & 255) i += 4 return r[0: len(r) - len(p)] def main(): print(encodeBase64("WELCOME to base64 encoding")) print(decodeBase64(encodeBase64("WELCOME to base64 encoding"))) if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/base85.py
import base64 def main(): inp = input('->') encoded = inp.encode('utf-8') #encoded the input (we need a bytes like object) a85encoded = base64.a85encode(encoded) #a85encoded the encoded string print(a85encoded) print(base64.a85decode(a85encoded).decode('utf-8'))#decoded it if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/brute_force_caesar_cipher.py
def decrypt(message): """ >>> decrypt('TMDETUX PMDVU') Decryption using Key #0: TMDETUX PMDVU Decryption using Key #1: SLCDSTW OLCUT Decryption using Key #2: RKBCRSV NKBTS Decryption using Key #3: QJABQRU MJASR Decryption using Key #4: PIZAPQT LIZRQ Decryption using Key #5: OHYZOPS KHYQP Decryption using Key #6: NGXYNOR JGXPO Decryption using Key #7: MFWXMNQ IFWON Decryption using Key #8: LEVWLMP HEVNM Decryption using Key #9: KDUVKLO GDUML Decryption using Key #10: JCTUJKN FCTLK Decryption using Key #11: IBSTIJM EBSKJ Decryption using Key #12: HARSHIL DARJI Decryption using Key #13: GZQRGHK CZQIH Decryption using Key #14: FYPQFGJ BYPHG Decryption using Key #15: EXOPEFI AXOGF Decryption using Key #16: DWNODEH ZWNFE Decryption using Key #17: CVMNCDG YVMED Decryption using Key #18: BULMBCF XULDC Decryption using Key #19: ATKLABE WTKCB Decryption using Key #20: ZSJKZAD VSJBA Decryption using Key #21: YRIJYZC URIAZ Decryption using Key #22: XQHIXYB TQHZY Decryption using Key #23: WPGHWXA SPGYX Decryption using Key #24: VOFGVWZ ROFXW Decryption using Key #25: UNEFUVY QNEWV """ LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" for key in range(len(LETTERS)): translated = "" for symbol in message: if symbol in LETTERS: num = LETTERS.find(symbol) num = num - key if num < 0: num = num + len(LETTERS) translated = translated + LETTERS[num] else: translated = translated + symbol print("Decryption using Key #%s: %s" % (key, translated)) def main(): message = input("Encrypted message: ") message = message.upper() decrypt(message) if __name__ == '__main__': import doctest doctest.testmod() main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/caesar_cipher.py
def encrypt(strng, key): encrypted = '' for x in strng: indx = (ord(x) + key) % 256 if indx > 126: indx = indx - 95 encrypted = encrypted + chr(indx) return encrypted def decrypt(strng, key): decrypted = '' for x in strng: indx = (ord(x) - key) % 256 if indx < 32: indx = indx + 95 decrypted = decrypted + chr(indx) return decrypted def brute_force(strng): key = 1 decrypted = '' while key <= 94: for x in strng: indx = (ord(x) - key) % 256 if indx < 32: indx = indx + 95 decrypted = decrypted + chr(indx) print("Key: {}\t| Message: {}".format(key, decrypted)) decrypted = '' key += 1 return None def main(): while True: print('-' * 10 + "\n**Menu**\n" + '-' * 10) print("1.Encrpyt") print("2.Decrypt") print("3.BruteForce") print("4.Quit") choice = input("What would you like to do?: ") if choice not in ['1', '2', '3', '4']: print("Invalid choice, please enter a valid choice") elif choice == '1': strng = input("Please enter the string to be encrypted: ") key = int(input("Please enter off-set between 1-94: ")) if key in range(1, 95): print(encrypt(strng.lower(), key)) elif choice == '2': strng = input("Please enter the string to be decrypted: ") key = int(input("Please enter off-set between 1-94: ")) if key in range(1,95): print(decrypt(strng, key)) elif choice == '3': strng = input("Please enter the string to be decrypted: ") brute_force(strng) main() elif choice == '4': print("Goodbye.") break if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/cryptomath_module.py
def gcd(a, b): while a != 0: a, b = b % a, a return b def findModInverse(a, m): if gcd(a, m) != 1: return None u1, u2, u3 = 1, 0, a v1, v2, v3 = 0, 1, m while v3 != 0: q = u3 // v3 v1, v2, v3, u1, u2, u3 = (u1 - q * v1), (u2 - q * v2), (u3 - q *v3), v1, v2, v3 return u1 % m
[]
[]
[]
archives/1098994933_python.zip
ciphers/elgamal_key_generator.py
import os import random import sys import rabin_miller as rabinMiller, cryptomath_module as cryptoMath min_primitive_root = 3 def main(): print('Making key files...') makeKeyFiles('elgamal', 2048) print('Key files generation successful') # I have written my code naively same as definition of primitive root # however every time I run this program, memory exceeded... # so I used 4.80 Algorithm in Handbook of Applied Cryptography(CRC Press, ISBN : 0-8493-8523-7, October 1996) # and it seems to run nicely! def primitiveRoot(p_val): print("Generating primitive root of p") while True: g = random.randrange(3,p_val) if pow(g, 2, p_val) == 1: continue if pow(g, p_val, p_val) == 1: continue return g def generateKey(keySize): print('Generating prime p...') p = rabinMiller.generateLargePrime(keySize) # select large prime number. e_1 = primitiveRoot(p) # one primitive root on modulo p. d = random.randrange(3, p) # private_key -> have to be greater than 2 for safety. e_2 = cryptoMath.findModInverse(pow(e_1, d, p), p) publicKey = (keySize, e_1, e_2, p) privateKey = (keySize, d) return publicKey, privateKey def makeKeyFiles(name, keySize): if os.path.exists('%s_pubkey.txt' % name) or os.path.exists('%s_privkey.txt' % name): print('\nWARNING:') print('"%s_pubkey.txt" or "%s_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' % (name, name)) sys.exit() publicKey, privateKey = generateKey(keySize) print('\nWriting public key to file %s_pubkey.txt...' % name) with open('%s_pubkey.txt' % name, 'w') as fo: fo.write('%d,%d,%d,%d' % (publicKey[0], publicKey[1], publicKey[2], publicKey[3])) print('Writing private key to file %s_privkey.txt...' % name) with open('%s_privkey.txt' % name, 'w') as fo: fo.write('%d,%d' % (privateKey[0], privateKey[1])) if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/hill_cipher.py
""" Hill Cipher: The below defined class 'HillCipher' implements the Hill Cipher algorithm. The Hill Cipher is an algorithm that implements modern linear algebra techniques In this algortihm, you have an encryption key matrix. This is what will be used in encoding and decoding your text. Algortihm: Let the order of the encryption key be N (as it is a square matrix). Your text is divided into batches of length N and converted to numerical vectors by a simple mapping starting with A=0 and so on. The key is then mulitplied with the newly created batch vector to obtain the encoded vector. After each multiplication modular 36 calculations are performed on the vectors so as to bring the numbers between 0 and 36 and then mapped with their corresponding alphanumerics. While decrypting, the decrypting key is found which is the inverse of the encrypting key modular 36. The same process is repeated for decrypting to get the original message back. Constraints: The determinant of the encryption key matrix must be relatively prime w.r.t 36. Note: The algorithm implemented in this code considers only alphanumerics in the text. If the length of the text to be encrypted is not a multiple of the break key(the length of one batch of letters),the last character of the text is added to the text until the length of the text reaches a multiple of the break_key. So the text after decrypting might be a little different than the original text. References: https://apprendre-en-ligne.net/crypto/hill/Hillciph.pdf https://www.youtube.com/watch?v=kfmNeskzs2o https://www.youtube.com/watch?v=4RhLNDqcjpA """ import numpy def gcd(a, b): if a == 0: return b return gcd(b%a, a) class HillCipher: key_string = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" # This cipher takes alphanumerics into account # i.e. a total of 36 characters replaceLetters = lambda self, letter: self.key_string.index(letter) replaceNumbers = lambda self, num: self.key_string[round(num)] # take x and return x % len(key_string) modulus = numpy.vectorize(lambda x: x % 36) toInt = numpy.vectorize(lambda x: round(x)) def __init__(self, encrypt_key): """ encrypt_key is an NxN numpy matrix """ self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key self.checkDeterminant() # validate the determinant of the encryption key self.decrypt_key = None self.break_key = encrypt_key.shape[0] def checkDeterminant(self): det = round(numpy.linalg.det(self.encrypt_key)) if det < 0: det = det % len(self.key_string) req_l = len(self.key_string) if gcd(det, len(self.key_string)) != 1: raise ValueError("discriminant modular {0} of encryption key({1}) is not co prime w.r.t {2}.\nTry another key.".format(req_l, det, req_l)) def processText(self, text): text = list(text.upper()) text = [char for char in text if char in self.key_string] last = text[-1] while len(text) % self.break_key != 0: text.append(last) return ''.join(text) def encrypt(self, text): text = self.processText(text.upper()) encrypted = '' for i in range(0, len(text) - self.break_key + 1, self.break_key): batch = text[i:i+self.break_key] batch_vec = list(map(self.replaceLetters, batch)) batch_vec = numpy.matrix([batch_vec]).T batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[0] encrypted_batch = ''.join(list(map(self.replaceNumbers, batch_encrypted))) encrypted += encrypted_batch return encrypted def makeDecryptKey(self): det = round(numpy.linalg.det(self.encrypt_key)) if det < 0: det = det % len(self.key_string) det_inv = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: det_inv = i break inv_key = det_inv * numpy.linalg.det(self.encrypt_key) *\ numpy.linalg.inv(self.encrypt_key) return self.toInt(self.modulus(inv_key)) def decrypt(self, text): self.decrypt_key = self.makeDecryptKey() text = self.processText(text.upper()) decrypted = '' for i in range(0, len(text) - self.break_key + 1, self.break_key): batch = text[i:i+self.break_key] batch_vec = list(map(self.replaceLetters, batch)) batch_vec = numpy.matrix([batch_vec]).T batch_decrypted = self.modulus(self.decrypt_key.dot(batch_vec)).T.tolist()[0] decrypted_batch = ''.join(list(map(self.replaceNumbers, batch_decrypted))) decrypted += decrypted_batch return decrypted def main(): N = int(input("Enter the order of the encryption key: ")) hill_matrix = [] print("Enter each row of the encryption key with space separated integers") for i in range(N): row = list(map(int, input().split())) hill_matrix.append(row) hc = HillCipher(numpy.matrix(hill_matrix)) print("Would you like to encrypt or decrypt some text? (1 or 2)") option = input(""" 1. Encrypt 2. Decrypt """ ) if option == '1': text_e = input("What text would you like to encrypt?: ") print("Your encrypted text is:") print(hc.encrypt(text_e)) elif option == '2': text_d = input("What text would you like to decrypt?: ") print("Your decrypted text is:") print(hc.decrypt(text_d)) if __name__ == "__main__": main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/morse_code_implementation.py
# Python program to implement Morse Code Translator # Dictionary representing the morse code chart MORSE_CODE_DICT = { 'A':'.-', 'B':'-...', 'C':'-.-.', 'D':'-..', 'E':'.', 'F':'..-.', 'G':'--.', 'H':'....', 'I':'..', 'J':'.---', 'K':'-.-', 'L':'.-..', 'M':'--', 'N':'-.', 'O':'---', 'P':'.--.', 'Q':'--.-', 'R':'.-.', 'S':'...', 'T':'-', 'U':'..-', 'V':'...-', 'W':'.--', 'X':'-..-', 'Y':'-.--', 'Z':'--..', '1':'.----', '2':'..---', '3':'...--', '4':'....-', '5':'.....', '6':'-....', '7':'--...', '8':'---..', '9':'----.', '0':'-----', ', ':'--..--', '.':'.-.-.-', '?':'..--..', '/':'-..-.', '-':'-....-', '(':'-.--.', ')':'-.--.-'} def encrypt(message): cipher = '' for letter in message: if letter != ' ': cipher += MORSE_CODE_DICT[letter] + ' ' else: cipher += ' ' return cipher def decrypt(message): message += ' ' decipher = '' citext = '' for letter in message: if (letter != ' '): i = 0 citext += letter else: i += 1 if i == 2 : decipher += ' ' else: decipher += list(MORSE_CODE_DICT.keys())[list(MORSE_CODE_DICT .values()).index(citext)] citext = '' return decipher def main(): message = "Morse code here" result = encrypt(message.upper()) print(result) message = result result = decrypt(message) print(result) if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/onepad_cipher.py
import random class Onepad: def encrypt(self, text): '''Function to encrypt text using psedo-random numbers''' plain = [ord(i) for i in text] key = [] cipher = [] for i in plain: k = random.randint(1, 300) c = (i+k)*k cipher.append(c) key.append(k) return cipher, key def decrypt(self, cipher, key): '''Function to decrypt text using psedo-random numbers.''' plain = [] for i in range(len(key)): p = int((cipher[i]-(key[i])**2)/key[i]) plain.append(chr(p)) plain = ''.join([i for i in plain]) return plain if __name__ == '__main__': c, k = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
[]
[]
[]
archives/1098994933_python.zip
ciphers/playfair_cipher.py
import string import itertools def chunker(seq, size): it = iter(seq) while True: chunk = tuple(itertools.islice(it, size)) if not chunk: return yield chunk def prepare_input(dirty): """ Prepare the plaintext by up-casing it and separating repeated letters with X's """ dirty = ''.join([c.upper() for c in dirty if c in string.ascii_letters]) clean = "" if len(dirty) < 2: return dirty for i in range(len(dirty)-1): clean += dirty[i] if dirty[i] == dirty[i+1]: clean += 'X' clean += dirty[-1] if len(clean) & 1: clean += 'X' return clean def generate_table(key): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) alphabet = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler table = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(char) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(char) return table def encode(plaintext, key): table = generate_table(key) plaintext = prepare_input(plaintext) ciphertext = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for char1, char2 in chunker(plaintext, 2): row1, col1 = divmod(table.index(char1), 5) row2, col2 = divmod(table.index(char2), 5) if row1 == row2: ciphertext += table[row1*5+(col1+1)%5] ciphertext += table[row2*5+(col2+1)%5] elif col1 == col2: ciphertext += table[((row1+1)%5)*5+col1] ciphertext += table[((row2+1)%5)*5+col2] else: # rectangle ciphertext += table[row1*5+col2] ciphertext += table[row2*5+col1] return ciphertext def decode(ciphertext, key): table = generate_table(key) plaintext = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for char1, char2 in chunker(ciphertext, 2): row1, col1 = divmod(table.index(char1), 5) row2, col2 = divmod(table.index(char2), 5) if row1 == row2: plaintext += table[row1*5+(col1-1)%5] plaintext += table[row2*5+(col2-1)%5] elif col1 == col2: plaintext += table[((row1-1)%5)*5+col1] plaintext += table[((row2-1)%5)*5+col2] else: # rectangle plaintext += table[row1*5+col2] plaintext += table[row2*5+col1] return plaintext
[]
[]
[]
archives/1098994933_python.zip
ciphers/rabin_miller.py
# Primality Testing with the Rabin-Miller Algorithm import random def rabinMiller(num): s = num - 1 t = 0 while s % 2 == 0: s = s // 2 t += 1 for trials in range(5): a = random.randrange(2, num - 1) v = pow(a, s, num) if v != 1: i = 0 while v != (num - 1): if i == t - 1: return False else: i = i + 1 v = (v ** 2) % num return True def isPrime(num): if (num < 2): return False lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997] if num in lowPrimes: return True for prime in lowPrimes: if (num % prime) == 0: return False return rabinMiller(num) def generateLargePrime(keysize = 1024): while True: num = random.randrange(2 ** (keysize - 1), 2 ** (keysize)) if isPrime(num): return num if __name__ == '__main__': num = generateLargePrime() print(('Prime number:', num)) print(('isPrime:', isPrime(num)))
[]
[]
[]
archives/1098994933_python.zip
ciphers/rot13.py
def dencrypt(s, n): out = '' for c in s: if c >= 'A' and c <= 'Z': out += chr(ord('A') + (ord(c) - ord('A') + n) % 26) elif c >= 'a' and c <= 'z': out += chr(ord('a') + (ord(c) - ord('a') + n) % 26) else: out += c return out def main(): s0 = 'HELLO' s1 = dencrypt(s0, 13) print(s1) # URYYB s2 = dencrypt(s1, 13) print(s2) # HELLO if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/rsa_cipher.py
import sys, rsa_key_generator as rkg, os DEFAULT_BLOCK_SIZE = 128 BYTE_SIZE = 256 def main(): filename = 'encrypted_file.txt' response = input(r'Encrypte\Decrypt [e\d]: ') if response.lower().startswith('e'): mode = 'encrypt' elif response.lower().startswith('d'): mode = 'decrypt' if mode == 'encrypt': if not os.path.exists('rsa_pubkey.txt'): rkg.makeKeyFiles('rsa', 1024) message = input('\nEnter message: ') pubKeyFilename = 'rsa_pubkey.txt' print('Encrypting and writing to %s...' % (filename)) encryptedText = encryptAndWriteToFile(filename, pubKeyFilename, message) print('\nEncrypted text:') print(encryptedText) elif mode == 'decrypt': privKeyFilename = 'rsa_privkey.txt' print('Reading from %s and decrypting...' % (filename)) decryptedText = readFromFileAndDecrypt(filename, privKeyFilename) print('writing decryption to rsa_decryption.txt...') with open('rsa_decryption.txt', 'w') as dec: dec.write(decryptedText) print('\nDecryption:') print(decryptedText) def getBlocksFromText(message, blockSize=DEFAULT_BLOCK_SIZE): messageBytes = message.encode('ascii') blockInts = [] for blockStart in range(0, len(messageBytes), blockSize): blockInt = 0 for i in range(blockStart, min(blockStart + blockSize, len(messageBytes))): blockInt += messageBytes[i] * (BYTE_SIZE ** (i % blockSize)) blockInts.append(blockInt) return blockInts def getTextFromBlocks(blockInts, messageLength, blockSize=DEFAULT_BLOCK_SIZE): message = [] for blockInt in blockInts: blockMessage = [] for i in range(blockSize - 1, -1, -1): if len(message) + i < messageLength: asciiNumber = blockInt // (BYTE_SIZE ** i) blockInt = blockInt % (BYTE_SIZE ** i) blockMessage.insert(0, chr(asciiNumber)) message.extend(blockMessage) return ''.join(message) def encryptMessage(message, key, blockSize=DEFAULT_BLOCK_SIZE): encryptedBlocks = [] n, e = key for block in getBlocksFromText(message, blockSize): encryptedBlocks.append(pow(block, e, n)) return encryptedBlocks def decryptMessage(encryptedBlocks, messageLength, key, blockSize=DEFAULT_BLOCK_SIZE): decryptedBlocks = [] n, d = key for block in encryptedBlocks: decryptedBlocks.append(pow(block, d, n)) return getTextFromBlocks(decryptedBlocks, messageLength, blockSize) def readKeyFile(keyFilename): with open(keyFilename) as fo: content = fo.read() keySize, n, EorD = content.split(',') return (int(keySize), int(n), int(EorD)) def encryptAndWriteToFile(messageFilename, keyFilename, message, blockSize=DEFAULT_BLOCK_SIZE): keySize, n, e = readKeyFile(keyFilename) if keySize < blockSize * 8: sys.exit('ERROR: Block size is %s bits and key size is %s bits. The RSA cipher requires the block size to be equal to or greater than the key size. Either decrease the block size or use different keys.' % (blockSize * 8, keySize)) encryptedBlocks = encryptMessage(message, (n, e), blockSize) for i in range(len(encryptedBlocks)): encryptedBlocks[i] = str(encryptedBlocks[i]) encryptedContent = ','.join(encryptedBlocks) encryptedContent = '%s_%s_%s' % (len(message), blockSize, encryptedContent) with open(messageFilename, 'w') as fo: fo.write(encryptedContent) return encryptedContent def readFromFileAndDecrypt(messageFilename, keyFilename): keySize, n, d = readKeyFile(keyFilename) with open(messageFilename) as fo: content = fo.read() messageLength, blockSize, encryptedMessage = content.split('_') messageLength = int(messageLength) blockSize = int(blockSize) if keySize < blockSize * 8: sys.exit('ERROR: Block size is %s bits and key size is %s bits. The RSA cipher requires the block size to be equal to or greater than the key size. Did you specify the correct key file and encrypted file?' % (blockSize * 8, keySize)) encryptedBlocks = [] for block in encryptedMessage.split(','): encryptedBlocks.append(int(block)) return decryptMessage(encryptedBlocks, messageLength, (n, d), blockSize) if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/rsa_key_generator.py
import random, sys, os import rabin_miller as rabinMiller, cryptomath_module as cryptoMath def main(): print('Making key files...') makeKeyFiles('rsa', 1024) print('Key files generation successful.') def generateKey(keySize): print('Generating prime p...') p = rabinMiller.generateLargePrime(keySize) print('Generating prime q...') q = rabinMiller.generateLargePrime(keySize) n = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...') while True: e = random.randrange(2 ** (keySize - 1), 2 ** (keySize)) if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1: break print('Calculating d that is mod inverse of e...') d = cryptoMath.findModInverse(e, (p - 1) * (q - 1)) publicKey = (n, e) privateKey = (n, d) return (publicKey, privateKey) def makeKeyFiles(name, keySize): if os.path.exists('%s_pubkey.txt' % (name)) or os.path.exists('%s_privkey.txt' % (name)): print('\nWARNING:') print('"%s_pubkey.txt" or "%s_privkey.txt" already exists. \nUse a different name or delete these files and re-run this program.' % (name, name)) sys.exit() publicKey, privateKey = generateKey(keySize) print('\nWriting public key to file %s_pubkey.txt...' % name) with open('%s_pubkey.txt' % name, 'w') as fo: fo.write('%s,%s,%s' % (keySize, publicKey[0], publicKey[1])) print('Writing private key to file %s_privkey.txt...' % name) with open('%s_privkey.txt' % name, 'w') as fo: fo.write('%s,%s,%s' % (keySize, privateKey[0], privateKey[1])) if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/simple_substitution_cipher.py
import sys, random LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def main(): message = input('Enter message: ') key = 'LFWOAYUISVKMNXPBDCRJTQEGHZ' resp = input('Encrypt/Decrypt [e/d]: ') checkValidKey(key) if resp.lower().startswith('e'): mode = 'encrypt' translated = encryptMessage(key, message) elif resp.lower().startswith('d'): mode = 'decrypt' translated = decryptMessage(key, message) print('\n%sion: \n%s' % (mode.title(), translated)) def checkValidKey(key): keyList = list(key) lettersList = list(LETTERS) keyList.sort() lettersList.sort() if keyList != lettersList: sys.exit('Error in the key or symbol set.') def encryptMessage(key, message): """ >>> encryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Harshil Darji') 'Ilcrism Olcvs' """ return translateMessage(key, message, 'encrypt') def decryptMessage(key, message): """ >>> decryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Ilcrism Olcvs') 'Harshil Darji' """ return translateMessage(key, message, 'decrypt') def translateMessage(key, message, mode): translated = '' charsA = LETTERS charsB = key if mode == 'decrypt': charsA, charsB = charsB, charsA for symbol in message: if symbol.upper() in charsA: symIndex = charsA.find(symbol.upper()) if symbol.isupper(): translated += charsB[symIndex].upper() else: translated += charsB[symIndex].lower() else: translated += symbol return translated def getRandomKey(): key = list(LETTERS) random.shuffle(key) return ''.join(key) if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/trafid_cipher.py
