zip
stringlengths 19
109
| filename
stringlengths 4
185
| contents
stringlengths 0
30.1M
| type_annotations
sequencelengths 0
1.97k
| type_annotation_starts
sequencelengths 0
1.97k
| type_annotation_ends
sequencelengths 0
1.97k
|
---|---|---|---|---|---|
archives/1098994933_python.zip | dynamic_programming/minimum_partition.py | """
Partition a set into two subsets such that the difference of subset sums is minimum
"""
def findMin(arr):
n = len(arr)
s = sum(arr)
dp = [[False for x in range(s+1)]for y in range(n+1)]
for i in range(1, n+1):
dp[i][0] = True
for i in range(1, s+1):
dp[0][i] = False
for i in range(1, n+1):
for j in range(1, s+1):
dp[i][j]= dp[i][j-1]
if (arr[i-1] <= j):
dp[i][j] = dp[i][j] or dp[i-1][j-arr[i-1]]
for j in range(int(s/2), -1, -1):
if dp[n][j] == True:
diff = s-2*j
break;
return diff
| [] | [] | [] |
archives/1098994933_python.zip | dynamic_programming/rod_cutting.py | """
This module provides two implementations for the rod-cutting problem:
1. A naive recursive implementation which has an exponential runtime
2. Two dynamic programming implementations which have quadratic runtime
The rod-cutting problem is the problem of finding the maximum possible revenue
obtainable from a rod of length ``n`` given a list of prices for each integral piece
of the rod. The maximum revenue can thus be obtained by cutting the rod and selling the
pieces separately or not cutting it at all if the price of it is the maximum obtainable.
"""
def naive_cut_rod_recursive(n: int, prices: list):
"""
Solves the rod-cutting problem via naively without using the benefit of dynamic programming.
The results is the same sub-problems are solved several times leading to an exponential runtime
Runtime: O(2^n)
Arguments
-------
n: int, the length of the rod
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i``
Returns
-------
The maximum revenue obtainable for a rod of length n given the list of prices for each piece.
Examples
--------
>>> naive_cut_rod_recursive(4, [1, 5, 8, 9])
10
>>> naive_cut_rod_recursive(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
30
"""
_enforce_args(n, prices)
if n == 0:
return 0
max_revue = float("-inf")
for i in range(1, n + 1):
max_revue = max(max_revue, prices[i - 1] + naive_cut_rod_recursive(n - i, prices))
return max_revue
def top_down_cut_rod(n: int, prices: list):
"""
Constructs a top-down dynamic programming solution for the rod-cutting problem
via memoization. This function serves as a wrapper for _top_down_cut_rod_recursive
Runtime: O(n^2)
Arguments
--------
n: int, the length of the rod
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i``
Note
----
For convenience and because Python's lists using 0-indexing, length(max_rev) = n + 1,
to accommodate for the revenue obtainable from a rod of length 0.
Returns
-------
The maximum revenue obtainable for a rod of length n given the list of prices for each piece.
Examples
-------
>>> top_down_cut_rod(4, [1, 5, 8, 9])
10
>>> top_down_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
30
"""
_enforce_args(n, prices)
max_rev = [float("-inf") for _ in range(n + 1)]
return _top_down_cut_rod_recursive(n, prices, max_rev)
def _top_down_cut_rod_recursive(n: int, prices: list, max_rev: list):
"""
Constructs a top-down dynamic programming solution for the rod-cutting problem
via memoization.
Runtime: O(n^2)
Arguments
--------
n: int, the length of the rod
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i``
max_rev: list, the computed maximum revenue for a piece of rod.
``max_rev[i]`` is the maximum revenue obtainable for a rod of length ``i``
Returns
-------
The maximum revenue obtainable for a rod of length n given the list of prices for each piece.
"""
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
max_revenue = float("-inf")
for i in range(1, n + 1):
max_revenue = max(max_revenue, prices[i - 1] + _top_down_cut_rod_recursive(n - i, prices, max_rev))
max_rev[n] = max_revenue
return max_rev[n]
def bottom_up_cut_rod(n: int, prices: list):
"""
Constructs a bottom-up dynamic programming solution for the rod-cutting problem
Runtime: O(n^2)
Arguments
----------
n: int, the maximum length of the rod.
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i``
Returns
-------
The maximum revenue obtainable from cutting a rod of length n given
the prices for each piece of rod p.
Examples
-------
>>> bottom_up_cut_rod(4, [1, 5, 8, 9])
10
>>> bottom_up_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
30
"""
_enforce_args(n, prices)
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of length 0.
max_rev = [float("-inf") for _ in range(n + 1)]
max_rev[0] = 0
for i in range(1, n + 1):
max_revenue_i = max_rev[i]
for j in range(1, i + 1):
max_revenue_i = max(max_revenue_i, prices[j - 1] + max_rev[i - j])
max_rev[i] = max_revenue_i
return max_rev[n]
def _enforce_args(n: int, prices: list):
"""
Basic checks on the arguments to the rod-cutting algorithms
n: int, the length of the rod
prices: list, the price list for each piece of rod.
Throws ValueError:
if n is negative or there are fewer items in the price list than the length of the rod
"""
if n < 0:
raise ValueError(f"n must be greater than or equal to 0. Got n = {n}")
if n > len(prices):
raise ValueError(f"Each integral piece of rod must have a corresponding "
f"price. Got n = {n} but length of prices = {len(prices)}")
def main():
prices = [6, 10, 12, 15, 20, 23]
n = len(prices)
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
expected_max_revenue = 36
max_rev_top_down = top_down_cut_rod(n, prices)
max_rev_bottom_up = bottom_up_cut_rod(n, prices)
max_rev_naive = naive_cut_rod_recursive(n, prices)
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == '__main__':
main()
| [
"int",
"list",
"int",
"list",
"int",
"list",
"list",
"int",
"list",
"int",
"list"
] | [
595,
608,
1480,
1493,
2425,
2438,
2453,
3303,
3316,
4268,
4281
] | [
598,
612,
1483,
1497,
2428,
2442,
2457,
3306,
3320,
4271,
4285
] |
archives/1098994933_python.zip | dynamic_programming/subset_generation.py | # python program to print all subset combination of n element in given set of r element .
#arr[] ---> Input Array
#data[] ---> Temporary array to store current combination
# start & end ---> Staring and Ending indexes in arr[]
# index ---> Current index in data[]
#r ---> Size of a combination to be printed
def combinationUtil(arr,n,r,index,data,i):
#Current combination is ready to be printed,
# print it
if(index == r):
for j in range(r):
print(data[j],end =" ")
print(" ")
return
# When no more elements are there to put in data[]
if(i >= n):
return
#current is included, put next at next
# location
data[index] = arr[i]
combinationUtil(arr,n,r,index+1,data,i+1)
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combinationUtil(arr,n,r,index,data,i+1)
# The main function that prints all combinations
#of size r in arr[] of size n. This function
#mainly uses combinationUtil()
def printcombination(arr,n,r):
# A temporary array to store all combination
# one by one
data = [0]*r
#Print all combination using temprary
#array 'data[]'
combinationUtil(arr,n,r,0,data,0)
# Driver function to check for above function
arr = [10,20,30,40,50]
printcombination(arr,len(arr),3)
#This code is contributed by Ambuj sahu
| [] | [] | [] |
archives/1098994933_python.zip | dynamic_programming/sum_of_subset.py | def isSumSubset(arr, arrLen, requiredSum):
# a subset value says 1 if that subset sum can be formed else 0
#initially no subsets can be formed hence False/0
subset = ([[False for i in range(requiredSum + 1)] for i in range(arrLen + 1)])
#for each arr value, a sum of zero(0) can be formed by not taking any element hence True/1
for i in range(arrLen + 1):
subset[i][0] = True
#sum is not zero and set is empty then false
for i in range(1, requiredSum + 1):
subset[0][i] = False
for i in range(1, arrLen + 1):
for j in range(1, requiredSum + 1):
if arr[i-1]>j:
subset[i][j] = subset[i-1][j]
if arr[i-1]<=j:
subset[i][j] = (subset[i-1][j] or subset[i-1][j-arr[i-1]])
#uncomment to print the subset
# for i in range(arrLen+1):
# print(subset[i])
return subset[arrLen][requiredSum]
arr = [2, 4, 6, 8]
requiredSum = 5
arrLen = len(arr)
if isSumSubset(arr, arrLen, requiredSum):
print("Found a subset with required sum")
else:
print("No subset with required sum") | [] | [] | [] |
archives/1098994933_python.zip | file_transfer/recieve_file.py | if __name__ == '__main__':
import socket # Import socket module
sock = socket.socket() # Create a socket object
host = socket.gethostname() # Get local machine name
port = 12312
sock.connect((host, port))
sock.send(b'Hello server!')
with open('Received_file', 'wb') as out_file:
print('File opened')
print('Receiving data...')
while True:
data = sock.recv(1024)
print(f"data={data}")
if not data:
break
out_file.write(data) # Write data to a file
print('Successfully got the file')
sock.close()
print('Connection closed')
| [] | [] | [] |
archives/1098994933_python.zip | file_transfer/send_file.py | if __name__ == '__main__':
import socket # Import socket module
ONE_CONNECTION_ONLY = True # Set this to False if you wish to continuously accept connections
filename='mytext.txt'
port = 12312 # Reserve a port for your service.
sock = socket.socket() # Create a socket object
host = socket.gethostname() # Get local machine name
sock.bind((host, port)) # Bind to the port
sock.listen(5) # Now wait for client connection.
print('Server listening....')
while True:
conn, addr = sock.accept() # Establish connection with client.
print(f"Got connection from {addr}")
data = conn.recv(1024)
print(f"Server received {data}")
with open(filename,'rb') as in_file:
data = in_file.read(1024)
while (data):
conn.send(data)
print(f"Sent {data!r}")
data = in_file.read(1024)
print('Done sending')
conn.close()
if ONE_CONNECTION_ONLY: # This is to make sure that the program doesn't hang while testing
break
sock.shutdown(1)
sock.close()
| [] | [] | [] |
archives/1098994933_python.zip | graphs/a_star.py | grid = [[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],#0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0]]
'''
heuristic = [[9, 8, 7, 6, 5, 4],
[8, 7, 6, 5, 4, 3],
[7, 6, 5, 4, 3, 2],
[6, 5, 4, 3, 2, 1],
[5, 4, 3, 2, 1, 0]]'''
init = [0, 0]
goal = [len(grid)-1, len(grid[0])-1] #all coordinates are given in format [y,x]
cost = 1
#the cost map which pushes the path closer to the goal
heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
heuristic[i][j] = 99 #added extra penalty in the heuristic map
#the actions we can take
delta = [[-1, 0 ], # go up
[ 0, -1], # go left
[ 1, 0 ], # go down
[ 0, 1 ]] # go right
#function to search the path
def search(grid,init,goal,cost,heuristic):
closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]# the referrence grid
closed[init[0]][init[1]] = 1
action = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]#the action grid
x = init[0]
y = init[1]
g = 0
f = g + heuristic[init[0]][init[0]]
cell = [[f, g, x, y]]
found = False # flag that is set when search is complete
resign = False # flag set if we can't find expand
while not found and not resign:
if len(cell) == 0:
resign = True
return "FAIL"
else:
cell.sort()#to choose the least costliest action so as to move closer to the goal
cell.reverse()
next = cell.pop()
x = next[2]
y = next[3]
g = next[1]
f = next[0]
if x == goal[0] and y == goal[1]:
found = True
else:
for i in range(len(delta)):#to try out different valid actions
x2 = x + delta[i][0]
y2 = y + delta[i][1]
if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
g2 = g + cost
f2 = g2 + heuristic[x2][y2]
cell.append([f2, g2, x2, y2])
closed[x2][y2] = 1
action[x2][y2] = i
invpath = []
x = goal[0]
y = goal[1]
invpath.append([x, y])#we get the reverse path from here
while x != init[0] or y != init[1]:
x2 = x - delta[action[x][y]][0]
y2 = y - delta[action[x][y]][1]
x = x2
y = y2
invpath.append([x, y])
path = []
for i in range(len(invpath)):
path.append(invpath[len(invpath) - 1 - i])
print("ACTION MAP")
for i in range(len(action)):
print(action[i])
return path
a = search(grid,init,goal,cost,heuristic)
for i in range(len(a)):
print(a[i])
| [] | [] | [] |
archives/1098994933_python.zip | graphs/articulation_points.py | # Finding Articulation Points in Undirected Graph
def computeAP(l):
n = len(l)
outEdgeCount = 0
low = [0] * n
visited = [False] * n
isArt = [False] * n
def dfs(root, at, parent, outEdgeCount):
if parent == root:
outEdgeCount += 1
visited[at] = True
low[at] = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
outEdgeCount = dfs(root, to, at, outEdgeCount)
low[at] = min(low[at], low[to])
# AP found via bridge
if at < low[to]:
isArt[at] = True
# AP found via cycle
if at == low[to]:
isArt[at] = True
else:
low[at] = min(low[at], to)
return outEdgeCount
for i in range(n):
if not visited[i]:
outEdgeCount = 0
outEdgeCount = dfs(i, i, -1, outEdgeCount)
isArt[i] = (outEdgeCount > 1)
for x in range(len(isArt)):
if isArt[x] == True:
print(x)
# Adjacency list of graph
l = {0:[1,2], 1:[0,2], 2:[0,1,3,5], 3:[2,4], 4:[3], 5:[2,6,8], 6:[5,7], 7:[6,8], 8:[5,7]}
computeAP(l)
| [] | [] | [] |
archives/1098994933_python.zip | graphs/basic_graphs.py | if __name__ == "__main__":
# Accept No. of Nodes and edges
n, m = map(int, input().split(" "))
# Initialising Dictionary of edges
g = {}
for i in range(n):
g[i + 1] = []
"""
----------------------------------------------------------------------------
Accepting edges of Unweighted Directed Graphs
----------------------------------------------------------------------------
"""
for _ in range(m):
x, y = map(int, input().strip().split(" "))
g[x].append(y)
"""
----------------------------------------------------------------------------
Accepting edges of Unweighted Undirected Graphs
----------------------------------------------------------------------------
"""
for _ in range(m):
x, y = map(int, input().strip().split(" "))
g[x].append(y)
g[y].append(x)
"""
----------------------------------------------------------------------------
Accepting edges of Weighted Undirected Graphs
----------------------------------------------------------------------------
"""
for _ in range(m):
x, y, r = map(int, input().strip().split(" "))
g[x].append([y, r])
g[y].append([x, r])
"""
--------------------------------------------------------------------------------
Depth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
S - Traversal Stack
--------------------------------------------------------------------------------
"""
def dfs(G, s):
vis, S = set([s]), [s]
print(s)
while S:
flag = 0
for i in G[S[-1]]:
if i not in vis:
S.append(i)
vis.add(i)
flag = 1
print(i)
break
if not flag:
S.pop()
"""
--------------------------------------------------------------------------------
Breadth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
Q - Traveral Stack
--------------------------------------------------------------------------------
"""
from collections import deque
def bfs(G, s):
vis, Q = set([s]), deque([s])
print(s)
while Q:
u = Q.popleft()
for v in G[u]:
if v not in vis:
vis.add(v)
Q.append(v)
print(v)
"""
--------------------------------------------------------------------------------
Dijkstra's shortest path Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def dijk(G, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(G) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in G[u]:
if v[0] not in known:
if dist[u] + v[1] < dist.get(v[0], 100000):
dist[v[0]] = dist[u] + v[1]
path[v[0]] = u
for i in dist:
if i != s:
print(dist[i])
"""
--------------------------------------------------------------------------------
Topological Sort
--------------------------------------------------------------------------------
"""
from collections import deque
def topo(G, ind=None, Q=None):
if Q is None:
Q = [1]
if ind is None:
ind = [0] * (len(G) + 1) # SInce oth Index is ignored
for u in G:
for v in G[u]:
ind[v] += 1
Q = deque()
for i in G:
if ind[i] == 0:
Q.append(i)
if len(Q) == 0:
return
v = Q.popleft()
print(v)
for w in G[v]:
ind[w] -= 1
if ind[w] == 0:
Q.append(w)
topo(G, ind, Q)
"""
--------------------------------------------------------------------------------
Reading an Adjacency matrix
--------------------------------------------------------------------------------
"""
def adjm():
n = input().strip()
a = []
for i in range(n):
a.append(map(int, input().strip().split()))
return a, n
"""
--------------------------------------------------------------------------------
Floyd Warshall's algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def floy(A_and_n):
(A, n) = A_and_n
dist = list(A)
path = [[0] * n for i in range(n)]
for k in range(n):
for i in range(n):
for j in range(n):
if dist[i][j] > dist[i][k] + dist[k][j]:
dist[i][j] = dist[i][k] + dist[k][j]
path[i][k] = k
print(dist)
"""
--------------------------------------------------------------------------------
Prim's MST Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to nearest node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def prim(G, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(G) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in G[u]:
if v[0] not in known:
if v[1] < dist.get(v[0], 100000):
dist[v[0]] = v[1]
path[v[0]] = u
"""
--------------------------------------------------------------------------------
Accepting Edge list
Vars : n - Number of nodes
m - Number of edges
Returns : l - Edge list
n - Number of Nodes
--------------------------------------------------------------------------------
"""
def edglist():
n, m = map(int, input().split(" "))
l = []
for i in range(m):
l.append(map(int, input().split(' ')))
return l, n
"""
--------------------------------------------------------------------------------
Kruskal's MST Algorithm
Args : E - Edge list
n - Number of Nodes
Vars : s - Set of all nodes as unique disjoint sets (initially)
--------------------------------------------------------------------------------
"""
def krusk(E_and_n):
# Sort edges on the basis of distance
(E, n) = E_and_n
E.sort(reverse=True, key=lambda x: x[2])
s = [set([i]) for i in range(1, n + 1)]
while True:
if len(s) == 1:
break
print(s)
x = E.pop()
for i in range(len(s)):
if x[0] in s[i]:
break
for j in range(len(s)):
if x[1] in s[j]:
if i == j:
break
s[j].update(s[i])
s.pop(i)
break
# find the isolated node in the graph
def find_isolated_nodes(graph):
isolated = []
for node in graph:
if not graph[node]:
isolated.append(node)
return isolated
| [] | [] | [] |
archives/1098994933_python.zip | graphs/bellman_ford.py | def printDist(dist, V):
print("\nVertex Distance")
for i in range(V):
if dist[i] != float('inf') :
print(i,"\t",int(dist[i]),end = "\t")
else:
print(i,"\t","INF",end="\t")
print()
def BellmanFord(graph, V, E, src):
mdist=[float('inf') for i in range(V)]
mdist[src] = 0.0
for i in range(V-1):
for j in range(V):
u = graph[j]["src"]
v = graph[j]["dst"]
w = graph[j]["weight"]
if mdist[u] != float('inf') and mdist[u] + w < mdist[v]:
mdist[v] = mdist[u] + w
for j in range(V):
u = graph[j]["src"]
v = graph[j]["dst"]
w = graph[j]["weight"]
if mdist[u] != float('inf') and mdist[u] + w < mdist[v]:
print("Negative cycle found. Solution not possible.")
return
printDist(mdist, V)
if __name__ == "__main__":
V = int(input("Enter number of vertices: ").strip())
E = int(input("Enter number of edges: ").strip())
graph = [dict() for j in range(E)]
for i in range(V):
graph[i][i] = 0.0
for i in range(E):
print("\nEdge ",i+1)
src = int(input("Enter source:").strip())
dst = int(input("Enter destination:").strip())
weight = float(input("Enter weight:").strip())
graph[i] = {"src": src,"dst": dst, "weight": weight}
gsrc = int(input("\nEnter shortest path source:").strip())
BellmanFord(graph, V, E, gsrc)
| [] | [] | [] |
archives/1098994933_python.zip | graphs/bfs.py | """
BFS.