#https://en.wikipedia.org/wiki/Trifid_cipher def __encryptPart(messagePart, character2Number): one, two, three = "", "", "" tmp = [] for character in messagePart: tmp.append(character2Number[character]) for each in tmp: one += each[0] two += each[1] three += each[2] return one+two+three def __decryptPart(messagePart, character2Number): tmp, thisPart = "", "" result = [] for character in messagePart: thisPart += character2Number[character] for digit in thisPart: tmp += digit if len(tmp) == len(messagePart): result.append(tmp) tmp = "" return result[0], result[1], result[2] def __prepare(message, alphabet): #Validate message and alphabet, set to upper and remove spaces alphabet = alphabet.replace(" ", "").upper() message = message.replace(" ", "").upper() #Check length and characters if len(alphabet) != 27: raise KeyError("Length of alphabet has to be 27.") for each in message: if each not in alphabet: raise ValueError("Each message character has to be included in alphabet!") #Generate dictionares numbers = ("111","112","113","121","122","123","131","132","133","211","212","213","221","222","223","231","232","233","311","312","313","321","322","323","331","332","333") character2Number = {} number2Character = {} for letter, number in zip(alphabet, numbers): character2Number[letter] = number number2Character[number] = letter return message, alphabet, character2Number, number2Character def encryptMessage(message, alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): message, alphabet, character2Number, number2Character = __prepare(message, alphabet) encrypted, encrypted_numeric = "", "" for i in range(0, len(message)+1, period): encrypted_numeric += __encryptPart(message[i:i+period], character2Number) for i in range(0, len(encrypted_numeric), 3): encrypted += number2Character[encrypted_numeric[i:i+3]] return encrypted def decryptMessage(message, alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): message, alphabet, character2Number, number2Character = __prepare(message, alphabet) decrypted_numeric = [] decrypted = "" for i in range(0, len(message)+1, period): a,b,c = __decryptPart(message[i:i+period], character2Number) for j in range(0, len(a)): decrypted_numeric.append(a[j]+b[j]+c[j]) for each in decrypted_numeric: decrypted += number2Character[each] return decrypted if __name__ == '__main__': msg = "DEFEND THE EAST WALL OF THE CASTLE." encrypted = encryptMessage(msg,"EPSDUCVWYM.ZLKXNBTFGORIJHAQ") decrypted = decryptMessage(encrypted, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") print("Encrypted: {}\nDecrypted: {}".format(encrypted, decrypted))
[]
[]
[]
archives/1098994933_python.zip
ciphers/transposition_cipher.py
import math def main(): message = input('Enter message: ') key = int(input('Enter key [2-%s]: ' % (len(message) - 1))) mode = input('Encryption/Decryption [e/d]: ') if mode.lower().startswith('e'): text = encryptMessage(key, message) elif mode.lower().startswith('d'): text = decryptMessage(key, message) # Append pipe symbol (vertical bar) to identify spaces at the end. print('Output:\n%s' %(text + '|')) def encryptMessage(key, message): """ >>> encryptMessage(6, 'Harshil Darji') 'Hlia rDsahrij' """ cipherText = [''] * key for col in range(key): pointer = col while pointer < len(message): cipherText[col] += message[pointer] pointer += key return ''.join(cipherText) def decryptMessage(key, message): """ >>> decryptMessage(6, 'Hlia rDsahrij') 'Harshil Darji' """ numCols = math.ceil(len(message) / key) numRows = key numShadedBoxes = (numCols * numRows) - len(message) plainText = [""] * numCols col = 0; row = 0; for symbol in message: plainText[col] += symbol col += 1 if (col == numCols) or (col == numCols - 1) and (row >= numRows - numShadedBoxes): col = 0 row += 1 return "".join(plainText) if __name__ == '__main__': import doctest doctest.testmod() main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/transposition_cipher_encrypt_decrypt_file.py
import time, os, sys import transposition_cipher as transCipher def main(): inputFile = 'Prehistoric Men.txt' outputFile = 'Output.txt' key = int(input('Enter key: ')) mode = input('Encrypt/Decrypt [e/d]: ') if not os.path.exists(inputFile): print('File %s does not exist. Quitting...' % inputFile) sys.exit() if os.path.exists(outputFile): print('Overwrite %s? [y/n]' % outputFile) response = input('> ') if not response.lower().startswith('y'): sys.exit() startTime = time.time() if mode.lower().startswith('e'): with open(inputFile) as f: content = f.read() translated = transCipher.encryptMessage(key, content) elif mode.lower().startswith('d'): with open(outputFile) as f: content = f.read() translated =transCipher .decryptMessage(key, content) with open(outputFile, 'w') as outputObj: outputObj.write(translated) totalTime = round(time.time() - startTime, 2) print(('Done (', totalTime, 'seconds )')) if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/vigenere_cipher.py
LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def main(): message = input('Enter message: ') key = input('Enter key [alphanumeric]: ') mode = input('Encrypt/Decrypt [e/d]: ') if mode.lower().startswith('e'): mode = 'encrypt' translated = encryptMessage(key, message) elif mode.lower().startswith('d'): mode = 'decrypt' translated = decryptMessage(key, message) print('\n%sed message:' % mode.title()) print(translated) def encryptMessage(key, message): ''' >>> encryptMessage('HDarji', 'This is Harshil Darji from Dharmaj.') 'Akij ra Odrjqqs Gaisq muod Mphumrs.' ''' return translateMessage(key, message, 'encrypt') def decryptMessage(key, message): ''' >>> decryptMessage('HDarji', 'Akij ra Odrjqqs Gaisq muod Mphumrs.') 'This is Harshil Darji from Dharmaj.' ''' return translateMessage(key, message, 'decrypt') def translateMessage(key, message, mode): translated = [] keyIndex = 0 key = key.upper() for symbol in message: num = LETTERS.find(symbol.upper()) if num != -1: if mode == 'encrypt': num += LETTERS.find(key[keyIndex]) elif mode == 'decrypt': num -= LETTERS.find(key[keyIndex]) num %= len(LETTERS) if symbol.isupper(): translated.append(LETTERS[num]) elif symbol.islower(): translated.append(LETTERS[num].lower()) keyIndex += 1 if keyIndex == len(key): keyIndex = 0 else: translated.append(symbol) return ''.join(translated) if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
ciphers/xor_cipher.py
""" author: Christian Bender date: 21.12.2017 class: XORCipher This class implements the XOR-cipher algorithm and provides some useful methods for encrypting and decrypting strings and files. Overview about methods - encrypt : list of char - decrypt : list of char - encrypt_string : str - decrypt_string : str - encrypt_file : boolean - decrypt_file : boolean """ class XORCipher(object): def __init__(self, key = 0): """ simple constructor that receives a key or uses default key = 0 """ #private field self.__key = key def encrypt(self, content, key): """ input: 'content' of type string and 'key' of type int output: encrypted string 'content' as a list of chars if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert (isinstance(key,int) and isinstance(content,str)) key = key or self.__key or 1 # make sure key can be any size while (key > 255): key -= 255 # This will be returned ans = [] for ch in content: ans.append(chr(ord(ch) ^ key)) return ans def decrypt(self,content,key): """ input: 'content' of type list and 'key' of type int output: decrypted string 'content' as a list of chars if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert (isinstance(key,int) and isinstance(content,list)) key = key or self.__key or 1 # make sure key can be any size while (key > 255): key -= 255 # This will be returned ans = [] for ch in content: ans.append(chr(ord(ch) ^ key)) return ans def encrypt_string(self,content, key = 0): """ input: 'content' of type string and 'key' of type int output: encrypted string 'content' if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert (isinstance(key,int) and isinstance(content,str)) key = key or self.__key or 1 # make sure key can be any size while (key > 255): key -= 255 # This will be returned ans = "" for ch in content: ans += chr(ord(ch) ^ key) return ans def decrypt_string(self,content,key = 0): """ input: 'content' of type string and 'key' of type int output: decrypted string 'content' if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert (isinstance(key,int) and isinstance(content,str)) key = key or self.__key or 1 # make sure key can be any size while (key > 255): key -= 255 # This will be returned ans = "" for ch in content: ans += chr(ord(ch) ^ key) return ans def encrypt_file(self, file, key = 0): """ input: filename (str) and a key (int) output: returns true if encrypt process was successful otherwise false if key not passed the method uses the key by the constructor. otherwise key = 1 """ #precondition assert (isinstance(file,str) and isinstance(key,int)) try: with open(file,"r") as fin: with open("encrypt.out","w+") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(line,key)) except: return False return True def decrypt_file(self,file, key): """ input: filename (str) and a key (int) output: returns true if decrypt process was successful otherwise false if key not passed the method uses the key by the constructor. otherwise key = 1 """ #precondition assert (isinstance(file,str) and isinstance(key,int)) try: with open(file,"r") as fin: with open("decrypt.out","w+") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(line,key)) except: return False return True # Tests # crypt = XORCipher() # key = 67 # # test enrcypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
[]
[]
[]
archives/1098994933_python.zip
compression/burrows_wheeler.py
""" https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform The Burrows–Wheeler transform (BWT, also called block-sorting compression) rearranges a character string into runs of similar characters. This is useful for compression, since it tends to be easy to compress a string that has runs of repeated characters by techniques such as move-to-front transform and run-length encoding. More importantly, the transformation is reversible, without needing to store any additional data except the position of the first original character. The BWT is thus a "free" method of improving the efficiency of text compression algorithms, costing only some extra computation. """ from typing import List, Dict def all_rotations(s: str) -> List[str]: """ :param s: The string that will be rotated len(s) times. :return: A list with the rotations. :raises TypeError: If s is not an instance of str. Examples: >>> all_rotations("^BANANA|") # doctest: +NORMALIZE_WHITESPACE ['^BANANA|', 'BANANA|^', 'ANANA|^B', 'NANA|^BA', 'ANA|^BAN', 'NA|^BANA', 'A|^BANAN', '|^BANANA'] >>> all_rotations("a_asa_da_casa") # doctest: +NORMALIZE_WHITESPACE ['a_asa_da_casa', '_asa_da_casaa', 'asa_da_casaa_', 'sa_da_casaa_a', 'a_da_casaa_as', '_da_casaa_asa', 'da_casaa_asa_', 'a_casaa_asa_d', '_casaa_asa_da', 'casaa_asa_da_', 'asaa_asa_da_c', 'saa_asa_da_ca', 'aa_asa_da_cas'] >>> all_rotations("panamabanana") # doctest: +NORMALIZE_WHITESPACE ['panamabanana', 'anamabananap', 'namabananapa', 'amabananapan', 'mabananapana', 'abananapanam', 'bananapanama', 'ananapanamab', 'nanapanamaba', 'anapanamaban', 'napanamabana', 'apanamabanan'] >>> all_rotations(5) Traceback (most recent call last): ... TypeError: The parameter s type must be str. """ if not isinstance(s, str): raise TypeError("The parameter s type must be str.") return [s[i:] + s[:i] for i in range(len(s))] def bwt_transform(s: str) -> Dict: """ :param s: The string that will be used at bwt algorithm :return: the string composed of the last char of each row of the ordered rotations and the index of the original string at ordered rotations list :raises TypeError: If the s parameter type is not str :raises ValueError: If the s parameter is empty Examples: >>> bwt_transform("^BANANA") {'bwt_string': 'BNN^AAA', 'idx_original_string': 6} >>> bwt_transform("a_asa_da_casa") {'bwt_string': 'aaaadss_c__aa', 'idx_original_string': 3} >>> bwt_transform("panamabanana") {'bwt_string': 'mnpbnnaaaaaa', 'idx_original_string': 11} >>> bwt_transform(4) Traceback (most recent call last): ... TypeError: The parameter s type must be str. >>> bwt_transform('') Traceback (most recent call last): ... ValueError: The parameter s must not be empty. """ if not isinstance(s, str): raise TypeError("The parameter s type must be str.") if not s: raise ValueError("The parameter s must not be empty.") rotations = all_rotations(s) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation return { "bwt_string": "".join([word[-1] for word in rotations]), "idx_original_string": rotations.index(s), } def reverse_bwt(bwt_string: str, idx_original_string: int) -> str: """ :param bwt_string: The string returned from bwt algorithm execution :param idx_original_string: A 0-based index of the string that was used to generate bwt_string at ordered rotations list :return: The string used to generate bwt_string when bwt was executed :raises TypeError: If the bwt_string parameter type is not str :raises ValueError: If the bwt_string parameter is empty :raises TypeError: If the idx_original_string type is not int or if not possible to cast it to int :raises ValueError: If the idx_original_string value is lower than 0 or greater than len(bwt_string) - 1 >>> reverse_bwt("BNN^AAA", 6) '^BANANA' >>> reverse_bwt("aaaadss_c__aa", 3) 'a_asa_da_casa' >>> reverse_bwt("mnpbnnaaaaaa", 11) 'panamabanana' >>> reverse_bwt(4, 11) Traceback (most recent call last): ... TypeError: The parameter bwt_string type must be str. >>> reverse_bwt("", 11) Traceback (most recent call last): ... ValueError: The parameter bwt_string must not be empty. >>> reverse_bwt("mnpbnnaaaaaa", "asd") # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... TypeError: The parameter idx_original_string type must be int or passive of cast to int. >>> reverse_bwt("mnpbnnaaaaaa", -1) Traceback (most recent call last): ... ValueError: The parameter idx_original_string must not be lower than 0. >>> reverse_bwt("mnpbnnaaaaaa", 12) # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: The parameter idx_original_string must be lower than len(bwt_string). >>> reverse_bwt("mnpbnnaaaaaa", 11.0) 'panamabanana' >>> reverse_bwt("mnpbnnaaaaaa", 11.4) 'panamabanana' """ if not isinstance(bwt_string, str): raise TypeError("The parameter bwt_string type must be str.") if not bwt_string: raise ValueError("The parameter bwt_string must not be empty.") try: idx_original_string = int(idx_original_string) except ValueError: raise TypeError( ( "The parameter idx_original_string type must be int or passive" " of cast to int." ) ) if idx_original_string < 0: raise ValueError( "The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(bwt_string): raise ValueError( ( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) ) ordered_rotations = [""] * len(bwt_string) for x in range(len(bwt_string)): for i in range(len(bwt_string)): ordered_rotations[i] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": entry_msg = "Provide a string that I will generate its BWT transform: " s = input(entry_msg).strip() result = bwt_transform(s) bwt_output_msg = "Burrows Wheeler tranform for string '{}' results in '{}'" print(bwt_output_msg.format(s, result["bwt_string"])) original_string = reverse_bwt( result["bwt_string"], result["idx_original_string"] ) fmt = ( "Reversing Burrows Wheeler tranform for entry '{}' we get original" " string '{}'" ) print(fmt.format(result["bwt_string"], original_string))
[ "str", "str", "str", "int" ]
[ 732, 1986, 3404, 3430 ]
[ 735, 1989, 3407, 3433 ]
archives/1098994933_python.zip
compression/huffman.py
import sys class Letter: def __init__(self, letter, freq): self.letter = letter self.freq = freq self.bitstring = "" def __repr__(self): return f'{self.letter}:{self.freq}' class TreeNode: def __init__(self, freq, left, right): self.freq = freq self.left = left self.right = right def parse_file(file_path): """ Read the file and build a dict of all letters and their frequences, then convert the dict into a list of Letters. """ chars = {} with open(file_path) as f: while True: c = f.read(1) if not c: break chars[c] = chars[c] + 1 if c in chars.keys() else 1 return sorted([Letter(c, f) for c, f in chars.items()], key=lambda l: l.freq) def build_tree(letters): """ Run through the list of Letters and build the min heap for the Huffman Tree. """ while len(letters) > 1: left = letters.pop(0) right = letters.pop(0) total_freq = left.freq + right.freq node = TreeNode(total_freq, left, right) letters.append(node) letters.sort(key=lambda l: l.freq) return letters[0] def traverse_tree(root, bitstring): """ Recursively traverse the Huffman Tree to set each Letter's bitstring, and return the list of Letters """ if type(root) is Letter: root.bitstring = bitstring return [root] letters = [] letters += traverse_tree(root.left, bitstring + "0") letters += traverse_tree(root.right, bitstring + "1") return letters def huffman(file_path): """ Parse the file, build the tree, then run through the file again, using the list of Letters to find and print out the bitstring for each letter. """ letters_list = parse_file(file_path) root = build_tree(letters_list) letters = traverse_tree(root, "") print(f'Huffman Coding of {file_path}: ') with open(file_path) as f: while True: c = f.read(1) if not c: break le = list(filter(lambda l: l.letter == c, letters))[0] print(le.bitstring, end=" ") print() if __name__ == "__main__": # pass the file path to the huffman function huffman(sys.argv[1])
[]
[]
[]
archives/1098994933_python.zip
compression/peak_signal_to_noise_ratio.py
""" Peak signal-to-noise ratio - PSNR - https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Soruce: https://tutorials.techonical.com/how-to-calculate-psnr-value-of-two-images-using-python/ """ import math import os import cv2 import numpy as np def psnr(original, contrast): mse = np.mean((original - contrast) ** 2) if mse == 0: return 100 PIXEL_MAX = 255.0 PSNR = 20 * math.log10(PIXEL_MAX / math.sqrt(mse)) return PSNR def main(): dir_path = os.path.dirname(os.path.realpath(__file__)) # Loading images (original image and compressed image) original = cv2.imread(os.path.join(dir_path, 'image_data/original_image.png')) contrast = cv2.imread(os.path.join(dir_path, 'image_data/compressed_image.png'), 1) original2 = cv2.imread(os.path.join(dir_path, 'image_data/PSNR-example-base.png')) contrast2 = cv2.imread(os.path.join(dir_path, 'image_data/PSNR-example-comp-10.jpg'), 1) # Value expected: 29.73dB print("-- First Test --") print(f"PSNR value is {psnr(original, contrast)} dB") # # Value expected: 31.53dB (Wikipedia Example) print("\n-- Second Test --") print(f"PSNR value is {psnr(original2, contrast2)} dB") if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
conversions/decimal_to_binary.py
"""Convert a Decimal Number to a Binary Number.""" def decimal_to_binary(num): """ Convert a Integer Decimal Number to a Binary Number as str. >>> decimal_to_binary(0) '0b0' >>> decimal_to_binary(2) '0b10' >>> decimal_to_binary(7) '0b111' >>> decimal_to_binary(35) '0b100011' >>> # negatives work too >>> decimal_to_binary(-2) '-0b10' >>> # other floats will error >>> decimal_to_binary(16.16) # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: 'float' object cannot be interpreted as an integer >>> # strings will error as well >>> decimal_to_binary('0xfffff') # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: 'str' object cannot be interpreted as an integer """ if type(num) == float: raise TypeError("'float' object cannot be interpreted as an integer") if type(num) == str: raise TypeError("'str' object cannot be interpreted as an integer") if num == 0: return "0b0" negative = False if num < 0: negative = True num = -num binary = [] while num > 0: binary.insert(0, num % 2) num >>= 1 if negative: return "-0b" + "".join(str(e) for e in binary) return "0b" + "".join(str(e) for e in binary) if __name__ == "__main__": import doctest doctest.testmod()
[]
[]
[]
archives/1098994933_python.zip
conversions/decimal_to_hexadecimal.py
""" Convert Base 10 (Decimal) Values to Hexadecimal Representations """ # set decimal value for each hexadecimal digit values = { 0:'0', 1:'1', 2:'2', 3:'3', 4:'4', 5:'5', 6:'6', 7:'7', 8:'8', 9:'9', 10:'a', 11:'b', 12:'c', 13:'d', 14:'e', 15:'f' } def decimal_to_hexadecimal(decimal): """ take integer decimal value, return hexadecimal representation as str beginning with 0x >>> decimal_to_hexadecimal(5) '0x5' >>> decimal_to_hexadecimal(15) '0xf' >>> decimal_to_hexadecimal(37) '0x25' >>> decimal_to_hexadecimal(255) '0xff' >>> decimal_to_hexadecimal(4096) '0x1000' >>> decimal_to_hexadecimal(999098) '0xf3eba' >>> # negatives work too >>> decimal_to_hexadecimal(-256) '-0x100' >>> # floats are acceptable if equivalent to an int >>> decimal_to_hexadecimal(17.0) '0x11' >>> # other floats will error >>> decimal_to_hexadecimal(16.16) # doctest: +ELLIPSIS Traceback (most recent call last): ... AssertionError >>> # strings will error as well >>> decimal_to_hexadecimal('0xfffff') # doctest: +ELLIPSIS Traceback (most recent call last): ... AssertionError >>> # results are the same when compared to Python's default hex function >>> decimal_to_hexadecimal(-256) == hex(-256) True """ assert type(decimal) in (int, float) and decimal == int(decimal) hexadecimal = '' negative = False if decimal < 0: negative = True decimal *= -1 while decimal > 0: decimal, remainder = divmod(decimal, 16) hexadecimal = values[remainder] + hexadecimal hexadecimal = '0x' + hexadecimal if negative: hexadecimal = '-' + hexadecimal return hexadecimal if __name__ == '__main__': import doctest doctest.testmod()
[]
[]
[]
archives/1098994933_python.zip
conversions/decimal_to_octal.py
"""Convert a Decimal Number to an Octal Number.""" import math # Modified from: # https://github.com/TheAlgorithms/Javascript/blob/master/Conversions/DecimalToOctal.js def decimal_to_octal(num): """Convert a Decimal Number to an Octal Number.""" octal = 0 counter = 0 while num > 0: remainder = num % 8 octal = octal + (remainder * math.pow(10, counter)) counter += 1 num = math.floor(num / 8) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return'{0:g}'.format(float(octal)) def main(): """Print octal equivelents of decimal numbers.""" print("\n2 in octal is:") print(decimal_to_octal(2)) # = 2 print("\n8 in octal is:") print(decimal_to_octal(8)) # = 10 print("\n65 in octal is:") print(decimal_to_octal(65)) # = 101 print("\n216 in octal is:") print(decimal_to_octal(216)) # = 330 print("\n512 in octal is:") print(decimal_to_octal(512)) # = 1000 print("\n") if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
data_structures/binary_tree/avl_tree.py
# -*- coding: utf-8 -*- ''' An auto-balanced binary tree! ''' import math import random class my_queue: def __init__(self): self.data = [] self.head = 0 self.tail = 0 def isEmpty(self): return self.head == self.tail def push(self,data): self.data.append(data) self.tail = self.tail + 1 def pop(self): ret = self.data[self.head] self.head = self.head + 1 return ret def count(self): return self.tail - self.head def print(self): print(self.data) print("**************") print(self.data[self.head:self.tail]) class my_node: def __init__(self,data): self.data = data self.left = None self.right = None self.height = 1 def getdata(self): return self.data def getleft(self): return self.left def getright(self): return self.right def getheight(self): return self.height def setdata(self,data): self.data = data return def setleft(self,node): self.left = node return def setright(self,node): self.right = node return def setheight(self,height): self.height = height return def getheight(node): if node is None: return 0 return node.getheight() def my_max(a,b): if a > b: return a return b def leftrotation(node): r''' A B / \ / \ B C Bl A / \ --> / / \ Bl Br UB Br C / UB UB = unbalanced node ''' print("left rotation node:",node.getdata()) ret = node.getleft() node.setleft(ret.getright()) ret.setright(node) h1 = my_max(getheight(node.getright()),getheight(node.getleft())) + 1 node.setheight(h1) h2 = my_max(getheight(ret.getright()),getheight(ret.getleft())) + 1 ret.setheight(h2) return ret def rightrotation(node): ''' a mirror symmetry rotation of the leftrotation ''' print("right rotation node:",node.getdata()) ret = node.getright() node.setright(ret.getleft()) ret.setleft(node) h1 = my_max(getheight(node.getright()),getheight(node.getleft())) + 1 node.setheight(h1) h2 = my_max(getheight(ret.getright()),getheight(ret.getleft())) + 1 ret.setheight(h2) return ret def rlrotation(node): r''' A A Br / \ / \ / \ B C RR Br C LR B A / \ --> / \ --> / / \ Bl Br B UB Bl UB C \ / UB Bl RR = rightrotation LR = leftrotation ''' node.setleft(rightrotation(node.getleft())) return leftrotation(node) def lrrotation(node): node.setright(leftrotation(node.getright())) return rightrotation(node) def insert_node(node,data): if node is None: return my_node(data) if data < node.getdata(): node.setleft(insert_node(node.getleft(),data)) if getheight(node.getleft()) - getheight(node.getright()) == 2: #an unbalance detected if data < node.getleft().getdata(): #new node is the left child of the left child node = leftrotation(node) else: node = rlrotation(node) #new node is the right child of the left child else: node.setright(insert_node(node.getright(),data)) if getheight(node.getright()) - getheight(node.getleft()) == 2: if data < node.getright().getdata(): node = lrrotation(node) else: node = rightrotation(node) h1 = my_max(getheight(node.getright()),getheight(node.getleft())) + 1 node.setheight(h1) return node def getRightMost(root): while root.getright() is not None: root = root.getright() return root.getdata() def getLeftMost(root): while root.getleft() is not None: root = root.getleft() return root.getdata() def del_node(root,data): if root.getdata() == data: if root.getleft() is not None and root.getright() is not None: temp_data = getLeftMost(root.getright()) root.setdata(temp_data) root.setright(del_node(root.getright(),temp_data)) elif root.getleft() is not None: root = root.getleft() else: root = root.getright() elif root.getdata() > data: if root.getleft() is None: print("No such data") return root else: root.setleft(del_node(root.getleft(),data)) elif root.getdata() < data: if root.getright() is None: return root else: root.setright(del_node(root.getright(),data)) if root is None: return root if getheight(root.getright()) - getheight(root.getleft()) == 2: if getheight(root.getright().getright()) > getheight(root.getright().getleft()): root = rightrotation(root) else: root = lrrotation(root) elif getheight(root.getright()) - getheight(root.getleft()) == -2: if getheight(root.getleft().getleft()) > getheight(root.getleft().getright()): root = leftrotation(root) else: root = rlrotation(root) height = my_max(getheight(root.getright()),getheight(root.getleft())) + 1 root.setheight(height) return root class AVLtree: def __init__(self): self.root = None def getheight(self): # print("yyy") return getheight(self.root) def insert(self,data): print("insert:"+str(data)) self.root = insert_node(self.root,data) def del_node(self,data): print("delete:"+str(data)) if self.root is None: print("Tree is empty!") return self.root = del_node(self.root,data) def traversale(self): #a level traversale, gives a more intuitive look on the tree q = my_queue() q.push(self.root) layer = self.getheight() if layer == 0: return cnt = 0 while not q.isEmpty(): node = q.pop() space = " "*int(math.pow(2,layer-1)) print(space,end = "") if node is None: print("*",end = "") q.push(None) q.push(None) else: print(node.getdata(),end = "") q.push(node.getleft()) q.push(node.getright()) print(space,end = "") cnt = cnt + 1 for i in range(100): if cnt == math.pow(2,i) - 1: layer = layer -1 if layer == 0: print() print("*************************************") return print() break print() print("*************************************") return def test(self): getheight(None) print("****") self.getheight() if __name__ == "__main__": t = AVLtree() t.traversale() l = list(range(10)) random.shuffle(l) for i in l: t.insert(i) t.traversale() random.shuffle(l) for i in l: t.del_node(i) t.traversale()
[]
[]
[]
archives/1098994933_python.zip
data_structures/binary_tree/basic_binary_tree.py
class Node: # This is the Class Node with constructor that contains data variable to type data and left,right pointers. def __init__(self, data): self.data = data self.left = None self.right = None def display(tree): #In Order traversal of the tree if tree is None: return if tree.left is not None: display(tree.left) print(tree.data) if tree.right is not None: display(tree.right) return def depth_of_tree(tree): #This is the recursive function to find the depth of binary tree. if tree is None: return 0 else: depth_l_tree = depth_of_tree(tree.left) depth_r_tree = depth_of_tree(tree.right) if depth_l_tree > depth_r_tree: return 1 + depth_l_tree else: return 1 + depth_r_tree def is_full_binary_tree(tree): # This functions returns that is it full binary tree or not? if tree is None: return True if (tree.left is None) and (tree.right is None): return True if (tree.left is not None) and (tree.right is not None): return (is_full_binary_tree(tree.left) and is_full_binary_tree(tree.right)) else: return False def main(): # Main func for testing. tree = Node(1) tree.left = Node(2) tree.right = Node(3) tree.left.left = Node(4) tree.left.right = Node(5) tree.left.right.left = Node(6) tree.right.left = Node(7) tree.right.left.left = Node(8) tree.right.left.left.right = Node(9) print(is_full_binary_tree(tree)) print(depth_of_tree(tree)) print("Tree is: ") display(tree) if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
data_structures/binary_tree/binary_search_tree.py
''' A binary search Tree ''' class Node: def __init__(self, label, parent): self.label = label self.left = None self.right = None #Added in order to delete a node easier self.parent = parent def getLabel(self): return self.label def setLabel(self, label): self.label = label def getLeft(self): return self.left def setLeft(self, left): self.left = left def getRight(self): return self.right def setRight(self, right): self.right = right def getParent(self): return self.parent def setParent(self, parent): self.parent = parent class BinarySearchTree: def __init__(self): self.root = None def insert(self, label): # Create a new Node new_node = Node(label, None) # If Tree is empty if self.empty(): self.root = new_node else: #If Tree is not empty curr_node = self.root #While we don't get to a leaf while curr_node is not None: #We keep reference of the parent node parent_node = curr_node #If node label is less than current node if new_node.getLabel() < curr_node.getLabel(): #We go left curr_node = curr_node.getLeft() else: #Else we go right curr_node = curr_node.getRight() #We insert the new node in a leaf if new_node.getLabel() < parent_node.getLabel(): parent_node.setLeft(new_node) else: parent_node.setRight(new_node) #Set parent to the new node new_node.setParent(parent_node) def delete(self, label): if (not self.empty()): #Look for the node with that label node = self.getNode(label) #If the node exists if(node is not None): #If it has no children if(node.getLeft() is None and node.getRight() is None): self.__reassignNodes(node, None) node = None #Has only right children elif(node.getLeft() is None and node.getRight() is not None): self.__reassignNodes(node, node.getRight()) #Has only left children elif(node.getLeft() is not None and node.getRight() is None): self.__reassignNodes(node, node.getLeft()) #Has two children else: #Gets the max value of the left branch tmpNode = self.getMax(node.getLeft()) #Deletes the tmpNode self.delete(tmpNode.getLabel()) #Assigns the value to the node to delete and keesp tree structure node.setLabel(tmpNode.getLabel()) def getNode(self, label): curr_node = None #If the tree is not empty if(not self.empty()): #Get tree root curr_node = self.getRoot() #While we don't find the node we look for #I am using lazy evaluation here to avoid NoneType Attribute error while curr_node is not None and curr_node.getLabel() is not label: #If node label is less than current node if label < curr_node.getLabel(): #We go left curr_node = curr_node.getLeft() else: #Else we go right curr_node = curr_node.getRight() return curr_node def getMax(self, root = None): if(root is not None): curr_node = root else: #We go deep on the right branch curr_node = self.getRoot() if(not self.empty()): while(curr_node.getRight() is not None): curr_node = curr_node.getRight() return curr_node def getMin(self, root = None): if(root is not None): curr_node = root else: #We go deep on the left branch curr_node = self.getRoot() if(not self.empty()): curr_node = self.getRoot() while(curr_node.getLeft() is not None): curr_node = curr_node.getLeft() return curr_node def empty(self): if self.root is None: return True return False def __InOrderTraversal(self, curr_node): nodeList = [] if curr_node is not None: nodeList.insert(0, curr_node) nodeList = nodeList + self.__InOrderTraversal(curr_node.getLeft()) nodeList = nodeList + self.__InOrderTraversal(curr_node.getRight()) return nodeList def getRoot(self): return self.root def __isRightChildren(self, node): if(node == node.getParent().getRight()): return True return False def __reassignNodes(self, node, newChildren): if(newChildren is not None): newChildren.setParent(node.getParent()) if(node.getParent() is not None): #If it is the Right Children if(self.__isRightChildren(node)): node.getParent().setRight(newChildren) else: #Else it is the left children node.getParent().setLeft(newChildren) #This function traversal the tree. By default it returns an #In order traversal list. You can pass a function to traversal #The tree as needed by client code def traversalTree(self, traversalFunction = None, root = None): if(traversalFunction is None): #Returns a list of nodes in preOrder by default return self.__InOrderTraversal(self.root) else: #Returns a list of nodes in the order that the users wants to return traversalFunction(self.root) #Returns an string of all the nodes labels in the list #In Order Traversal def __str__(self): list = self.__InOrderTraversal(self.root) str = "" for x in list: str = str + " " + x.getLabel().__str__() return str def InPreOrder(curr_node): nodeList = [] if curr_node is not None: nodeList = nodeList + InPreOrder(curr_node.getLeft()) nodeList.insert(0, curr_node.getLabel()) nodeList = nodeList + InPreOrder(curr_node.getRight()) return nodeList def testBinarySearchTree(): r''' Example 8 / \ 3 10 / \ \ 1 6 14 / \ / 4 7 13 ''' r''' Example After Deletion 7 / \ 1 4 ''' t = BinarySearchTree() t.insert(8) t.insert(3) t.insert(6) t.insert(1) t.insert(10) t.insert(14) t.insert(13) t.insert(4) t.insert(7) #Prints all the elements of the list in order traversal print(t.__str__()) if(t.getNode(6) is not None): print("The label 6 exists") else: print("The label 6 doesn't exist") if(t.getNode(-1) is not None): print("The label -1 exists") else: print("The label -1 doesn't exist") if(not t.empty()): print(("Max Value: ", t.getMax().getLabel())) print(("Min Value: ", t.getMin().getLabel())) t.delete(13) t.delete(10) t.delete(8) t.delete(3) t.delete(6) t.delete(14) #Gets all the elements of the tree In pre order #And it prints them list = t.traversalTree(InPreOrder, t.root) for x in list: print(x) if __name__ == "__main__": testBinarySearchTree()
[]
[]
[]
archives/1098994933_python.zip
data_structures/binary_tree/fenwick_tree.py
class FenwickTree: def __init__(self, SIZE): # create fenwick tree with size SIZE self.Size = SIZE self.ft = [0 for i in range (0,SIZE)] def update(self, i, val): # update data (adding) in index i in O(lg N) while (i < self.Size): self.ft[i] += val i += i & (-i) def query(self, i): # query cumulative data from index 0 to i in O(lg N) ret = 0 while (i > 0): ret += self.ft[i] i -= i & (-i) return ret if __name__ == '__main__': f = FenwickTree(100) f.update(1,20) f.update(4,4) print(f.query(1)) print(f.query(3)) print(f.query(4)) f.update(2,-5) print(f.query(1)) print(f.query(3))
[]
[]
[]
archives/1098994933_python.zip
data_structures/binary_tree/lazy_segment_tree.py
import math class SegmentTree: def __init__(self, N): self.N = N self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N self.lazy = [0 for i in range(0,4*N)] # create array to store lazy update self.flag = [0 for i in range(0,4*N)] # flag for lazy update def left(self, idx): return idx*2 def right(self, idx): return idx*2 + 1 def build(self, idx, l, r, A): if l==r: self.st[idx] = A[l-1] else : mid = (l+r)//2 self.build(self.left(idx),l,mid, A) self.build(self.right(idx),mid+1,r, A) self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)]) # update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N) for each update) def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b] if self.flag[idx] == True: self.st[idx] = self.lazy[idx] self.flag[idx] = False if l!=r: self.lazy[self.left(idx)] = self.lazy[idx] self.lazy[self.right(idx)] = self.lazy[idx] self.flag[self.left(idx)] = True self.flag[self.right(idx)] = True if r < a or l > b: return True if l >= a and r <= b : self.st[idx] = val if l!=r: self.lazy[self.left(idx)] = val self.lazy[self.right(idx)] = val self.flag[self.left(idx)] = True self.flag[self.right(idx)] = True return True mid = (l+r)//2 self.update(self.left(idx),l,mid,a,b,val) self.update(self.right(idx),mid+1,r,a,b,val) self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)]) return True # query with O(lg N) def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b] if self.flag[idx] == True: self.st[idx] = self.lazy[idx] self.flag[idx] = False if l != r: self.lazy[self.left(idx)] = self.lazy[idx] self.lazy[self.right(idx)] = self.lazy[idx] self.flag[self.left(idx)] = True self.flag[self.right(idx)] = True if r < a or l > b: return -math.inf if l >= a and r <= b: return self.st[idx] mid = (l+r)//2 q1 = self.query(self.left(idx),l,mid,a,b) q2 = self.query(self.right(idx),mid+1,r,a,b) return max(q1,q2) def showData(self): showList = [] for i in range(1,N+1): showList += [self.query(1, 1, self.N, i, i)] print(showList) if __name__ == '__main__': A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8] N = 15 segt = SegmentTree(N) segt.build(1,1,N,A) print(segt.query(1,1,N,4,6)) print(segt.query(1,1,N,7,11)) print(segt.query(1,1,N,7,12)) segt.update(1,1,N,1,3,111) print(segt.query(1,1,N,1,15)) segt.update(1,1,N,7,8,235) segt.showData()
[]
[]
[]
archives/1098994933_python.zip
data_structures/binary_tree/lca.py
import queue def swap(a, b): a ^= b b ^= a a ^= b return a, b # creating sparse table which saves each nodes 2^ith parent def creatSparse(max_node, parent): j = 1 while (1 << j) < max_node: for i in range(1, max_node + 1): parent[j][i] = parent[j - 1][parent[j - 1][i]] j += 1 return parent # returns lca of node u,v def LCA(u, v, level, parent): # u must be deeper in the tree than v if level[u] < level[v]: u, v = swap(u, v) # making depth of u same as depth of v for i in range(18, -1, -1): if level[u] - (1 << i) >= level[v]: u = parent[i][u] # at the same depth if u==v that mean lca is found if u == v: return u # moving both nodes upwards till lca in found for i in range(18, -1, -1): if parent[i][u] != 0 and parent[i][u] != parent[i][v]: u, v = parent[i][u], parent[i][v] # returning longest common ancestor of u,v return parent[0][u] # runs a breadth first search from root node of the tree # sets every nodes direct parent # parent of root node is set to 0 # calculates depth of each node from root node def bfs(level, parent, max_node, graph, root=1): level[root] = 0 q = queue.Queue(maxsize=max_node) q.put(root) while q.qsize() != 0: u = q.get() for v in graph[u]: if level[v] == -1: level[v] = level[u] + 1 q.put(v) parent[0][v] = u return level, parent def main(): max_node = 13 # initializing with 0 parent = [[0 for _ in range(max_node + 10)] for _ in range(20)] # initializing with -1 which means every node is unvisited level = [-1 for _ in range(max_node + 10)] graph = { 1: [2, 3, 4], 2: [5], 3: [6, 7], 4: [8], 5: [9, 10], 6: [11], 7: [], 8: [12, 13], 9: [], 10: [], 11: [], 12: [], 13: [] } level, parent = bfs(level, parent, max_node, graph, 1) parent = creatSparse(max_node, parent) print("LCA of node 1 and 3 is: ", LCA(1, 3, level, parent)) print("LCA of node 5 and 6 is: ", LCA(5, 6, level, parent)) print("LCA of node 7 and 11 is: ", LCA(7, 11, level, parent)) print("LCA of node 6 and 7 is: ", LCA(6, 7, level, parent)) print("LCA of node 4 and 12 is: ", LCA(4, 12, level, parent)) print("LCA of node 8 and 8 is: ", LCA(8, 8, level, parent)) if __name__ == "__main__": main()
[]
[]
[]
archives/1098994933_python.zip
data_structures/binary_tree/red_black_tree.py
""" python/black : true flake8 : passed """ class RedBlackTree: """ A Red-Black tree, which is a self-balancing BST (binary search tree). This tree has similar performance to AVL trees, but the balancing is less strict, so it will perform faster for writing/deleting nodes and slower for reading in the average case, though, because they're both balanced binary search trees, both will get the same asymptotic perfomance. To read more about them, https://en.wikipedia.org/wiki/Red–black_tree Unless otherwise specified, all asymptotic runtimes are specified in terms of the size of the tree. """ def __init__(self, label=None, color=0, parent=None, left=None, right=None): """Initialize a new Red-Black Tree node with the given values: label: The value associated with this node color: 0 if black, 1 if red parent: The parent to this node left: This node's left child right: This node's right child """ self.label = label self.parent = parent self.left = left self.right = right self.color = color # Here are functions which are specific to red-black trees def rotate_left(self): """Rotate the subtree rooted at this node to the left and returns the new root to this subtree. Perfoming one rotation can be done in O(1). """ parent = self.parent right = self.right self.right = right.left if self.right: self.right.parent = self self.parent = right right.left = self if parent is not None: if parent.left == self: parent.left = right else: parent.right = right right.parent = parent return right def rotate_right(self): """Rotate the subtree rooted at this node to the right and returns the new root to this subtree. Performing one rotation can be done in O(1). """ parent = self.parent left = self.left self.left = left.right if self.left: self.left.parent = self self.parent = left left.right = self if parent is not None: if parent.right is self: parent.right = left else: parent.left = left left.parent = parent return left def insert(self, label): """Inserts label into the subtree rooted at self, performs any rotations necessary to maintain balance, and then returns the new root to this subtree (likely self). This is guaranteed to run in O(log(n)) time. """ if self.label is None: # Only possible with an empty tree self.label = label return self if self.label == label: return self elif self.label > label: if self.left: self.left.insert(label) else: self.left = RedBlackTree(label, 1, self) self.left._insert_repair() else: if self.right: self.right.insert(label) else: self.right = RedBlackTree(label, 1, self) self.right._insert_repair() return self.parent or self def _insert_repair(self): """Repair the coloring from inserting into a tree.""" if self.parent is None: # This node is the root, so it just needs to be black self.color = 0 elif color(self.parent) == 0: # If the parent is black, then it just needs to be red self.color = 1 else: uncle = self.parent.sibling if color(uncle) == 0: if self.is_left() and self.parent.is_right(): self.parent.rotate_right() self.right._insert_repair() elif self.is_right() and self.parent.is_left(): self.parent.rotate_left() self.left._insert_repair() elif self.is_left(): self.grandparent.rotate_right() self.parent.color = 0 self.parent.right.color = 1 else: self.grandparent.rotate_left() self.parent.color = 0 self.parent.left.color = 1 else: self.parent.color = 0 uncle.color = 0 self.grandparent.color = 1 self.grandparent._insert_repair() def remove(self, label): """Remove label from this tree.""" if self.label == label: if self.left and self.right: # It's easier to balance a node with at most one child, # so we replace this node with the greatest one less than # it and remove that. value = self.left.get_max() self.label = value self.left.remove(value) else: # This node has at most one non-None child, so we don't # need to replace child = self.left or self.right if self.color == 1: # This node is red, and its child is black # The only way this happens to a node with one child # is if both children are None leaves. # We can just remove this node and call it a day. if self.is_left(): self.parent.left = None else: self.parent.right = None else: # The node is black if child is None: # This node and its child are black if self.parent is None: # The tree is now empty return RedBlackTree(None) else: self._remove_repair() if self.is_left(): self.parent.left = None else: self.parent.right = None self.parent = None else: # This node is black and its child is red # Move the child node here and make it black self.label = child.label self.left = child.left self.right = child.right if self.left: self.left.parent = self if self.right: self.right.parent = self elif self.label > label: if self.left: self.left.remove(label) else: if self.right: self.right.remove(label) return self.parent or self def _remove_repair(self): """Repair the coloring of the tree that may have been messed up.""" if color(self.sibling) == 1: self.sibling.color = 0 self.parent.color = 1 if self.is_left(): self.parent.rotate_left() else: self.parent.rotate_right() if ( color(self.parent) == 0 and color(self.sibling) == 0 and color(self.sibling.left) == 0 and color(self.sibling.right) == 0 ): self.sibling.color = 1 self.parent._remove_repair() return if ( color(self.parent) == 1 and color(self.sibling) == 0 and color(self.sibling.left) == 0 and color(self.sibling.right) == 0 ): self.sibling.color = 1 self.parent.color = 0 return if ( self.is_left() and color(self.sibling) == 0 and color(self.sibling.right) == 0 and color(self.sibling.left) == 1 ): self.sibling.rotate_right() self.sibling.color = 0 self.sibling.right.color = 1 if ( self.is_right() and color(self.sibling) == 0 and color(self.sibling.right) == 1 and color(self.sibling.left) == 0 ): self.sibling.rotate_left() self.sibling.color = 0 self.sibling.left.color = 1 if ( self.is_left() and color(self.sibling) == 0 and color(self.sibling.right) == 1 ): self.parent.rotate_left() self.grandparent.color = self.parent.color self.parent.color = 0 self.parent.sibling.color = 0 if ( self.is_right() and color(self.sibling) == 0 and color(self.sibling.left) == 1 ): self.parent.rotate_right() self.grandparent.color = self.parent.color self.parent.color = 0 self.parent.sibling.color = 0 def check_color_properties(self): """Check the coloring of the tree, and return True iff the tree is colored in a way which matches these five properties: (wording stolen from wikipedia article) 1. Each node is either red or black. 