pseudo-code:
BFS(graph G, start vertex s):
// all nodes initially unexplored
mark s as explored
let Q = queue data structure, initialized with s
while Q is non-empty:
remove the first node of Q, call it v
for each edge(v, w): // for w in graph[v]
if w unexplored:
mark w as explored
add w to Q (at the end)
"""
G = {'A': ['B', 'C'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B'],
'E': ['B', 'F'],
'F': ['C', 'E']}
def bfs(graph, start):
"""
>>> ''.join(sorted(bfs(G, 'A')))
'ABCDEF'
"""
explored, queue = set(), [start] # collections.deque([start])
explored.add(start)
while queue:
v = queue.pop(0) # queue.popleft()
for w in graph[v]:
if w not in explored:
explored.add(w)
queue.append(w)
return explored
if __name__ == '__main__':
print(bfs(G, 'A'))
| [] | [] | [] |
archives/1098994933_python.zip | graphs/bfs_shortest_path.py | graph = {'A': ['B', 'C', 'E'],
'B': ['A','D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B','D'],
'F': ['C'],
'G': ['C']}
def bfs_shortest_path(graph, start, goal):
# keep track of explored nodes
explored = []
# keep track of all the paths to be checked
queue = [[start]]
# return path if start is goal
if start == goal:
return "That was easy! Start = goal"
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
path = queue.pop(0)
# get the last node from the path
node = path[-1]
if node not in explored:
neighbours = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
new_path = list(path)
new_path.append(neighbour)
queue.append(new_path)
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.append(node)
# in case there's no path between the 2 nodes
return "So sorry, but a connecting path doesn't exist :("
bfs_shortest_path(graph, 'G', 'D') # returns ['G', 'C', 'A', 'B', 'D']
| [] | [] | [] |
archives/1098994933_python.zip | graphs/breadth_first_search.py | #!/usr/bin/python
# encoding=utf8
""" Author: OMKAR PATHAK """
class Graph():
def __init__(self):
self.vertex = {}
# for printing the Graph vertexes
def printGraph(self):
for i in self.vertex.keys():
print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]]))
# for adding the edge beween two vertexes
def addEdge(self, fromVertex, toVertex):
# check if vertex is already present,
if fromVertex in self.vertex.keys():
self.vertex[fromVertex].append(toVertex)
else:
# else make a new vertex
self.vertex[fromVertex] = [toVertex]
def BFS(self, startVertex):
# Take a list for stoting already visited vertexes
visited = [False] * len(self.vertex)
# create a list to store all the vertexes for BFS
queue = []
# mark the source node as visited and enqueue it
visited[startVertex] = True
queue.append(startVertex)
while queue:
startVertex = queue.pop(0)
print(startVertex, end = ' ')
# mark all adjacent nodes as visited and print them
for i in self.vertex[startVertex]:
if visited[i] == False:
queue.append(i)
visited[i] = True
if __name__ == '__main__':
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
g.printGraph()
print('BFS:')
g.BFS(2)
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# BFS:
# 2 0 3 1
| [] | [] | [] |
archives/1098994933_python.zip | graphs/check_bipartite_graph_bfs.py | # Check whether Graph is Bipartite or Not using BFS
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def checkBipartite(l):
queue = []
visited = [False] * len(l)
color = [-1] * len(l)
def bfs():
while(queue):
u = queue.pop(0)
visited[u] = True
for neighbour in l[u]:
if neighbour == u:
return False
if color[neighbour] == -1:
color[neighbour] = 1 - color[u]
queue.append(neighbour)
elif color[neighbour] == color[u]:
return False
return True
for i in range(len(l)):
if not visited[i]:
queue.append(i)
color[i] = 0
if bfs() == False:
return False
return True
# Adjacency List of graph
l = {0:[1,3], 1:[0,2], 2:[1,3], 3:[0,2]}
print(checkBipartite(l))
| [] | [] | [] |
archives/1098994933_python.zip | graphs/check_bipartite_graph_dfs.py | # Check whether Graph is Bipartite or Not using DFS
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def check_bipartite_dfs(l):
visited = [False] * len(l)
color = [-1] * len(l)
def dfs(v, c):
visited[v] = True
color[v] = c
for u in l[v]:
if not visited[u]:
dfs(u, 1 - c)
for i in range(len(l)):
if not visited[i]:
dfs(i, 0)
for i in range(len(l)):
for j in l[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
l = {0:[1,3], 1:[0,2], 2:[1,3], 3:[0,2], 4: []}
print(check_bipartite_dfs(l))
| [] | [] | [] |
archives/1098994933_python.zip | graphs/depth_first_search.py | #!/usr/bin/python
# encoding=utf8
""" Author: OMKAR PATHAK """
class Graph():
def __init__(self):
self.vertex = {}
# for printing the Graph vertexes
def printGraph(self):
print(self.vertex)
for i in self.vertex.keys():
print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]]))
# for adding the edge beween two vertexes
def addEdge(self, fromVertex, toVertex):
# check if vertex is already present,
if fromVertex in self.vertex.keys():
self.vertex[fromVertex].append(toVertex)
else:
# else make a new vertex
self.vertex[fromVertex] = [toVertex]
def DFS(self):
# visited array for storing already visited nodes
visited = [False] * len(self.vertex)
# call the recursive helper function
for i in range(len(self.vertex)):
if visited[i] == False:
self.DFSRec(i, visited)
def DFSRec(self, startVertex, visited):
# mark start vertex as visited
visited[startVertex] = True
print(startVertex, end = ' ')
# Recur for all the vertexes that are adjacent to this node
for i in self.vertex.keys():
if visited[i] == False:
self.DFSRec(i, visited)
if __name__ == '__main__':
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
g.printGraph()
print('DFS:')
g.DFS()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| [] | [] | [] |
archives/1098994933_python.zip | graphs/dfs.py | """pseudo-code"""
"""
DFS(graph G, start vertex s):
// all nodes initially unexplored
mark s as explored
for every edge (s, v):
if v unexplored:
DFS(G, v)
"""
def dfs(graph, start):
"""The DFS function simply calls itself recursively for every unvisited child of its argument. We can emulate that
behaviour precisely using a stack of iterators. Instead of recursively calling with a node, we'll push an iterator
to the node's children onto the iterator stack. When the iterator at the top of the stack terminates, we'll pop
it off the stack."""
explored, stack = set(), [start]
while stack:
v = stack.pop() # one difference from BFS is to pop last element here instead of first one
if v in explored:
continue
explored.add(v)
for w in graph[v]:
if w not in explored:
stack.append(w)
return explored
G = {'A': ['B', 'C'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B'],
'E': ['B', 'F'],
'F': ['C', 'E']}
print(dfs(G, 'A'))
| [] | [] | [] |
archives/1098994933_python.zip | graphs/dijkstra.py | """pseudo-code"""
"""
DIJKSTRA(graph G, start vertex s, destination vertex d):
//all nodes initially unexplored
1 - let H = min heap data structure, initialized with 0 and s [here 0 indicates
the distance from start vertex s]
2 - while H is non-empty:
3 - remove the first node and cost of H, call it U and cost
4 - if U has been previously explored:
5 - go to the while loop, line 2 //Once a node is explored there is no need
to make it again
6 - mark U as explored
7 - if U is d:
8 - return cost // total cost from start to destination vertex
9 - for each edge(U, V): c=cost of edge(U,V) // for V in graph[U]
10 - if V explored:
11 - go to next V in line 9
12 - total_cost = cost + c
13 - add (total_cost,V) to H
You can think at cost as a distance where Dijkstra finds the shortest distance
between vertexes s and v in a graph G. The use of a min heap as H guarantees
that if a vertex has already been explored there will be no other path with
shortest distance, that happens because heapq.heappop will always return the
next vertex with the shortest distance, considering that the heap stores not
only the distance between previous vertex and current vertex but the entire
distance between each vertex that makes up the path from start vertex to target
vertex.
"""
import heapq
def dijkstra(graph, start, end):
"""Return the cost of the shortest path between vertexes start and end.
>>> dijkstra(G, "E", "C")
6
>>> dijkstra(G2, "E", "F")
3
>>> dijkstra(G3, "E", "F")
3
"""
heap = [(0, start)] # cost from start node,end node
visited = set()
while heap:
(cost, u) = heapq.heappop(heap)
if u in visited:
continue
visited.add(u)
if u == end:
return cost
for v, c in graph[u]:
if v in visited:
continue
next = cost + c
heapq.heappush(heap, (next, v))
return -1
G = {
"A": [["B", 2], ["C", 5]],
"B": [["A", 2], ["D", 3], ["E", 1], ["F", 1]],
"C": [["A", 5], ["F", 3]],
"D": [["B", 3]],
"E": [["B", 4], ["F", 3]],
"F": [["C", 3], ["E", 3]],
}
r"""
Layout of G2:
E -- 1 --> B -- 1 --> C -- 1 --> D -- 1 --> F
\ /\
\ ||
----------------- 3 --------------------
"""
G2 = {
"B": [["C", 1]],
"C": [["D", 1]],
"D": [["F", 1]],
"E": [["B", 1], ["F", 3]],
"F": [],
}
r"""
Layout of G3:
E -- 1 --> B -- 1 --> C -- 1 --> D -- 1 --> F
\ /\
\ ||
-------- 2 ---------> G ------- 1 ------
"""
G3 = {
"B": [["C", 1]],
"C": [["D", 1]],
"D": [["F", 1]],
"E": [["B", 1], ["G", 2]],
"F": [],
"G": [["F", 1]],
}
shortDistance = dijkstra(G, "E", "C")
print(shortDistance) # E -- 3 --> F -- 3 --> C == 6
shortDistance = dijkstra(G2, "E", "F")
print(shortDistance) # E -- 3 --> F == 3
shortDistance = dijkstra(G3, "E", "F")
print(shortDistance) # E -- 2 --> G -- 1 --> F == 3
if __name__ == "__main__":
import doctest
doctest.testmod()
| [] | [] | [] |
archives/1098994933_python.zip | graphs/dijkstra_2.py | def printDist(dist, V):
print("\nVertex Distance")
for i in range(V):
if dist[i] != float('inf') :
print(i,"\t",int(dist[i]),end = "\t")
else:
print(i,"\t","INF",end="\t")
print()
def minDist(mdist, vset, V):
minVal = float('inf')
minInd = -1
for i in range(V):
if (not vset[i]) and mdist[i] < minVal :
minInd = i
minVal = mdist[i]
return minInd
def Dijkstra(graph, V, src):
mdist=[float('inf') for i in range(V)]
vset = [False for i in range(V)]
mdist[src] = 0.0
for i in range(V-1):
u = minDist(mdist, vset, V)
vset[u] = True
for v in range(V):
if (not vset[v]) and graph[u][v]!=float('inf') and mdist[u] + graph[u][v] < mdist[v]:
mdist[v] = mdist[u] + graph[u][v]
printDist(mdist, V)
if __name__ == "__main__":
V = int(input("Enter number of vertices: ").strip())
E = int(input("Enter number of edges: ").strip())
graph = [[float('inf') for i in range(V)] for j in range(V)]
for i in range(V):
graph[i][i] = 0.0
for i in range(E):
print("\nEdge ",i+1)
src = int(input("Enter source:").strip())
dst = int(input("Enter destination:").strip())
weight = float(input("Enter weight:").strip())
graph[src][dst] = weight
gsrc = int(input("\nEnter shortest path source:").strip())
Dijkstra(graph, V, gsrc)
| [] | [] | [] |
archives/1098994933_python.zip | graphs/dijkstra_algorithm.py | # Title: Dijkstra's Algorithm for finding single source shortest path from scratch
# Author: Shubham Malik
# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
import math
import sys
# For storing the vertex set to retreive node with the lowest distance
class PriorityQueue:
# Based on Min Heap
def __init__(self):
self.cur_size = 0
self.array = []
self.pos = {} # To store the pos of node in array
def isEmpty(self):
return self.cur_size == 0
def min_heapify(self, idx):
lc = self.left(idx)
rc = self.right(idx)
if lc < self.cur_size and self.array(lc)[0] < self.array(idx)[0]:
smallest = lc
else:
smallest = idx
if rc < self.cur_size and self.array(rc)[0] < self.array(smallest)[0]:
smallest = rc
if smallest != idx:
self.swap(idx, smallest)
self.min_heapify(smallest)
def insert(self, tup):
# Inserts a node into the Priority Queue
self.pos[tup[1]] = self.cur_size
self.cur_size += 1
self.array.append((sys.maxsize, tup[1]))
self.decrease_key((sys.maxsize, tup[1]), tup[0])
def extract_min(self):
# Removes and returns the min element at top of priority queue
min_node = self.array[0][1]
self.array[0] = self.array[self.cur_size - 1]
self.cur_size -= 1
self.min_heapify(1)
del self.pos[min_node]
return min_node
def left(self, i):
# returns the index of left child
return 2 * i + 1
def right(self, i):
# returns the index of right child
return 2 * i + 2
def par(self, i):
# returns the index of parent
return math.floor(i / 2)
def swap(self, i, j):
# swaps array elements at indices i and j
# update the pos{}
self.pos[self.array[i][1]] = j
self.pos[self.array[j][1]] = i
temp = self.array[i]
self.array[i] = self.array[j]
self.array[j] = temp
def decrease_key(self, tup, new_d):
idx = self.pos[tup[1]]
# assuming the new_d is atmost old_d
self.array[idx] = (new_d, tup[1])
while idx > 0 and self.array[self.par(idx)][0] > self.array[idx][0]:
self.swap(idx, self.par(idx))
idx = self.par(idx)
class Graph:
def __init__(self, num):
self.adjList = {} # To store graph: u -> (v,w)
self.num_nodes = num # Number of nodes in graph
# To store the distance from source vertex
self.dist = [0] * self.num_nodes
self.par = [-1] * self.num_nodes # To store the path
def add_edge(self, u, v, w):
# Edge going from node u to v and v to u with weight w
# u (w)-> v, v (w) -> u
# Check if u already in graph
if u in self.adjList.keys():
self.adjList[u].append((v, w))
else:
self.adjList[u] = [(v, w)]
# Assuming undirected graph
if v in self.adjList.keys():
self.adjList[v].append((u, w))
else:
self.adjList[v] = [(u, w)]
def show_graph(self):
# u -> v(w)
for u in self.adjList:
print(u, '->', ' -> '.join(str("{}({})".format(v, w))
for v, w in self.adjList[u]))
def dijkstra(self, src):
# Flush old junk values in par[]
self.par = [-1] * self.num_nodes
# src is the source node
self.dist[src] = 0
Q = PriorityQueue()
Q.insert((0, src)) # (dist from src, node)
for u in self.adjList.keys():
if u != src:
self.dist[u] = sys.maxsize # Infinity
self.par[u] = -1
while not Q.isEmpty():
u = Q.extract_min() # Returns node with the min dist from source
# Update the distance of all the neighbours of u and
# if their prev dist was INFINITY then push them in Q
for v, w in self.adjList[u]:
new_dist = self.dist[u] + w
if self.dist[v] > new_dist:
if self.dist[v] == sys.maxsize:
Q.insert((new_dist, v))
else:
Q.decrease_key((self.dist[v], v), new_dist)
self.dist[v] = new_dist
self.par[v] = u
# Show the shortest distances from src
self.show_distances(src)
def show_distances(self, src):
print("Distance from node: {}".format(src))
for u in range(self.num_nodes):
print('Node {} has distance: {}'.format(u, self.dist[u]))
def show_path(self, src, dest):
# To show the shortest path from src to dest
# WARNING: Use it *after* calling dijkstra
path = []
cost = 0
temp = dest
# Backtracking from dest to src
while self.par[temp] != -1:
path.append(temp)
if temp != src:
for v, w in self.adjList[temp]:
if v == self.par[temp]:
cost += w
break
temp = self.par[temp]
path.append(src)
path.reverse()
print('----Path to reach {} from {}----'.format(dest, src))
for u in path:
print('{}'.format(u), end=' ')
if u != dest:
print('-> ', end='')
print('\nTotal cost of path: ', cost)
if __name__ == '__main__':
graph = Graph(9)
graph.add_edge(0, 1, 4)
graph.add_edge(0, 7, 8)
graph.add_edge(1, 2, 8)
graph.add_edge(1, 7, 11)
graph.add_edge(2, 3, 7)
graph.add_edge(2, 8, 2)
graph.add_edge(2, 5, 4)
graph.add_edge(3, 4, 9)
graph.add_edge(3, 5, 14)
graph.add_edge(4, 5, 10)
graph.add_edge(5, 6, 2)
graph.add_edge(6, 7, 1)
graph.add_edge(6, 8, 6)
graph.add_edge(7, 8, 7)
graph.show_graph()
graph.dijkstra(0)
graph.show_path(0, 4)
# OUTPUT
# 0 -> 1(4) -> 7(8)
# 1 -> 0(4) -> 2(8) -> 7(11)
# 7 -> 0(8) -> 1(11) -> 6(1) -> 8(7)
# 2 -> 1(8) -> 3(7) -> 8(2) -> 5(4)
# 3 -> 2(7) -> 4(9) -> 5(14)
# 8 -> 2(2) -> 6(6) -> 7(7)
# 5 -> 2(4) -> 3(14) -> 4(10) -> 6(2)
# 4 -> 3(9) -> 5(10)
# 6 -> 5(2) -> 7(1) -> 8(6)
# Distance from node: 0
# Node 0 has distance: 0
# Node 1 has distance: 4
# Node 2 has distance: 12
# Node 3 has distance: 19
# Node 4 has distance: 21
# Node 5 has distance: 11
# Node 6 has distance: 9
# Node 7 has distance: 8
# Node 8 has distance: 14
# ----Path to reach 4 from 0----
# 0 -> 7 -> 6 -> 5 -> 4
# Total cost of path: 21
| [] | [] | [] |
archives/1098994933_python.zip | graphs/directed_and_undirected_(weighted)_graph.py | from collections import deque
import random as rand
import math as math
import time
# the dfault weight is 1 if not assigend but all the implementation is weighted
class DirectedGraph:
def __init__(self):
self.graph = {}
# adding vertices and edges
# adding the weight is optional
# handels repetition
def add_pair(self, u, v, w = 1):
if self.graph.get(u):
if self.graph[u].count([w,v]) == 0:
self.graph[u].append([w, v])
else:
self.graph[u] = [[w, v]]
if not self.graph.get(v):
self.graph[v] = []
def all_nodes(self):
return list(self.graph)
# handels if the input does not exist
def remove_pair(self, u, v):
if self.graph.get(u):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(_)
# if no destination is meant the defaut value is -1
def dfs(self, s = -2, d = -1):
if s == d:
return []
stack = []
visited = []
if s == -2:
s = list(self.graph.keys())[0]
stack.append(s)
visited.append(s)
ss = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
ss = s
for __ in self.graph[s]:
if visited.count(__[1]) < 1:
if __[1] == d:
visited.append(d)
return visited
else:
stack.append(__[1])
visited.append(__[1])
ss =__[1]
break
# check if all the children are visited
if s == ss :
stack.pop()
if len(stack) != 0:
s = stack[len(stack) - 1]
else:
s = ss
# check if se have reached the starting point
if len(stack) == 0:
return visited
# c is the count of nodes you want and if you leave it or pass -1 to the funtion the count
# will be random from 10 to 10000
def fill_graph_randomly(self, c = -1):
if c == -1:
c = (math.floor(rand.random() * 10000)) + 10
for _ in range(c):
# every vertex has max 100 edges
e = math.floor(rand.random() * 102) + 1
for __ in range(e):
n = math.floor(rand.random() * (c)) + 1
if n == _:
continue
self.add_pair(_, n, 1)
def bfs(self, s = -2):
d = deque()
visited = []
if s == -2:
s = list(self.graph.keys())[0]
d.append(s)
visited.append(s)
while d:
s = d.popleft()
if len(self.graph[s]) != 0:
for __ in self.graph[s]:
if visited.count(__[1]) < 1:
d.append(__[1])
visited.append(__[1])
return visited
def in_degree(self, u):
count = 0
for _ in self.graph:
for __ in self.graph[_]:
if __[1] == u:
count += 1
return count
def out_degree(self, u):
return len(self.graph[u])
def topological_sort(self, s = -2):
stack = []
visited = []
if s == -2:
s = list(self.graph.keys())[0]
stack.append(s)
visited.append(s)
ss = s
sorted_nodes = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
ss = s
for __ in self.graph[s]:
if visited.count(__[1]) < 1:
stack.append(__[1])
visited.append(__[1])
ss =__[1]
break
# check if all the children are visited
if s == ss :
sorted_nodes.append(stack.pop())
if len(stack) != 0:
s = stack[len(stack) - 1]
else:
s = ss
# check if se have reached the starting point
if len(stack) == 0:
return sorted_nodes
def cycle_nodes(self):
stack = []
visited = []
s = list(self.graph.keys())[0]
stack.append(s)
visited.append(s)
parent = -2
indirect_parents = []
ss = s
on_the_way_back = False
anticipating_nodes = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
ss = s
for __ in self.graph[s]:
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
l = len(stack) - 1
while True and l >= 0:
if stack[l] == __[1]:
anticipating_nodes.add(__[1])
break
else:
anticipating_nodes.add(stack[l])
l -= 1
if visited.count(__[1]) < 1:
stack.append(__[1])
visited.append(__[1])
ss =__[1]
break
# check if all the children are visited
if s == ss :
stack.pop()
on_the_way_back = True
if len(stack) != 0:
s = stack[len(stack) - 1]
else:
on_the_way_back = False
indirect_parents.append(parent)
parent = s
s = ss
# check if se have reached the starting point
if len(stack) == 0:
return list(anticipating_nodes)
def has_cycle(self):
stack = []
visited = []
s = list(self.graph.keys())[0]
stack.append(s)
visited.append(s)
parent = -2
indirect_parents = []
ss = s
on_the_way_back = False
anticipating_nodes = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
ss = s
for __ in self.graph[s]:
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
l = len(stack) - 1
while True and l >= 0:
if stack[l] == __[1]:
anticipating_nodes.add(__[1])
break
else:
return True
anticipating_nodes.add(stack[l])
l -= 1
if visited.count(__[1]) < 1:
stack.append(__[1])
visited.append(__[1])
ss =__[1]
break
# check if all the children are visited
if s == ss :
stack.pop()
on_the_way_back = True
if len(stack) != 0:
s = stack[len(stack) - 1]
else:
on_the_way_back = False
indirect_parents.append(parent)
parent = s
s = ss
# check if se have reached the starting point
if len(stack) == 0:
return False
def dfs_time(self, s = -2, e = -1):
begin = time.time()
self.dfs(s,e)
end = time.time()
return end - begin
def bfs_time(self, s = -2):
begin = time.time()
self.bfs(s)
end = time.time()
return end - begin
class Graph:
def __init__(self):
self.graph = {}
# adding vertices and edges
# adding the weight is optional
# handels repetition
def add_pair(self, u, v, w = 1):
# check if the u exists
if self.graph.get(u):
# if there already is a edge
if self.graph[u].count([w,v]) == 0:
self.graph[u].append([w, v])
else:
# if u does not exist
self.graph[u] = [[w, v]]
# add the other way
if self.graph.get(v):
# if there already is a edge
if self.graph[v].count([w,u]) == 0:
self.graph[v].append([w, u])
else:
# if u does not exist
self.graph[v] = [[w, u]]
# handels if the input does not exist
def remove_pair(self, u, v):
if self.graph.get(u):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(_)
# the other way round
if self.graph.get(v):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(_)
# if no destination is meant the defaut value is -1
def dfs(self, s = -2, d = -1):
if s == d:
return []
stack = []
visited = []
if s == -2:
s = list(self.graph.keys())[0]
stack.append(s)
visited.append(s)
ss = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
ss = s
for __ in self.graph[s]:
if visited.count(__[1]) < 1:
if __[1] == d:
visited.append(d)
return visited
else:
stack.append(__[1])
visited.append(__[1])
ss =__[1]
break
# check if all the children are visited
if s == ss :
stack.pop()
if len(stack) != 0:
s = stack[len(stack) - 1]
else:
s = ss
# check if se have reached the starting point
if len(stack) == 0:
return visited
# c is the count of nodes you want and if you leave it or pass -1 to the funtion the count
# will be random from 10 to 10000
def fill_graph_randomly(self, c = -1):
if c == -1:
c = (math.floor(rand.random() * 10000)) + 10
for _ in range(c):
# every vertex has max 100 edges
e = math.floor(rand.random() * 102) + 1
for __ in range(e):
n = math.floor(rand.random() * (c)) + 1
if n == _:
continue
self.add_pair(_, n, 1)
def bfs(self, s = -2):
d = deque()
visited = []
if s == -2:
s = list(self.graph.keys())[0]
d.append(s)
visited.append(s)
while d:
s = d.popleft()
if len(self.graph[s]) != 0:
for __ in self.graph[s]:
if visited.count(__[1]) < 1:
d.append(__[1])
visited.append(__[1])
return visited
def degree(self, u):
return len(self.graph[u])
def cycle_nodes(self):
stack = []
visited = []
s = list(self.graph.keys())[0]
stack.append(s)
visited.append(s)
parent = -2
indirect_parents = []
ss = s
on_the_way_back = False
anticipating_nodes = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
ss = s
for __ in self.graph[s]:
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
l = len(stack) - 1
while True and l >= 0:
if stack[l] == __[1]:
anticipating_nodes.add(__[1])
break
else:
anticipating_nodes.add(stack[l])
l -= 1
if visited.count(__[1]) < 1:
stack.append(__[1])
visited.append(__[1])
ss =__[1]
break
# check if all the children are visited
if s == ss :
stack.pop()
on_the_way_back = True
if len(stack) != 0:
s = stack[len(stack) - 1]
else:
on_the_way_back = False
indirect_parents.append(parent)
parent = s
s = ss
# check if se have reached the starting point
if len(stack) == 0:
return list(anticipating_nodes)
def has_cycle(self):
stack = []
visited = []
s = list(self.graph.keys())[0]
stack.append(s)
visited.append(s)
parent = -2
indirect_parents = []
ss = s
on_the_way_back = False
anticipating_nodes = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s]) != 0:
ss = s
for __ in self.graph[s]:
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
l = len(stack) - 1
while True and l >= 0:
if stack[l] == __[1]:
anticipating_nodes.add(__[1])
break
else:
return True
anticipating_nodes.add(stack[l])
l -= 1
if visited.count(__[1]) < 1:
stack.append(__[1])
visited.append(__[1])
ss =__[1]
break
# check if all the children are visited
if s == ss :
stack.pop()
on_the_way_back = True
if len(stack) != 0:
s = stack[len(stack) - 1]
else:
on_the_way_back = False
indirect_parents.append(parent)
parent = s
s = ss
# check if se have reached the starting point
if len(stack) == 0:
return False
def all_nodes(self):
return list(self.graph)
def dfs_time(self, s = -2, e = -1):
begin = time.time()
self.dfs(s,e)
end = time.time()
return end - begin
def bfs_time(self, s = -2):
begin = time.time()
self.bfs(s)
end = time.time()
return end - begin
| [] | [] | [] |
archives/1098994933_python.zip | graphs/edmonds_karp_multiple_source_and_sink.py | class FlowNetwork:
def __init__(self, graph, sources, sinks):
self.sourceIndex = None
self.sinkIndex = None
self.graph = graph
self._normalizeGraph(sources, sinks)
self.verticesCount = len(graph)
self.maximumFlowAlgorithm = None
# make only one source and one sink
def _normalizeGraph(self, sources, sinks):
if sources is int:
sources = [sources]
if sinks is int:
sinks = [sinks]
if len(sources) == 0 or len(sinks) == 0:
return
self.sourceIndex = sources[0]
self.sinkIndex = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(sources) > 1 or len(sinks) > 1:
maxInputFlow = 0
for i in sources:
maxInputFlow += sum(self.graph[i])
size = len(self.graph) + 1
for room in self.graph:
room.insert(0, 0)
self.graph.insert(0, [0] * size)
for i in sources:
self.graph[0][i + 1] = maxInputFlow
self.sourceIndex = 0
size = len(self.graph) + 1
for room in self.graph:
room.append(0)
self.graph.append([0] * size)
for i in sinks:
self.graph[i + 1][size - 1] = maxInputFlow
self.sinkIndex = size - 1
def findMaximumFlow(self):
if self.maximumFlowAlgorithm is None:
raise Exception("You need to set maximum flow algorithm before.")