2. The root node is black. 3. All leaves are black. 4. If a node is red, then both its children are black. 5. Every path from any node to all of its descendent NIL nodes has the same number of black nodes. This function runs in O(n) time, because properties 4 and 5 take that long to check. """ # I assume property 1 to hold because there is nothing that can # make the color be anything other than 0 or 1. # Property 2 if self.color: # The root was red print("Property 2") return False # Property 3 does not need to be checked, because None is assumed # to be black and is all the leaves. # Property 4 if not self.check_coloring(): print("Property 4") return False # Property 5 if self.black_height() is None: print("Property 5") return False # All properties were met return True def check_coloring(self): """A helper function to recursively check Property 4 of a Red-Black Tree. See check_color_properties for more info. """ if self.color == 1: if color(self.left) == 1 or color(self.right) == 1: return False if self.left and not self.left.check_coloring(): return False if self.right and not self.right.check_coloring(): return False return True def black_height(self): """Returns the number of black nodes from this node to the leaves of the tree, or None if there isn't one such value (the tree is color incorrectly). """ if self is None: # If we're already at a leaf, there is no path return 1 left = RedBlackTree.black_height(self.left) right = RedBlackTree.black_height(self.right) if left is None or right is None: # There are issues with coloring below children nodes return None if left != right: # The two children have unequal depths return None # Return the black depth of children, plus one if this node is # black return left + (1 - self.color) # Here are functions which are general to all binary search trees def __contains__(self, label): """Search through the tree for label, returning True iff it is found somewhere in the tree. Guaranteed to run in O(log(n)) time. """ return self.search(label) is not None def search(self, label): """Search through the tree for label, returning its node if it's found, and None otherwise. This method is guaranteed to run in O(log(n)) time. """ if self.label == label: return self elif label > self.label: if self.right is None: return None else: return self.right.search(label) else: if self.left is None: return None else: return self.left.search(label) def floor(self, label): """Returns the largest element in this tree which is at most label. This method is guaranteed to run in O(log(n)) time.""" if self.label == label: return self.label elif self.label > label: if self.left: return self.left.floor(label) else: return None else: if self.right: attempt = self.right.floor(label) if attempt is not None: return attempt return self.label def ceil(self, label): """Returns the smallest element in this tree which is at least label. This method is guaranteed to run in O(log(n)) time. """ if self.label == label: return self.label elif self.label < label: if self.right: return self.right.ceil(label) else: return None else: if self.left: attempt = self.left.ceil(label) if attempt is not None: return attempt return self.label def get_max(self): """Returns the largest element in this tree. This method is guaranteed to run in O(log(n)) time. """ if self.right: # Go as far right as possible return self.right.get_max() else: return self.label def get_min(self): """Returns the smallest element in this tree. This method is guaranteed to run in O(log(n)) time. """ if self.left: # Go as far left as possible return self.left.get_min() else: return self.label @property def grandparent(self): """Get the current node's grandparent, or None if it doesn't exist.""" if self.parent is None: return None else: return self.parent.parent @property def sibling(self): """Get the current node's sibling, or None if it doesn't exist.""" if self.parent is None: return None elif self.parent.left is self: return self.parent.right else: return self.parent.left def is_left(self): """Returns true iff this node is the left child of its parent.""" return self.parent and self.parent.left is self def is_right(self): """Returns true iff this node is the right child of its parent.""" return self.parent and self.parent.right is self def __bool__(self): return True def __len__(self): """ Return the number of nodes in this tree. """ ln = 1 if self.left: ln += len(self.left) if self.right: ln += len(self.right) return ln def preorder_traverse(self): yield self.label if self.left: yield from self.left.preorder_traverse() if self.right: yield from self.right.preorder_traverse() def inorder_traverse(self): if self.left: yield from self.left.inorder_traverse() yield self.label if self.right: yield from self.right.inorder_traverse() def postorder_traverse(self): if self.left: yield from self.left.postorder_traverse() if self.right: yield from self.right.postorder_traverse() yield self.label def __repr__(self): from pprint import pformat if self.left is None and self.right is None: return "'%s %s'" % (self.label, (self.color and "red") or "blk") return pformat( { "%s %s" % (self.label, (self.color and "red") or "blk"): (self.left, self.right) }, indent=1, ) def __eq__(self, other): """Test if two trees are equal.""" if self.label == other.label: return self.left == other.left and self.right == other.right else: return False def color(node): """Returns the color of a node, allowing for None leaves.""" if node is None: return 0 else: return node.color """ Code for testing the various functions of the red-black tree. """ def test_rotations(): """Test that the rotate_left and rotate_right functions work.""" # Make a tree to test on tree = RedBlackTree(0) tree.left = RedBlackTree(-10, parent=tree) tree.right = RedBlackTree(10, parent=tree) tree.left.left = RedBlackTree(-20, parent=tree.left) tree.left.right = RedBlackTree(-5, parent=tree.left) tree.right.left = RedBlackTree(5, parent=tree.right) tree.right.right = RedBlackTree(20, parent=tree.right) # Make the right rotation left_rot = RedBlackTree(10) left_rot.left = RedBlackTree(0, parent=left_rot) left_rot.left.left = RedBlackTree(-10, parent=left_rot.left) left_rot.left.right = RedBlackTree(5, parent=left_rot.left) left_rot.left.left.left = RedBlackTree(-20, parent=left_rot.left.left) left_rot.left.left.right = RedBlackTree(-5, parent=left_rot.left.left) left_rot.right = RedBlackTree(20, parent=left_rot) tree = tree.rotate_left() if tree != left_rot: return False tree = tree.rotate_right() tree = tree.rotate_right() # Make the left rotation right_rot = RedBlackTree(-10) right_rot.left = RedBlackTree(-20, parent=right_rot) right_rot.right = RedBlackTree(0, parent=right_rot) right_rot.right.left = RedBlackTree(-5, parent=right_rot.right) right_rot.right.right = RedBlackTree(10, parent=right_rot.right) right_rot.right.right.left = RedBlackTree(5, parent=right_rot.right.right) right_rot.right.right.right = RedBlackTree(20, parent=right_rot.right.right) if tree != right_rot: return False return True def test_insertion_speed(): """Test that the tree balances inserts to O(log(n)) by doing a lot of them. """ tree = RedBlackTree(-1) for i in range(300000): tree = tree.insert(i) return True def test_insert(): """Test the insert() method of the tree correctly balances, colors, and inserts. """ tree = RedBlackTree(0) tree.insert(8) tree.insert(-8) tree.insert(4) tree.insert(12) tree.insert(10) tree.insert(11) ans = RedBlackTree(0, 0) ans.left = RedBlackTree(-8, 0, ans) ans.right = RedBlackTree(8, 1, ans) ans.right.left = RedBlackTree(4, 0, ans.right) ans.right.right = RedBlackTree(11, 0, ans.right) ans.right.right.left = RedBlackTree(10, 1, ans.right.right) ans.right.right.right = RedBlackTree(12, 1, ans.right.right) return tree == ans def test_insert_and_search(): """Tests searching through the tree for values.""" tree = RedBlackTree(0) tree.insert(8) tree.insert(-8) tree.insert(4) tree.insert(12) tree.insert(10) tree.insert(11) if 5 in tree or -6 in tree or -10 in tree or 13 in tree: # Found something not in there return False if not (11 in tree and 12 in tree and -8 in tree and 0 in tree): # Didn't find something in there return False return True def test_insert_delete(): """Test the insert() and delete() method of the tree, verifying the insertion and removal of elements, and the balancing of the tree. """ tree = RedBlackTree(0) tree = tree.insert(-12) tree = tree.insert(8) tree = tree.insert(-8) tree = tree.insert(15) tree = tree.insert(4) tree = tree.insert(12) tree = tree.insert(10) tree = tree.insert(9) tree = tree.insert(11) tree = tree.remove(15) tree = tree.remove(-12) tree = tree.remove(9) if not tree.check_color_properties(): return False if list(tree.inorder_traverse()) != [-8, 0, 4, 8, 10, 11, 12]: return False return True def test_floor_ceil(): """Tests the floor and ceiling functions in the tree.""" tree = RedBlackTree(0) tree.insert(-16) tree.insert(16) tree.insert(8) tree.insert(24) tree.insert(20) tree.insert(22) tuples = [(-20, None, -16), (-10, -16, 0), (8, 8, 8), (50, 24, None)] for val, floor, ceil in tuples: if tree.floor(val) != floor or tree.ceil(val) != ceil: return False return True def test_min_max(): """Tests the min and max functions in the tree.""" tree = RedBlackTree(0) tree.insert(-16) tree.insert(16) tree.insert(8) tree.insert(24) tree.insert(20) tree.insert(22) if tree.get_max() != 22 or tree.get_min() != -16: return False return True def test_tree_traversal(): """Tests the three different tree traversal functions.""" tree = RedBlackTree(0) tree = tree.insert(-16) tree.insert(16) tree.insert(8) tree.insert(24) tree.insert(20) tree.insert(22) if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]: return False if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]: return False if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]: return False return True def test_tree_chaining(): """Tests the three different tree chaning functions.""" tree = RedBlackTree(0) tree = tree.insert(-16).insert(16).insert(8).insert(24).insert(20).insert(22) if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]: return False if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]: return False if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]: return False return True def print_results(msg: str, passes: bool) -> None: print(str(msg), "works!" if passes else "doesn't work :(") def pytests(): assert test_rotations() assert test_insert() assert test_insert_and_search() assert test_insert_delete() assert test_floor_ceil() assert test_tree_traversal() assert test_tree_chaining() def main(): """ >>> pytests() """ print_results("Rotating right and left", test_rotations()) print_results("Inserting", test_insert()) print_results("Searching", test_insert_and_search()) print_results("Deleting", test_insert_delete()) print_results("Floor and ceil", test_floor_ceil()) print_results("Tree traversal", test_tree_traversal()) print_results("Tree traversal", test_tree_chaining()) print("Testing tree balancing...") print("This should only be a few seconds.") test_insertion_speed() print("Done!") if __name__ == "__main__": main()
[ "str", "bool" ]
[ 23153, 23166 ]
[ 23156, 23170 ]
archives/1098994933_python.zip
data_structures/binary_tree/segment_tree.py
import math class SegmentTree: def __init__(self, A): self.N = len(A) self.st = [0] * (4 * self.N) # approximate the overall size of segment tree with array N self.build(1, 0, self.N - 1) def left(self, idx): return idx * 2 def right(self, idx): return idx * 2 + 1 def build(self, idx, l, r): if l == r: self.st[idx] = A[l] else: mid = (l + r) // 2 self.build(self.left(idx), l, mid) self.build(self.right(idx), mid + 1, r) self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)]) def update(self, a, b, val): return self.update_recursive(1, 0, self.N - 1, a - 1, b - 1, val) def update_recursive(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b] if r < a or l > b: return True if l == r : self.st[idx] = val return True mid = (l+r)//2 self.update_recursive(self.left(idx), l, mid, a, b, val) self.update_recursive(self.right(idx), mid+1, r, a, b, val) self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)]) return True def query(self, a, b): return self.query_recursive(1, 0, self.N - 1, a - 1, b - 1) def query_recursive(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b] if r < a or l > b: return -math.inf if l >= a and r <= b: return self.st[idx] mid = (l+r)//2 q1 = self.query_recursive(self.left(idx), l, mid, a, b) q2 = self.query_recursive(self.right(idx), mid + 1, r, a, b) return max(q1, q2) def showData(self): showList = [] for i in range(1,N+1): showList += [self.query(i, i)] print(showList) if __name__ == '__main__': A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8] N = 15 segt = SegmentTree(A) print(segt.query(4, 6)) print(segt.query(7, 11)) print(segt.query(7, 12)) segt.update(1,3,111) print(segt.query(1, 15)) segt.update(7,8,235) segt.showData()
[]
[]
[]
archives/1098994933_python.zip
data_structures/binary_tree/treap.py
from random import random from typing import Tuple class Node: """ Treap's node Treap is a binary tree by key and heap by priority """ def __init__(self, key: int): self.key = key self.prior = random() self.l = None self.r = None def split(root: Node, key: int) -> Tuple[Node, Node]: """ We split current tree into 2 trees with key: Left tree contains all keys less than split key. Right tree contains all keys greater or equal, than split key """ if root is None: # None tree is split into 2 Nones return (None, None) if root.key >= key: """ Right tree's root will be current node. Now we split(with the same key) current node's left son Left tree: left part of that split Right tree's left son: right part of that split """ l, root.l = split(root.l, key) return (l, root) else: """ Just symmetric to previous case """ root.r, r = split(root.r, key) return (root, r) def merge(left: Node, right: Node) -> Node: """ We merge 2 trees into one. Note: all left tree's keys must be less than all right tree's """ if (not left) or (not right): """ If one node is None, return the other """ return left or right if left.key > right.key: """ Left will be root because it has more priority Now we need to merge left's right son and right tree """ left.r = merge(left.r, right) return left else: """ Symmetric as well """ right.l = merge(left, right.l) return right def insert(root: Node, key: int) -> Node: """ Insert element Split current tree with a key into l, r, Insert new node into the middle Merge l, node, r into root """ node = Node(key) l, r = split(root, key) root = merge(l, node) root = merge(root, r) return root def erase(root: Node, key: int) -> Node: """ Erase element Split all nodes with keys less into l, Split all nodes with keys greater into r. Merge l, r """ l, r = split(root, key) _, r = split(r, key + 1) return merge(l, r) def node_print(root: Node): """ Just recursive print of a tree """ if not root: return node_print(root.l) print(root.key, end=" ") node_print(root.r) def interactTreap(): """ Commands: + key to add key into treap - key to erase all nodes with key After each command, program prints treap """ root = None while True: cmd = input().split() cmd[1] = int(cmd[1]) if cmd[0] == "+": root = insert(root, cmd[1]) elif cmd[0] == "-": root = erase(root, cmd[1]) else: print("Unknown command") node_print(root) if __name__ == "__main__": interactTreap()
[ "int", "Node", "int", "Node", "Node", "Node", "int", "Node", "int", "Node" ]
[ 181, 302, 313, 1088, 1101, 1728, 1739, 2036, 2047, 2303 ]
[ 184, 306, 316, 1092, 1105, 1732, 1742, 2040, 2050, 2307 ]
archives/1098994933_python.zip
data_structures/hashing/double_hash.py
#!/usr/bin/env python3 from hash_table import HashTable from number_theory.prime_numbers import next_prime, check_prime class DoubleHash(HashTable): """ Hash Table example with open addressing and Double Hash """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __hash_function_2(self, value, data): next_prime_gt = next_prime(value % self.size_table) \ if not check_prime(value % self.size_table) else value % self.size_table #gt = bigger than return next_prime_gt - (data % next_prime_gt) def __hash_double_function(self, key, data, increment): return (increment * self.__hash_function_2(key, data)) % self.size_table def _colision_resolution(self, key, data=None): i = 1 new_key = self.hash_function(data) while self.values[new_key] is not None and self.values[new_key] != key: new_key = self.__hash_double_function(key, data, i) if \ self.balanced_factor() >= self.lim_charge else None if new_key is None: break else: i += 1 return new_key
[]
[]
[]
archives/1098994933_python.zip
data_structures/hashing/hash_table.py
#!/usr/bin/env python3 from number_theory.prime_numbers import next_prime class HashTable: """ Basic Hash Table example with open addressing and linear probing """ def __init__(self, size_table, charge_factor=None, lim_charge=None): self.size_table = size_table self.values = [None] * self.size_table self.lim_charge = 0.75 if lim_charge is None else lim_charge self.charge_factor = 1 if charge_factor is None else charge_factor self.__aux_list = [] self._keys = {} def keys(self): return self._keys def balanced_factor(self): return sum([1 for slot in self.values if slot is not None]) / (self.size_table * self.charge_factor) def hash_function(self, key): return key % self.size_table def _step_by_step(self, step_ord): print("step {0}".format(step_ord)) print([i for i in range(len(self.values))]) print(self.values) def bulk_insert(self, values): i = 1 self.__aux_list = values for value in values: self.insert_data(value) self._step_by_step(i) i += 1 def _set_value(self, key, data): self.values[key] = data self._keys[key] = data def _colision_resolution(self, key, data=None): new_key = self.hash_function(key + 1) while self.values[new_key] is not None \ and self.values[new_key] != key: if self.values.count(None) > 0: new_key = self.hash_function(new_key + 1) else: new_key = None break return new_key def rehashing(self): survivor_values = [value for value in self.values if value is not None] self.size_table = next_prime(self.size_table, factor=2) self._keys.clear() self.values = [None] * self.size_table #hell's pointers D: don't DRY ;/ map(self.insert_data, survivor_values) def insert_data(self, data): key = self.hash_function(data) if self.values[key] is None: self._set_value(key, data) elif self.values[key] == data: pass else: colision_resolution = self._colision_resolution(key, data) if colision_resolution is not None: self._set_value(colision_resolution, data) else: self.rehashing() self.insert_data(data)
[]
[]
[]
archives/1098994933_python.zip
data_structures/hashing/hash_table_with_linked_list.py
from hash_table import HashTable from collections import deque class HashTableWithLinkedList(HashTable): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _set_value(self, key, data): self.values[key] = deque([]) if self.values[key] is None else self.values[key] self.values[key].appendleft(data) self._keys[key] = self.values[key] def balanced_factor(self): return sum([self.charge_factor - len(slot) for slot in self.values])\ / self.size_table * self.charge_factor def _colision_resolution(self, key, data=None): if not (len(self.values[key]) == self.charge_factor and self.values.count(None) == 0): return key return super()._colision_resolution(key, data)
[]
[]
[]
archives/1098994933_python.zip
data_structures/hashing/number_theory/__init__.py
[]
[]
[]
archives/1098994933_python.zip
data_structures/hashing/number_theory/prime_numbers.py
#!/usr/bin/env python3 """ module to operations with prime numbers """ def check_prime(number): """ it's not the best solution """ special_non_primes = [0,1,2] if number in special_non_primes[:2]: return 2 elif number == special_non_primes[-1]: return 3 return all([number % i for i in range(2, number)]) def next_prime(value, factor=1, **kwargs): value = factor * value first_value_val = value while not check_prime(value): value += 1 if not ("desc" in kwargs.keys() and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **kwargs) return value
[]
[]
[]
archives/1098994933_python.zip
data_structures/hashing/quadratic_probing.py
#!/usr/bin/env python3 from hash_table import HashTable class QuadraticProbing(HashTable): """ Basic Hash Table example with open addressing using Quadratic Probing """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _colision_resolution(self, key, data=None): i = 1 new_key = self.hash_function(key + i*i) while self.values[new_key] is not None \ and self.values[new_key] != key: i += 1 new_key = self.hash_function(key + i*i) if not \ self.balanced_factor() >= self.lim_charge else None if new_key is None: break return new_key
[]
[]
[]
archives/1098994933_python.zip
data_structures/heap/binomial_heap.py
""" Binomial Heap Reference: Advanced Data Structures, Peter Brass """ class Node: """ Node in a doubly-linked binomial tree, containing: - value - size of left subtree - link to left, right and parent nodes """ def __init__(self, val): self.val = val # Number of nodes in left subtree self.left_tree_size = 0 self.left = None self.right = None self.parent = None def mergeTrees(self, other): """ In-place merge of two binomial trees of equal size. Returns the root of the resulting tree """ assert ( self.left_tree_size == other.left_tree_size ), "Unequal Sizes of Blocks" if self.val < other.val: other.left = self.right other.parent = None if self.right: self.right.parent = other self.right = other self.left_tree_size = ( self.left_tree_size * 2 + 1 ) return self else: self.left = other.right self.parent = None if other.right: other.right.parent = self other.right = self other.left_tree_size = ( other.left_tree_size * 2 + 1 ) return other class BinomialHeap: """ Min-oriented priority queue implemented with the Binomial Heap data structure implemented with the BinomialHeap class. It supports: - Insert element in a heap with n elemnts: Guaranteed logn, amoratized 1 - Merge (meld) heaps of size m and n: O(logn + logm) - Delete Min: O(logn) - Peek (return min without deleting it): O(1) Example: Create a random permutation of 30 integers to be inserted and 19 of them deleted >>> import numpy as np >>> permutation = np.random.permutation(list(range(30))) Create a Heap and insert the 30 integers __init__() test >>> first_heap = BinomialHeap() 30 inserts - insert() test >>> for number in permutation: ... first_heap.insert(number) Size test >>> print(first_heap.size) 30 Deleting - delete() test >>> for i in range(25): ... print(first_heap.deleteMin(), end=" ") 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Create a new Heap >>> second_heap = BinomialHeap() >>> vals = [17, 20, 31, 34] >>> for value in vals: ... second_heap.insert(value) The heap should have the following structure: 17 / \ # 31 / \ 20 34 / \ / \ # # # # preOrder() test >>> print(second_heap.preOrder()) [(17, 0), ('#', 1), (31, 1), (20, 2), ('#', 3), ('#', 3), (34, 2), ('#', 3), ('#', 3)] printing Heap - __str__() test >>> print(second_heap) 17 -# -31 --20 ---# ---# --34 ---# ---# mergeHeaps() test >>> merged = second_heap.mergeHeaps(first_heap) >>> merged.peek() 17 values in merged heap; (merge is inplace) >>> while not first_heap.isEmpty(): ... print(first_heap.deleteMin(), end=" ") 17 20 25 26 27 28 29 31 34 """ def __init__( self, bottom_root=None, min_node=None, heap_size=0 ): self.size = heap_size self.bottom_root = bottom_root self.min_node = min_node def mergeHeaps(self, other): """ In-place merge of two binomial heaps. Both of them become the resulting merged heap """ # Empty heaps corner cases if other.size == 0: return if self.size == 0: self.size = other.size self.bottom_root = other.bottom_root self.min_node = other.min_node return # Update size self.size = self.size + other.size # Update min.node if self.min_node.val > other.min_node.val: self.min_node = other.min_node # Merge # Order roots by left_subtree_size combined_roots_list = [] i, j = self.bottom_root, other.bottom_root while i or j: if i and ( (not j) or i.left_tree_size < j.left_tree_size ): combined_roots_list.append((i, True)) i = i.parent else: combined_roots_list.append((j, False)) j = j.parent # Insert links between them for i in range(len(combined_roots_list) - 1): if ( combined_roots_list[i][1] != combined_roots_list[i + 1][1] ): combined_roots_list[i][ 0 ].parent = combined_roots_list[i + 1][0] combined_roots_list[i + 1][ 0 ].left = combined_roots_list[i][0] # Consecutively merge roots with same left_tree_size i = combined_roots_list[0][0] while i.parent: if ( ( i.left_tree_size == i.parent.left_tree_size ) and (not i.parent.parent) ) or ( i.left_tree_size == i.parent.left_tree_size and i.left_tree_size != i.parent.parent.left_tree_size ): # Neighbouring Nodes previous_node = i.left next_node = i.parent.parent # Merging trees i = i.mergeTrees(i.parent) # Updating links i.left = previous_node i.parent = next_node if previous_node: previous_node.parent = i if next_node: next_node.left = i else: i = i.parent # Updating self.bottom_root while i.left: i = i.left self.bottom_root = i # Update other other.size = self.size other.bottom_root = self.bottom_root other.min_node = self.min_node # Return the merged heap return self def insert(self, val): """ insert a value in the heap """ if self.size == 0: self.bottom_root = Node(val) self.size = 1 self.min_node = self.bottom_root else: # Create new node new_node = Node(val) # Update size self.size += 1 # update min_node if val < self.min_node.val: self.min_node = new_node # Put new_node as a bottom_root in heap self.bottom_root.left = new_node new_node.parent = self.bottom_root self.bottom_root = new_node # Consecutively merge roots with same left_tree_size while ( self.bottom_root.parent and self.bottom_root.left_tree_size == self.bottom_root.parent.left_tree_size ): # Next node next_node = self.bottom_root.parent.parent # Merge self.bottom_root = self.bottom_root.mergeTrees( self.bottom_root.parent ) # Update Links self.bottom_root.parent = next_node self.bottom_root.left = None if next_node: next_node.left = self.bottom_root def peek(self): """ return min element without deleting it """ return self.min_node.val def isEmpty(self): return self.size == 0 def deleteMin(self): """ delete min element and return it """ # assert not self.isEmpty(), "Empty Heap" # Save minimal value min_value = self.min_node.val # Last element in heap corner case if self.size == 1: # Update size self.size = 0 # Update bottom root self.bottom_root = None # Update min_node self.min_node = None return min_value # No right subtree corner case # The structure of the tree implies that this should be the bottom root # and there is at least one other root if self.min_node.right == None: # Update size self.size -= 1 # Update bottom root self.bottom_root = self.bottom_root.parent self.bottom_root.left = None # Update min_node self.min_node = self.bottom_root i = self.bottom_root.parent while i: if i.val < self.min_node.val: self.min_node = i i = i.parent return min_value # General case # Find the BinomialHeap of the right subtree of min_node bottom_of_new = self.min_node.right bottom_of_new.parent = None min_of_new = bottom_of_new size_of_new = 1 # Size, min_node and bottom_root while bottom_of_new.left: size_of_new = size_of_new * 2 + 1 bottom_of_new = bottom_of_new.left if bottom_of_new.val < min_of_new.val: min_of_new = bottom_of_new # Corner case of single root on top left path if (not self.min_node.left) and ( not self.min_node.parent ): self.size = size_of_new self.bottom_root = bottom_of_new self.min_node = min_of_new # print("Single root, multiple nodes case") return min_value # Remaining cases # Construct heap of right subtree newHeap = BinomialHeap( bottom_root=bottom_of_new, min_node=min_of_new, heap_size=size_of_new, ) # Update size self.size = self.size - 1 - size_of_new # Neighbour nodes previous_node = self.min_node.left next_node = self.min_node.parent # Initialize new bottom_root and min_node self.min_node = previous_node or next_node self.bottom_root = next_node # Update links of previous_node and search below for new min_node and # bottom_root if previous_node: previous_node.parent = next_node # Update bottom_root and search for min_node below self.bottom_root = previous_node self.min_node = previous_node while self.bottom_root.left: self.bottom_root = self.bottom_root.left if self.bottom_root.val < self.min_node.val: self.min_node = self.bottom_root if next_node: next_node.left = previous_node # Search for new min_node above min_node i = next_node while i: if i.val < self.min_node.val: self.min_node = i i = i.parent # Merge heaps self.mergeHeaps(newHeap) return min_value def preOrder(self): """ Returns the Pre-order representation of the heap including values of nodes plus their level distance from the root; Empty nodes appear as # """ # Find top root top_root = self.bottom_root while top_root.parent: top_root = top_root.parent # preorder heap_preOrder = [] self.__traversal(top_root, heap_preOrder) return heap_preOrder def __traversal(self, curr_node, preorder, level=0): """ Pre-order traversal of nodes """ if curr_node: preorder.append((curr_node.val, level)) self.__traversal( curr_node.left, preorder, level + 1 ) self.__traversal( curr_node.right, preorder, level + 1 ) else: preorder.append(("#", level)) def __str__(self): """ Overwriting str for a pre-order print of nodes in heap; Performance is poor, so use only for small examples """ if self.isEmpty(): return "" preorder_heap = self.preOrder() return "\n".join( ("-" * level + str(value)) for value, level in preorder_heap ) # Unit Tests if __name__ == "__main__": import doctest doctest.testmod()
[]
[]
[]
archives/1098994933_python.zip
data_structures/heap/heap.py
#!/usr/bin/python # This heap class start from here. class Heap: def __init__(self): # Default constructor of heap class. self.h = [] self.currsize = 0 def leftChild(self,i): if 2*i+1 < self.currsize: return 2*i+1 return None def rightChild(self,i): if 2*i+2 < self.currsize: return 2*i+2 return None def maxHeapify(self,node): if node < self.currsize: m = node lc = self.leftChild(node) rc = self.rightChild(node) if lc is not None and self.h[lc] > self.h[m]: m = lc if rc is not None and self.h[rc] > self.h[m]: m = rc if m!=node: temp = self.h[node] self.h[node] = self.h[m] self.h[m] = temp self.maxHeapify(m) def buildHeap(self,a): #This function is used to build the heap from the data container 'a'. self.currsize = len(a) self.h = list(a) for i in range(self.currsize//2,-1,-1): self.maxHeapify(i) def getMax(self): #This function is used to get maximum value from the heap. if self.currsize >= 1: me = self.h[0] temp = self.h[0] self.h[0] = self.h[self.currsize-1] self.h[self.currsize-1] = temp self.currsize -= 1 self.maxHeapify(0) return me return None def heapSort(self): #This function is used to sort the heap. size = self.currsize while self.currsize-1 >= 0: temp = self.h[0] self.h[0] = self.h[self.currsize-1] self.h[self.currsize-1] = temp self.currsize -= 1 self.maxHeapify(0) self.currsize = size def insert(self,data): #This function is used to insert data in the heap. self.h.append(data) curr = self.currsize self.currsize+=1 while self.h[curr] > self.h[curr/2]: temp = self.h[curr/2] self.h[curr/2] = self.h[curr] self.h[curr] = temp curr = curr/2 def display(self): #This function is used to print the heap. print(self.h) def main(): l = list(map(int, input().split())) h = Heap() h.buildHeap(l) h.heapSort() h.display() if __name__=='__main__': main()
[]
[]
[]
archives/1098994933_python.zip
data_structures/linked_list/__init__.py
class Node: def __init__(self, item, next): self.item = item self.next = next class LinkedList: def __init__(self): self.head = None def add(self, item): self.head = Node(item, self.head) def remove(self): if self.is_empty(): return None else: item = self.head.item self.head = self.head.next return item def is_empty(self): return self.head is None
[]
[]
[]
archives/1098994933_python.zip
data_structures/linked_list/doubly_linked_list.py
''' - A linked list is similar to an array, it holds values. However, links in a linked list do not have indexes. - This is an example of a double ended, doubly linked list. - Each link references the next link and the previous one. - A Doubly Linked List (DLL) contains an extra pointer, typically called previous pointer, together with next pointer and data which are there in singly linked list. - Advantages over SLL - IT can be traversed in both forward and backward direction.,Delete operation is more efficent''' class LinkedList: #making main class named linked list def __init__(self): self.head = None self.tail = None def insertHead(self, x): newLink = Link(x) #Create a new link with a value attached to it if(self.isEmpty() == True): #Set the first element added to be the tail self.tail = newLink else: self.head.previous = newLink # newLink <-- currenthead(head) newLink.next = self.head # newLink <--> currenthead(head) self.head = newLink # newLink(head) <--> oldhead def deleteHead(self): temp = self.head self.head = self.head.next # oldHead <--> 2ndElement(head) self.head.previous = None # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed if(self.head is None): self.tail = None #if empty linked list return temp def insertTail(self, x): newLink = Link(x) newLink.next = None # currentTail(tail) newLink --> self.tail.next = newLink # currentTail(tail) --> newLink --> newLink.previous = self.tail #currentTail(tail) <--> newLink --> self.tail = newLink # oldTail <--> newLink(tail) --> def deleteTail(self): temp = self.tail self.tail = self.tail.previous # 2ndLast(tail) <--> oldTail --> None self.tail.next = None # 2ndlast(tail) --> None return temp def delete(self, x): current = self.head while(current.value != x): # Find the position to delete current = current.next if(current == self.head): self.deleteHead() elif(current == self.tail): self.deleteTail() else: #Before: 1 <--> 2(current) <--> 3 current.previous.next = current.next # 1 --> 3 current.next.previous = current.previous # 1 <--> 3 def isEmpty(self): #Will return True if the list is empty return(self.head is None) def display(self): #Prints contents of the list current = self.head while(current != None): current.displayLink() current = current.next print() class Link: next = None #This points to the link in front of the new link previous = None #This points to the link behind the new link def __init__(self, x): self.value = x def displayLink(self): print("{}".format(self.value), end=" ")
[]
[]
[]
archives/1098994933_python.zip
data_structures/linked_list/is_palindrome.py
def is_palindrome(head): if not head: return True # split the list to two parts fast, slow = head.next, head while fast and fast.next: fast = fast.next.next slow = slow.next second = slow.next slow.next = None # Don't forget here! But forget still works! # reverse the second part node = None while second: nxt = second.next second.next = node node = second second = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False node = node.next head = head.next return True def is_palindrome_stack(head): if not head or not head.next: return True # 1. Get the midpoint (slow) slow = fast = cur = head while fast and fast.next: fast, slow = fast.next.next, slow.next # 2. Push the second half into the stack stack = [slow.val] while slow.next: slow = slow.next stack.append(slow.val) # 3. Comparison while stack: if stack.pop() != cur.val: return False cur = cur.next return True def is_palindrome_dict(head): if not head or not head.next: return True d = {} pos = 0 while head: if head.val in d.keys(): d[head.val].append(pos) else: d[head.val] = [pos] head = head.next pos += 1 checksum = pos - 1 middle = 0 for v in d.values(): if len(v) % 2 != 0: middle += 1 else: step = 0 for i in range(0, len(v)): if v[i] + v[len(v) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
[]
[]
[]
archives/1098994933_python.zip
data_structures/linked_list/singly_linked_list.py
class Node: # create a Node def __init__(self, data): self.data = data # given data self.next = None # given next to None class Linked_List: def __init__(self): self.Head = None # Initialize Head to None def insert_tail(self, data): if(self.Head is None): self.insert_head(data) #If this is first node, call insert_head else: temp = self.Head while(temp.next != None): #traverse to last node temp = temp.next temp.next = Node(data) #create node & link to tail def insert_head(self, data): newNod = Node(data) # create a new node if self.Head != None: newNod.next = self.Head # link newNode to head self.Head = newNod # make NewNode as Head def printList(self): # print every node data tamp = self.Head while tamp is not None: print(tamp.data) tamp = tamp.next def delete_head(self): # delete from head temp = self.Head if self.Head != None: self.Head = self.Head.next temp.next = None return temp def delete_tail(self): # delete from tail tamp = self.Head if self.Head != None: if(self.Head.next is None): # if Head is the only Node in the Linked List self.Head = None else: while tamp.next.next is not None: # find the 2nd last element tamp = tamp.next tamp.next, tamp = None, tamp.next #(2nd last element).next = None and tamp = last element return tamp def isEmpty(self): return self.Head is None # Return if Head is none def reverse(self): prev = None current = self.Head while current: # Store the current node's next node. next_node = current.next # Make the current node's next point backwards current.next = prev # Make the previous node be the current node prev = current # Make the current node the next node (to progress iteration) current = next_node # Return prev in order to put the head at the end self.Head = prev def main(): A = Linked_List() print("Inserting 1st at Head") a1=input() A.insert_head(a1) print("Inserting 2nd at Head") a2=input() A.insert_head(a2) print("\nPrint List : ") A.printList() print("\nInserting 1st at Tail") a3=input() A.insert_tail(a3) print("Inserting 2nd at Tail") a4=input() A.insert_tail(a4) print("\nPrint List : ") A.printList() print("\nDelete Head") A.delete_head() print("Delete Tail") A.delete_tail() print("\nPrint List : ") A.printList() print("\nReverse Linked List") A.reverse() print("\nPrint List : ") A.printList() if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
data_structures/linked_list/swap_nodes.py
class Node: def __init__(self, data): self.data = data; self.next = None class Linkedlist: def __init__(self): self.head = None def print_list(self): temp = self.head while temp is not None: print(temp.data) temp = temp.next # adding nodes def push(self, new_data): new_node = Node(new_data) new_node.next = self.head self.head = new_node # swapping nodes def swapNodes(self, d1, d2): prevD1 = None prevD2 = None if d1 == d2: return else: # find d1 D1 = self.head while D1 is not None and D1.data != d1: prevD1 = D1 D1 = D1.next # find d2 D2 = self.head while D2 is not None and D2.data != d2: prevD2 = D2 D2 = D2.next if D1 is None and D2 is None: return # if D1 is head if prevD1 is not None: prevD1.next = D2 else: self.head = D2 # if D2 is head if prevD2 is not None: prevD2.next = D1 else: self.head = D1 temp = D1.next D1.next = D2.next D2.next = temp # swapping code ends here if __name__ == '__main__': list = Linkedlist() list.push(5) list.push(4) list.push(3) list.push(2) list.push(1) list.print_list() list.swapNodes(1, 4) print("After swapping") list.print_list()
[]
[]
[]
archives/1098994933_python.zip
data_structures/queue/double_ended_queue.py
# Python code to demonstrate working of # extend(), extendleft(), rotate(), reverse() # importing "collections" for deque operations import collections # initializing deque de = collections.deque([1, 2, 3,]) # using extend() to add numbers to right end # adds 4,5,6 to right end de.extend([4,5,6]) # printing modified deque print("The deque after extending deque at end is : ") print(de) # using extendleft() to add numbers to left end # adds 7,8,9 to right end de.extendleft([7,8,9]) # printing modified deque print("The deque after extending deque at beginning is : ") print(de) # using rotate() to rotate the deque # rotates by 3 to left de.rotate(-3) # printing modified deque print("The deque after rotating deque is : ") print(de) # using reverse() to reverse the deque de.reverse() # printing modified deque print("The deque after reversing deque is : ") print(de)
[]
[]
[]
archives/1098994933_python.zip
data_structures/queue/queue_on_list.py
"""Queue represented by a python list""" class Queue(): def __init__(self): self.entries = [] self.length = 0 self.front=0 def __str__(self): printed = '<' + str(self.entries)[1:-1] + '>' return printed """Enqueues {@code item} @param item item to enqueue""" def put(self, item): self.entries.append(item) self.length = self.length + 1 """Dequeues {@code item} @requirement: |self.length| > 0 @return dequeued item that was dequeued""" def get(self): self.length = self.length - 1 dequeued = self.entries[self.front] #self.front-=1 #self.entries = self.entries[self.front:] self.entries = self.entries[1:] return dequeued """Rotates the queue {@code rotation} times @param rotation number of times to rotate queue""" def rotate(self, rotation): for i in range(rotation): self.put(self.get()) """Enqueues {@code item} @return item at front of self.entries""" def front(self): return self.entries[0] """Returns the length of this.entries""" def size(self): return self.length
[]
[]
[]
archives/1098994933_python.zip
data_structures/queue/queue_on_pseudo_stack.py
"""Queue represented by a pseudo stack (represented by a list with pop and append)""" class Queue(): def __init__(self): self.stack = [] self.length = 0 def __str__(self): printed = '<' + str(self.stack)[1:-1] + '>' return printed """Enqueues {@code item} @param item item to enqueue""" def put(self, item): self.stack.append(item) self.length = self.length + 1 """Dequeues {@code item} @requirement: |self.length| > 0 @return dequeued item that was dequeued""" def get(self): self.rotate(1) dequeued = self.stack[self.length-1] self.stack = self.stack[:-1] self.rotate(self.length-1) self.length = self.length -1 return dequeued """Rotates the queue {@code rotation} times @param rotation number of times to rotate queue""" def rotate(self, rotation): for i in range(rotation): temp = self.stack[0] self.stack = self.stack[1:] self.put(temp) self.length = self.length - 1 """Reports item at the front of self @return item at front of self.stack""" def front(self): front = self.get() self.put(front) self.rotate(self.length-1) return front """Returns the length of this.stack""" def size(self): return self.length
[]
[]
[]
archives/1098994933_python.zip
data_structures/stacks/__init__.py
class Stack: def __init__(self): self.stack = [] self.top = 0 def is_empty(self): return (self.top == 0) def push(self, item): if self.top < len(self.stack): self.stack[self.top] = item else: self.stack.append(item) self.top += 1 def pop(self): if self.is_empty(): return None else: self.top -= 1 return self.stack[self.top]
[]
[]
[]
archives/1098994933_python.zip
data_structures/stacks/balanced_parentheses.py
from .stack import Stack __author__ = 'Omkar Pathak' def balanced_parentheses(parentheses): """ Use a stack to check if a string of parentheses is balanced.""" stack = Stack(len(parentheses)) for parenthesis in parentheses: if parenthesis == '(': stack.push(parenthesis) elif parenthesis == ')': if stack.is_empty(): return False stack.pop() return stack.is_empty() if __name__ == '__main__': examples = ['((()))', '((())', '(()))'] print('Balanced parentheses demonstration:\n') for example in examples: print(example + ': ' + str(balanced_parentheses(example)))
[]
[]
[]
archives/1098994933_python.zip
data_structures/stacks/infix_to_postfix_conversion.py
import string from .stack import Stack __author__ = 'Omkar Pathak' def is_operand(char): return char in string.ascii_letters or char in string.digits def precedence(char): """ Return integer value representing an operator's precedence, or order of operation. https://en.wikipedia.org/wiki/Order_of_operations """ dictionary = {'+': 1, '-': 1, '*': 2, '/': 2, '^': 3} return dictionary.get(char, -1) def infix_to_postfix(expression): """ Convert infix notation to postfix notation using the Shunting-yard algorithm. https://en.wikipedia.org/wiki/Shunting-yard_algorithm https://en.wikipedia.org/wiki/Infix_notation https://en.wikipedia.org/wiki/Reverse_Polish_notation """ stack = Stack(len(expression)) postfix = [] for char in expression: if is_operand(char): postfix.append(char) elif char not in {'(', ')'}: while (not stack.is_empty() and precedence(char) <= precedence(stack.peek())): postfix.append(stack.pop()) stack.push(char) elif char == '(': stack.push(char) elif char == ')': while not stack.is_empty() and stack.peek() != '(': postfix.append(stack.pop()) # Pop '(' from stack. If there is no '(', there is a mismatched # parentheses. if stack.peek() != '(': raise ValueError('Mismatched parentheses') stack.pop() while not stack.is_empty(): postfix.append(stack.pop()) return ' '.join(postfix) if __name__ == '__main__': expression = 'a+b*(c^d-e)^(f+g*h)-i' print('Infix to Postfix Notation demonstration:\n') print('Infix notation: ' + expression) print('Postfix notation: ' + infix_to_postfix(expression))
[]
[]
[]
archives/1098994933_python.zip
data_structures/stacks/infix_to_prefix_conversion.py