if self.sourceIndex is None or self.sinkIndex is None:
return 0
self.maximumFlowAlgorithm.execute()
return self.maximumFlowAlgorithm.getMaximumFlow()
def setMaximumFlowAlgorithm(self, Algorithm):
self.maximumFlowAlgorithm = Algorithm(self)
class FlowNetworkAlgorithmExecutor(object):
def __init__(self, flowNetwork):
self.flowNetwork = flowNetwork
self.verticesCount = flowNetwork.verticesCount
self.sourceIndex = flowNetwork.sourceIndex
self.sinkIndex = flowNetwork.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
self.graph = flowNetwork.graph
self.executed = False
def execute(self):
if not self.executed:
self._algorithm()
self.executed = True
# You should override it
def _algorithm(self):
pass
class MaximumFlowAlgorithmExecutor(FlowNetworkAlgorithmExecutor):
def __init__(self, flowNetwork):
super(MaximumFlowAlgorithmExecutor, self).__init__(flowNetwork)
# use this to save your result
self.maximumFlow = -1
def getMaximumFlow(self):
if not self.executed:
raise Exception("You should execute algorithm before using its result!")
return self.maximumFlow
class PushRelabelExecutor(MaximumFlowAlgorithmExecutor):
def __init__(self, flowNetwork):
super(PushRelabelExecutor, self).__init__(flowNetwork)
self.preflow = [[0] * self.verticesCount for i in range(self.verticesCount)]
self.heights = [0] * self.verticesCount
self.excesses = [0] * self.verticesCount
def _algorithm(self):
self.heights[self.sourceIndex] = self.verticesCount
# push some substance to graph
for nextVertexIndex, bandwidth in enumerate(self.graph[self.sourceIndex]):
self.preflow[self.sourceIndex][nextVertexIndex] += bandwidth
self.preflow[nextVertexIndex][self.sourceIndex] -= bandwidth
self.excesses[nextVertexIndex] += bandwidth
# Relabel-to-front selection rule
verticesList = [i for i in range(self.verticesCount)
if i != self.sourceIndex and i != self.sinkIndex]
# move through list
i = 0
while i < len(verticesList):
vertexIndex = verticesList[i]
previousHeight = self.heights[vertexIndex]
self.processVertex(vertexIndex)
if self.heights[vertexIndex] > previousHeight:
# if it was relabeled, swap elements
# and start from 0 index
verticesList.insert(0, verticesList.pop(i))
i = 0
else:
i += 1
self.maximumFlow = sum(self.preflow[self.sourceIndex])
def processVertex(self, vertexIndex):
while self.excesses[vertexIndex] > 0:
for neighbourIndex in range(self.verticesCount):
# if it's neighbour and current vertex is higher
if self.graph[vertexIndex][neighbourIndex] - self.preflow[vertexIndex][neighbourIndex] > 0\
and self.heights[vertexIndex] > self.heights[neighbourIndex]:
self.push(vertexIndex, neighbourIndex)
self.relabel(vertexIndex)
def push(self, fromIndex, toIndex):
preflowDelta = min(self.excesses[fromIndex],
self.graph[fromIndex][toIndex] - self.preflow[fromIndex][toIndex])
self.preflow[fromIndex][toIndex] += preflowDelta
self.preflow[toIndex][fromIndex] -= preflowDelta
self.excesses[fromIndex] -= preflowDelta
self.excesses[toIndex] += preflowDelta
def relabel(self, vertexIndex):
minHeight = None
for toIndex in range(self.verticesCount):
if self.graph[vertexIndex][toIndex] - self.preflow[vertexIndex][toIndex] > 0:
if minHeight is None or self.heights[toIndex] < minHeight:
minHeight = self.heights[toIndex]
if minHeight is not None:
self.heights[vertexIndex] = minHeight + 1
if __name__ == '__main__':
entrances = [0]
exits = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
graph = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
flowNetwork = FlowNetwork(graph, entrances, exits)
# set algorithm
flowNetwork.setMaximumFlowAlgorithm(PushRelabelExecutor)
# and calculate
maximumFlow = flowNetwork.findMaximumFlow()
print("maximum flow is {}".format(maximumFlow))
| [] | [] | [] |
archives/1098994933_python.zip | graphs/eulerian_path_and_circuit_for_undirected_graph.py | # Eulerian Path is a path in graph that visits every edge exactly once.
# Eulerian Circuit is an Eulerian Path which starts and ends on the same
# vertex.
# time complexity is O(V+E)
# space complexity is O(VE)
# using dfs for finding eulerian path traversal
def dfs(u, graph, visited_edge, path=[]):
path = path + [u]
for v in graph[u]:
if visited_edge[u][v] == False:
visited_edge[u][v], visited_edge[v][u] = True, True
path = dfs(v, graph, visited_edge, path)
return path
# for checking in graph has euler path or circuit
def check_circuit_or_path(graph, max_node):
odd_degree_nodes = 0
odd_node = -1
for i in range(max_node):
if i not in graph.keys():
continue
if len(graph[i]) % 2 == 1:
odd_degree_nodes += 1
odd_node = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def check_euler(graph, max_node):
visited_edge = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)]
check, odd_node = check_circuit_or_path(graph, max_node)
if check == 3:
print("graph is not Eulerian")
print("no path")
return
start_node = 1
if check == 2:
start_node = odd_node
print("graph has a Euler path")
if check == 1:
print("graph has a Euler cycle")
path = dfs(start_node, graph, visited_edge)
print(path)
def main():
G1 = {
1: [2, 3, 4],
2: [1, 3],
3: [1, 2],
4: [1, 5],
5: [4]
}
G2 = {
1: [2, 3, 4, 5],
2: [1, 3],
3: [1, 2],
4: [1, 5],
5: [1, 4]
}
G3 = {
1: [2, 3, 4],
2: [1, 3, 4],
3: [1, 2],
4: [1, 2, 5],
5: [4]
}
G4 = {
1: [2, 3],
2: [1, 3],
3: [1, 2],
}
G5 = {
1: [],
2: []
# all degree is zero
}
max_node = 10
check_euler(G1, max_node)
check_euler(G2, max_node)
check_euler(G3, max_node)
check_euler(G4, max_node)
check_euler(G5, max_node)
if __name__ == "__main__":
main()
| [] | [] | [] |
archives/1098994933_python.zip | graphs/even_tree.py | """
You are given a tree(a simple connected graph with no cycles). The tree has N
nodes numbered from 1 to N and is rooted at node 1.
Find the maximum number of edges you can remove from the tree to get a forest
such that each connected component of the forest contains an even number of
nodes.
Constraints
2 <= 2 <= 100
Note: The tree input will be such that it can always be decomposed into
components containing an even number of nodes.
"""
# pylint: disable=invalid-name
from collections import defaultdict
def dfs(start):
"""DFS traversal"""
# pylint: disable=redefined-outer-name
ret = 1
visited[start] = True
for v in tree.get(start):
if v not in visited:
ret += dfs(v)
if ret % 2 == 0:
cuts.append(start)
return ret
def even_tree():
"""
2 1
3 1
4 3
5 2
6 1
7 2
8 6
9 8
10 8
On removing edges (1,3) and (1,6), we can get the desired result 2.
"""
dfs(1)
if __name__ == '__main__':
n, m = 10, 9
tree = defaultdict(list)
visited = {}
cuts = []
count = 0
edges = [
(2, 1),
(3, 1),
(4, 3),
(5, 2),
(6, 1),
(7, 2),
(8, 6),
(9, 8),
(10, 8),
]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)
| [] | [] | [] |
archives/1098994933_python.zip | graphs/finding_bridges.py | # Finding Bridges in Undirected Graph
def computeBridges(l):
id = 0
n = len(l) # No of vertices in graph
low = [0] * n
visited = [False] * n
def dfs(at, parent, bridges, id):
visited[at] = True
low[at] = id
id += 1
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
dfs(to, at, bridges, id)
low[at] = min(low[at], low[to])
if at < low[to]:
bridges.append([at, to])
else:
# This edge is a back edge and cannot be a bridge
low[at] = min(low[at], to)
bridges = []
for i in range(n):
if (not visited[i]):
dfs(i, -1, bridges, id)
print(bridges)
l = {0:[1,2], 1:[0,2], 2:[0,1,3,5], 3:[2,4], 4:[3], 5:[2,6,8], 6:[5,7], 7:[6,8], 8:[5,7]}
computeBridges(l)
| [] | [] | [] |
archives/1098994933_python.zip | graphs/graph_list.py | #!/usr/bin/python
# encoding=utf8
# Author: OMKAR PATHAK
# We can use Python's dictionary for constructing the graph.
class AdjacencyList(object):
def __init__(self):
self.List = {}
def addEdge(self, fromVertex, toVertex):
# check if vertex is already present
if fromVertex in self.List.keys():
self.List[fromVertex].append(toVertex)
else:
self.List[fromVertex] = [toVertex]
def printList(self):
for i in self.List:
print((i,'->',' -> '.join([str(j) for j in self.List[i]])))
if __name__ == '__main__':
al = AdjacencyList()
al.addEdge(0, 1)
al.addEdge(0, 4)
al.addEdge(4, 1)
al.addEdge(4, 3)
al.addEdge(1, 0)
al.addEdge(1, 4)
al.addEdge(1, 3)
al.addEdge(1, 2)
al.addEdge(2, 3)
al.addEdge(3, 4)
al.printList()
# OUTPUT:
# 0 -> 1 -> 4
# 1 -> 0 -> 4 -> 3 -> 2
# 2 -> 3
# 3 -> 4
# 4 -> 1 -> 3
| [] | [] | [] |
archives/1098994933_python.zip | graphs/graph_matrix.py | class Graph:
def __init__(self, vertex):
self.vertex = vertex
self.graph = [[0] * vertex for i in range(vertex) ]
def add_edge(self, u, v):
self.graph[u - 1][v - 1] = 1
self.graph[v - 1][u - 1] = 1
def show(self):
for i in self.graph:
for j in i:
print(j, end=' ')
print(' ')
g = Graph(100)
g.add_edge(1,4)
g.add_edge(4,2)
g.add_edge(4,5)
g.add_edge(2,5)
g.add_edge(5,3)
g.show()
| [] | [] | [] |
archives/1098994933_python.zip | graphs/graphs_floyd_warshall.py | # floyd_warshall.py
"""
The problem is to find the shortest distance between all pairs of vertices in a weighted directed graph that can
have negative edge weights.
"""
def _print_dist(dist, v):
print("\nThe shortest path matrix using Floyd Warshall algorithm\n")
for i in range(v):
for j in range(v):
if dist[i][j] != float('inf') :
print(int(dist[i][j]),end = "\t")
else:
print("INF",end="\t")
print()
def floyd_warshall(graph, v):
"""
:param graph: 2D array calculated from weight[edge[i, j]]
:type graph: List[List[float]]
:param v: number of vertices
:type v: int
:return: shortest distance between all vertex pairs
distance[u][v] will contain the shortest distance from vertex u to v.
1. For all edges from v to n, distance[i][j] = weight(edge(i, j)).
3. The algorithm then performs distance[i][j] = min(distance[i][j], distance[i][k] + distance[k][j]) for each
possible pair i, j of vertices.
4. The above is repeated for each vertex k in the graph.
5. Whenever distance[i][j] is given a new minimum value, next vertex[i][j] is updated to the next vertex[i][k].
"""
dist=[[float('inf') for _ in range(v)] for _ in range(v)]
for i in range(v):
for j in range(v):
dist[i][j] = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(v):
# looping through rows of graph array
for i in range(v):
# looping through columns of graph array
for j in range(v):
if dist[i][k]!=float('inf') and dist[k][j]!=float('inf') and dist[i][k]+dist[k][j] < dist[i][j]:
dist[i][j] = dist[i][k] + dist[k][j]
_print_dist(dist, v)
return dist, v
if __name__== '__main__':
v = int(input("Enter number of vertices: "))
e = int(input("Enter number of edges: "))
graph = [[float('inf') for i in range(v)] for j in range(v)]
for i in range(v):
graph[i][i] = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print("\nEdge ",i+1)
src = int(input("Enter source:"))
dst = int(input("Enter destination:"))
weight = float(input("Enter weight:"))
graph[src][dst] = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| [] | [] | [] |
archives/1098994933_python.zip | graphs/kahns_algorithm_long.py | # Finding longest distance in Directed Acyclic Graph using KahnsAlgorithm
def longestDistance(l):
indegree = [0] * len(l)
queue = []
longDist = [1] * len(l)
for key, values in l.items():
for i in values:
indegree[i] += 1
for i in range(len(indegree)):
if indegree[i] == 0:
queue.append(i)
while(queue):
vertex = queue.pop(0)
for x in l[vertex]:
indegree[x] -= 1
if longDist[vertex] + 1 > longDist[x]:
longDist[x] = longDist[vertex] + 1
if indegree[x] == 0:
queue.append(x)
print(max(longDist))
# Adjacency list of Graph
l = {0:[2,3,4], 1:[2,7], 2:[5], 3:[5,7], 4:[7], 5:[6], 6:[7], 7:[]}
longestDistance(l)
| [] | [] | [] |
archives/1098994933_python.zip | graphs/kahns_algorithm_topo.py | # Kahn's Algorithm is used to find Topological ordering of Directed Acyclic Graph using BFS
def topologicalSort(l):
indegree = [0] * len(l)
queue = []
topo = []
cnt = 0
for key, values in l.items():
for i in values:
indegree[i] += 1
for i in range(len(indegree)):
if indegree[i] == 0:
queue.append(i)
while(queue):
vertex = queue.pop(0)
cnt += 1
topo.append(vertex)
for x in l[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(x)
if cnt != len(l):
print("Cycle exists")
else:
print(topo)
# Adjacency List of Graph
l = {0:[1,2], 1:[3], 2:[3], 3:[4,5], 4:[], 5:[]}
topologicalSort(l)
| [] | [] | [] |
archives/1098994933_python.zip | graphs/minimum_spanning_tree_kruskal.py | if __name__ == "__main__":
num_nodes, num_edges = list(map(int, input().strip().split()))
edges = []
for i in range(num_edges):
node1, node2, cost = list(map(int, input().strip().split()))
edges.append((i,node1,node2,cost))
edges = sorted(edges, key=lambda edge: edge[3])
parent = list(range(num_nodes))
def find_parent(i):
if i != parent[i]:
parent[i] = find_parent(parent[i])
return parent[i]
minimum_spanning_tree_cost = 0
minimum_spanning_tree = []
for edge in edges:
parent_a = find_parent(edge[1])
parent_b = find_parent(edge[2])
if parent_a != parent_b:
minimum_spanning_tree_cost += edge[3]
minimum_spanning_tree.append(edge)
parent[parent_a] = parent_b
print(minimum_spanning_tree_cost)
for edge in minimum_spanning_tree:
print(edge)
| [] | [] | [] |
archives/1098994933_python.zip | graphs/minimum_spanning_tree_prims.py | import sys
from collections import defaultdict
def PrimsAlgorithm(l):
nodePosition = []
def getPosition(vertex):
return nodePosition[vertex]
def setPosition(vertex, pos):
nodePosition[vertex] = pos
def topToBottom(heap, start, size, positions):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
m = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
m = 2 * start + 1
else:
m = 2 * start + 2
if heap[m] < heap[start]:
temp, temp1 = heap[m], positions[m]
heap[m], positions[m] = heap[start], positions[start]
heap[start], positions[start] = temp, temp1
temp = getPosition(positions[m])
setPosition(positions[m], getPosition(positions[start]))
setPosition(positions[start], temp)
topToBottom(heap, m, size, positions)
# Update function if value of any node in min-heap decreases
def bottomToTop(val, index, heap, position):
temp = position[index]
while(index != 0):
if index % 2 == 0:
parent = int( (index-2) / 2 )
else:
parent = int( (index-1) / 2 )
if val < heap[parent]:
heap[index] = heap[parent]
position[index] = position[parent]
setPosition(position[parent], index)
else:
heap[index] = val
position[index] = temp
setPosition(temp, index)
break
index = parent
else:
heap[0] = val
position[0] = temp
setPosition(temp, 0)
def heapify(heap, positions):
start = len(heap) // 2 - 1
for i in range(start, -1, -1):
topToBottom(heap, i, len(heap), positions)
def deleteMinimum(heap, positions):
temp = positions[0]
heap[0] = sys.maxsize
topToBottom(heap, 0, len(heap), positions)
return temp
visited = [0 for i in range(len(l))]
Nbr_TV = [-1 for i in range(len(l))] # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree formed in graph
Distance_TV = [] # Heap of Distance of vertices from their neighboring vertex
Positions = []
for x in range(len(l)):
p = sys.maxsize
Distance_TV.append(p)
Positions.append(x)
nodePosition.append(x)
TreeEdges = []
visited[0] = 1
Distance_TV[0] = sys.maxsize
for x in l[0]:
Nbr_TV[ x[0] ] = 0
Distance_TV[ x[0] ] = x[1]
heapify(Distance_TV, Positions)
for i in range(1, len(l)):
vertex = deleteMinimum(Distance_TV, Positions)
if visited[vertex] == 0:
TreeEdges.append((Nbr_TV[vertex], vertex))
visited[vertex] = 1
for v in l[vertex]:
if visited[v[0]] == 0 and v[1] < Distance_TV[ getPosition(v[0]) ]:
Distance_TV[ getPosition(v[0]) ] = v[1]
bottomToTop(v[1], getPosition(v[0]), Distance_TV, Positions)
Nbr_TV[ v[0] ] = vertex
return TreeEdges
if __name__ == "__main__":
# < --------- Prims Algorithm --------- >
n = int(input("Enter number of vertices: ").strip())
e = int(input("Enter number of edges: ").strip())
adjlist = defaultdict(list)
for x in range(e):
l = [int(x) for x in input().strip().split()]
adjlist[l[0]].append([ l[1], l[2] ])
adjlist[l[1]].append([ l[0], l[2] ])
print(PrimsAlgorithm(adjlist))
| [] | [] | [] |
archives/1098994933_python.zip | graphs/multi_hueristic_astar.py | import heapq
import numpy as np
class PriorityQueue:
def __init__(self):
self.elements = []
self.set = set()
def minkey(self):
if not self.empty():
return self.elements[0][0]
else:
return float('inf')
def empty(self):
return len(self.elements) == 0
def put(self, item, priority):
if item not in self.set:
heapq.heappush(self.elements, (priority, item))
self.set.add(item)
else:
# update
# print("update", item)
temp = []
(pri, x) = heapq.heappop(self.elements)
while x != item:
temp.append((pri, x))
(pri, x) = heapq.heappop(self.elements)
temp.append((priority, item))
for (pro, xxx) in temp:
heapq.heappush(self.elements, (pro, xxx))
def remove_element(self, item):
if item in self.set:
self.set.remove(item)
temp = []
(pro, x) = heapq.heappop(self.elements)
while x != item:
temp.append((pro, x))
(pro, x) = heapq.heappop(self.elements)
for (prito, yyy) in temp:
heapq.heappush(self.elements, (prito, yyy))
def top_show(self):
return self.elements[0][1]
def get(self):
(priority, item) = heapq.heappop(self.elements)
self.set.remove(item)
return (priority, item)
def consistent_hueristic(P, goal):
# euclidean distance
a = np.array(P)
b = np.array(goal)
return np.linalg.norm(a - b)
def hueristic_2(P, goal):
# integer division by time variable
return consistent_hueristic(P, goal) // t
def hueristic_1(P, goal):
# manhattan distance
return abs(P[0] - goal[0]) + abs(P[1] - goal[1])
def key(start, i, goal, g_function):
ans = g_function[start] + W1 * hueristics[i](start, goal)
return ans
def do_something(back_pointer, goal, start):
grid = np.chararray((n, n))
for i in range(n):
for j in range(n):
grid[i][j] = '*'
for i in range(n):
for j in range(n):
if (j, (n-1)-i) in blocks:
grid[i][j] = "#"
grid[0][(n-1)] = "-"
x = back_pointer[goal]
while x != start:
(x_c, y_c) = x
# print(x)
grid[(n-1)-y_c][x_c] = "-"
x = back_pointer[x]
grid[(n-1)][0] = "-"
for i in range(n):
for j in range(n):
if (i, j) == (0, n-1):
print(grid[i][j], end=' ')
print("<-- End position", end=' ')
else:
print(grid[i][j], end=' ')
print()
print("^")
print("Start position")
print()
print("# is an obstacle")
print("- is the path taken by algorithm")
print("PATH TAKEN BY THE ALGORITHM IS:-")
x = back_pointer[goal]
while x != start:
print(x, end=' ')
x = back_pointer[x]
print(x)
quit()
def valid(p):
if p[0] < 0 or p[0] > n-1:
return False
if p[1] < 0 or p[1] > n-1:
return False
return True
def expand_state(s, j, visited, g_function, close_list_anchor, close_list_inad, open_list, back_pointer):
for itera in range(n_hueristic):
open_list[itera].remove_element(s)
# print("s", s)
# print("j", j)
(x, y) = s