""" Output: Enter an Infix Equation = a + b ^c Symbol | Stack | Postfix ---------------------------- c | | c ^ | ^ | c b | ^ | cb + | + | cb^ a | + | cb^a | | cb^a+ a+b^c (Infix) -> +a^bc (Prefix) """ def infix_2_postfix(Infix): Stack = [] Postfix = [] priority = {'^':3, '*':2, '/':2, '%':2, '+':1, '-':1} # Priority of each operator print_width = len(Infix) if(len(Infix)>7) else 7 # Print table header for output print('Symbol'.center(8), 'Stack'.center(print_width), 'Postfix'.center(print_width), sep = " | ") print('-'*(print_width*3+7)) for x in Infix: if(x.isalpha() or x.isdigit()): Postfix.append(x) # if x is Alphabet / Digit, add it to Postfix elif(x == '('): Stack.append(x) # if x is "(" push to Stack elif(x == ')'): # if x is ")" pop stack until "(" is encountered while(Stack[-1] != '('): Postfix.append( Stack.pop() ) #Pop stack & add the content to Postfix Stack.pop() else: if(len(Stack)==0): Stack.append(x) #If stack is empty, push x to stack else: while( len(Stack) > 0 and priority[x] <= priority[Stack[-1]]): # while priority of x is not greater than priority of element in the stack Postfix.append( Stack.pop() ) # pop stack & add to Postfix Stack.append(x) # push x to stack print(x.center(8), (''.join(Stack)).ljust(print_width), (''.join(Postfix)).ljust(print_width), sep = " | ") # Output in tabular format while(len(Stack) > 0): # while stack is not empty Postfix.append( Stack.pop() ) # pop stack & add to Postfix print(' '.center(8), (''.join(Stack)).ljust(print_width), (''.join(Postfix)).ljust(print_width), sep = " | ") # Output in tabular format return "".join(Postfix) # return Postfix as str def infix_2_prefix(Infix): Infix = list(Infix[::-1]) # reverse the infix equation for i in range(len(Infix)): if(Infix[i] == '('): Infix[i] = ')' # change "(" to ")" elif(Infix[i] == ')'): Infix[i] = '(' # change ")" to "(" return (infix_2_postfix("".join(Infix)))[::-1] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": Infix = input("\nEnter an Infix Equation = ") #Input an Infix equation Infix = "".join(Infix.split()) #Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
[]
[]
[]
archives/1098994933_python.zip
data_structures/stacks/next_greater_element.py
# Function to print element and NGE pair for all elements of list def printNGE(arr): for i in range(0, len(arr), 1): next = -1 for j in range(i+1, len(arr), 1): if arr[i] < arr[j]: next = arr[j] break print(str(arr[i]) + " -- " + str(next)) # Driver program to test above function arr = [11,13,21,3] printNGE(arr)
[]
[]
[]
archives/1098994933_python.zip
data_structures/stacks/postfix_evaluation.py
""" Output: Enter a Postfix Equation (space separated) = 5 6 9 * + Symbol | Action | Stack ----------------------------------- 5 | push(5) | 5 6 | push(6) | 5,6 9 | push(9) | 5,6,9 | pop(9) | 5,6 | pop(6) | 5 * | push(6*9) | 5,54 | pop(54) | 5 | pop(5) | + | push(5+54) | 59 Result = 59 """ import operator as op def Solve(Postfix): Stack = [] Div = lambda x, y: int(x/y) # integer division operation Opr = {'^':op.pow, '*':op.mul, '/':Div, '+':op.add, '-':op.sub} # operators & their respective operation # print table header print('Symbol'.center(8), 'Action'.center(12), 'Stack', sep = " | ") print('-'*(30+len(Postfix))) for x in Postfix: if( x.isdigit() ): # if x in digit Stack.append(x) # append x to stack print(x.rjust(8), ('push('+x+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format else: B = Stack.pop() # pop stack print("".rjust(8), ('pop('+B+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format A = Stack.pop() # pop stack print("".rjust(8), ('pop('+A+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format Stack.append( str(Opr[x](int(A), int(B))) ) # evaluate the 2 values poped from stack & push result to stack print(x.rjust(8), ('push('+A+x+B+')').ljust(12), ','.join(Stack), sep = " | ") # output in tabular format return int(Stack[0]) if __name__ == "__main__": Postfix = input("\n\nEnter a Postfix Equation (space separated) = ").split(' ') print("\n\tResult = ", Solve(Postfix))
[]
[]
[]
archives/1098994933_python.zip
data_structures/stacks/stack.py
__author__ = 'Omkar Pathak' class Stack(object): """ A stack is an abstract data type that serves as a collection of elements with two principal operations: push() and pop(). push() adds an element to the top of the stack, and pop() removes an element from the top of a stack. The order in which elements come off of a stack are Last In, First Out (LIFO). https://en.wikipedia.org/wiki/Stack_(abstract_data_type) """ def __init__(self, limit=10): self.stack = [] self.limit = limit def __bool__(self): return bool(self.stack) def __str__(self): return str(self.stack) def push(self, data): """ Push an element to the top of the stack.""" if len(self.stack) >= self.limit: raise StackOverflowError self.stack.append(data) def pop(self): """ Pop an element off of the top of the stack.""" if self.stack: return self.stack.pop() else: raise IndexError('pop from an empty stack') def peek(self): """ Peek at the top-most element of the stack.""" if self.stack: return self.stack[-1] def is_empty(self): """ Check if a stack is empty.""" return not bool(self.stack) def size(self): """ Return the size of the stack.""" return len(self.stack) class StackOverflowError(BaseException): pass if __name__ == '__main__': stack = Stack() for i in range(10): stack.push(i) print('Stack demonstration:\n') print('Initial stack: ' + str(stack)) print('pop(): ' + str(stack.pop())) print('After pop(), the stack is now: ' + str(stack)) print('peek(): ' + str(stack.peek())) stack.push(100) print('After push(100), the stack is now: ' + str(stack)) print('is_empty(): ' + str(stack.is_empty())) print('size(): ' + str(stack.size()))
[]
[]
[]
archives/1098994933_python.zip
data_structures/stacks/stock_span_problem.py
''' The stock span problem is a financial problem where we have a series of n daily price quotes for a stock and we need to calculate span of stock's price for all n days. The span Si of the stock's price on a given day i is defined as the maximum number of consecutive days just before the given day, for which the price of the stock on the current day is less than or equal to its price on the given day. ''' def calculateSpan(price, S): n = len(price) # Create a stack and push index of fist element to it st = [] st.append(0) # Span value of first element is always 1 S[0] = 1 # Calculate span values for rest of the elements for i in range(1, n): # Pop elements from stack whlie stack is not # empty and top of stack is smaller than price[i] while( len(st) > 0 and price[st[0]] <= price[i]): st.pop() # If stack becomes empty, then price[i] is greater # than all elements on left of it, i.e. price[0], # price[1], ..price[i-1]. Else the price[i] is # greater than elements after top of stack S[i] = i+1 if len(st) <= 0 else (i - st[0]) # Push this element to stack st.append(i) # A utility function to print elements of array def printArray(arr, n): for i in range(0,n): print(arr[i],end =" ") # Driver program to test above function price = [10, 4, 5, 90, 120, 80] S = [0 for i in range(len(price)+1)] # Fill the span values in array S[] calculateSpan(price, S) # Print the calculated span values printArray(S, len(price))
[]
[]
[]
archives/1098994933_python.zip
data_structures/trie/trie.py
""" A Trie/Prefix Tree is a kind of search tree used to provide quick lookup of words/patterns in a set of words. A basic Trie however has O(n^2) space complexity making it impractical in practice. It however provides O(max(search_string, length of longest word)) lookup time making it an optimal approach when space is not an issue. """ class TrieNode: def __init__(self): self.nodes = dict() # Mapping from char to TrieNode self.is_leaf = False def insert_many(self, words: [str]): # noqa: E999 This syntax is Python 3 only """ Inserts a list of words into the Trie :param words: list of string words :return: None """ for word in words: self.insert(word) def insert(self, word: str): # noqa: E999 This syntax is Python 3 only """ Inserts a word into the Trie :param word: word to be inserted :return: None """ curr = self for char in word: if char not in curr.nodes: curr.nodes[char] = TrieNode() curr = curr.nodes[char] curr.is_leaf = True def find(self, word: str) -> bool: # noqa: E999 This syntax is Python 3 only """ Tries to find word in a Trie :param word: word to look for :return: Returns True if word is found, False otherwise """ curr = self for char in word: if char not in curr.nodes: return False curr = curr.nodes[char] return curr.is_leaf def print_words(node: TrieNode, word: str): # noqa: E999 This syntax is Python 3 only """ Prints all the words in a Trie :param node: root node of Trie :param word: Word variable should be empty at start :return: None """ if node.is_leaf: print(word, end=' ') for key, value in node.nodes.items(): print_words(value, word + key) def test(): words = ['banana', 'bananas', 'bandana', 'band', 'apple', 'all', 'beast'] root = TrieNode() root.insert_many(words) # print_words(root, '') assert root.find('banana') assert not root.find('bandanas') assert not root.find('apps') assert root.find('apple') test()
[ "[str]", "str", "str", "TrieNode", "str" ]
[ 505, 776, 1170, 1592, 1608 ]
[ 510, 779, 1173, 1600, 1611 ]
archives/1098994933_python.zip
digital_image_processing/__init__.py
[]
[]
[]
archives/1098994933_python.zip
digital_image_processing/change_contrast.py
""" Changing contrast with PIL This algorithm is used in https://noivce.pythonanywhere.com/ python web app. python/black: True flake8 : True """ from PIL import Image def change_contrast(img: Image, level: float) -> Image: """ Function to change contrast """ factor = (259 * (level + 255)) / (255 * (259 - level)) def contrast(c: int) -> float: """ Fundamental Transformation/Operation that'll be performed on every bit. """ return 128 + factor * (c - 128) return img.point(contrast) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 cont_img = change_contrast(img, 170) cont_img.save("image_data/lena_high_contrast.png", format="png")
[ "Image", "float", "int" ]
[ 210, 224, 375 ]
[ 215, 229, 378 ]
archives/1098994933_python.zip
digital_image_processing/edge_detection/__init__.py
[]
[]
[]
archives/1098994933_python.zip
digital_image_processing/edge_detection/canny.py
import cv2 import numpy as np from digital_image_processing.filters.convolve import img_convolve from digital_image_processing.filters.sobel_filter import sobel_filter PI = 180 def gen_gaussian_kernel(k_size, sigma): center = k_size // 2 x, y = np.mgrid[0 - center:k_size - center, 0 - center:k_size - center] g = 1 / (2 * np.pi * sigma) * np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma))) return g def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255): image_row, image_col = image.shape[0], image.shape[1] # gaussian_filter gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4)) # get the gradient and degree by sobel_filter sobel_grad, sobel_theta = sobel_filter(gaussian_out) gradient_direction = np.rad2deg(sobel_theta) gradient_direction += PI dst = np.zeros((image_row, image_col)) """ Non-maximum suppression. If the edge strength of the current pixel is the largest compared to the other pixels in the mask with the same direction, the value will be preserved. Otherwise, the value will be suppressed. """ for row in range(1, image_row - 1): for col in range(1, image_col - 1): direction = gradient_direction[row, col] if ( 0 <= direction < 22.5 or 15 * PI / 8 <= direction <= 2 * PI or 7 * PI / 8 <= direction <= 9 * PI / 8 ): W = sobel_grad[row, col - 1] E = sobel_grad[row, col + 1] if sobel_grad[row, col] >= W and sobel_grad[row, col] >= E: dst[row, col] = sobel_grad[row, col] elif (PI / 8 <= direction < 3 * PI / 8) or (9 * PI / 8 <= direction < 11 * PI / 8): SW = sobel_grad[row + 1, col - 1] NE = sobel_grad[row - 1, col + 1] if sobel_grad[row, col] >= SW and sobel_grad[row, col] >= NE: dst[row, col] = sobel_grad[row, col] elif (3 * PI / 8 <= direction < 5 * PI / 8) or (11 * PI / 8 <= direction < 13 * PI / 8): N = sobel_grad[row - 1, col] S = sobel_grad[row + 1, col] if sobel_grad[row, col] >= N and sobel_grad[row, col] >= S: dst[row, col] = sobel_grad[row, col] elif (5 * PI / 8 <= direction < 7 * PI / 8) or (13 * PI / 8 <= direction < 15 * PI / 8): NW = sobel_grad[row - 1, col - 1] SE = sobel_grad[row + 1, col + 1] if sobel_grad[row, col] >= NW and sobel_grad[row, col] >= SE: dst[row, col] = sobel_grad[row, col] """ High-Low threshold detection. If an edge pixel’s gradient value is higher than the high threshold value, it is marked as a strong edge pixel. If an edge pixel’s gradient value is smaller than the high threshold value and larger than the low threshold value, it is marked as a weak edge pixel. If an edge pixel's value is smaller than the low threshold value, it will be suppressed. """ if dst[row, col] >= threshold_high: dst[row, col] = strong elif dst[row, col] <= threshold_low: dst[row, col] = 0 else: dst[row, col] = weak """ Edge tracking. Usually a weak edge pixel caused from true edges will be connected to a strong edge pixel while noise responses are unconnected. As long as there is one strong edge pixel that is involved in its 8-connected neighborhood, that weak edge point can be identified as one that should be preserved. """ for row in range(1, image_row): for col in range(1, image_col): if dst[row, col] == weak: if 255 in ( dst[row, col + 1], dst[row, col - 1], dst[row - 1, col], dst[row + 1, col], dst[row - 1, col - 1], dst[row + 1, col - 1], dst[row - 1, col + 1], dst[row + 1, col + 1], ): dst[row, col] = strong else: dst[row, col] = 0 return dst if __name__ == '__main__': # read original image in gray mode lena = cv2.imread(r'../image_data/lena.jpg', 0) # canny edge detection canny_dst = canny(lena) cv2.imshow('canny', canny_dst) cv2.waitKey(0)
[]
[]
[]
archives/1098994933_python.zip
digital_image_processing/filters/__init__.py
[]
[]
[]
archives/1098994933_python.zip
digital_image_processing/filters/convolve.py
# @Author : lightXu # @File : convolve.py # @Time : 2019/7/8 0008 下午 16:13 from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey from numpy import array, zeros, ravel, pad, dot, uint8 def im2col(image, block_size): rows, cols = image.shape dst_height = cols - block_size[1] + 1 dst_width = rows - block_size[0] + 1 image_array = zeros((dst_height * dst_width, block_size[1] * block_size[0])) row = 0 for i in range(0, dst_height): for j in range(0, dst_width): window = ravel(image[i:i + block_size[0], j:j + block_size[1]]) image_array[row, :] = window row += 1 return image_array def img_convolve(image, filter_kernel): height, width = image.shape[0], image.shape[1] k_size = filter_kernel.shape[0] pad_size = k_size//2 # Pads image with the edge values of array. image_tmp = pad(image, pad_size, mode='edge') # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows image_array = im2col(image_tmp, (k_size, k_size)) # turn the kernel into shape(k*k, 1) kernel_array = ravel(filter_kernel) # reshape and get the dst image dst = dot(image_array, kernel_array).reshape(height, width) return dst if __name__ == '__main__': # read original image img = imread(r'../image_data/lena.jpg') # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) # Laplace operator Laplace_kernel = array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) out = img_convolve(gray, Laplace_kernel).astype(uint8) imshow('Laplacian', out) waitKey(0)
[]
[]
[]
archives/1098994933_python.zip
digital_image_processing/filters/gaussian_filter.py
""" Implementation of gaussian filter algorithm """ from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey from numpy import pi, mgrid, exp, square, zeros, ravel, dot, uint8 def gen_gaussian_kernel(k_size, sigma): center = k_size // 2 x, y = mgrid[0-center:k_size-center, 0-center:k_size-center] g = 1/(2*pi*sigma) * exp(-(square(x) + square(y))/(2*square(sigma))) return g def gaussian_filter(image, k_size, sigma): height, width = image.shape[0], image.shape[1] # dst image height and width dst_height = height-k_size+1 dst_width = width-k_size+1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows image_array = zeros((dst_height*dst_width, k_size*k_size)) row = 0 for i in range(0, dst_height): for j in range(0, dst_width): window = ravel(image[i:i + k_size, j:j + k_size]) image_array[row, :] = window row += 1 # turn the kernel into shape(k*k, 1) gaussian_kernel = gen_gaussian_kernel(k_size, sigma) filter_array = ravel(gaussian_kernel) # reshape and get the dst image dst = dot(image_array, filter_array).reshape(dst_height, dst_width).astype(uint8) return dst if __name__ == '__main__': # read original image img = imread(r'../image_data/lena.jpg') # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size gaussian3x3 = gaussian_filter(gray, 3, sigma=1) gaussian5x5 = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussian3x3) imshow('gaussian filter with 5x5 mask', gaussian5x5) waitKey()
[]
[]
[]
archives/1098994933_python.zip
digital_image_processing/filters/median_filter.py
""" Implementation of median filter algorithm """ from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey from numpy import zeros_like, ravel, sort, multiply, divide, int8 def median_filter(gray_img, mask=3): """ :param gray_img: gray image :param mask: mask size :return: image with median filter """ # set image borders bd = int(mask / 2) # copy image size median_img = zeros_like(gray_img) for i in range(bd, gray_img.shape[0] - bd): for j in range(bd, gray_img.shape[1] - bd): # get mask according with mask kernel = ravel(gray_img[i - bd:i + bd + 1, j - bd:j + bd + 1]) # calculate mask median median = sort(kernel)[int8(divide((multiply(mask, mask)), 2) + 1)] median_img[i, j] = median return median_img if __name__ == '__main__': # read original image img = imread('../image_data/lena.jpg') # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size median3x3 = median_filter(gray, 3) median5x5 = median_filter(gray, 5) # show result images imshow('median filter with 3x3 mask', median3x3) imshow('median filter with 5x5 mask', median5x5) waitKey(0)
[]
[]
[]
archives/1098994933_python.zip
digital_image_processing/filters/sobel_filter.py
# @Author : lightXu # @File : sobel_filter.py # @Time : 2019/7/8 0008 下午 16:26 import numpy as np from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey from digital_image_processing.filters.convolve import img_convolve def sobel_filter(image): kernel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) kernel_y = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) dst_x = np.abs(img_convolve(image, kernel_x)) dst_y = np.abs(img_convolve(image, kernel_y)) # modify the pix within [0, 255] dst_x = dst_x * 255/np.max(dst_x) dst_y = dst_y * 255/np.max(dst_y) dst_xy = np.sqrt((np.square(dst_x)) + (np.square(dst_y))) dst_xy = dst_xy * 255/np.max(dst_xy) dst = dst_xy.astype(np.uint8) theta = np.arctan2(dst_y, dst_x) return dst, theta if __name__ == '__main__': # read original image img = imread('../image_data/lena.jpg') # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) sobel_grad, sobel_theta = sobel_filter(gray) # show result images imshow('sobel filter', sobel_grad) imshow('sobel theta', sobel_theta) waitKey(0)
[]
[]
[]
archives/1098994933_python.zip
digital_image_processing/test_digital_image_processing.py
""" PyTest's for Digital Image Processing """ import digital_image_processing.edge_detection.canny as canny import digital_image_processing.filters.gaussian_filter as gg import digital_image_processing.filters.median_filter as med import digital_image_processing.filters.sobel_filter as sob import digital_image_processing.filters.convolve as conv import digital_image_processing.change_contrast as cc from cv2 import imread, cvtColor, COLOR_BGR2GRAY from numpy import array, uint8 from PIL import Image img = imread(r"digital_image_processing/image_data/lena.jpg") gray = cvtColor(img, COLOR_BGR2GRAY) # Test: change_contrast() def test_change_contrast(): with Image.open("digital_image_processing/image_data/lena.jpg") as img: # Work around assertion for response assert str(cc.change_contrast(img, 110)).startswith( "<PIL.Image.Image image mode=RGB size=512x512 at" ) # canny.gen_gaussian_kernel() def test_gen_gaussian_kernel(): resp = canny.gen_gaussian_kernel(9, sigma=1.4) # Assert ambiguous array assert resp.all() # canny.py def test_canny(): canny_img = imread("digital_image_processing/image_data/lena.jpg", 0) # assert ambiguos array for all == True assert canny_img.all() canny_array = canny.canny(canny_img) # assert canny array for at least one True assert canny_array.any() # filters/gaussian_filter.py def test_gen_gaussian_kernel_filter(): assert gg.gaussian_filter(gray, 5, sigma=0.9).all() def test_convolve_filter(): # laplace diagonals Laplace = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) res = conv.img_convolve(gray, Laplace).astype(uint8) assert res.any() def test_median_filter(): assert med.median_filter(gray, 3).any() def test_sobel_filter(): grad, theta = sob.sobel_filter(gray) assert grad.any() and theta.any()
[]
[]
[]
archives/1098994933_python.zip
divide_and_conquer/closest_pair_of_points.py
""" The algorithm finds distance between closest pair of points in the given n points. Approach used -> Divide and conquer The points are sorted based on Xco-ords and then based on Yco-ords separately. And by applying divide and conquer approach, minimum distance is obtained recursively. >> Closest points can lie on different sides of partition. This case handled by forming a strip of points whose Xco-ords distance is less than closest_pair_dis from mid-point's Xco-ords. Points sorted based on Yco-ords are used in this step to reduce sorting time. Closest pair distance is found in the strip of points. (closest_in_strip) min(closest_pair_dis, closest_in_strip) would be the final answer. Time complexity: O(n * log n) """ def euclidean_distance_sqr(point1, point2): """ >>> euclidean_distance_sqr([1,2],[2,4]) 5 """ return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2 def column_based_sort(array, column = 0): """ >>> column_based_sort([(5, 1), (4, 2), (3, 0)], 1) [(3, 0), (5, 1), (4, 2)] """ return sorted(array, key = lambda x: x[column]) def dis_between_closest_pair(points, points_counts, min_dis = float("inf")): """ brute force approach to find distance between closest pair points Parameters : points, points_count, min_dis (list(tuple(int, int)), int, int) Returns : min_dis (float): distance between closest pair of points >>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5) 5 """ for i in range(points_counts - 1): for j in range(i+1, points_counts): current_dis = euclidean_distance_sqr(points[i], points[j]) if current_dis < min_dis: min_dis = current_dis return min_dis def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")): """ closest pair of points in strip Parameters : points, points_count, min_dis (list(tuple(int, int)), int, int) Returns : min_dis (float): distance btw closest pair of points in the strip (< min_dis) >>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5) 85 """ for i in range(min(6, points_counts - 1), points_counts): for j in range(max(0, i-6), i): current_dis = euclidean_distance_sqr(points[i], points[j]) if current_dis < min_dis: min_dis = current_dis return min_dis def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_counts): """ divide and conquer approach Parameters : points, points_count (list(tuple(int, int)), int) Returns : (float): distance btw closest pair of points >>> closest_pair_of_points_sqr([(1, 2), (3, 4)], [(5, 6), (7, 8)], 2) 8 """ # base case if points_counts <= 3: return dis_between_closest_pair(points_sorted_on_x, points_counts) # recursion mid = points_counts//2 closest_in_left = closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y[:mid], mid) closest_in_right = closest_pair_of_points_sqr(points_sorted_on_y, points_sorted_on_y[mid:], points_counts - mid) closest_pair_dis = min(closest_in_left, closest_in_right) """ cross_strip contains the points, whose Xcoords are at a distance(< closest_pair_dis) from mid's Xcoord """ cross_strip = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis: cross_strip.append(point) closest_in_strip = dis_between_closest_in_strip(cross_strip, len(cross_strip), closest_pair_dis) return min(closest_pair_dis, closest_in_strip) def closest_pair_of_points(points, points_counts): """ >>> closest_pair_of_points([(2, 3), (12, 30)], len([(2, 3), (12, 30)])) 28.792360097775937 """ points_sorted_on_x = column_based_sort(points, column = 0) points_sorted_on_y = column_based_sort(points, column = 1) return (closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_counts)) ** 0.5 if __name__ == "__main__": points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
[]
[]
[]
archives/1098994933_python.zip
divide_and_conquer/convex_hull.py
from numbers import Number """ The convex hull problem is problem of finding all the vertices of convex polygon, P of a set of points in a plane such that all the points are either on the vertices of P or inside P. TH convex hull problem has several applications in geometrical problems, computer graphics and game development. Two algorithms have been implemented for the convex hull problem here. 1. A brute-force algorithm which runs in O(n^3) 2. A divide-and-conquer algorithm which runs in O(n log(n)) There are other several other algorithms for the convex hull problem which have not been implemented here, yet. """ class Point: """ Defines a 2-d point for use by all convex-hull algorithms. Parameters ---------- x: an int or a float, the x-coordinate of the 2-d point y: an int or a float, the y-coordinate of the 2-d point Examples -------- >>> Point(1, 2) (1, 2) >>> Point("1", "2") (1.0, 2.0) >>> Point(1, 2) > Point(0, 1) True >>> Point(1, 1) == Point(1, 1) True >>> Point(-0.5, 1) == Point(0.5, 1) False >>> Point("pi", "e") Traceback (most recent call last): ... ValueError: x and y must be both numeric types but got <class 'str'>, <class 'str'> instead """ def __init__(self, x, y): if not (isinstance(x, Number) and isinstance(y, Number)): try: x, y = float(x), float(y) except ValueError as e: e.args = ("x and y must be both numeric types " "but got {}, {} instead".format(type(x), type(y)), ) raise self.x = x self.y = y def __eq__(self, other): return self.x == other.x and self.y == other.y def __ne__(self, other): return not self == other def __gt__(self, other): if self.x > other.x: return True elif self.x == other.x: return self.y > other.y return False def __lt__(self, other): return not self > other def __ge__(self, other): if self.x > other.x: return True elif self.x == other.x: return self.y >= other.y return False def __le__(self, other): if self.x < other.x: return True elif self.x == other.x: return self.y <= other.y return False def __repr__(self): return "({}, {})".format(self.x, self.y) def __hash__(self): return hash(self.x) def _construct_points(list_of_tuples): """ constructs a list of points from an array-like object of numbers Arguments --------- list_of_tuples: array-like object of type numbers. Acceptable types so far are lists, tuples and sets. Returns -------- points: a list where each item is of type Point. This contains only objects which can be converted into a Point. Examples ------- >>> _construct_points([[1, 1], [2, -1], [0.3, 4]]) [(1, 1), (2, -1), (0.3, 4)] >>> _construct_points(([1, 1], [2, -1], [0.3, 4])) [(1, 1), (2, -1), (0.3, 4)] >>> _construct_points([(1, 1), (2, -1), (0.3, 4)]) [(1, 1), (2, -1), (0.3, 4)] >>> _construct_points([[1, 1], (2, -1), [0.3, 4]]) [(1, 1), (2, -1), (0.3, 4)] >>> _construct_points([1, 2]) Ignoring deformed point 1. All points must have at least 2 coordinates. Ignoring deformed point 2. All points must have at least 2 coordinates. [] >>> _construct_points([]) [] >>> _construct_points(None) [] """ points = [] if list_of_tuples: for p in list_of_tuples: try: points.append(Point(p[0], p[1])) except (IndexError, TypeError): print("Ignoring deformed point {}. All points" " must have at least 2 coordinates.".format(p)) return points def _validate_input(points): """ validates an input instance before a convex-hull algorithms uses it Parameters --------- points: array-like, the 2d points to validate before using with a convex-hull algorithm. The elements of points must be either lists, tuples or Points. Returns ------- points: array_like, an iterable of all well-defined Points constructed passed in. Exception --------- ValueError: if points is empty or None, or if a wrong data structure like a scalar is passed TypeError: if an iterable but non-indexable object (eg. dictionary) is passed. The exception to this a set which we'll convert to a list before using Examples ------- >>> _validate_input([[1, 2]]) [(1, 2)] >>> _validate_input([(1, 2)]) [(1, 2)] >>> _validate_input([Point(2, 1), Point(-1, 2)]) [(2, 1), (-1, 2)] >>> _validate_input([]) Traceback (most recent call last): ... ValueError: Expecting a list of points but got [] >>> _validate_input(1) Traceback (most recent call last): ... ValueError: Expecting an iterable object but got an non-iterable type 1 """ if not points: raise ValueError("Expecting a list of points but got {}".format(points)) if isinstance(points, set): points = list(points) try: if hasattr(points, "__iter__") and not isinstance(points[0], Point): if isinstance(points[0], (list, tuple)): points = _construct_points(points) else: raise ValueError("Expecting an iterable of type Point, list or tuple. " "Found objects of type {} instead" .format(["point", "list", "tuple"], type(points[0]))) elif not hasattr(points, "__iter__"): raise ValueError("Expecting an iterable object " "but got an non-iterable type {}".format(points)) except TypeError as e: print("Expecting an iterable of type Point, list or tuple.") raise return points def _det(a, b, c): """ Computes the sign perpendicular distance of a 2d point c from a line segment ab. The sign indicates the direction of c relative to ab. A Positive value means c is above ab (to the left), while a negative value means c is below ab (to the right). 0 means all three points are on a straight line. As a side note, 0.5 * abs|det| is the area of triangle abc Parameters ---------- a: point, the point on the left end of line segment ab b: point, the point on the right end of line segment ab c: point, the point for which the direction and location is desired. Returns -------- det: float, abs(det) is the distance of c from ab. The sign indicates which side of line segment ab c is. det is computed as (a_xb_y + c_xa_y + b_xc_y) - (a_yb_x + c_ya_x + b_yc_x) Examples ---------- >>> _det(Point(1, 1), Point(1, 2), Point(1, 5)) 0 >>> _det(Point(0, 0), Point(10, 0), Point(0, 10)) 100 >>> _det(Point(0, 0), Point(10, 0), Point(0, -10)) -100 """ det = (a.x * b.y + b.x * c.y + c.x * a.y) - (a.y * b.x + b.y * c.x + c.y * a.x) return det def convex_hull_bf(points): """ Constructs the convex hull of a set of 2D points using a brute force algorithm. The algorithm basically considers all combinations of points (i, j) and uses the definition of convexity to determine whether (i, j) is part of the convex hull or not. (i, j) is part of the convex hull if and only iff there are no points on both sides of the line segment connecting the ij, and there is no point k such that k is on either end of the ij. Runtime: O(n^3) - definitely horrible Parameters --------- points: array-like of object of Points, lists or tuples. The set of 2d points for which the convex-hull is needed Returns ------ convex_set: list, the convex-hull of points sorted in non-decreasing order. See Also -------- convex_hull_recursive, Examples --------- >>> convex_hull_bf([[0, 0], [1, 0], [10, 1]]) [(0, 0), (1, 0), (10, 1)] >>> convex_hull_bf([[0, 0], [1, 0], [10, 0]]) [(0, 0), (10, 0)] >>> convex_hull_bf([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]]) [(-1, -1), (-1, 1), (1, -1), (1, 1)] >>> convex_hull_bf([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)]) [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] """ points = sorted(_validate_input(points)) n = len(points) convex_set = set() for i in range(n-1): for j in range(i + 1, n): points_left_of_ij = points_right_of_ij = False ij_part_of_convex_hull = True for k in range(n): if k != i and k != j: det_k = _det(points[i], points[j], points[k]) if det_k > 0: points_left_of_ij = True elif det_k < 0: points_right_of_ij = True else: # point[i], point[j], point[k] all lie on a straight line # if point[k] is to the left of point[i] or it's to the # right of point[j], then point[i], point[j] cannot be # part of the convex hull of A if points[k] < points[i] or points[k] > points[j]: ij_part_of_convex_hull = False break if points_left_of_ij and points_right_of_ij: ij_part_of_convex_hull = False break if ij_part_of_convex_hull: convex_set.update([points[i], points[j]]) return sorted(convex_set) def convex_hull_recursive(points): """ Constructs the convex hull of a set of 2D points using a divide-and-conquer strategy The algorithm exploits the geometric properties of the problem by repeatedly partitioning the set of points into smaller hulls, and finding the convex hull of these smaller hulls. The union of the convex hull from smaller hulls is the solution to the convex hull of the larger problem. Parameter --------- points: array-like of object of Points, lists or tuples. The set of 2d points for which the convex-hull is needed Runtime: O(n log n) Returns ------- convex_set: list, the convex-hull of points sorted in non-decreasing order. Examples --------- >>> convex_hull_recursive([[0, 0], [1, 0], [10, 1]]) [(0, 0), (1, 0), (10, 1)] >>> convex_hull_recursive([[0, 0], [1, 0], [10, 0]]) [(0, 0), (10, 0)] >>> convex_hull_recursive([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]]) [(-1, -1), (-1, 1), (1, -1), (1, 1)] >>> convex_hull_recursive([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)]) [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] """ points = sorted(_validate_input(points)) n = len(points) # divide all the points into an upper hull and a lower hull # the left most point and the right most point are definitely # members of the convex hull by definition. # use these two anchors to divide all the points into two hulls, # an upper hull and a lower hull. # all points to the left (above) the line joining the extreme points belong to the upper hull # all points to the right (below) the line joining the extreme points below to the lower hull # ignore all points on the line joining the extreme points since they cannot be part of the # convex hull left_most_point = points[0] right_most_point = points[n-1] convex_set = {left_most_point, right_most_point} upperhull = [] lowerhull = [] for i in range(1, n-1): det = _det(left_most_point, right_most_point, points[i]) if det > 0: upperhull.append(points[i]) elif det < 0: lowerhull.append(points[i]) _construct_hull(upperhull, left_most_point, right_most_point, convex_set) _construct_hull(lowerhull, right_most_point, left_most_point, convex_set) return sorted(convex_set) def _construct_hull(points, left, right, convex_set): """ Parameters --------- points: list or None, the hull of points from which to choose the next convex-hull point left: Point, the point to the left of line segment joining left and right right: The point to the right of the line segment joining left and right convex_set: set, the current convex-hull. The state of convex-set gets updated by this function Note ---- For the line segment 'ab', 'a' is on the left and 'b' on the right. but the reverse is true for the line segment 'ba'. Returns ------- Nothing, only updates the state of convex-set """ if points: extreme_point = None extreme_point_distance = float('-inf') candidate_points = [] for p in points: det = _det(left, right, p) if det > 0: candidate_points.append(p) if det > extreme_point_distance: extreme_point_distance = det extreme_point = p if extreme_point: _construct_hull(candidate_points, left, extreme_point, convex_set) convex_set.add(extreme_point) _construct_hull(candidate_points, extreme_point, right, convex_set) def main(): points = [(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)] # the convex set of points is # [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] results_recursive = convex_hull_recursive(points) results_bf = convex_hull_bf(points) assert results_bf == results_recursive print(results_bf) if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
divide_and_conquer/inversions.py
""" Given an array-like data structure A[1..n], how many pairs (i, j) for all 1 <= i < j <= n such that A[i] > A[j]? These pairs are called inversions. Counting the number of such inversions in an array-like object is the important. Among other things, counting inversions can help us determine how close a given array is to being sorted In this implementation, I provide two algorithms, a divide-and-conquer algorithm which runs in nlogn and the brute-force n^2 algorithm. """ def count_inversions_bf(arr): """ Counts the number of inversions using a a naive brute-force algorithm Parameters ---------- arr: arr: array-like, the list containing the items for which the number of inversions is desired. The elements of `arr` must be comparable. Returns ------- num_inversions: The total number of inversions in `arr` Examples --------- >>> count_inversions_bf([1, 4, 2, 4, 1]) 4 >>> count_inversions_bf([1, 1, 2, 4, 4]) 0 >>> count_inversions_bf([]) 0 """ num_inversions = 0 n = len(arr) for i in range(n-1): for j in range(i + 1, n): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def count_inversions_recursive(arr): """ Counts the number of inversions using a divide-and-conquer algorithm Parameters ----------- arr: array-like, the list containing the items for which the number of inversions is desired. The elements of `arr` must be comparable. Returns ------- C: a sorted copy of `arr`. num_inversions: int, the total number of inversions in 'arr' Examples -------- >>> count_inversions_recursive([1, 4, 2, 4, 1]) ([1, 1, 2, 4, 4], 4) >>> count_inversions_recursive([1, 1, 2, 4, 4]) ([1, 1, 2, 4, 4], 0) >>> count_inversions_recursive([]) ([], 0) """ if len(arr) <= 1: return arr, 0 else: mid = len(arr)//2 P = arr[0:mid] Q = arr[mid:] A, inversion_p = count_inversions_recursive(P) B, inversions_q = count_inversions_recursive(Q) C, cross_inversions = _count_cross_inversions(A, B) num_inversions = inversion_p + inversions_q + cross_inversions return C, num_inversions def _count_cross_inversions(P, Q): """ Counts the inversions across two sorted arrays. And combine the two arrays into one sorted array For all 1<= i<=len(P) and for all 1 <= j <= len(Q), if P[i] > Q[j], then (i, j) is a cross inversion Parameters ---------- P: array-like, sorted in non-decreasing order Q: array-like, sorted in non-decreasing order Returns ------ R: array-like, a sorted array of the elements of `P` and `Q` num_inversion: int, the number of inversions across `P` and `Q` Examples -------- >>> _count_cross_inversions([1, 2, 3], [0, 2, 5]) ([0, 1, 2, 2, 3, 5], 4) >>> _count_cross_inversions([1, 2, 3], [3, 4, 5]) ([1, 2, 3, 3, 4, 5], 0) """ R = [] i = j = num_inversion = 0 while i < len(P) and j < len(Q): if P[i] > Q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += (len(P) - i) R.append(Q[j]) j += 1 else: R.append(P[i]) i += 1 if i < len(P): R.extend(P[i:]) else: R.extend(Q[j:]) return R, num_inversion def main(): arr_1 = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = ", num_inversions_bf) # testing an array with zero inversion (a sorted arr_1) arr_1.sort() num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = ", num_inversions_bf) # an empty list should also have zero inversions arr_1 = [] num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = ", num_inversions_bf) if __name__ == "__main__": main()
[]
[]
[]
archives/1098994933_python.zip
divide_and_conquer/max_subarray_sum.py
""" Given a array of length n, max_subarray_sum() finds the maximum of sum of contiguous sub-array using divide and conquer method. Time complexity : O(n log n) Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION (section : 4, sub-section : 4.1, page : 70) """ def max_sum_from_start(array): """ This function finds the maximum contiguous sum of array from 0 index Parameters : array (list[int]) : given array Returns : max_sum (int) : maximum contiguous sum of array from 0 index """ array_sum = 0 max_sum = float("-inf") for num in array: array_sum += num if array_sum > max_sum: max_sum = array_sum return max_sum def max_cross_array_sum(array, left, mid, right): """ This function finds the maximum contiguous sum of left and right arrays Parameters : array, left, mid, right (list[int], int, int, int) Returns : (int) : maximum of sum of contiguous sum of left and right arrays """ max_sum_of_left = max_sum_from_start(array[left:mid+1][::-1]) max_sum_of_right = max_sum_from_start(array[mid+1: right+1]) return max_sum_of_left + max_sum_of_right def max_subarray_sum(array, left, right): """ Maximum contiguous sub-array sum, using divide and conquer method Parameters : array, left, right (list[int], int, int) : given array, current left index and current right index Returns : int : maximum of sum of contiguous sub-array """ # base case: array has only one element if left == right: return array[right] # Recursion mid = (left + right) // 2 left_half_sum = max_subarray_sum(array, left, mid) right_half_sum = max_subarray_sum(array, mid + 1, right) cross_sum = max_cross_array_sum(array, left, mid, right) return max(left_half_sum, right_half_sum, cross_sum) array = [-2, -5, 6, -2, -3, 1, 5, -6] array_length = len(array) print("Maximum sum of contiguous subarray:", max_subarray_sum(array, 0, array_length - 1))
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/abbreviation.py
""" https://www.hackerrank.com/challenges/abbr/problem You can perform the following operation on some string, : 1. Capitalize zero or more of 's lowercase letters at some index i (i.e., make them uppercase). 2. Delete all of the remaining lowercase letters in . Example: a=daBcd and b="ABC" daBcd -> capitalize a and c(dABCd) -> remove d (ABC) """ def abbr(a, b): n = len(a) m = len(b) dp = [[False for _ in range(m + 1)] for _ in range(n + 1)] dp[0][0] = True for i in range(n): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: dp[i + 1][j + 1] = True if a[i].islower(): dp[i + 1][j] = True return dp[n][m] if __name__ == "__main__": print(abbr("daBcd", "ABC")) # expect True
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/bitmask.py
""" This is a python implementation for questions involving task assignments between people. Here Bitmasking and DP are used for solving this. Question :- We have N tasks and M people. Each person in M can do only certain of these tasks. Also a person can do only one task and a task is performed only by one person. Find the total no of ways in which the tasks can be distributed. """ from collections import defaultdict class AssignmentUsingBitmask: def __init__(self,task_performed,total): self.total_tasks = total #total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 self.dp = [[-1 for i in range(total+1)] for j in range(2**len(task_performed))] self.task = defaultdict(list) #stores the list of persons for each task #finalmask is used to check if all persons are included by setting all bits to 1 self.finalmask = (1<<len(task_performed)) - 1 def CountWaysUtil(self,mask,taskno): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.finalmask: return 1 #if not everyone gets the task and no more tasks are available, return 0 if taskno > self.total_tasks: return 0 #if case already considered if self.dp[mask][taskno]!=-1: return self.dp[mask][taskno] # Number of ways when we dont this task in the arrangement total_ways_util = self.CountWaysUtil(mask,taskno+1) # now assign the tasks one by one to all possible persons and recursively assign for the remaining tasks. if taskno in self.task: for p in self.task[taskno]: # if p is already given a task if mask & (1<<p): continue # assign this task to p and change the mask value. And recursively assign tasks with the new mask value. total_ways_util+=self.CountWaysUtil(mask|(1<<p),taskno+1) # save the value. self.dp[mask][taskno] = total_ways_util return self.dp[mask][taskno] def countNoOfWays(self,task_performed): # Store the list of persons for each task for i in range(len(task_performed)): for j in task_performed[i]: self.task[j].append(i) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.CountWaysUtil(0,1) if __name__ == '__main__': total_tasks = 5 #total no of tasks (the value of N) #the list of tasks that can be done by M persons. task_performed = [ [ 1 , 3 , 4 ], [ 1 , 2 , 5 ], [ 3 , 4 ] ] print(AssignmentUsingBitmask(task_performed,total_tasks).countNoOfWays(task_performed)) """ For the particular example the tasks can be distributed as (1,2,3), (1,2,4), (1,5,3), (1,5,4), (3,1,4), (3,2,4), (3,5,4), (4,1,3), (4,2,3), (4,5,3) total 10 """
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/climbing_stairs.py
#!/usr/bin/env python3 def climb_stairs(n: int) -> int: """ LeetCdoe No.70: Climbing Stairs Distinct ways to climb a n step staircase where each time you can either climb 1 or 2 steps. Args: n: number of steps of staircase Returns: Distinct ways to climb a n step staircase Raises: AssertionError: n not positive integer >>> climb_stairs(3) 3 >>> climb_stairs(1) 1 >>> climb_stairs(-7) # doctest: +ELLIPSIS Traceback (most recent call last): ... AssertionError: n needs to be positive integer, your input -7 """ fmt = "n needs to be positive integer, your input {}" assert isinstance(n, int) and n > 0, fmt.format(n) if n == 1: return 1 dp = [0] * (n + 1) dp[0], dp[1] = (1, 1) for i in range(2, n + 1): dp[i] = dp[i - 1] + dp[i - 2] return dp[n] if __name__ == "__main__": import doctest doctest.testmod()
[ "int" ]
[ 45 ]
[ 48 ]
archives/1098994933_python.zip
dynamic_programming/coin_change.py
""" You have m types of coins available in infinite quantities where the value of each coins is given in the array S=[S0,... Sm-1] Can you determine number of ways of making change for n units using the given types of coins? https://www.hackerrank.com/challenges/coin-change/problem """ def dp_count(S, m, n): # table[i] represents the number of ways to get to amount i table = [0] * (n + 1) # There is exactly 1 way to get to zero(You pick no coins). table[0] = 1 # Pick all coins one by one and update table[] values # after the index greater than or equal to the value of the # picked coin for coin_val in S: for j in range(coin_val, n + 1): table[j] += table[j - coin_val] return table[n] if __name__ == '__main__': print(dp_count([1, 2, 3], 3, 4)) # answer 4 print(dp_count([2, 5, 3, 6], 4, 10)) # answer 5
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/edit_distance.py