left = (x-1, y)
right = (x+1, y)
up = (x, y+1)
down = (x, y-1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(neighbours) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(neighbours)
back_pointer[neighbours] = -1
g_function[neighbours] = float('inf')
if valid(neighbours) and g_function[neighbours] > g_function[s] + 1:
g_function[neighbours] = g_function[s] + 1
back_pointer[neighbours] = s
if neighbours not in close_list_anchor:
open_list[0].put(neighbours, key(neighbours, 0, goal, g_function))
if neighbours not in close_list_inad:
for var in range(1,n_hueristic):
if key(neighbours, var, goal, g_function) <= W2 * key(neighbours, 0, goal, g_function):
# print("why not plssssssssss")
open_list[j].put(neighbours, key(neighbours, var, goal, g_function))
# print
def make_common_ground():
some_list = []
# block 1
for x in range(1, 5):
for y in range(1, 6):
some_list.append((x, y))
# line
for x in range(15, 20):
some_list.append((x, 17))
# block 2 big
for x in range(10, 19):
for y in range(1, 15):
some_list.append((x, y))
# L block
for x in range(1, 4):
for y in range(12, 19):
some_list.append((x, y))
for x in range(3, 13):
for y in range(16, 19):
some_list.append((x, y))
return some_list
hueristics = {0: consistent_hueristic, 1: hueristic_1, 2: hueristic_2}
blocks_blk = [(0, 1),(1, 1),(2, 1),(3, 1),(4, 1),(5, 1),(6, 1),(7, 1),(8, 1),(9, 1),(10, 1),(11, 1),(12, 1),(13, 1),(14, 1),(15, 1),(16, 1),(17, 1),(18, 1), (19, 1)]
blocks_no = []
blocks_all = make_common_ground()
blocks = blocks_blk
# hyper parameters
W1 = 1
W2 = 1
n = 20
n_hueristic = 3 # one consistent and two other inconsistent
# start and end destination
start = (0, 0)
goal = (n-1, n-1)
t = 1
def multi_a_star(start, goal, n_hueristic):
g_function = {start: 0, goal: float('inf')}
back_pointer = {start:-1, goal:-1}
open_list = []
visited = set()
for i in range(n_hueristic):
open_list.append(PriorityQueue())
open_list[i].put(start, key(start, i, goal, g_function))
close_list_anchor = []
close_list_inad = []
while open_list[0].minkey() < float('inf'):
for i in range(1, n_hueristic):
# print("i", i)
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= W2 * open_list[0].minkey():
global t
t += 1
# print("less prio")
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf'):
do_something(back_pointer, goal, start)
else:
_, get_s = open_list[i].top_show()
visited.add(get_s)
expand_state(get_s, i, visited, g_function, close_list_anchor, close_list_inad, open_list, back_pointer)
close_list_inad.append(get_s)
else:
# print("more prio")
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf'):
do_something(back_pointer, goal, start)
else:
# print("hoolla")
get_s = open_list[0].top_show()
visited.add(get_s)
expand_state(get_s, 0, visited, g_function, close_list_anchor, close_list_inad, open_list, back_pointer)
close_list_anchor.append(get_s)
print("No path found to goal")
print()
for i in range(n-1,-1, -1):
for j in range(n):
if (j, i) in blocks:
print('#', end=' ')
elif (j, i) in back_pointer:
if (j, i) == (n-1, n-1):
print('*', end=' ')
else:
print('-', end=' ')
else:
print('*', end=' ')
if (j, i) == (n-1, n-1):
print('<-- End position', end=' ')
print()
print("^")
print("Start position")
print()
print("# is an obstacle")
print("- is the path taken by algorithm")
if __name__ == "__main__":
multi_a_star(start, goal, n_hueristic)
| [] | [] | [] |
archives/1098994933_python.zip | graphs/page_rank.py | '''
Author: https://github.com/bhushan-borole
'''
'''
The input graph for the algorithm is:
A B C
A 0 1 1
B 0 0 1
C 1 0 0
'''
graph = [[0, 1, 1],
[0, 0, 1],
[1, 0, 0]]
class Node:
def __init__(self, name):
self.name = name
self.inbound = []
self.outbound = []
def add_inbound(self, node):
self.inbound.append(node)
def add_outbound(self, node):
self.outbound.append(node)
def __repr__(self):
return 'Node {}: Inbound: {} ; Outbound: {}'.format(self.name,
self.inbound,
self.outbound)
def page_rank(nodes, limit=3, d=0.85):
ranks = {}
for node in nodes:
ranks[node.name] = 1
outbounds = {}
for node in nodes:
outbounds[node.name] = len(node.outbound)
for i in range(limit):
print("======= Iteration {} =======".format(i+1))
for j, node in enumerate(nodes):
ranks[node.name] = (1 - d) + d * sum([ ranks[ib]/outbounds[ib] for ib in node.inbound ])
print(ranks)
def main():
names = list(input('Enter Names of the Nodes: ').split())
nodes = [Node(name) for name in names]
for ri, row in enumerate(graph):
for ci, col in enumerate(row):
if col == 1:
nodes[ci].add_inbound(names[ri])
nodes[ri].add_outbound(names[ci])
print("======= Nodes =======")
for node in nodes:
print(node)
page_rank(nodes)
if __name__ == '__main__':
main() | [] | [] | [] |
archives/1098994933_python.zip | graphs/prim.py | """
Prim's Algorithm.
Determines the minimum spanning tree(MST) of a graph using the Prim's Algorithm
Create a list to store x the vertices.
G = [vertex(n) for n in range(x)]
For each vertex in G, add the neighbors:
G[x].addNeighbor(G[y])
G[y].addNeighbor(G[x])
For each vertex in G, add the edges:
G[x].addEdge(G[y], w)
G[y].addEdge(G[x], w)
To solve run:
MST = prim(G, G[0])
"""
import math
class vertex():
"""Class Vertex."""
def __init__(self, id):
"""
Arguments:
id - input an id to identify the vertex
Attributes:
neighbors - a list of the vertices it is linked to
edges - a dict to store the edges's weight
"""
self.id = str(id)
self.key = None
self.pi = None
self.neighbors = []
self.edges = {} # [vertex:distance]
def __lt__(self, other):
"""Comparison rule to < operator."""
return (self.key < other.key)
def __repr__(self):
"""Return the vertex id."""
return self.id
def addNeighbor(self, vertex):
"""Add a pointer to a vertex at neighbor's list."""
self.neighbors.append(vertex)
def addEdge(self, vertex, weight):
"""Destination vertex and weight."""
self.edges[vertex.id] = weight
def prim(graph, root):
"""
Prim's Algorithm.
Return a list with the edges of a Minimum Spanning Tree
prim(graph, graph[0])
"""
A = []
for u in graph:
u.key = math.inf
u.pi = None
root.key = 0
Q = graph[:]
while Q:
u = min(Q)
Q.remove(u)
for v in u.neighbors:
if (v in Q) and (u.edges[v.id] < v.key):
v.pi = u
v.key = u.edges[v.id]
for i in range(1, len(graph)):
A.append([graph[i].id, graph[i].pi.id])
return(A)
| [] | [] | [] |
archives/1098994933_python.zip | graphs/scc_kosaraju.py | def dfs(u):
global g, r, scc, component, visit, stack
if visit[u]: return
visit[u] = True
for v in g[u]:
dfs(v)
stack.append(u)
def dfs2(u):
global g, r, scc, component, visit, stack
if visit[u]: return
visit[u] = True
component.append(u)
for v in r[u]:
dfs2(v)
def kosaraju():
global g, r, scc, component, visit, stack
for i in range(n):
dfs(i)
visit = [False]*n
for i in stack[::-1]:
if visit[i]: continue
component = []
dfs2(i)
scc.append(component)
return scc
if __name__ == "__main__":
# n - no of nodes, m - no of edges
n, m = list(map(int,input().strip().split()))
g = [[] for i in range(n)] #graph
r = [[] for i in range(n)] #reversed graph
# input graph data (edges)
for i in range(m):
u, v = list(map(int,input().strip().split()))
g[u].append(v)
r[v].append(u)
stack = []
visit = [False]*n
scc = []
component = []
print(kosaraju())
| [] | [] | [] |
archives/1098994933_python.zip | graphs/tarjans_scc.py | from collections import deque
def tarjan(g):
"""
Tarjan's algo for finding strongly connected components in a directed graph
Uses two main attributes of each node to track reachability, the index of that node within a component(index),
and the lowest index reachable from that node(lowlink).
We then perform a dfs of the each component making sure to update these parameters for each node and saving the
nodes we visit on the way.
If ever we find that the lowest reachable node from a current node is equal to the index of the current node then it
must be the root of a strongly connected component and so we save it and it's equireachable vertices as a strongly
connected component.
Complexity: strong_connect() is called at most once for each node and has a complexity of O(|E|) as it is DFS.
Therefore this has complexity O(|V| + |E|) for a graph G = (V, E)
"""
n = len(g)
stack = deque()
on_stack = [False for _ in range(n)]
index_of = [-1 for _ in range(n)]
lowlink_of = index_of[:]
def strong_connect(v, index, components):
index_of[v] = index # the number when this node is seen
lowlink_of[v] = index # lowest rank node reachable from here
index += 1
stack.append(v)
on_stack[v] = True
for w in g[v]:
if index_of[w] == -1:
index = strong_connect(w, index, components)
lowlink_of[v] = lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
elif on_stack[w]:
lowlink_of[v] = lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
if lowlink_of[v] == index_of[v]:
component = []
w = stack.pop()
on_stack[w] = False
component.append(w)
while w != v:
w = stack.pop()
on_stack[w] = False
component.append(w)
components.append(component)
return index
components = []
for v in range(n):
if index_of[v] == -1:
strong_connect(v, 0, components)
return components
def create_graph(n, edges):
g = [[] for _ in range(n)]
for u, v in edges:
g[u].append(v)
return g
if __name__ == '__main__':
# Test
n_vertices = 7
source = [0, 0, 1, 2, 3, 3, 4, 4, 6]
target = [1, 3, 2, 0, 1, 4, 5, 6, 5]
edges = [(u, v) for u, v in zip(source, target)]
g = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| [] | [] | [] |
archives/1098994933_python.zip | hashes/chaos_machine.py | """example of simple chaos machine"""
# Chaos Machine (K, t, m)
K = [0.33, 0.44, 0.55, 0.44, 0.33]; t = 3; m = 5
# Buffer Space (with Parameters Space)
buffer_space, params_space = [], []
# Machine Time
machine_time = 0
def push(seed):
global buffer_space, params_space, machine_time, \
K, m, t
# Choosing Dynamical Systems (All)
for key, value in enumerate(buffer_space):
# Evolution Parameter
e = float(seed / value)
# Control Theory: Orbit Change
value = (buffer_space[(key + 1) % m] + e) % 1
# Control Theory: Trajectory Change
r = (params_space[key] + e) % 1 + 3
# Modification (Transition Function) - Jumps
buffer_space[key] = \
round(float(r * value * (1 - value)), 10)
params_space[key] = \
r # Saving to Parameters Space
# Logistic Map
assert max(buffer_space) < 1
assert max(params_space) < 4
# Machine Time
machine_time += 1
def pull():
global buffer_space, params_space, machine_time, \
K, m, t
# PRNG (Xorshift by George Marsaglia)
def xorshift(X, Y):
X ^= Y >> 13
Y ^= X << 17
X ^= Y >> 5
return X
# Choosing Dynamical Systems (Increment)
key = machine_time % m
# Evolution (Time Length)
for i in range(0, t):
# Variables (Position + Parameters)
r = params_space[key]
value = buffer_space[key]
# Modification (Transition Function) - Flow
buffer_space[key] = \
round(float(r * value * (1 - value)), 10)
params_space[key] = \
(machine_time * 0.01 + r * 1.01) % 1 + 3
# Choosing Chaotic Data
X = int(buffer_space[(key + 2) % m] * (10 ** 10))
Y = int(buffer_space[(key - 2) % m] * (10 ** 10))
# Machine Time
machine_time += 1
return xorshift(X, Y) % 0xFFFFFFFF
def reset():
global buffer_space, params_space, machine_time, \
K, m, t
buffer_space = K; params_space = [0] * m
machine_time = 0
#######################################
# Initialization
reset()
# Pushing Data (Input)
import random
message = random.sample(range(0xFFFFFFFF), 100)
for chunk in message:
push(chunk)
# for controlling
inp = ""
# Pulling Data (Output)
while inp in ("e", "E"):
print("%s" % format(pull(), '#04x'))
print(buffer_space); print(params_space)
inp = input("(e)exit? ").strip()
| [] | [] | [] |
archives/1098994933_python.zip | hashes/enigma_machine.py | alphabets = [chr(i) for i in range(32, 126)]
gear_one = [i for i in range(len(alphabets))]
gear_two = [i for i in range(len(alphabets))]
gear_three = [i for i in range(len(alphabets))]
reflector = [i for i in reversed(range(len(alphabets)))]
code = []
gear_one_pos = gear_two_pos = gear_three_pos = 0
def rotator():
global gear_one_pos
global gear_two_pos
global gear_three_pos
i = gear_one[0]
gear_one.append(i)
del gear_one[0]
gear_one_pos += 1
if gear_one_pos % int(len(alphabets)) == 0:
i = gear_two[0]
gear_two.append(i)
del gear_two[0]
gear_two_pos += 1
if gear_two_pos % int(len(alphabets)) == 0:
i = gear_three[0]
gear_three.append(i)
del gear_three[0]
gear_three_pos += 1
def engine(input_character):
target = alphabets.index(input_character)
target = gear_one[target]
target = gear_two[target]
target = gear_three[target]
target = reflector[target]
target = gear_three.index(target)
target = gear_two.index(target)
target = gear_one.index(target)
code.append(alphabets[target])
rotator()
if __name__ == '__main__':
decode = input("Type your message:\n")
decode = list(decode)
while True:
try:
token = int(input("Please set token:(must be only digits)\n"))
break
except Exception as error:
print(error)
for i in range(token):
rotator()
for i in decode:
engine(i)
print("\n" + "".join(code))
print(
f"\nYour Token is {token} please write it down.\nIf you want to decode "
f"this message again you should input same digits as token!")
| [] | [] | [] |
archives/1098994933_python.zip | hashes/md5.py | import math
def rearrange(bitString32):
"""[summary]
Regroups the given binary string.
Arguments:
bitString32 {[string]} -- [32 bit binary]
Raises:
ValueError -- [if the given string not are 32 bit binary string]
Returns:
[string] -- [32 bit binary string]
>>> rearrange('1234567890abcdfghijklmnopqrstuvw')
'pqrstuvwhijklmno90abcdfg12345678'
"""
if len(bitString32) != 32:
raise ValueError("Need length 32")
newString = ""
for i in [3, 2,1,0]:
newString += bitString32[8*i:8*i+8]
return newString
def reformatHex(i):
"""[summary]
Converts the given integer into 8-digit hex number.
Arguments:
i {[int]} -- [integer]
>>> reformatHex(666)
'9a020000'
"""
hexrep = format(i, '08x')
thing = ""
for i in [3, 2,1,0]:
thing += hexrep[2*i:2*i+2]
return thing
def pad(bitString):
"""[summary]
Fills up the binary string to a 512 bit binary string
Arguments:
bitString {[string]} -- [binary string]
Returns:
[string] -- [binary string]
"""
startLength = len(bitString)
bitString += '1'
while len(bitString) % 512 != 448:
bitString += '0'
lastPart = format(startLength, '064b')
bitString += rearrange(lastPart[32:]) + rearrange(lastPart[:32])
return bitString
def getBlock(bitString):
"""[summary]
Iterator:
Returns by each call a list of length 16 with the 32 bit
integer blocks.
Arguments:
bitString {[string]} -- [binary string >= 512]
"""
currPos = 0
while currPos < len(bitString):
currPart = bitString[currPos:currPos+512]
mySplits = []
for i in range(16):
mySplits.append(int(rearrange(currPart[32*i:32*i+32]), 2))
yield mySplits
currPos += 512
def not32(i):
'''
>>> not32(34)
4294967261
'''
i_str = format(i, '032b')
new_str = ''
for c in i_str:
new_str += '1' if c == '0' else '0'
return int(new_str, 2)
def sum32(a, b):
'''
'''
return (a + b) % 2**32
def leftrot32(i, s):
return (i << s) ^ (i >> (32-s))
def md5me(testString):
"""[summary]
Returns a 32-bit hash code of the string 'testString'
Arguments:
testString {[string]} -- [message]
"""
bs = ''
for i in testString:
bs += format(ord(i), '08b')
bs = pad(bs)
tvals = [int(2**32 * abs(math.sin(i+1))) for i in range(64)]
a0 = 0x67452301
b0 = 0xefcdab89
c0 = 0x98badcfe
d0 = 0x10325476
s = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, \
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, \
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 ]
for m in getBlock(bs):
A = a0
B = b0
C = c0
D = d0
for i in range(64):
if i <= 15:
#f = (B & C) | (not32(B) & D)
f = D ^ (B & (C ^ D))
g = i
elif i <= 31:
#f = (D & B) | (not32(D) & C)
f = C ^ (D & (B ^ C))
g = (5*i+1) % 16
elif i <= 47:
f = B ^ C ^ D
g = (3*i+5) % 16
else:
f = C ^ (B | not32(D))
g = (7*i) % 16
dtemp = D
D = C
C = B
B = sum32(B, leftrot32((A + f + tvals[i] + m[g]) % 2**32, s[i]))
A = dtemp
a0 = sum32(a0, A)
b0 = sum32(b0, B)
c0 = sum32(c0, C)
d0 = sum32(d0, D)
digest = reformatHex(a0) + reformatHex(b0) + \
reformatHex(c0) + reformatHex(d0)
return digest
def test():
assert md5me("") == "d41d8cd98f00b204e9800998ecf8427e"
assert md5me(
"The quick brown fox jumps over the lazy dog") == "9e107d9d372bb6826bd81d3542a419d6"
print("Success.")
if __name__ == "__main__":
test()
import doctest
doctest.testmod()
| [] | [] | [] |
archives/1098994933_python.zip | hashes/sha1.py | """
Demonstrates implementation of SHA1 Hash function in a Python class and gives utilities
to find hash of string or hash of text from a file.
Usage: python sha1.py --string "Hello World!!"
python sha1.py --file "hello_world.txt"
When run without any arguments, it prints the hash of the string "Hello World!! Welcome to Cryptography"
Also contains a Test class to verify that the generated Hash is same as that
returned by the hashlib library
SHA1 hash or SHA1 sum of a string is a crytpographic function which means it is easy
to calculate forwards but extemely difficult to calculate backwards. What this means
is, you can easily calculate the hash of a string, but it is extremely difficult to
know the original string if you have its hash. This property is useful to communicate
securely, send encrypted messages and is very useful in payment systems, blockchain
and cryptocurrency etc.
The Algorithm as described in the reference:
First we start with a message. The message is padded and the length of the message
is added to the end. It is then split into blocks of 512 bits or 64 bytes. The blocks
are then processed one at a time. Each block must be expanded and compressed.
The value after each compression is added to a 160bit buffer called the current hash
state. After the last block is processed the current hash state is returned as
the final hash.
Reference: https://deadhacker.com/2006/02/21/sha-1-illustrated/
"""
import argparse
import struct
import hashlib #hashlib is only used inside the Test class
import unittest
class SHA1Hash:
"""
Class to contain the entire pipeline for SHA1 Hashing Algorithm
>>> SHA1Hash(bytes('Allan', 'utf-8')).final_hash()
'872af2d8ac3d8695387e7c804bf0e02c18df9e6e'
"""
def __init__(self, data):
"""
Inititates the variables data and h. h is a list of 5 8-digit Hexadecimal
numbers corresponding to (1732584193, 4023233417, 2562383102, 271733878, 3285377520)
respectively. We will start with this as a message digest. 0x is how you write
Hexadecimal numbers in Python
"""
self.data = data
self.h = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0]
@staticmethod
def rotate(n, b):
"""
Static method to be used inside other methods. Left rotates n by b.
>>> SHA1Hash('').rotate(12,2)
48
"""
return ((n << b) | (n >> (32 - b))) & 0xffffffff
def padding(self):
"""
Pads the input message with zeros so that padded_data has 64 bytes or 512 bits
"""
padding = b'\x80' + b'\x00'*(63 - (len(self.data) + 8) % 64)
padded_data = self.data + padding + struct.pack('>Q', 8 * len(self.data))
return padded_data
def split_blocks(self):
"""
Returns a list of bytestrings each of length 64
"""
return [self.padded_data[i:i+64] for i in range(0, len(self.padded_data), 64)]
# @staticmethod
def expand_block(self, block):
"""
Takes a bytestring-block of length 64, unpacks it to a list of integers and returns a
list of 80 integers after some bit operations
"""
w = list(struct.unpack('>16L', block)) + [0] * 64
for i in range(16, 80):
w[i] = self.rotate((w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16]), 1)
return w
def final_hash(self):
"""
Calls all the other methods to process the input. Pads the data, then splits into
blocks and then does a series of operations for each block (including expansion).
For each block, the variable h that was initialized is copied to a,b,c,d,e
and these 5 variables a,b,c,d,e undergo several changes. After all the blocks are
processed, these 5 variables are pairwise added to h ie a to h[0], b to h[1] and so on.
This h becomes our final hash which is returned.
"""
self.padded_data = self.padding()
self.blocks = self.split_blocks()
for block in self.blocks:
expanded_block = self.expand_block(block)
a, b, c, d, e = self.h
for i in range(0, 80):
if 0 <= i < 20:
f = (b & c) | ((~b) & d)
k = 0x5A827999
elif 20 <= i < 40:
f = b ^ c ^ d
k = 0x6ED9EBA1
elif 40 <= i < 60:
f = (b & c) | (b & d) | (c & d)
k = 0x8F1BBCDC
elif 60 <= i < 80:
f = b ^ c ^ d
k = 0xCA62C1D6
a, b, c, d, e = self.rotate(a, 5) + f + e + k + expanded_block[i] & 0xffffffff,\
a, self.rotate(b, 30), c, d
self.h = self.h[0] + a & 0xffffffff,\
self.h[1] + b & 0xffffffff,\
self.h[2] + c & 0xffffffff,\
self.h[3] + d & 0xffffffff,\
self.h[4] + e & 0xffffffff
return '%08x%08x%08x%08x%08x' %tuple(self.h)
class SHA1HashTest(unittest.TestCase):
"""
Test class for the SHA1Hash class. Inherits the TestCase class from unittest
"""
def testMatchHashes(self):
msg = bytes('Test String', 'utf-8')
self.assertEqual(SHA1Hash(msg).final_hash(), hashlib.sha1(msg).hexdigest())
def main():
"""
Provides option 'string' or 'file' to take input and prints the calculated SHA1 hash.
unittest.main() has been commented because we probably dont want to run
the test each time.
"""
# unittest.main()
parser = argparse.ArgumentParser(description='Process some strings or files')
parser.add_argument('--string', dest='input_string',
default='Hello World!! Welcome to Cryptography',
help='Hash the string')
parser.add_argument('--file', dest='input_file', help='Hash contents of a file')
args = parser.parse_args()
input_string = args.input_string
#In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file, 'rb') as f:
hash_input = f.read()
else:
hash_input = bytes(input_string, 'utf-8')
print(SHA1Hash(hash_input).final_hash())
if __name__ == '__main__':
main()
import doctest
doctest.testmod() | [] | [] | [] |
archives/1098994933_python.zip | linear_algebra/src/lib.py | # -*- coding: utf-8 -*-
"""
Created on Mon Feb 26 14:29:11 2018
@author: Christian Bender
@license: MIT-license
This module contains some useful classes and functions for dealing
with linear algebra in python.
Overview:
- class Vector
- function zeroVector(dimension)
- function unitBasisVector(dimension,pos)
- function axpy(scalar,vector1,vector2)
- function randomVector(N,a,b)
- class Matrix
- function squareZeroMatrix(N)
- function randomMatrix(W,H,a,b)
"""
import math
import random
class Vector(object):
"""
This class represents a vector of arbitray size.
You need to give the vector components.
Overview about the methods:
constructor(components : list) : init the vector
set(components : list) : changes the vector components.
__str__() : toString method
component(i : int): gets the i-th component (start by 0)
__len__() : gets the size of the vector (number of components)
euclidLength() : returns the eulidean length of the vector.
operator + : vector addition
operator - : vector subtraction
operator * : scalar multiplication and dot product
copy() : copies this vector and returns it.
changeComponent(pos,value) : changes the specified component.
TODO: compare-operator
"""
def __init__(self,components=[]):
"""
input: components or nothing
simple constructor for init the vector
"""
self.__components = list(components)
def set(self,components):
"""
input: new components
changes the components of the vector.
replace the components with newer one.
"""
if len(components) > 0:
self.__components = list(components)
else:
raise Exception("please give any vector")
def __str__(self):
"""
returns a string representation of the vector
"""
return "(" + ",".join(map(str, self.__components)) + ")"
def component(self,i):
"""
input: index (start at 0)
output: the i-th component of the vector.
"""
if type(i) is int and -len(self.__components) <= i < len(self.__components) :
return self.__components[i]
else:
raise Exception("index out of range")
def __len__(self):
"""
returns the size of the vector
"""
return len(self.__components)
def eulidLength(self):
"""
returns the eulidean length of the vector
"""
summe = 0
for c in self.__components:
summe += c**2
return math.sqrt(summe)
def __add__(self,other):
"""
input: other vector
assumes: other vector has the same size
returns a new vector that represents the sum.
"""
size = len(self)
if size == len(other):
result = [self.__components[i] + other.component(i) for i in range(size)]
return Vector(result)
else:
raise Exception("must have the same size")
def __sub__(self,other):
"""
input: other vector
assumes: other vector has the same size
returns a new vector that represents the differenz.
"""
size = len(self)
if size == len(other):
result = [self.__components[i] - other.component(i) for i in range(size)]
return result
else: # error case
raise Exception("must have the same size")
def __mul__(self,other):
"""
mul implements the scalar multiplication
and the dot-product
"""
if isinstance(other,float) or isinstance(other,int):
ans = [c*other for c in self.__components]
return ans
elif (isinstance(other,Vector) and (len(self) == len(other))):
size = len(self)
summe = 0
for i in range(size):
summe += self.__components[i] * other.component(i)
return summe
else: # error case
raise Exception("invalide operand!")
def copy(self):
"""
copies this vector and returns it.
"""
return Vector(self.__components)
def changeComponent(self,pos,value):
"""
input: an index (pos) and a value
changes the specified component (pos) with the
'value'
"""
#precondition
assert (-len(self.__components) <= pos < len(self.__components))
self.__components[pos] = value
def zeroVector(dimension):
"""
returns a zero-vector of size 'dimension'
"""
#precondition
assert(isinstance(dimension,int))
return Vector([0]*dimension)
def unitBasisVector(dimension,pos):
"""
returns a unit basis vector with a One
at index 'pos' (indexing at 0)
"""
#precondition
assert(isinstance(dimension,int) and (isinstance(pos,int)))
ans = [0]*dimension
ans[pos] = 1
return Vector(ans)
def axpy(scalar,x,y):
"""
input: a 'scalar' and two vectors 'x' and 'y'
output: a vector
computes the axpy operation
"""
# precondition
assert(isinstance(x,Vector) and (isinstance(y,Vector)) \
and (isinstance(scalar,int) or isinstance(scalar,float)))
return (x*scalar + y)
def randomVector(N,a,b):
"""
input: size (N) of the vector.
random range (a,b)
output: returns a random vector of size N, with
random integer components between 'a' and 'b'.
"""
random.seed(None)
ans = [random.randint(a,b) for i in range(N)]
return Vector(ans)
class Matrix(object):
"""
class: Matrix
This class represents a arbitrary matrix.
Overview about the methods:
__str__() : returns a string representation
operator * : implements the matrix vector multiplication
implements the matrix-scalar multiplication.
changeComponent(x,y,value) : changes the specified component.
component(x,y) : returns the specified component.
width() : returns the width of the matrix
height() : returns the height of the matrix
operator + : implements the matrix-addition.
operator - _ implements the matrix-subtraction
"""
def __init__(self,matrix,w,h):
"""
simple constructor for initialzes
the matrix with components.
"""
self.__matrix = matrix
self.__width = w
self.__height = h
def __str__(self):
"""
returns a string representation of this
matrix.
"""
ans = ""
for i in range(self.__height):
ans += "|"
for j in range(self.__width):
if j < self.__width -1:
ans += str(self.__matrix[i][j]) + ","
else:
ans += str(self.__matrix[i][j]) + "|\n"
return ans
def changeComponent(self,x,y, value):
"""
changes the x-y component of this matrix
"""
if x >= 0 and x < self.__height and y >= 0 and y < self.__width:
self.__matrix[x][y] = value
else:
raise Exception ("changeComponent: indices out of bounds")
def component(self,x,y):
"""
returns the specified (x,y) component
"""
if x >= 0 and x < self.__height and y >= 0 and y < self.__width:
return self.__matrix[x][y]
else:
raise Exception ("changeComponent: indices out of bounds")
def width(self):
"""
getter for the width
"""
return self.__width
def height(self):
"""
getter for the height
"""
return self.__height
def __mul__(self,other):
"""
implements the matrix-vector multiplication.
implements the matrix-scalar multiplication
"""
if isinstance(other, Vector): # vector-matrix
if (len(other) == self.__width):
ans = zeroVector(self.__height)
for i in range(self.__height):
summe = 0
for j in range(self.__width):
summe += other.component(j) * self.__matrix[i][j]
ans.changeComponent(i,summe)
summe = 0
return ans
else:
raise Exception("vector must have the same size as the " + "number of columns of the matrix!")
elif isinstance(other,int) or isinstance(other,float): # matrix-scalar
matrix = [[self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height)]
return Matrix(matrix,self.__width,self.__height)
def __add__(self,other):
"""
implements the matrix-addition.
"""
if (self.__width == other.width() and self.__height == other.height()):
matrix = []
for i in range(self.__height):
row = []
for j in range(self.__width):
row.append(self.__matrix[i][j] + other.component(i,j))
matrix.append(row)
return Matrix(matrix,self.__width,self.__height)
else:
raise Exception("matrix must have the same dimension!")
def __sub__(self,other):
"""
implements the matrix-subtraction.
"""
if (self.__width == other.width() and self.__height == other.height()):
matrix = []
for i in range(self.__height):
row = []
for j in range(self.__width):
row.append(self.__matrix[i][j] - other.component(i,j))
matrix.append(row)
return Matrix(matrix,self.__width,self.__height)
else:
raise Exception("matrix must have the same dimension!")
def squareZeroMatrix(N):
"""
returns a square zero-matrix of dimension NxN
"""
ans = [[0]*N for i in range(N)]
return Matrix(ans,N,N)
def randomMatrix(W,H,a,b):
"""
returns a random matrix WxH with integer components
between 'a' and 'b'
"""
random.seed(None)
matrix = [[random.randint(a,b) for j in range(W)] for i in range(H)]
return Matrix(matrix,W,H)
| [] | [] | [] |
archives/1098994933_python.zip | linear_algebra/src/polynom-for-points.py | def points_to_polynomial(coordinates):
"""
coordinates is a two dimensional matrix: [[x, y], [x, y], ...]
number of points you want to use
>>> print(points_to_polynomial([]))
The program cannot work out a fitting polynomial.
>>> print(points_to_polynomial([[]]))
The program cannot work out a fitting polynomial.
>>> print(points_to_polynomial([[1, 0], [2, 0], [3, 0]]))
f(x)=x^2*0.0+x^1*-0.0+x^0*0.0
>>> print(points_to_polynomial([[1, 1], [2, 1], [3, 1]]))
f(x)=x^2*0.0+x^1*-0.0+x^0*1.0
>>> print(points_to_polynomial([[1, 3], [2, 3], [3, 3]]))
f(x)=x^2*0.0+x^1*-0.0+x^0*3.0
>>> print(points_to_polynomial([[1, 1], [2, 2], [3, 3]]))
f(x)=x^2*0.0+x^1*1.0+x^0*0.0
>>> print(points_to_polynomial([[1, 1], [2, 4], [3, 9]]))
f(x)=x^2*1.0+x^1*-0.0+x^0*0.0
>>> print(points_to_polynomial([[1, 3], [2, 6], [3, 11]]))
f(x)=x^2*1.0+x^1*-0.0+x^0*2.0
>>> print(points_to_polynomial([[1, -3], [2, -6], [3, -11]]))
f(x)=x^2*-1.0+x^1*-0.0+x^0*-2.0
>>> print(points_to_polynomial([[1, 5], [2, 2], [3, 9]]))
f(x)=x^2*5.0+x^1*-18.0+x^0*18.0
"""
try:
check = 1
more_check = 0
d = coordinates[0][0]
for j in range(len(coordinates)):
if j == 0:
continue
if d == coordinates[j][0]:
more_check += 1
solved = "x=" + str(coordinates[j][0])
if more_check == len(coordinates) - 1:
check = 2
break
elif more_check > 0 and more_check != len(coordinates) - 1:
check = 3
else:
check = 1
if len(coordinates) == 1 and coordinates[0][0] == 0:
check = 2
solved = "x=0"
except Exception:
check = 3
x = len(coordinates)
if check == 1:
count_of_line = 0
matrix = []
# put the x and x to the power values in a matrix
while count_of_line < x:
count_in_line = 0
a = coordinates[count_of_line][0]
count_line = []
while count_in_line < x:
count_line.append(a ** (x - (count_in_line + 1)))
count_in_line += 1
matrix.append(count_line)
count_of_line += 1
count_of_line = 0
# put the y values into a vector
vector = []
while count_of_line < x:
count_in_line = 0
vector.append(coordinates[count_of_line][1])
count_of_line += 1
count = 0
while count < x:
zahlen = 0
while zahlen < x:
if count == zahlen:
zahlen += 1
if zahlen == x:
break
bruch = (matrix[zahlen][count]) / (matrix[count][count])
for counting_columns, item in enumerate(matrix[count]):
# manipulating all the values in the matrix
matrix[zahlen][counting_columns] -= item * bruch
# manipulating the values in the vector
vector[zahlen] -= vector[count] * bruch
zahlen += 1
count += 1
count = 0
# make solutions
solution = []
while count < x:
solution.append(vector[count] / matrix[count][count])
count += 1
count = 0
solved = "f(x)="
while count < x:
remove_e = str(solution[count]).split("E")
if len(remove_e) > 1:
solution[count] = remove_e[0] + "*10^" + remove_e[1]
solved += "x^" + str(x - (count + 1)) + "*" + str(solution[count])
if count + 1 != x:
solved += "+"
count += 1
return solved
elif check == 2:
return solved
else:
return "The program cannot work out a fitting polynomial."
if __name__ == "__main__":
print(points_to_polynomial([]))
print(points_to_polynomial([[]]))
print(points_to_polynomial([[1, 0], [2, 0], [3, 0]]))
print(points_to_polynomial([[1, 1], [2, 1], [3, 1]]))
print(points_to_polynomial([[1, 3], [2, 3], [3, 3]]))
print(points_to_polynomial([[1, 1], [2, 2], [3, 3]]))
print(points_to_polynomial([[1, 1], [2, 4], [3, 9]]))
print(points_to_polynomial([[1, 3], [2, 6], [3, 11]]))
print(points_to_polynomial([[1, -3], [2, -6], [3, -11]]))
print(points_to_polynomial([[1, 5], [2, 2], [3, 9]]))
| [] | [] | [] |
archives/1098994933_python.zip | linear_algebra/src/tests.py | # -*- coding: utf-8 -*-
"""
Created on Mon Feb 26 15:40:07 2018
@author: Christian Bender
@license: MIT-license
This file contains the test-suite for the linear algebra library.
"""
import unittest
from lib import *
class Test(unittest.TestCase):
def test_component(self):
"""
test for method component
"""
x = Vector([1,2,3])
self.assertEqual(x.component(0),1)
self.assertEqual(x.component(2),3)
try:
y = Vector()
self.assertTrue(False)
except:
self.assertTrue(True)
def test_str(self):
"""
test for toString() method
"""
x = Vector([0,0,0,0,0,1])
self.assertEqual(str(x),"(0,0,0,0,0,1)")
def test_size(self):
"""
test for size()-method
"""
x = Vector([1,2,3,4])
self.assertEqual(len(x),4)
def test_euclidLength(self):
"""
test for the eulidean length
"""
x = Vector([1,2])
self.assertAlmostEqual(x.eulidLength(),2.236,3)
def test_add(self):
"""
test for + operator
"""
x = Vector([1,2,3])
y = Vector([1,1,1])
self.assertEqual((x+y).component(0),2)
self.assertEqual((x+y).component(1),3)
self.assertEqual((x+y).component(2),4)
def test_sub(self):
"""
test for - operator
"""
x = Vector([1,2,3])
y = Vector([1,1,1])
self.assertEqual((x-y).component(0),0)
self.assertEqual((x-y).component(1),1)
self.assertEqual((x-y).component(2),2)
def test_mul(self):
"""
test for * operator
"""
x = Vector([1,2,3])
a = Vector([2,-1,4]) # for test of dot-product
b = Vector([1,-2,-1])
self.assertEqual(str(x*3.0),"(3.0,6.0,9.0)")
self.assertEqual((a*b),0)
def test_zeroVector(self):
"""
test for the global function zeroVector(...)
"""
self.assertTrue(str(zeroVector(10)).count("0") == 10)
def test_unitBasisVector(self):
"""
test for the global function unitBasisVector(...)
"""
self.assertEqual(str(unitBasisVector(3,1)),"(0,1,0)")
def test_axpy(self):
"""
test for the global function axpy(...) (operation)
"""
x = Vector([1,2,3])
y = Vector([1,0,1])
self.assertEqual(str(axpy(2,x,y)),"(3,4,7)")
def test_copy(self):
"""
test for the copy()-method
"""
x = Vector([1,0,0,0,0,0])
y = x.copy()
self.assertEqual(str(x),str(y))
def test_changeComponent(self):
"""
test for the changeComponent(...)-method
"""
x = Vector([1,0,0])
x.changeComponent(0,0)
x.changeComponent(1,1)
self.assertEqual(str(x),"(0,1,0)")
def test_str_matrix(self):
A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3)
self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n",str(A))
def test__mul__matrix(self):
A = Matrix([[1,2,3],[4,5,6],[7,8,9]],3,3)
x = Vector([1,2,3])
self.assertEqual("(14,32,50)",str(A*x))
self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n",str(A*2))
def test_changeComponent_matrix(self):
A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3)
A.changeComponent(0,2,5)
self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n",str(A))
def test_component_matrix(self):
A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3)
self.assertEqual(7,A.component(2,1),0.01)
def test__add__matrix(self):
A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3)
B = Matrix([[1,2,7],[2,4,5],[6,7,10]],3,3)
self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n",str(A+B))
def test__sub__matrix(self):
A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3)
B = Matrix([[1,2,7],[2,4,5],[6,7,10]],3,3)
self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n",str(A-B))
def test_squareZeroMatrix(self):
self.assertEqual('|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|'
+'\n|0,0,0,0,0|\n',str(squareZeroMatrix(5)))
if __name__ == "__main__":
unittest.main()
| [] | [] | [] |
archives/1098994933_python.zip | machine_learning/decision_tree.py | """
Implementation of a basic regression decision tree.
Input data set: The input data set must be 1-dimensional with continuous labels.
Output: The decision tree maps a real number input to a real number output.
"""
import numpy as np
class Decision_Tree:
def __init__(self, depth = 5, min_leaf_size = 5):
self.depth = depth
self.decision_boundary = 0
self.left = None
self.right = None
self.min_leaf_size = min_leaf_size
self.prediction = None
def mean_squared_error(self, labels, prediction):
"""
mean_squared_error:
@param labels: a one dimensional numpy array
@param prediction: a floating point value
return value: mean_squared_error calculates the error if prediction is used to estimate the labels
"""
if labels.ndim != 1:
print("Error: Input labels must be one dimensional")
return np.mean((labels - prediction) ** 2)
def train(self, X, y):
"""
train:
@param X: a one dimensional numpy array
@param y: a one dimensional numpy array.
The contents of y are the labels for the corresponding X values
train does not have a return value
"""
"""
this section is to check that the inputs conform to our dimensionality constraints
"""
if X.ndim != 1:
print("Error: Input data set must be one dimensional")
return
if len(X) != len(y):
print("Error: X and y have different lengths")
return
if y.ndim != 1:
print("Error: Data set labels must be one dimensional")
return
if len(X) < 2 * self.min_leaf_size:
self.prediction = np.mean(y)
return
if self.depth == 1:
self.prediction = np.mean(y)
return
best_split = 0
min_error = self.mean_squared_error(X,np.mean(y)) * 2
"""
loop over all possible splits for the decision tree. find the best split.
if no split exists that is less than 2 * error for the entire array
then the data set is not split and the average for the entire array is used as the predictor
"""
for i in range(len(X)):
if len(X[:i]) < self.min_leaf_size:
continue
elif len(X[i:]) < self.min_leaf_size:
continue
else:
error_left = self.mean_squared_error(X[:i], np.mean(y[:i]))
error_right = self.mean_squared_error(X[i:], np.mean(y[i:]))
error = error_left + error_right
if error < min_error:
best_split = i
min_error = error
if best_split != 0:
left_X = X[:best_split]
left_y = y[:best_split]
right_X = X[best_split:]
right_y = y[best_split:]
self.decision_boundary = X[best_split]
self.left = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
self.right = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
self.left.train(left_X, left_y)
self.right.train(right_X, right_y)
else:
self.prediction = np.mean(y)
return
def predict(self, x):
"""
predict:
@param x: a floating point value to predict the label of
the prediction function works by recursively calling the predict function
of the appropriate subtrees based on the tree's decision boundary
"""
if self.prediction is not None:
return self.prediction
elif self.left or self.right is not None:
if x >= self.decision_boundary:
return self.right.predict(x)
else:
return self.left.predict(x)
else:
print("Error: Decision tree not yet trained")
return None
def main():
"""
In this demonstration we're generating a sample data set from the sin function in numpy.