""" Author : Turfa Auliarachman Date : October 12, 2016 This is a pure Python implementation of Dynamic Programming solution to the edit distance problem. The problem is : Given two strings A and B. Find the minimum number of operations to string B such that A = B. The permitted operations are removal, insertion, and substitution. """ class EditDistance: """ Use : solver = EditDistance() editDistanceResult = solver.solve(firstString, secondString) """ def __init__(self): self.__prepare__() def __prepare__(self, N = 0, M = 0): self.dp = [[-1 for y in range(0,M)] for x in range(0,N)] def __solveDP(self, x, y): if (x==-1): return y+1 elif (y==-1): return x+1 elif (self.dp[x][y]>-1): return self.dp[x][y] else: if (self.A[x]==self.B[y]): self.dp[x][y] = self.__solveDP(x-1,y-1) else: self.dp[x][y] = 1+min(self.__solveDP(x,y-1), self.__solveDP(x-1,y), self.__solveDP(x-1,y-1)) return self.dp[x][y] def solve(self, A, B): if isinstance(A,bytes): A = A.decode('ascii') if isinstance(B,bytes): B = B.decode('ascii') self.A = str(A) self.B = str(B) self.__prepare__(len(A), len(B)) return self.__solveDP(len(A)-1, len(B)-1) def min_distance_bottom_up(word1: str, word2: str) -> int: """ >>> min_distance_bottom_up("intention", "execution") 5 >>> min_distance_bottom_up("intention", "") 9 >>> min_distance_bottom_up("", "") 0 """ m = len(word1) n = len(word2) dp = [[0 for _ in range(n+1) ] for _ in range(m+1)] for i in range(m+1): for j in range(n+1): if i == 0: #first string is empty dp[i][j] = j elif j == 0: #second string is empty dp[i][j] = i elif word1[i-1] == word2[j-1]: #last character of both substing is equal dp[i][j] = dp[i-1][j-1] else: insert = dp[i][j-1] delete = dp[i-1][j] replace = dp[i-1][j-1] dp[i][j] = 1 + min(insert, delete, replace) return dp[m][n] if __name__ == '__main__': solver = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() S1 = input("Enter the first string: ").strip() S2 = input("Enter the second string: ").strip() print() print("The minimum Edit Distance is: %d" % (solver.solve(S1, S2))) print("The minimum Edit Distance is: %d" % (min_distance_bottom_up(S1, S2))) print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
[ "str", "str" ]
[ 1453, 1465 ]
[ 1456, 1468 ]
archives/1098994933_python.zip
dynamic_programming/factorial.py
#Factorial of a number using memoization result=[-1]*10 result[0]=result[1]=1 def factorial(num): """ >>> factorial(7) 5040 >>> factorial(-1) 'Number should not be negative.' >>> [factorial(i) for i in range(5)] [1, 1, 2, 6, 24] """ if num<0: return "Number should not be negative." if result[num]!=-1: return result[num] else: result[num]=num*factorial(num-1) #uncomment the following to see how recalculations are avoided #print(result) return result[num] #factorial of num #uncomment the following to see how recalculations are avoided ##result=[-1]*10 ##result[0]=result[1]=1 ##print(factorial(5)) # print(factorial(3)) # print(factorial(7)) if __name__ == "__main__": import doctest doctest.testmod()
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/fast_fibonacci.py
#!/usr/bin/python # encoding=utf8 """ This program calculates the nth Fibonacci number in O(log(n)). It's possible to calculate F(1000000) in less than a second. """ import sys # returns F(n) def fibonacci(n: int): # noqa: E999 This syntax is Python 3 only if n < 0: raise ValueError("Negative arguments are not supported") return _fib(n)[0] # returns (F(n), F(n-1)) def _fib(n: int): # noqa: E999 This syntax is Python 3 only if n == 0: # (F(0), F(1)) return (0, 1) else: # F(2n) = F(n)[2F(n+1) − F(n)] # F(2n+1) = F(n+1)^2+F(n)^2 a, b = _fib(n // 2) c = a * (b * 2 - a) d = a * a + b * b if n % 2 == 0: return (c, d) else: return (d, c + d) if __name__ == "__main__": args = sys.argv[1:] if len(args) != 1: print("Too few or too much parameters given.") exit(1) try: n = int(args[0]) except ValueError: print("Could not convert data to an integer.") exit(1) print("F(%d) = %d" % (n, fibonacci(n)))
[ "int", "int" ]
[ 212, 401 ]
[ 215, 404 ]
archives/1098994933_python.zip
dynamic_programming/fibonacci.py
""" This is a pure Python implementation of Dynamic Programming solution to the fibonacci sequence problem. """ class Fibonacci: def __init__(self, N=None): self.fib_array = [] if N: N = int(N) self.fib_array.append(0) self.fib_array.append(1) for i in range(2, N + 1): self.fib_array.append(self.fib_array[i - 1] + self.fib_array[i - 2]) elif N == 0: self.fib_array.append(0) def get(self, sequence_no=None): if sequence_no != None: if sequence_no < len(self.fib_array): return print(self.fib_array[:sequence_no + 1]) else: print("Out of bound.") else: print("Please specify a value") if __name__ == '__main__': print("\n********* Fibonacci Series Using Dynamic Programming ************\n") print("\n Enter the upper limit for the fibonacci sequence: ", end="") try: N = int(input().strip()) fib = Fibonacci(N) print( "\n********* Enter different values to get the corresponding fibonacci " "sequence, enter any negative number to exit. ************\n") while True: try: i = int(input("Enter value: ").strip()) if i < 0: print("\n********* Good Bye!! ************\n") break fib.get(i) except NameError: print("\nInvalid input, please try again.") except NameError: print("\n********* Invalid input, good bye!! ************\n")
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/floyd_warshall.py
import math class Graph: def __init__(self, N = 0): # a graph with Node 0,1,...,N-1 self.N = N self.W = [[math.inf for j in range(0,N)] for i in range(0,N)] # adjacency matrix for weight self.dp = [[math.inf for j in range(0,N)] for i in range(0,N)] # dp[i][j] stores minimum distance from i to j def addEdge(self, u, v, w): self.dp[u][v] = w def floyd_warshall(self): for k in range(0,self.N): for i in range(0,self.N): for j in range(0,self.N): self.dp[i][j] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j]) def showMin(self, u, v): return self.dp[u][v] if __name__ == '__main__': graph = Graph(5) graph.addEdge(0,2,9) graph.addEdge(0,4,10) graph.addEdge(1,3,5) graph.addEdge(2,3,7) graph.addEdge(3,0,10) graph.addEdge(3,1,2) graph.addEdge(3,2,1) graph.addEdge(3,4,6) graph.addEdge(4,1,3) graph.addEdge(4,2,4) graph.addEdge(4,3,9) graph.floyd_warshall() graph.showMin(1,4) graph.showMin(0,3)
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/fractional_knapsack.py
from itertools import accumulate from bisect import bisect def fracKnapsack(vl, wt, W, n): r = list(sorted(zip(vl,wt), key=lambda x:x[0]/x[1],reverse=True)) vl , wt = [i[0] for i in r],[i[1] for i in r] acc=list(accumulate(wt)) k = bisect(acc,W) return 0 if k == 0 else sum(vl[:k])+(W-acc[k-1])*(vl[k])/(wt[k]) if k!=n else sum(vl[:k]) print("%.0f"%fracKnapsack([60, 100, 120],[10, 20, 30],50,3))
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/integer_partition.py
''' The number of partitions of a number n into at least k parts equals the number of partitions into exactly k parts plus the number of partitions into at least k-1 parts. Subtracting 1 from each part of a partition of n into k parts gives a partition of n-k into k parts. These two facts together are used for this algorithm. ''' def partition(m): memo = [[0 for _ in range(m)] for _ in range(m+1)] for i in range(m+1): memo[i][0] = 1 for n in range(m+1): for k in range(1, m): memo[n][k] += memo[n][k-1] if n-k > 0: memo[n][k] += memo[n-k-1][k] return memo[m][m-1] if __name__ == '__main__': import sys if len(sys.argv) == 1: try: n = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: n = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/k_means_clustering_tensorflow.py
import tensorflow as tf from random import shuffle from numpy import array def TFKMeansCluster(vectors, noofclusters): """ K-Means Clustering using TensorFlow. 'vectors' should be a n*k 2-D NumPy array, where n is the number of vectors of dimensionality k. 'noofclusters' should be an integer. """ noofclusters = int(noofclusters) assert noofclusters < len(vectors) #Find out the dimensionality dim = len(vectors[0]) #Will help select random centroids from among the available vectors vector_indices = list(range(len(vectors))) shuffle(vector_indices) #GRAPH OF COMPUTATION #We initialize a new graph and set it as the default during each run #of this algorithm. This ensures that as this function is called #multiple times, the default graph doesn't keep getting crowded with #unused ops and Variables from previous function calls. graph = tf.Graph() with graph.as_default(): #SESSION OF COMPUTATION sess = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points centroids = [tf.Variable((vectors[vector_indices[i]])) for i in range(noofclusters)] ##These nodes will assign the centroid Variables the appropriate ##values centroid_value = tf.placeholder("float64", [dim]) cent_assigns = [] for centroid in centroids: cent_assigns.append(tf.assign(centroid, centroid_value)) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) assignments = [tf.Variable(0) for i in range(len(vectors))] ##These nodes will assign an assignment Variable the appropriate ##value assignment_value = tf.placeholder("int32") cluster_assigns = [] for assignment in assignments: cluster_assigns.append(tf.assign(assignment, assignment_value)) ##Now lets construct the node that will compute the mean #The placeholder for the input mean_input = tf.placeholder("float", [None, dim]) #The Node/op takes the input and computes a mean along the 0th #dimension, i.e. the list of input vectors mean_op = tf.reduce_mean(mean_input, 0) ##Node for computing Euclidean distances #Placeholders for input v1 = tf.placeholder("float", [dim]) v2 = tf.placeholder("float", [dim]) euclid_dist = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub( v1, v2), 2))) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. #Placeholder for input centroid_distances = tf.placeholder("float", [noofclusters]) cluster_assignment = tf.argmin(centroid_distances, 0) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. init_op = tf.initialize_all_variables() #Initialize all variables sess.run(init_op) ##CLUSTERING ITERATIONS #Now perform the Expectation-Maximization steps of K-Means clustering #iterations. To keep things simple, we will only do a set number of #iterations, instead of using a Stopping Criterion. noofiterations = 100 for iteration_n in range(noofiterations): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. #Iterate over each vector for vector_n in range(len(vectors)): vect = vectors[vector_n] #Compute Euclidean distance between this vector and each #centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the #cluster assignment node. distances = [sess.run(euclid_dist, feed_dict={ v1: vect, v2: sess.run(centroid)}) for centroid in centroids] #Now use the cluster assignment node, with the distances #as the input assignment = sess.run(cluster_assignment, feed_dict = { centroid_distances: distances}) #Now assign the value to the appropriate state variable sess.run(cluster_assigns[vector_n], feed_dict={ assignment_value: assignment}) ##MAXIMIZATION STEP #Based on the expected state computed from the Expectation Step, #compute the locations of the centroids so as to maximize the #overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(noofclusters): #Collect all the vectors assigned to this cluster assigned_vects = [vectors[i] for i in range(len(vectors)) if sess.run(assignments[i]) == cluster_n] #Compute new centroid location new_location = sess.run(mean_op, feed_dict={ mean_input: array(assigned_vects)}) #Assign value to appropriate variable sess.run(cent_assigns[cluster_n], feed_dict={ centroid_value: new_location}) #Return centroids and assignments centroids = sess.run(centroids) assignments = sess.run(assignments) return centroids, assignments
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/knapsack.py
""" Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. Note that only the integer weights 0-1 knapsack problem is solvable using dynamic programming. """ def MF_knapsack(i, wt, val, j): ''' This code involves the concept of memory functions. Here we solve the subproblems which are needed unlike the below example F is a 2D array with -1s filled up ''' global F # a global dp table for knapsack if F[i][j] < 0: if j < wt[i-1]: val = MF_knapsack(i-1, wt, val, j) else: val = max(MF_knapsack(i-1, wt, val, j), MF_knapsack(i-1, wt, val, j - wt[i-1]) + val[i-1]) F[i][j] = val return F[i][j] def knapsack(W, wt, val, n): dp = [[0 for i in range(W+1)]for j in range(n+1)] for i in range(1,n+1): for w in range(1, W+1): if wt[i-1] <= w: dp[i][w] = max(val[i-1] + dp[i-1][w-wt[i-1]], dp[i-1][w]) else: dp[i][w] = dp[i-1][w] return dp[n][W], dp def knapsack_with_example_solution(W: int, wt: list, val:list): """ Solves the integer weights knapsack problem returns one of the several possible optimal subsets. Parameters --------- W: int, the total maximum weight for the given knapsack problem. wt: list, the vector of weights for all items where wt[i] is the weight of the ith item. val: list, the vector of values for all items where val[i] is the value of te ith item Returns ------- optimal_val: float, the optimal value for the given knapsack problem example_optional_set: set, the indices of one of the optimal subsets which gave rise to the optimal value. Examples ------- >>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22]) (142, {2, 3, 4}) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4]) (8, {3, 4}) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4]) Traceback (most recent call last): ... ValueError: The number of weights must be the same as the number of values. But got 4 weights and 3 values """ if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))): raise ValueError("Both the weights and values vectors must be either lists or tuples") num_items = len(wt) if num_items != len(val): raise ValueError("The number of weights must be the " "same as the number of values.\nBut " "got {} weights and {} values".format(num_items, len(val))) for i in range(num_items): if not isinstance(wt[i], int): raise TypeError("All weights must be integers but " "got weight of type {} at index {}".format(type(wt[i]), i)) optimal_val, dp_table = knapsack(W, wt, val, num_items) example_optional_set = set() _construct_solution(dp_table, wt, num_items, W, example_optional_set) return optimal_val, example_optional_set def _construct_solution(dp:list, wt:list, i:int, j:int, optimal_set:set): """ Recursively reconstructs one of the optimal subsets given a filled DP table and the vector of weights Parameters --------- dp: list of list, the table of a solved integer weight dynamic programming problem wt: list or tuple, the vector of weights of the items i: int, the index of the item under consideration j: int, the current possible maximum weight optimal_set: set, the optimal subset so far. This gets modified by the function. Returns ------- None """ # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(dp, wt, i - 1, j, optimal_set) else: optimal_set.add(i) _construct_solution(dp, wt, i - 1, j - wt[i-1], optimal_set) if __name__ == '__main__': ''' Adding test case for knapsack ''' val = [3, 2, 4, 4] wt = [4, 3, 2, 3] n = 4 w = 6 F = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)] optimal_solution, _ = knapsack(w,wt,val, n) print(optimal_solution) print(MF_knapsack(n,wt,val,w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
[ "int", "list", "list", "list", "list", "int", "int", "set" ]
[ 1143, 1152, 1162, 3141, 3150, 3158, 3165, 3182 ]
[ 1146, 1156, 1166, 3145, 3154, 3161, 3168, 3185 ]
archives/1098994933_python.zip
dynamic_programming/longest_common_subsequence.py
""" LCS Problem Statement: Given two sequences, find the length of longest subsequence present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily continuous. Example:"abc", "abg" are subsequences of "abcdefgh". """ def longest_common_subsequence(x: str, y: str): """ Finds the longest common subsequence between two strings. Also returns the The subsequence found Parameters ---------- x: str, one of the strings y: str, the other string Returns ------- L[m][n]: int, the length of the longest subsequence. Also equal to len(seq) Seq: str, the subsequence found >>> longest_common_subsequence("programming", "gaming") (6, 'gaming') >>> longest_common_subsequence("physics", "smartphone") (2, 'ph') >>> longest_common_subsequence("computer", "food") (1, 'o') """ # find the length of strings assert x is not None assert y is not None m = len(x) n = len(y) # declaring the array for storing the dp values L = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): if x[i-1] == y[j-1]: match = 1 else: match = 0 L[i][j] = max(L[i-1][j], L[i][j-1], L[i-1][j-1] + match) seq = "" i, j = m, n while i > 0 and j > 0: if x[i - 1] == y[j - 1]: match = 1 else: match = 0 if L[i][j] == L[i - 1][j - 1] + match: if match == 1: seq = x[i - 1] + seq i -= 1 j -= 1 elif L[i][j] == L[i - 1][j]: i -= 1 else: j -= 1 return L[m][n], seq if __name__ == '__main__': a = 'AGGTAB' b = 'GXTXAYB' expected_ln = 4 expected_subseq = "GTAB" ln, subseq = longest_common_subsequence(a, b) assert expected_ln == ln assert expected_subseq == subseq print("len =", ln, ", sub-sequence =", subseq)
[ "str", "str" ]
[ 306, 314 ]
[ 309, 317 ]
archives/1098994933_python.zip
dynamic_programming/longest_increasing_subsequence.py
''' Author : Mehdi ALAOUI This is a pure Python implementation of Dynamic Programming solution to the longest increasing subsequence of a given sequence. The problem is : Given an ARRAY, to find the longest and increasing sub ARRAY in that given ARRAY and return it. Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return [10, 22, 33, 41, 60, 80] as output ''' def longestSub(ARRAY): #This function is recursive ARRAY_LENGTH = len(ARRAY) if(ARRAY_LENGTH <= 1): #If the array contains only one element, we return it (it's the stop condition of recursion) return ARRAY #Else PIVOT=ARRAY[0] isFound=False i=1 LONGEST_SUB=[] while(not isFound and i<ARRAY_LENGTH): if (ARRAY[i] < PIVOT): isFound=True TEMPORARY_ARRAY = [ element for element in ARRAY[i:] if element >= ARRAY[i] ] TEMPORARY_ARRAY = longestSub(TEMPORARY_ARRAY) if ( len(TEMPORARY_ARRAY) > len(LONGEST_SUB) ): LONGEST_SUB = TEMPORARY_ARRAY else: i+=1 TEMPORARY_ARRAY = [ element for element in ARRAY[1:] if element >= PIVOT ] TEMPORARY_ARRAY = [PIVOT] + longestSub(TEMPORARY_ARRAY) if ( len(TEMPORARY_ARRAY) > len(LONGEST_SUB) ): return TEMPORARY_ARRAY else: return LONGEST_SUB #Some examples print(longestSub([4,8,7,5,1,12,2,3,9])) print(longestSub([9,8,7,6,5,7]))
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/longest_increasing_subsequence_o(nlogn).py
############################# # Author: Aravind Kashyap # File: lis.py # comments: This programme outputs the Longest Strictly Increasing Subsequence in O(NLogN) # Where N is the Number of elements in the list ############################# def CeilIndex(v,l,r,key): while r-l > 1: m = (l + r)/2 if v[m] >= key: r = m else: l = m return r def LongestIncreasingSubsequenceLength(v): if(len(v) == 0): return 0 tail = [0]*len(v) length = 1 tail[0] = v[0] for i in range(1,len(v)): if v[i] < tail[0]: tail[0] = v[i] elif v[i] > tail[length-1]: tail[length] = v[i] length += 1 else: tail[CeilIndex(tail,-1,length-1,v[i])] = v[i] return length if __name__ == "__main__": v = [2, 5, 3, 7, 11, 8, 10, 13, 6] print(LongestIncreasingSubsequenceLength(v))
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/longest_sub_array.py
''' Auther : Yvonne This is a pure Python implementation of Dynamic Programming solution to the longest_sub_array problem. The problem is : Given an array, to find the longest and continuous sub array and get the max sum of the sub array in the given array. ''' class SubArray: def __init__(self, arr): # we need a list not a string, so do something to change the type self.array = arr.split(',') print(("the input array is:", self.array)) def solve_sub_array(self): rear = [int(self.array[0])]*len(self.array) sum_value = [int(self.array[0])]*len(self.array) for i in range(1, len(self.array)): sum_value[i] = max(int(self.array[i]) + sum_value[i-1], int(self.array[i])) rear[i] = max(sum_value[i], rear[i-1]) return rear[len(self.array)-1] if __name__ == '__main__': whole_array = input("please input some numbers:") array = SubArray(whole_array) re = array.solve_sub_array() print(("the results is:", re))
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/matrix_chain_order.py
import sys ''' Dynamic Programming Implementation of Matrix Chain Multiplication Time Complexity: O(n^3) Space Complexity: O(n^2) ''' def MatrixChainOrder(array): N=len(array) Matrix=[[0 for x in range(N)] for x in range(N)] Sol=[[0 for x in range(N)] for x in range(N)] for ChainLength in range(2,N): for a in range(1,N-ChainLength+1): b = a+ChainLength-1 Matrix[a][b] = sys.maxsize for c in range(a , b): cost = Matrix[a][c] + Matrix[c+1][b] + array[a-1]*array[c]*array[b] if cost < Matrix[a][b]: Matrix[a][b] = cost Sol[a][b] = c return Matrix , Sol #Print order of matrix with Ai as Matrix def PrintOptimalSolution(OptimalSolution,i,j): if i==j: print("A" + str(i),end = " ") else: print("(",end = " ") PrintOptimalSolution(OptimalSolution,i,OptimalSolution[i][j]) PrintOptimalSolution(OptimalSolution,OptimalSolution[i][j]+1,j) print(")",end = " ") def main(): array=[30,35,15,5,10,20,25] n=len(array) #Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 Matrix , OptimalSolution = MatrixChainOrder(array) print("No. of Operation required: "+str((Matrix[1][n-1]))) PrintOptimalSolution(OptimalSolution,1,n-1) if __name__ == '__main__': main()
[]
[]
[]
archives/1098994933_python.zip
dynamic_programming/max_sub_array.py
""" author : Mayank Kumar Jha (mk9440) """ from typing import List import time import matplotlib.pyplot as plt from random import randint def find_max_sub_array(A,low,high): if low==high: return low,high,A[low] else : mid=(low+high)//2 left_low,left_high,left_sum=find_max_sub_array(A,low,mid) right_low,right_high,right_sum=find_max_sub_array(A,mid+1,high) cross_left,cross_right,cross_sum=find_max_cross_sum(A,low,mid,high) if left_sum>=right_sum and left_sum>=cross_sum: return left_low,left_high,left_sum elif right_sum>=left_sum and right_sum>=cross_sum : return right_low,right_high,right_sum else: return cross_left,cross_right,cross_sum def find_max_cross_sum(A,low,mid,high): left_sum,max_left=-999999999,-1 right_sum,max_right=-999999999,-1 summ=0 for i in range(mid,low-1,-1): summ+=A[i] if summ > left_sum: left_sum=summ max_left=i summ=0 for i in range(mid+1,high+1): summ+=A[i] if summ > right_sum: right_sum=summ max_right=i return max_left,max_right,(left_sum+right_sum) def max_sub_array(nums: List[int]) -> int: """ Finds the contiguous subarray (can be empty array) which has the largest sum and return its sum. >>> max_sub_array([-2,1,-3,4,-1,2,1,-5,4]) 6 >>> max_sub_array([]) 0 >>> max_sub_array([-1,-2,-3]) 0 """ best = 0 current = 0 for i in nums: current += i if current < 0: current = 0 best = max(best, current) return best if __name__=='__main__': inputs=[10,100,1000,10000,50000,100000,200000,300000,400000,500000] tim=[] for i in inputs: li=[randint(1,i) for j in range(i)] strt=time.time() (find_max_sub_array(li,0,len(li)-1)) end=time.time() tim.append(end-strt) print("No of Inputs Time Taken") for i in range(len(inputs)): print(inputs[i],'\t\t',tim[i]) plt.plot(inputs,tim) plt.xlabel("Number of Inputs");plt.ylabel("Time taken in seconds ") plt.show()
[ "List[int]" ]
[ 1229 ]
[ 1238 ]