We then train a decision tree on the data set and use the decision tree to predict the
label of 10 different test values. Then the mean squared error over this test is displayed.
"""
X = np.arange(-1., 1., 0.005)
y = np.sin(X)
tree = Decision_Tree(depth = 10, min_leaf_size = 10)
tree.train(X,y)
test_cases = (np.random.rand(10) * 2) - 1
predictions = np.array([tree.predict(x) for x in test_cases])
avg_error = np.mean((predictions - test_cases) ** 2)
print("Test values: " + str(test_cases))
print("Predictions: " + str(predictions))
print("Average error: " + str(avg_error))
if __name__ == '__main__':
main() | [] | [] | [] |
archives/1098994933_python.zip | machine_learning/gradient_descent.py | """
Implementation of gradient descent algorithm for minimizing cost of a linear hypothesis function.
"""
import numpy
# List of input, output pairs
train_data = (((5, 2, 3), 15), ((6, 5, 9), 25),
((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41))
test_data = (((515, 22, 13), 555), ((61, 35, 49), 150))
parameter_vector = [2, 4, 1, 5]
m = len(train_data)
LEARNING_RATE = 0.009
def _error(example_no, data_set='train'):
"""
:param data_set: train data or test data
:param example_no: example number whose error has to be checked
:return: error in example pointed by example number.
"""
return calculate_hypothesis_value(example_no, data_set) - output(example_no, data_set)
def _hypothesis_value(data_input_tuple):
"""
Calculates hypothesis function value for a given input
:param data_input_tuple: Input tuple of a particular example
:return: Value of hypothesis function at that point.
Note that there is an 'biased input' whose value is fixed as 1.
It is not explicitly mentioned in input data.. But, ML hypothesis functions use it.
So, we have to take care of it separately. Line 36 takes care of it.
"""
hyp_val = 0
for i in range(len(parameter_vector) - 1):
hyp_val += data_input_tuple[i]*parameter_vector[i+1]
hyp_val += parameter_vector[0]
return hyp_val
def output(example_no, data_set):
"""
:param data_set: test data or train data
:param example_no: example whose output is to be fetched
:return: output for that example
"""
if data_set == 'train':
return train_data[example_no][1]
elif data_set == 'test':
return test_data[example_no][1]
def calculate_hypothesis_value(example_no, data_set):
"""
Calculates hypothesis value for a given example
:param data_set: test data or train_data
:param example_no: example whose hypothesis value is to be calculated
:return: hypothesis value for that example
"""
if data_set == "train":
return _hypothesis_value(train_data[example_no][0])
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0])
def summation_of_cost_derivative(index, end=m):
"""
Calculates the sum of cost function derivative
:param index: index wrt derivative is being calculated
:param end: value where summation ends, default is m, number of examples
:return: Returns the summation of cost derivative
Note: If index is -1, this means we are calculating summation wrt to biased parameter.
"""
summation_value = 0
for i in range(end):
if index == -1:
summation_value += _error(i)
else:
summation_value += _error(i)*train_data[i][0][index]
return summation_value
def get_cost_derivative(index):
"""
:param index: index of the parameter vector wrt to derivative is to be calculated
:return: derivative wrt to that index
Note: If index is -1, this means we are calculating summation wrt to biased parameter.
"""
cost_derivative_value = summation_of_cost_derivative(index, m)/m
return cost_derivative_value
def run_gradient_descent():
global parameter_vector
# Tune these values to set a tolerance value for predicted output
absolute_error_limit = 0.000002
relative_error_limit = 0
j = 0
while True:
j += 1
temp_parameter_vector = [0, 0, 0, 0]
for i in range(0, len(parameter_vector)):
cost_derivative = get_cost_derivative(i-1)
temp_parameter_vector[i] = parameter_vector[i] - \
LEARNING_RATE*cost_derivative
if numpy.allclose(parameter_vector, temp_parameter_vector,
atol=absolute_error_limit, rtol=relative_error_limit):
break
parameter_vector = temp_parameter_vector
print(("Number of iterations:", j))
def test_gradient_descent():
for i in range(len(test_data)):
print(("Actual output value:", output(i, 'test')))
print(("Hypothesis output:", calculate_hypothesis_value(i, 'test')))
if __name__ == '__main__':
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| [] | [] | [] |
archives/1098994933_python.zip | machine_learning/k_means_clust.py | '''README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com)
Requirements:
- sklearn
- numpy
- matplotlib
Python:
- 3.5
Inputs:
- X , a 2D numpy array of features.
- k , number of clusters to create.
- initial_centroids , initial centroid values generated by utility function(mentioned in usage).
- maxiter , maximum number of iterations to process.
- heterogeneity , empty list that will be filled with hetrogeneity values if passed to kmeans func.
Usage:
1. define 'k' value, 'X' features array and 'hetrogeneity' empty list
2. create initial_centroids,
initial_centroids = get_initial_centroids(
X,
k,
seed=0 # seed value for initial centroid generation, None for randomness(default=None)
)
3. find centroids and clusters using kmeans function.
centroids, cluster_assignment = kmeans(
X,
k,
initial_centroids,
maxiter=400,
record_heterogeneity=heterogeneity,
verbose=True # whether to print logs in console or not.(default=False)
)
4. Plot the loss function, hetrogeneity values for every iteration saved in hetrogeneity list.
plot_heterogeneity(
heterogeneity,
k
)
5. Have fun..
'''
from sklearn.metrics import pairwise_distances
import numpy as np
TAG = 'K-MEANS-CLUST/ '
def get_initial_centroids(data, k, seed=None):
'''Randomly choose k data points as initial centroids'''
if seed is not None: # useful for obtaining consistent results
np.random.seed(seed)
n = data.shape[0] # number of data points
# Pick K indices from range [0, N).
rand_indices = np.random.randint(0, n, k)
# Keep centroids as dense format, as many entries will be nonzero due to averaging.
# As long as at least one document in a cluster contains a word,
# it will carry a nonzero weight in the TF-IDF vector of the centroid.
centroids = data[rand_indices,:]
return centroids
def centroid_pairwise_dist(X,centroids):
return pairwise_distances(X,centroids,metric='euclidean')
def assign_clusters(data, centroids):
# Compute distances between each data point and the set of centroids:
# Fill in the blank (RHS only)
distances_from_centroids = centroid_pairwise_dist(data,centroids)
# Compute cluster assignments for each data point:
# Fill in the blank (RHS only)
cluster_assignment = np.argmin(distances_from_centroids,axis=1)
return cluster_assignment
def revise_centroids(data, k, cluster_assignment):
new_centroids = []
for i in range(k):
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
member_data_points = data[cluster_assignment==i]
# Compute the mean of the data points. Fill in the blank (RHS only)
centroid = member_data_points.mean(axis=0)
new_centroids.append(centroid)
new_centroids = np.array(new_centroids)
return new_centroids
def compute_heterogeneity(data, k, centroids, cluster_assignment):
heterogeneity = 0.0
for i in range(k):
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
member_data_points = data[cluster_assignment==i, :]
if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty
# Compute distances from centroid to data points (RHS only)
distances = pairwise_distances(member_data_points, [centroids[i]], metric='euclidean')
squared_distances = distances**2
heterogeneity += np.sum(squared_distances)
return heterogeneity
from matplotlib import pyplot as plt
def plot_heterogeneity(heterogeneity, k):
plt.figure(figsize=(7,4))
plt.plot(heterogeneity, linewidth=4)
plt.xlabel('# Iterations')
plt.ylabel('Heterogeneity')
plt.title('Heterogeneity of clustering over time, K={0:d}'.format(k))
plt.rcParams.update({'font.size': 16})
plt.show()
def kmeans(data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False):
'''This function runs k-means on given data and initial set of centroids.
maxiter: maximum number of iterations to run.(default=500)
record_heterogeneity: (optional) a list, to store the history of heterogeneity as function of iterations
if None, do not store the history.
verbose: if True, print how many data points changed their cluster labels in each iteration'''
centroids = initial_centroids[:]
prev_cluster_assignment = None
for itr in range(maxiter):
if verbose:
print(itr, end='')
# 1. Make cluster assignments using nearest centroids
cluster_assignment = assign_clusters(data,centroids)
# 2. Compute a new centroid for each of the k clusters, averaging all data points assigned to that cluster.
centroids = revise_centroids(data,k, cluster_assignment)
# Check for convergence: if none of the assignments changed, stop
if prev_cluster_assignment is not None and \
(prev_cluster_assignment==cluster_assignment).all():
break
# Print number of new assignments
if prev_cluster_assignment is not None:
num_changed = np.sum(prev_cluster_assignment!=cluster_assignment)
if verbose:
print(' {0:5d} elements changed their cluster assignment.'.format(num_changed))
# Record heterogeneity convergence metric
if record_heterogeneity is not None:
# YOUR CODE HERE
score = compute_heterogeneity(data,k,centroids,cluster_assignment)
record_heterogeneity.append(score)
prev_cluster_assignment = cluster_assignment[:]
return centroids, cluster_assignment
# Mock test below
if False: # change to true to run this test case.
import sklearn.datasets as ds
dataset = ds.load_iris()
k = 3
heterogeneity = []
initial_centroids = get_initial_centroids(dataset['data'], k, seed=0)
centroids, cluster_assignment = kmeans(dataset['data'], k, initial_centroids, maxiter=400,
record_heterogeneity=heterogeneity, verbose=True)
plot_heterogeneity(heterogeneity, k)
| [] | [] | [] |
archives/1098994933_python.zip | machine_learning/knn_sklearn.py | from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
#Load iris file
iris = load_iris()
iris.keys()
print('Target names: \n {} '.format(iris.target_names))
print('\n Features: \n {}'.format(iris.feature_names))
#Train set e Test set
X_train, X_test, y_train, y_test = train_test_split(iris['data'],iris['target'], random_state=4)
#KNN
knn = KNeighborsClassifier (n_neighbors = 1)
knn.fit(X_train, y_train)
#new array to test
X_new = [[1,2,1,4],
[2,3,4,5]]
prediction = knn.predict(X_new)
print('\nNew array: \n {}'
'\n\nTarget Names Prediction: \n {}'.format(X_new, iris['target_names'][prediction]))
| [] | [] | [] |
archives/1098994933_python.zip | machine_learning/linear_regression.py | """
Linear regression is the most basic type of regression commonly used for
predictive analysis. The idea is pretty simple, we have a dataset and we have
a feature's associated with it. The Features should be choose very cautiously
as they determine, how much our model will be able to make future predictions.
We try to set these Feature weights, over many iterations, so that they best
fits our dataset. In this particular code, i had used a CSGO dataset (ADR vs
Rating). We try to best fit a line through dataset and estimate the parameters.
"""
import requests
import numpy as np
def collect_dataset():
""" Collect dataset of CSGO
The dataset contains ADR vs Rating of a Player
:return : dataset obtained from the link, as matrix
"""
response = requests.get('https://raw.githubusercontent.com/yashLadha/' +
'The_Math_of_Intelligence/master/Week1/ADRvs' +
'Rating.csv')
lines = response.text.splitlines()
data = []
for item in lines:
item = item.split(',')
data.append(item)
data.pop(0) # This is for removing the labels from the list
dataset = np.matrix(data)
return dataset
def run_steep_gradient_descent(data_x, data_y,
len_data, alpha, theta):
""" Run steep gradient descent and updates the Feature vector accordingly_
:param data_x : contains the dataset
:param data_y : contains the output associated with each data-entry
:param len_data : length of the data_
:param alpha : Learning rate of the model
:param theta : Feature vector (weight's for our model)
;param return : Updated Feature's, using
curr_features - alpha_ * gradient(w.r.t. feature)
"""
n = len_data
prod = np.dot(theta, data_x.transpose())
prod -= data_y.transpose()
sum_grad = np.dot(prod, data_x)
theta = theta - (alpha / n) * sum_grad
return theta
def sum_of_square_error(data_x, data_y, len_data, theta):
""" Return sum of square error for error calculation
:param data_x : contains our dataset
:param data_y : contains the output (result vector)
:param len_data : len of the dataset
:param theta : contains the feature vector
:return : sum of square error computed from given feature's
"""
prod = np.dot(theta, data_x.transpose())
prod -= data_y.transpose()
sum_elem = np.sum(np.square(prod))
error = sum_elem / (2 * len_data)
return error
def run_linear_regression(data_x, data_y):
""" Implement Linear regression over the dataset
:param data_x : contains our dataset
:param data_y : contains the output (result vector)
:return : feature for line of best fit (Feature vector)
"""
iterations = 100000
alpha = 0.0001550
no_features = data_x.shape[1]
len_data = data_x.shape[0] - 1
theta = np.zeros((1, no_features))
for i in range(0, iterations):
theta = run_steep_gradient_descent(data_x, data_y,
len_data, alpha, theta)
error = sum_of_square_error(data_x, data_y, len_data, theta)
print('At Iteration %d - Error is %.5f ' % (i + 1, error))
return theta
def main():
""" Driver function """
data = collect_dataset()
len_data = data.shape[0]
data_x = np.c_[np.ones(len_data), data[:, :-1]].astype(float)
data_y = data[:, -1].astype(float)
theta = run_linear_regression(data_x, data_y)
len_result = theta.shape[1]
print('Resultant Feature vector : ')
for i in range(0, len_result):
print('%.5f' % (theta[0, i]))
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | machine_learning/logistic_regression.py | #!/usr/bin/python
# -*- coding: utf-8 -*-
## Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
''' Implementing logistic regression for classification problem
Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac'''
import numpy as np
import matplotlib.pyplot as plt
# get_ipython().run_line_magic('matplotlib', 'inline')
from sklearn import datasets
# In[67]:
# sigmoid function or logistic function is used as a hypothesis function in classification problems
def sigmoid_function(z):
return 1 / (1 + np.exp(-z))
def cost_function(h, y):
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
def log_likelihood(X, Y, weights):
scores = np.dot(X, weights)
return np.sum(Y*scores - np.log(1 + np.exp(scores)) )
# here alpha is the learning rate, X is the feature matrix,y is the target matrix
def logistic_reg(
alpha,
X,
y,
max_iterations=70000,
):
theta = np.zeros(X.shape[1])
for iterations in range(max_iterations):
z = np.dot(X, theta)
h = sigmoid_function(z)
gradient = np.dot(X.T, h - y) / y.size
theta = theta - alpha * gradient # updating the weights
z = np.dot(X, theta)
h = sigmoid_function(z)
J = cost_function(h, y)
if iterations % 100 == 0:
print(f'loss: {J} \t') # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == '__main__':
iris = datasets.load_iris()
X = iris.data[:, :2]
y = (iris.target != 0) * 1
alpha = 0.1
theta = logistic_reg(alpha,X,y,max_iterations=70000)
print("theta: ",theta) # printing the theta i.e our weights vector
def predict_prob(X):
return sigmoid_function(np.dot(X, theta)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='0')
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='1')
(x1_min, x1_max) = (X[:, 0].min(), X[:, 0].max())
(x2_min, x2_max) = (X[:, 1].min(), X[:, 1].max())
(xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max),
np.linspace(x2_min, x2_max))
grid = np.c_[xx1.ravel(), xx2.ravel()]
probs = predict_prob(grid).reshape(xx1.shape)
plt.contour(
xx1,
xx2,
probs,
[0.5],
linewidths=1,
colors='black',
)
plt.legend()
plt.show()
| [] | [] | [] |
archives/1098994933_python.zip | machine_learning/random_forest_classification/random_forest_classification.py | # Random Forest Classification
# Importing the libraries
import os
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
script_dir = os.path.dirname(os.path.realpath(__file__))
dataset = pd.read_csv(os.path.join(script_dir, 'Social_Network_Ads.csv'))
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Fitting Random Forest Classification to the Training set
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
# Visualising the Training set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Random Forest Classification (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
# Visualising the Test set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Random Forest Classification (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
| [] | [] | [] |
archives/1098994933_python.zip | machine_learning/random_forest_regression/random_forest_regression.py | # Random Forest Regression
# Importing the libraries
import os
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
script_dir = os.path.dirname(os.path.realpath(__file__))
dataset = pd.read_csv(os.path.join(script_dir, 'Position_Salaries.csv'))
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values
# Splitting the dataset into the Training set and Test set
"""from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)"""
# Feature Scaling
"""from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
sc_y = StandardScaler()
y_train = sc_y.fit_transform(y_train)"""
# Fitting Random Forest Regression to the dataset
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators = 10, random_state = 0)
regressor.fit(X, y)
# Predicting a new result
y_pred = regressor.predict([[6.5]])
# Visualising the Random Forest Regression results (higher resolution)
X_grid = np.arange(min(X), max(X), 0.01)
X_grid = X_grid.reshape((len(X_grid), 1))
plt.scatter(X, y, color = 'red')
plt.plot(X_grid, regressor.predict(X_grid), color = 'blue')
plt.title('Truth or Bluff (Random Forest Regression)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()
| [] | [] | [] |
archives/1098994933_python.zip | machine_learning/scoring_functions.py | import numpy as np
""" Here I implemented the scoring functions.
MAE, MSE, RMSE, RMSLE are included.
Those are used for calculating differences between
predicted values and actual values.
Metrics are slightly differentiated. Sometimes squared, rooted,
even log is used.
Using log and roots can be perceived as tools for penalizing big
erors. However, using appropriate metrics depends on the situations,
and types of data
"""
#Mean Absolute Error
def mae(predict, actual):
predict = np.array(predict)
actual = np.array(actual)
difference = abs(predict - actual)
score = difference.mean()
return score
#Mean Squared Error
def mse(predict, actual):
predict = np.array(predict)
actual = np.array(actual)
difference = predict - actual
square_diff = np.square(difference)
score = square_diff.mean()
return score
#Root Mean Squared Error
def rmse(predict, actual):
predict = np.array(predict)
actual = np.array(actual)
difference = predict - actual
square_diff = np.square(difference)
mean_square_diff = square_diff.mean()
score = np.sqrt(mean_square_diff)
return score
#Root Mean Square Logarithmic Error
def rmsle(predict, actual):
predict = np.array(predict)
actual = np.array(actual)
log_predict = np.log(predict+1)
log_actual = np.log(actual+1)
difference = log_predict - log_actual
square_diff = np.square(difference)
mean_square_diff = square_diff.mean()
score = np.sqrt(mean_square_diff)
return score
#Mean Bias Deviation
def mbd(predict, actual):
predict = np.array(predict)
actual = np.array(actual)
difference = predict - actual
numerator = np.sum(difference) / len(predict)
denumerator = np.sum(actual) / len(predict)
print(numerator)
print(denumerator)
score = float(numerator) / denumerator * 100
return score
| [] | [] | [] |
archives/1098994933_python.zip | machine_learning/sorted_vector_machines.py | from sklearn.datasets import load_iris
from sklearn import svm
from sklearn.model_selection import train_test_split
import doctest
# different functions implementing different types of SVM's
def NuSVC(train_x, train_y):
svc_NuSVC = svm.NuSVC()
svc_NuSVC.fit(train_x, train_y)
return svc_NuSVC
def Linearsvc(train_x, train_y):
svc_linear = svm.LinearSVC()
svc_linear.fit(train_x, train_y)
return svc_linear
def SVC(train_x, train_y):
# svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None)
# various parameters like "kernal","gamma","C" can effectively tuned for a given machine learning model.
SVC = svm.SVC(gamma="auto")
SVC.fit(train_x, train_y)
return SVC
def test(X_new):
"""
3 test cases to be passed
an array containing the sepal length (cm), sepal width (cm),petal length (cm),petal width (cm)
based on which the target name will be predicted
>>> test([1,2,1,4])
'virginica'
>>> test([5, 2, 4, 1])
'versicolor'
>>> test([6,3,4,1])
'versicolor'
"""
iris = load_iris()
# splitting the dataset to test and train
train_x, test_x, train_y, test_y = train_test_split(
iris["data"], iris["target"], random_state=4
)
# any of the 3 types of SVM can be used
# current_model=SVC(train_x, train_y)
# current_model=NuSVC(train_x, train_y)
current_model = Linearsvc(train_x, train_y)
prediction = current_model.predict([X_new])
return iris["target_names"][prediction][0]
if __name__ == "__main__":
doctest.testmod()
| [] | [] | [] |
archives/1098994933_python.zip | maths/3n+1.py | from typing import Tuple, List
def n31(a: int) -> Tuple[List[int], int]:
"""
Returns the Collatz sequence and its length of any postiver integer.
>>> n31(4)
([4, 2, 1], 3)
"""
if not isinstance(a, int):
raise TypeError('Must be int, not {0}'.format(type(a).__name__))
if a < 1:
raise ValueError('Given integer must be greater than 1, not {0}'.format(a))
path = [a]
while a != 1:
if a % 2 == 0:
a = a // 2
else:
a = 3*a +1
path += [a]
return path, len(path)
def main():
num = 4
path , length = n31(num)
print("The Collatz sequence of {0} took {1} steps. \nPath: {2}".format(num,length, path))
if __name__ == '__main__':
main()
| [
"int"
] | [
43
] | [
46
] |
archives/1098994933_python.zip | maths/__init__.py | [] | [] | [] |
|
archives/1098994933_python.zip | maths/abs.py | """Absolute Value."""
def abs_val(num):
"""
Find the absolute value of a number.
>>abs_val(-5)
5
>>abs_val(0)
0
"""
if num < 0:
return -num
# Returns if number is not < 0
return num
def main():
"""Print absolute value of -34."""
print(abs_val(-34)) # = 34
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/abs_max.py | from typing import List
def abs_max(x: List[int]) -> int:
"""
>>> abs_max([0,5,1,11])
11
>>> abs_max([3,-10,-2])
-10
"""
j =x[0]
for i in x:
if abs(i) > abs(j):
j = i
return j
def abs_max_sort(x):
"""
>>> abs_max_sort([0,5,1,11])
11
>>> abs_max_sort([3,-10,-2])
-10
"""
return sorted(x,key=abs)[-1]
def main():
a = [1,2,-11]
assert abs_max(a) == -11
assert abs_max_sort(a) == -11
if __name__ == '__main__':
main()
| [
"List[int]"
] | [
41
] | [
50
] |
archives/1098994933_python.zip | maths/abs_min.py | from .abs import abs_val
def absMin(x):
"""
>>> absMin([0,5,1,11])
0
>>> absMin([3,-10,-2])
-2
"""
j = x[0]
for i in x:
if abs_val(i) < abs_val(j):
j = i
return j
def main():
a = [-3,-1,2,-11]
print(absMin(a)) # = -1
if __name__ == '__main__':
main() | [] | [] | [] |
archives/1098994933_python.zip | maths/average_mean.py | """Find mean of a list of numbers."""
def average(nums):
"""Find mean of a list of numbers."""
sum = 0
for x in nums:
sum += x
avg = sum / len(nums)
print(avg)
return avg
def main():
"""Call average module to find mean of a specific list of numbers."""
average([2, 4, 6, 8, 20, 50, 70])
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/average_median.py | def median(nums):
"""
Find median of a list of numbers.
>>> median([0])
0
>>> median([4,1,3,2])
2.5
Args:
nums: List of nums
Returns:
Median.
"""
sorted_list = sorted(nums)
med = None
if len(sorted_list) % 2 == 0:
mid_index_1 = len(sorted_list) // 2
mid_index_2 = (len(sorted_list) // 2) - 1
med = (sorted_list[mid_index_1] + sorted_list[mid_index_2]) / float(2)
else:
mid_index = (len(sorted_list) - 1) // 2
med = sorted_list[mid_index]
return med
def main():
print("Odd number of numbers:")
print(median([2, 4, 6, 8, 20, 50, 70]))
print("Even number of numbers:")
print(median([2, 4, 6, 8, 20, 50]))
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/basic_maths.py | """Implementation of Basic Math in Python."""
import math
def prime_factors(n):
"""Find Prime Factors."""
pf = []
while n % 2 == 0:
pf.append(2)
n = int(n / 2)
for i in range(3, int(math.sqrt(n)) + 1, 2):
while n % i == 0:
pf.append(i)
n = int(n / i)
if n > 2:
pf.append(n)
return pf
def number_of_divisors(n):
"""Calculate Number of Divisors of an Integer."""
div = 1
temp = 1
while n % 2 == 0:
temp += 1
n = int(n / 2)
div = div * (temp)
for i in range(3, int(math.sqrt(n)) + 1, 2):
temp = 1
while n % i == 0:
temp += 1
n = int(n / i)
div = div * (temp)
return div
def sum_of_divisors(n):
"""Calculate Sum of Divisors."""
s = 1
temp = 1
while n % 2 == 0:
temp += 1
n = int(n / 2)
if temp > 1:
s *= (2**temp - 1) / (2 - 1)
for i in range(3, int(math.sqrt(n)) + 1, 2):
temp = 1
while n % i == 0:
temp += 1
n = int(n / i)
if temp > 1:
s *= (i**temp - 1) / (i - 1)
return s
def euler_phi(n):
"""Calculte Euler's Phi Function."""
l = prime_factors(n)
l = set(l)
s = n
for x in l:
s *= (x - 1) / x
return s
def main():
"""Print the Results of Basic Math Operations."""
print(prime_factors(100))
print(number_of_divisors(100))
print(sum_of_divisors(100))
print(euler_phi(100))
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/binary_exponentiation.py | """Binary Exponentiation."""
# Author : Junth Basnet
# Time Complexity : O(logn)
def binary_exponentiation(a, n):
if (n == 0):
return 1
elif (n % 2 == 1):
return binary_exponentiation(a, n - 1) * a
else:
b = binary_exponentiation(a, n / 2)
return b * b
if __name__ == "__main__":
try:
BASE = int(input("Enter Base : ").strip())
POWER = int(input("Enter Power : ").strip())
except ValueError:
print("Invalid literal for integer")
RESULT = binary_exponentiation(BASE, POWER)
print("{}^({}) : {}".format(BASE, POWER, RESULT))
| [] | [] | [] |
archives/1098994933_python.zip | maths/collatz_sequence.py | def collatz_sequence(n):
"""
Collatz conjecture: start with any positive integer n.Next termis obtained from the previous term as follows:
if the previous term is even, the next term is one half the previous term.
If the previous term is odd, the next term is 3 times the previous term plus 1.
The conjecture states the sequence will always reach 1 regaardess of starting n.
Example:
>>> collatz_sequence(43)
[43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
"""
sequence = [n]
while n != 1:
if n % 2 == 0:# even
n //= 2
else:
n = 3*n +1
sequence.append(n)
return sequence
def main():
n = 43
sequence = collatz_sequence(n)
print(sequence)
print("collatz sequence from %d took %d steps."%(n,len(sequence)))
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/extended_euclidean_algorithm.py | """
Extended Euclidean Algorithm.
Finds 2 numbers a and b such that it satisfies
the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)
"""
# @Author: S. Sharma <silentcat>
# @Date: 2019-02-25T12:08:53-06:00
# @Email: silentcat@protonmail.com
# @Last modified by: PatOnTheBack
# @Last modified time: 2019-07-05
import sys
def extended_euclidean_algorithm(m, n):
"""
Extended Euclidean Algorithm.
Finds 2 numbers a and b such that it satisfies
the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)
"""
a = 0
a_prime = 1
b = 1
b_prime = 0
q = 0
r = 0
if m > n:
c = m
d = n
else:
c = n
d = m
while True:
q = int(c / d)
r = c % d
if r == 0:
break
c = d
d = r
t = a_prime
a_prime = a
a = t - q * a
t = b_prime
b_prime = b
b = t - q * b
pair = None
if m > n:
pair = (a, b)
else:
pair = (b, a)
return pair
def main():
"""Call Extended Euclidean Algorithm."""
if len(sys.argv) < 3:
print('2 integer arguments required')
exit(1)
m = int(sys.argv[1])
n = int(sys.argv[2])
print(extended_euclidean_algorithm(m, n))
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/factorial_python.py | """Python program to find the factorial of a number provided by the user."""
# change the value for a different result
NUM = 10
# uncomment to take input from the user
# num = int(input("Enter a number: "))
FACTORIAL = 1
# check if the number is negative, positive or zero
if NUM < 0:
print("Sorry, factorial does not exist for negative numbers")
elif NUM == 0:
print("The factorial of 0 is 1")
else:
for i in range(1, NUM + 1):
FACTORIAL = FACTORIAL * i
print("The factorial of", NUM, "is", FACTORIAL)
| [] | [] | [] |
archives/1098994933_python.zip | maths/factorial_recursive.py | def fact(n):
"""
Return 1, if n is 1 or below,
otherwise, return n * fact(n-1).
"""
return 1 if n <= 1 else n * fact(n - 1)
"""
Show factorial for i,
where i ranges from 1 to 20.
"""
for i in range(1, 21):
print(i, ": ", fact(i), sep='')
| [] | [] | [] |
archives/1098994933_python.zip | maths/fermat_little_theorem.py | # Python program to show the usage of Fermat's little theorem in a division
# According to Fermat's little theorem, (a / b) mod p always equals a * (b ^ (p - 2)) mod p
# Here we assume that p is a prime number, b divides a, and p doesn't divide b
# Wikipedia reference: https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
def binary_exponentiation(a, n, mod):
if (n == 0):
return 1
elif (n % 2 == 1):
return (binary_exponentiation(a, n - 1, mod) * a) % mod
else:
b = binary_exponentiation(a, n / 2, mod)
return (b * b) % mod
# a prime number
p = 701
a = 1000000000
b = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
# using Python operators:
print((a / b) % p == (a * b ** (p - 2)) % p)
| [] | [] | [] |
archives/1098994933_python.zip | maths/fibonacci.py | # fibonacci.py
"""
1. Calculates the iterative fibonacci sequence
2. Calculates the fibonacci sequence with a formula
an = [ Phin - (phi)n ]/Sqrt[5]
reference-->Su, Francis E., et al. "Fibonacci Number Formula." Math Fun Facts. <http://www.math.hmc.edu/funfacts>
"""
import math
import functools
import time
from decimal import getcontext, Decimal
getcontext().prec = 100
def timer_decorator(func):
@functools.wraps(func)
def timer_wrapper(*args, **kwargs):
start = time.time()
func(*args, **kwargs)
end = time.time()
if int(end - start) > 0:
print(f'Run time for {func.__name__}: {(end - start):0.2f}s')
else:
print(f'Run time for {func.__name__}: {(end - start)*1000:0.2f}ms')
return func(*args, **kwargs)
return timer_wrapper
# define Python user-defined exceptions
class Error(Exception):
"""Base class for other exceptions"""
class ValueTooLargeError(Error):
"""Raised when the input value is too large"""
class ValueTooSmallError(Error):
"""Raised when the input value is not greater than one"""
class ValueLessThanZero(Error):
"""Raised when the input value is less than zero"""
def _check_number_input(n, min_thresh, max_thresh=None):
"""
:param n: single integer
:type n: int
:param min_thresh: min threshold, single integer
:type min_thresh: int
:param max_thresh: max threshold, single integer
:type max_thresh: int
:return: boolean
"""
try:
if n >= min_thresh and max_thresh is None:
return True
elif min_thresh <= n <= max_thresh:
return True
elif n < 0:
raise ValueLessThanZero
elif n < min_thresh:
raise ValueTooSmallError
elif n > max_thresh:
raise ValueTooLargeError
except ValueLessThanZero:
print("Incorrect Input: number must not be less than 0")
except ValueTooSmallError:
print(f'Incorrect Input: input number must be > {min_thresh} for the recursive calculation')
except ValueTooLargeError:
print(f'Incorrect Input: input number must be < {max_thresh} for the recursive calculation')
return False
@timer_decorator
def fib_iterative(n):
"""
:param n: calculate Fibonacci to the nth integer
:type n:int
:return: Fibonacci sequence as a list
"""
n = int(n)
if _check_number_input(n, 2):
seq_out = [0, 1]
a, b = 0, 1
for _ in range(n-len(seq_out)):
a, b = b, a+b
seq_out.append(b)
return seq_out
@timer_decorator
def fib_formula(n):
"""
:param n: calculate Fibonacci to the nth integer
:type n:int
:return: Fibonacci sequence as a list
"""
seq_out = [0, 1]
n = int(n)
if _check_number_input(n, 2, 1000000):
sqrt = Decimal(math.sqrt(5))
phi_1 = Decimal(1 + sqrt) / Decimal(2)
phi_2 = Decimal(1 - sqrt) / Decimal(2)
for i in range(2, n):
temp_out = ((phi_1**Decimal(i)) - (phi_2**Decimal(i))) * (Decimal(sqrt) ** Decimal(-1))
seq_out.append(int(temp_out))
return seq_out
if __name__ == '__main__':
num = 20
# print(f'{fib_recursive(num)}\n')
# print(f'{fib_iterative(num)}\n')
# print(f'{fib_formula(num)}\n')
fib_iterative(num)
fib_formula(num)
| [] | [] | [] |
archives/1098994933_python.zip | maths/fibonacci_sequence_recursion.py | # Fibonacci Sequence Using Recursion
def recur_fibo(n):
if n <= 1:
return n
else:
(recur_fibo(n-1) + recur_fibo(n-2))
def isPositiveInteger(limit):
return limit >= 0
def main():
limit = int(input("How many terms to include in fibonacci series: "))
if isPositiveInteger(limit):
print("The first {limit} terms of the fibonacci series are as follows:")
print([recur_fibo(n) for n in range(limit)])
else:
print("Please enter a positive integer: ")
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/find_lcm.py | """Find Least Common Multiple."""
# https://en.wikipedia.org/wiki/Least_common_multiple
def find_lcm(num_1, num_2):
"""Find the least common multiple of two numbers.
>>> find_lcm(5,2)
10
>>> find_lcm(12,76)
228
"""
if num_1>=num_2:
max_num=num_1
else:
max_num=num_2
lcm = max_num
while True:
if ((lcm % num_1 == 0) and (lcm % num_2 == 0)):
break
lcm += max_num
return lcm
def main():
"""Use test numbers to run the find_lcm algorithm."""
num_1 = int(input().strip())
num_2 = int(input().strip())
print(find_lcm(num_1, num_2))
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/find_max.py | # NguyenU
def find_max(nums):
max = nums[0]
for x in nums:
if x > max:
max = x
print(max)
def main():
find_max([2, 4, 9, 7, 19, 94, 5])
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/find_min.py | """Find Minimum Number in a List."""
def main():
"""Find Minimum Number in a List."""
def find_min(x):
min_num = x[0]
for i in x:
if min_num > i:
min_num = i
return min_num
print(find_min([0, 1, 2, 3, 4, 5, -3, 24, -56])) # = -56
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/gaussian.py |
"""
Reference: https://en.wikipedia.org/wiki/Gaussian_function
python/black : True
python : 3.7.3
"""
from numpy import pi, sqrt, exp
def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int:
"""
>>> gaussian(1)
0.24197072451914337
>>> gaussian(24)
3.342714441794458e-126
Supports NumPy Arrays
Use numpy.meshgrid with this to generate gaussian blur on images.
>>> import numpy as np
>>> x = np.arange(15)
>>> gaussian(x)
array([3.98942280e-01, 2.41970725e-01, 5.39909665e-02, 4.43184841e-03,
1.33830226e-04, 1.48671951e-06, 6.07588285e-09, 9.13472041e-12,
5.05227108e-15, 1.02797736e-18, 7.69459863e-23, 2.11881925e-27,
2.14638374e-32, 7.99882776e-38, 1.09660656e-43])
>>> gaussian(15)
5.530709549844416e-50
>>> gaussian([1,2, 'string'])
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for -: 'list' and 'float'
>>> gaussian('hello world')
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for -: 'str' and 'float'
>>> gaussian(10**234) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
OverflowError: (34, 'Result too large')
>>> gaussian(10**-326)
0.3989422804014327
>>> gaussian(2523, mu=234234, sigma=3425)
0.0
"""
return 1 / sqrt(2 * pi * sigma ** 2) * exp(-(x - mu) ** 2 / 2 * sigma ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod()
| [] | [] | [] |
archives/1098994933_python.zip | maths/greater_common_divisor.py | """
Greater Common Divisor.
Wikipedia reference: https://en.wikipedia.org/wiki/Greatest_common_divisor
"""
def gcd(a, b):
"""Calculate Greater Common Divisor (GCD)."""
return b if a == 0 else gcd(b % a, a)
def main():
"""Call GCD Function."""
try:
nums = input("Enter two Integers separated by comma (,): ").split(',')
num_1 = int(nums[0])
num_2 = int(nums[1])
except (IndexError, UnboundLocalError, ValueError):
print("Wrong Input")
print(f"gcd({num_1}, {num_2}) = {gcd(num_1, num_2)}")
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/is_square_free.py | """
References: wikipedia:square free number
python/black : True
flake8 : True
"""
from typing import List
def is_square_free(factors: List[int]) -> bool:
"""
# doctest: +NORMALIZE_WHITESPACE
This functions takes a list of prime factors as input.
returns True if the factors are square free.
>>> is_square_free([1, 1, 2, 3, 4])
False
These are wrong but should return some value
it simply checks for repition in the numbers.
>>> is_square_free([1, 3, 4, 'sd', 0.0])
True
>>> is_square_free([1, 0.5, 2, 0.0])
True
>>> is_square_free([1, 2, 2, 5])
False
>>> is_square_free('asd')
True
>>> is_square_free(24)
Traceback (most recent call last):
...
TypeError: 'int' object is not iterable
"""
return len(set(factors)) == len(factors)
if __name__ == "__main__":
import doctest
doctest.testmod()
| [
"List[int]"
] | [
145
] | [
154
] |
archives/1098994933_python.zip | maths/largest_of_very_large_numbers.py | # Author: Abhijeeth S
import math
def res(x, y):
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.log10(x)
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
prompt = "Enter the base and the power separated by a comma: "
x1, y1 = map(int, input(prompt).split(","))
x2, y2 = map(int, input(prompt).split(","))
# We find the log of each number, using the function res(), which takes two
# arguments.
res1 = res(x1, y1)
res2 = res(x2, y2)
# We check for the largest number
if res1 > res2:
print("Largest number is", x1, "^", y1)
elif res2 > res1:
print("Largest number is", x2, "^", y2)
else:
print("Both are equal")
| [] | [] | [] |
archives/1098994933_python.zip | maths/lucas_lehmer_primality_test.py | # -*- coding: utf-8 -*-
"""
In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers.
https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
A Mersenne number is a number that is one less than a power of two.
That is M_p = 2^p - 1
https://en.wikipedia.org/wiki/Mersenne_prime
The Lucas–Lehmer test is the primality test used by the
Great Internet Mersenne Prime Search (GIMPS) to locate large primes.
"""
# Primality test 2^p - 1
# Return true if 2^p - 1 is prime
def lucas_lehmer_test(p: int) -> bool:
"""
>>> lucas_lehmer_test(p=7)
True
>>> lucas_lehmer_test(p=11)
False
# M_11 = 2^11 - 1 = 2047 = 23 * 89
"""
if p < 2:
raise ValueError("p should not be less than 2!")
elif p == 2:
return True
s = 4
M = (1 << p) - 1
for i in range(p - 2):
s = ((s * s) - 2) % M
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| [
"int"
] | [
609
] | [
612
] |
archives/1098994933_python.zip | maths/lucas_series.py | # Lucas Sequence Using Recursion
def recur_luc(n):
"""
>>> recur_luc(1)
1
>>> recur_luc(0)
2
"""
if n == 1:
return n
if n == 0:
return 2
return recur_luc(n - 1) + recur_luc(n - 2)
if __name__ == "__main__":
limit = int(input("How many terms to include in Lucas series:"))
print("Lucas series:")
for i in range(limit):
print(recur_luc(i))
| [] | [] | [] |
archives/1098994933_python.zip | maths/mobius_function.py | """
Refrences: https://en.wikipedia.org/wiki/M%C3%B6bius_function
References: wikipedia:square free number
python/black : True
flake8 : True
"""
from maths.prime_factors import prime_factors
from maths.is_square_free import is_square_free
def mobius(n: int) -> int:
"""
Mobius function
>>> mobius(24)
0
>>> mobius(-1)
1
>>> mobius('asd')
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'str'
>>> mobius(10**400)
0
>>> mobius(10**-400)
1
>>> mobius(-1424)
1
>>> mobius([1, '2', 2.0])
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'list'
"""
factors = prime_factors(n)
if is_square_free(factors):
return -1 if len(factors) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| [
"int"
] | [
267
] | [
270
] |
archives/1098994933_python.zip | maths/modular_exponential.py | """Modular Exponential."""
def modular_exponential(base, power, mod):
"""Calculate Modular Exponential."""
if power < 0:
return -1
base %= mod
result = 1
while power > 0:
if power & 1:
result = (result * base) % mod
power = power >> 1
base = (base * base) % mod
return result
def main():
"""Call Modular Exponential Function."""
print(modular_exponential(3, 200, 13))
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/newton_raphson.py | '''
Author: P Shreyas Shetty
Implementation of Newton-Raphson method for solving equations of kind
f(x) = 0. It is an iterative method where solution is found by the expression
x[n+1] = x[n] + f(x[n])/f'(x[n])
If no solution exists, then either the solution will not be found when iteration
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
is raised. If iteration limit is reached, try increasing maxiter.
'''
import math as m
def calc_derivative(f, a, h=0.001):
'''
Calculates derivative at point a for function f using finite difference
method
'''
return (f(a+h)-f(a-h))/(2*h)
def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=False):
a = x0 #set the initial guess
steps = [a]
error = abs(f(a))
f1 = lambda x:calc_derivative(f, x, h=step) #Derivative of f(x)
for _ in range(maxiter):
if f1(a) == 0:
raise ValueError("No converging solution found")
a = a - f(a)/f1(a) #Calculate the next estimate
if logsteps:
steps.append(a)
if error < maxerror:
break
else:
raise ValueError("Iteration limit reached, no converging solution found")
if logsteps:
#If logstep is true, then log intermediate steps
return a, error, steps
return a, error
if __name__ == '__main__':
import matplotlib.pyplot as plt
f = lambda x:m.tanh(x)**2-m.exp(3*x)
solution, error, steps = newton_raphson(f, x0=10, maxiter=1000, step=1e-6, logsteps=True)
plt.plot([abs(f(x)) for x in steps])
plt.xlabel("step")
plt.ylabel("error")
plt.show()
print("solution = {%f}, error = {%f}" % (solution, error))
| [] | [] | [] |
archives/1098994933_python.zip | maths/prime_check.py | """Prime Check."""
import math
import unittest
def prime_check(number):
"""
Check to See if a Number is Prime.
A number is prime if it has exactly two dividers: 1 and itself.
"""
if number < 2:
# Negatives, 0 and 1 are not primes
return False
if number < 4:
# 2 and 3 are primes
return True
if number % 2 == 0:
# Even values are not primes
return False
# Except 2, all primes are odd. If any odd value divide
# the number, then that number is not prime.
odd_numbers = range(3, int(math.sqrt(number)) + 1, 2)
return not any(number % i == 0 for i in odd_numbers)
class Test(unittest.TestCase):
def test_primes(self):
self.assertTrue(prime_check(2))
self.assertTrue(prime_check(3))
self.assertTrue(prime_check(5))
self.assertTrue(prime_check(7))
self.assertTrue(prime_check(11))
self.assertTrue(prime_check(13))
self.assertTrue(prime_check(17))
self.assertTrue(prime_check(19))
self.assertTrue(prime_check(23))
self.assertTrue(prime_check(29))
def test_not_primes(self):
self.assertFalse(prime_check(-19),
"Negative numbers are not prime.")
self.assertFalse(prime_check(0),
"Zero doesn't have any divider, primes must have two")
self.assertFalse(prime_check(1),
"One just have 1 divider, primes must have two.")
self.assertFalse(prime_check(2 * 2))
self.assertFalse(prime_check(2 * 3))
self.assertFalse(prime_check(3 * 3))
self.assertFalse(prime_check(3 * 5))
self.assertFalse(prime_check(3 * 5 * 7))
if __name__ == '__main__':
unittest.main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/prime_factors.py | """
python/black : True
"""
from typing import List
def prime_factors(n: int) -> List[int]:
"""
Returns prime factors of n as a list.
>>> prime_factors(0)
[]
>>> prime_factors(100)
[2, 2, 5, 5]
>>> prime_factors(2560)
[2, 2, 2, 2, 2, 2, 2, 2, 2, 5]
>>> prime_factors(10**-2)
[]
>>> prime_factors(0.02)
[]
>>> x = prime_factors(10**241) # doctest: +NORMALIZE_WHITESPACE
>>> x == [2]*241 + [5]*241
True
>>> prime_factors(10**-354)
[]
>>> prime_factors('hello')
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'str'
>>> prime_factors([1,2,'hello'])
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'list'
"""
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| [
"int"
] | [
75
] | [
78
] |
archives/1098994933_python.zip | maths/quadratic_equations_complex_numbers.py | from math import sqrt
from typing import Tuple
def QuadraticEquation(a: int, b: int, c: int) -> Tuple[str, str]:
"""
Given the numerical coefficients a, b and c,
prints the solutions for a quadratic equation, for a*x*x + b*x + c.
>>> QuadraticEquation(a=1, b=3, c=-4)
('1.0', '-4.0')
>>> QuadraticEquation(5, 6, 1)
('-0.2', '-1.0')
"""
if a == 0:
raise ValueError("Coefficient 'a' must not be zero for quadratic equations.")
delta = b * b - 4 * a * c
if delta >= 0:
return str((-b + sqrt(delta)) / (2 * a)), str((-b - sqrt(delta)) / (2 * a))
"""
Treats cases of Complexes Solutions(i = imaginary unit)
Ex.: a = 5, b = 2, c = 1
Solution1 = (- 2 + 4.0 *i)/2 and Solution2 = (- 2 + 4.0 *i)/ 10
"""
snd = sqrt(-delta)
if b == 0:
return f"({snd} * i) / 2", f"({snd} * i) / {2 * a}"
b = -abs(b)
return f"({b}+{snd} * i) / 2", f"({b}+{snd} * i) / {2 * a}"
def main():
solutions = QuadraticEquation(a=5, b=6, c=1)
print("The equation solutions are: {} and {}".format(*solutions))
# The equation solutions are: -0.2 and -1.0
if __name__ == "__main__":
main()
| [
"int",
"int",
"int"
] | [
74,
82,
90
] | [
77,
85,
93
] |
archives/1098994933_python.zip | maths/radix2_fft.py | """
Fast Polynomial Multiplication using radix-2 fast Fourier Transform.
"""
import mpmath # for roots of unity
import numpy as np
class FFT:
"""
Fast Polynomial Multiplication using radix-2 fast Fourier Transform.
Reference:
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#The_radix-2_DIT_case
For polynomials of degree m and n the algorithms has complexity
O(n*logn + m*logm)
The main part of the algorithm is split in two parts:
1) __DFT: We compute the discrete fourier transform (DFT) of A and B using a
bottom-up dynamic approach -
2) __multiply: Once we obtain the DFT of A*B, we can similarly
invert it to obtain A*B
The class FFT takes two polynomials A and B with complex coefficients as arguments;
The two polynomials should be represented as a sequence of coefficients starting
from the free term. Thus, for instance x + 2*x^3 could be represented as
[0,1,0,2] or (0,1,0,2). The constructor adds some zeros at the end so that the
polynomials have the same length which is a power of 2 at least the length of
their product.
Example:
Create two polynomials as sequences
>>> A = [0, 1, 0, 2] # x+2x^3
>>> B = (2, 3, 4, 0) # 2+3x+4x^2
Create an FFT object with them
>>> x = FFT(A, B)
Print product
>>> print(x.product) # 2x + 3x^2 + 8x^3 + 4x^4 + 6x^5
[(-0+0j), (2+0j), (3+0j), (8+0j), (6+0j), (8+0j)]
__str__ test
>>> print(x)
A = 0*x^0 + 1*x^1 + 2*x^0 + 3*x^2
B = 0*x^2 + 1*x^3 + 2*x^4
A*B = 0*x^(-0+0j) + 1*x^(2+0j) + 2*x^(3+0j) + 3*x^(8+0j) + 4*x^(6+0j) + 5*x^(8+0j)
"""
def __init__(self, polyA=[0], polyB=[0]):
# Input as list
self.polyA = list(polyA)[:]
self.polyB = list(polyB)[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
self.len_A = len(self.polyA)
while self.polyB[-1] == 0:
self.polyB.pop()
self.len_B = len(self.polyB)
# Add 0 to make lengths equal a power of 2
self.C_max_length = int(
2
** np.ceil(
np.log2(
len(self.polyA) + len(self.polyB) - 1
)
)
)
while len(self.polyA) < self.C_max_length:
self.polyA.append(0)
while len(self.polyB) < self.C_max_length:
self.polyB.append(0)
# A complex root used for the fourier transform
self.root = complex(
mpmath.root(x=1, n=self.C_max_length, k=1)
)
# The product
self.product = self.__multiply()
# Discrete fourier transform of A and B
def __DFT(self, which):
if which == "A":
dft = [[x] for x in self.polyA]
else:
dft = [[x] for x in self.polyB]
# Corner case
if len(dft) <= 1:
return dft[0]
#
next_ncol = self.C_max_length // 2
while next_ncol > 0:
new_dft = [[] for i in range(next_ncol)]
root = self.root ** next_ncol
# First half of next step
current_root = 1
for j in range(
self.C_max_length // (next_ncol * 2)
):
for i in range(next_ncol):
new_dft[i].append(
dft[i][j]
+ current_root
* dft[i + next_ncol][j]
)
current_root *= root
# Second half of next step
current_root = 1
for j in range(
self.C_max_length // (next_ncol * 2)
):
for i in range(next_ncol):
new_dft[i].append(
dft[i][j]
- current_root
* dft[i + next_ncol][j]
)
current_root *= root
# Update
dft = new_dft
next_ncol = next_ncol // 2
return dft[0]
# multiply the DFTs of A and B and find A*B
def __multiply(self):
dftA = self.__DFT("A")
dftB = self.__DFT("B")
inverseC = [
[
dftA[i] * dftB[i]
for i in range(self.C_max_length)
]
]
del dftA
del dftB
# Corner Case
if len(inverseC[0]) <= 1:
return inverseC[0]
# Inverse DFT
next_ncol = 2
while next_ncol <= self.C_max_length:
new_inverseC = [[] for i in range(next_ncol)]
root = self.root ** (next_ncol // 2)
current_root = 1
# First half of next step
for j in range(self.C_max_length // next_ncol):
for i in range(next_ncol // 2):
# Even positions
new_inverseC[i].append(
(
inverseC[i][j]
+ inverseC[i][
j
+ self.C_max_length
// next_ncol
]
)
/ 2
)
# Odd positions
new_inverseC[i + next_ncol // 2].append(
(
inverseC[i][j]
- inverseC[i][
j
+ self.C_max_length
// next_ncol
]
)
/ (2 * current_root)
)
current_root *= root
# Update
inverseC = new_inverseC
next_ncol *= 2
# Unpack
inverseC = [
round(x[0].real, 8) + round(x[0].imag, 8) * 1j
for x in inverseC
]
# Remove leading 0's
while inverseC[-1] == 0:
inverseC.pop()
return inverseC
# Overwrite __str__ for print(); Shows A, B and A*B
def __str__(self):
A = "A = " + " + ".join(
f"{coef}*x^{i}"
for coef, i in enumerate(
self.polyA[: self.len_A]
)
)
B = "B = " + " + ".join(
f"{coef}*x^{i}"
for coef, i in enumerate(
self.polyB[: self.len_B]
)
)
C = "A*B = " + " + ".join(
f"{coef}*x^{i}"
for coef, i in enumerate(self.product)
)
return "\n".join((A, B, C))
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| [] | [] | [] |
archives/1098994933_python.zip | maths/segmented_sieve.py | """Segmented Sieve."""
import math
def sieve(n):
"""Segmented Sieve."""
in_prime = []
start = 2
end = int(math.sqrt(n)) # Size of every segment
temp = [True] * (end + 1)
prime = []
while start <= end:
if temp[start] is True:
in_prime.append(start)
for i in range(start * start, end + 1, start):
if temp[i] is True:
temp[i] = False
start += 1
prime += in_prime
low = end + 1
high = low + end - 1
if high > n:
high = n
while low <= n:
temp = [True] * (high - low + 1)
for each in in_prime:
t = math.floor(low / each) * each
if t < low:
t += each
for j in range(t, high + 1, each):
temp[j - low] = False
for j in range(len(temp)):
if temp[j] is True:
prime.append(j + low)
low = high + 1
high = low + end - 1
if high > n:
high = n
return prime
print(sieve(10**6))
| [] | [] | [] |
archives/1098994933_python.zip | maths/sieve_of_eratosthenes.py | # -*- coding: utf-8 -*-
"""
Sieve of Eratosthones
The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value.
Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif
Reference: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
doctest provider: Bruno Simas Hadlich (https://github.com/brunohadlich)
Also thanks Dmitry (https://github.com/LizardWizzard) for finding the problem
"""
import math
def sieve(n):
"""
Returns a list with all prime numbers up to n.
>>> sieve(50)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
>>> sieve(25)
[2, 3, 5, 7, 11, 13, 17, 19, 23]
>>> sieve(10)
[2, 3, 5, 7]
>>> sieve(9)
[2, 3, 5, 7]
>>> sieve(2)
[2]
>>> sieve(1)
[]
"""
l = [True] * (n + 1)
prime = []
start = 2
end = int(math.sqrt(n))
while start <= end:
# If start is a prime
if l[start] is True:
prime.append(start)
# Set multiples of start be False
for i in range(start * start, n + 1, start):
if l[i] is True:
l[i] = False
start += 1
for j in range(end + 1, n + 1):
if l[j] is True:
prime.append(j)
return prime
if __name__ == "__main__":
print(sieve(int(input("Enter n: ").strip())))
| [] | [] | [] |
archives/1098994933_python.zip | maths/simpson_rule.py |
"""
Numerical integration or quadrature for a smooth function f with known values at x_i
This method is the classical approch of suming 'Equally Spaced Abscissas'
method 2:
"Simpson Rule"
"""
def method_2(boundary, steps):
# "Simpson Rule"
# int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn)
h = (boundary[1] - boundary[0]) / steps
a = boundary[0]
b = boundary[1]
x_i = make_points(a,b,h)
y = 0.0
y += (h/3.0)*f(a)
cnt = 2
for i in x_i:
y += (h/3)*(4-2*(cnt%2))*f(i)
cnt += 1
y += (h/3.0)*f(b)
return y
def make_points(a,b,h):
x = a + h
while x < (b-h):
yield x
x = x + h
def f(x): #enter your function here
y = (x-0)*(x-0)
return y
def main():
a = 0.0 #Lower bound of integration
b = 1.0 #Upper bound of integration
steps = 10.0 #define number of steps or resolution
boundary = [a, b] #define boundary of integration
y = method_2(boundary, steps)
print('y = {0}'.format(y))
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/test_prime_check.py | """
Minimalist file that allows pytest to find and run the Test unittest. For details, see:
http://doc.pytest.org/en/latest/goodpractices.html#conventions-for-python-test-discovery
"""
from .prime_check import Test
Test()
| [] | [] | [] |
archives/1098994933_python.zip | maths/trapezoidal_rule.py | """
Numerical integration or quadrature for a smooth function f with known values at x_i
This method is the classical approch of suming 'Equally Spaced Abscissas'
method 1:
"extended trapezoidal rule"
"""
def method_1(boundary, steps):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
h = (boundary[1] - boundary[0]) / steps
a = boundary[0]
b = boundary[1]
x_i = make_points(a,b,h)
y = 0.0
y += (h/2.0)*f(a)
for i in x_i:
#print(i)
y += h*f(i)
y += (h/2.0)*f(b)
return y
def make_points(a,b,h):
x = a + h
while x < (b-h):
yield x
x = x + h
def f(x): #enter your function here
y = (x-0)*(x-0)
return y
def main():
a = 0.0 #Lower bound of integration
b = 1.0 #Upper bound of integration
steps = 10.0 #define number of steps or resolution
boundary = [a, b] #define boundary of integration
y = method_1(boundary, steps)
print('y = {0}'.format(y))
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/volume.py | """
Find Volumes of Various Shapes.
Wikipedia reference: https://en.wikipedia.org/wiki/Volume
"""
from math import pi
def vol_cube(side_length):
"""Calculate the Volume of a Cube."""
# Cube side_length.
return float(side_length ** 3)
def vol_cuboid(width, height, length):
"""Calculate the Volume of a Cuboid."""
# Multiply lengths together.
return float(width * height * length)
def vol_cone(area_of_base, height):
"""
Calculate the Volume of a Cone.
Wikipedia reference: https://en.wikipedia.org/wiki/Cone
volume = (1/3) * area_of_base * height
"""
return (float(1) / 3) * area_of_base * height
def vol_right_circ_cone(radius, height):
"""
Calculate the Volume of a Right Circular Cone.
Wikipedia reference: https://en.wikipedia.org/wiki/Cone
volume = (1/3) * pi * radius^2 * height
"""
return (float(1) / 3) * pi * (radius ** 2) * height
def vol_prism(area_of_base, height):
"""
Calculate the Volume of a Prism.
V = Bh
Wikipedia reference: https://en.wikipedia.org/wiki/Prism_(geometry)
"""
return float(area_of_base * height)
def vol_pyramid(area_of_base, height):
"""
Calculate the Volume of a Prism.
V = (1/3) * Bh
Wikipedia reference: https://en.wikipedia.org/wiki/Pyramid_(geometry)
"""
return (float(1) / 3) * area_of_base * height
def vol_sphere(radius):
"""
Calculate the Volume of a Sphere.
V = (4/3) * pi * r^3
Wikipedia reference: https://en.wikipedia.org/wiki/Sphere
"""
return (float(4) / 3) * pi * radius ** 3
def vol_circular_cylinder(radius, height):
"""Calculate the Volume of a Circular Cylinder.
Wikipedia reference: https://en.wikipedia.org/wiki/Cylinder
volume = pi * radius^2 * height
"""
return pi * radius ** 2 * height
def main():
"""Print the Results of Various Volume Calculations."""
print("Volumes:")
print("Cube: " + str(vol_cube(2))) # = 8
print("Cuboid: " + str(vol_cuboid(2, 2, 2))) # = 8
print("Cone: " + str(vol_cone(2, 2))) # ~= 1.33
print("Right Circular Cone: " + str(vol_right_circ_cone(2, 2))) # ~= 8.38
print("Prism: " + str(vol_prism(2, 2))) # = 4
print("Pyramid: " + str(vol_pyramid(2, 2))) # ~= 1.33
print("Sphere: " + str(vol_sphere(2))) # ~= 33.5
print("Circular Cylinder: " + str(vol_circular_cylinder(2, 2))) # ~= 25.1
if __name__ == "__main__":
main()
| [] | [] | [] |
archives/1098994933_python.zip | maths/zellers_congruence.py | import datetime
import argparse
def zeller(date_input: str) -> str:
"""
Zellers Congruence Algorithm
Find the day of the week for nearly any Gregorian or Julian calendar date
>>> zeller('01-31-2010')
'Your date 01-31-2010, is a Sunday!'
Validate out of range month
>>> zeller('13-31-2010')
Traceback (most recent call last):
...
ValueError: Month must be between 1 - 12
>>> zeller('.2-31-2010')
Traceback (most recent call last):
...
ValueError: invalid literal for int() with base 10: '.2'
Validate out of range date:
>>> zeller('01-33-2010')
Traceback (most recent call last):
...
ValueError: Date must be between 1 - 31
>>> zeller('01-.4-2010')
Traceback (most recent call last):
...
ValueError: invalid literal for int() with base 10: '.4'
Validate second seperator:
>>> zeller('01-31*2010')
Traceback (most recent call last):
...
ValueError: Date seperator must be '-' or '/'
Validate first seperator:
>>> zeller('01^31-2010')
Traceback (most recent call last):
...
ValueError: Date seperator must be '-' or '/'
Validate out of range year:
>>> zeller('01-31-8999')
Traceback (most recent call last):
...
ValueError: Year out of range. There has to be some sort of limit...right?
Test null input:
>>> zeller()
Traceback (most recent call last):
...
TypeError: zeller() missing 1 required positional argument: 'date_input'
Test length fo date_input:
>>> zeller('')
Traceback (most recent call last):
...
ValueError: Must be 10 characters long
>>> zeller('01-31-19082939')
Traceback (most recent call last):
...
ValueError: Must be 10 characters long
"""
# Days of the week for response
days = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday'
}
convert_datetime_days = {
0:1,
1:2,
2:3,
3:4,
4:5,
5:6,
6:0
}
# Validate
if not 0 < len(date_input) < 11:
raise ValueError("Must be 10 characters long")
# Get month
m: int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
sep_1:str = date_input[2]
# Validate
if sep_1 not in ["-","/"]:
raise ValueError("Date seperator must be '-' or '/'")
# Get day
d: int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second seperator
sep_2: str = date_input[5]
# Validate
if sep_2 not in ["-","/"]:
raise ValueError("Date seperator must be '-' or '/'")
# Get year
y: int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError("Year out of range. There has to be some sort of limit...right?")
# Get datetime obj for validation
dt_ck = datetime.date(int(y), int(m), int(d))
# Start math
if m <= 2:
y = y - 1
m = m + 12
# maths var
c: int = int(str(y)[:2])
k: int = int(str(y)[2:])
t: int = int(2.6*m - 5.39)
u: int = int(c / 4)
v: int = int(k / 4)
x: int = int(d + k)
z: int = int(t + u + v + x)
w: int = int(z - (2 * c))
f: int = round(w%7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
response: str = f"Your date {date_input}, is a {days[str(f)]}!"
return response
if __name__ == '__main__':
import doctest
doctest.testmod()
parser = argparse.ArgumentParser(description='Find out what day of the week nearly any date is or was. Enter date as a string in the mm-dd-yyyy or mm/dd/yyyy format')
parser.add_argument('date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)')
args = parser.parse_args()
zeller(args.date_input)
| [
"str"
] | [
57
] | [
60
] |
archives/1098994933_python.zip | matrix/matrix_class.py | # An OOP aproach to representing and manipulating matrices
class Matrix:
"""
Matrix object generated from a 2D array where each element is an array representing a row.
Rows can contain type int or float.
Common operations and information available.
>>> rows = [
... [1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]
... ]
>>> matrix = Matrix(rows)
>>> print(matrix)
[[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]]
Matrix rows and columns are available as 2D arrays
>>> print(matrix.rows)
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> print(matrix.columns())
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
Order is returned as a tuple
>>> matrix.order
(3, 3)
Squareness and invertability are represented as bool
>>> matrix.is_square
True
>>> matrix.is_invertable()
False
Identity, Minors, Cofactors and Adjugate are returned as Matrices. Inverse can be a Matrix or Nonetype
>>> print(matrix.identity())
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
>>> print(matrix.minors())
[[-3. -6. -3.]
[-6. -12. -6.]
[-3. -6. -3.]]
>>> print(matrix.cofactors())
[[-3. 6. -3.]
[6. -12. 6.]
[-3. 6. -3.]]
>>> print(matrix.adjugate()) # won't be apparent due to the nature of the cofactor matrix
[[-3. 6. -3.]
[6. -12. 6.]
[-3. 6. -3.]]
>>> print(matrix.inverse())
None
Determinant is an int, float, or Nonetype
>>> matrix.determinant()
0
Negation, scalar multiplication, addition, subtraction, multiplication and exponentiation are available and all return a Matrix
>>> print(-matrix)
[[-1. -2. -3.]
[-4. -5. -6.]
[-7. -8. -9.]]
>>> matrix2 = matrix * 3
>>> print(matrix2)
[[3. 6. 9.]
[12. 15. 18.]
[21. 24. 27.]]
>>> print(matrix + matrix2)
[[4. 8. 12.]
[16. 20. 24.]
[28. 32. 36.]]
>>> print(matrix - matrix2)
[[-2. -4. -6.]
[-8. -10. -12.]
[-14. -16. -18.]]
>>> print(matrix ** 3)
[[468. 576. 684.]
[1062. 1305. 1548.]
[1656. 2034. 2412.]]
Matrices can also be modified
>>> matrix.add_row([10, 11, 12])
>>> print(matrix)
[[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]
[10. 11. 12.]]
>>> matrix2.add_column([8, 16, 32])
>>> print(matrix2)
[[3. 6. 9. 8.]
[12. 15. 18. 16.]
[21. 24. 27. 32.]]
>>> print(matrix * matrix2)
[[90. 108. 126. 136.]
[198. 243. 288. 304.]
[306. 378. 450. 472.]
[414. 513. 612. 640.]]
"""
def __init__(self, rows):
error = TypeError(
"Matrices must be formed from a list of zero or more lists containing at least one and the same number of values, \
each of which must be of type int or float"
)
if len(rows) != 0:
cols = len(rows[0])
if cols == 0:
raise error
for row in rows:
if not len(row) == cols:
raise error
for value in row:
if not isinstance(value, (int, float)):
raise error
self.rows = rows
else:
self.rows = []
# MATRIX INFORMATION
def columns(self):
return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))]
@property
def num_rows(self):
return len(self.rows)
@property
def num_columns(self):
return len(self.rows[0])
@property
def order(self):
return (self.num_rows, self.num_columns)
@property
def is_square(self):
if self.order[0] == self.order[1]:
return True
return False
def identity(self):
values = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows)]
for row_num in range(self.num_rows)
]
return Matrix(values)
def determinant(self):
if not self.is_square:
return None
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return self.rows[0][0]
if self.order == (2, 2):
return (self.rows[0][0] * self.rows[1][1]) - (
self.rows[0][1] * self.rows[1][0]
)
else:
return sum(
[
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns)
]
)
def is_invertable(self):
if self.determinant():
return True
return False
def get_minor(self, row, column):
values = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns)
if other_column != column
]
for other_row in range(self.num_rows)
if other_row != row
]
return Matrix(values).determinant()
def get_cofactor(self, row, column):
if (row + column) % 2 == 0:
return self.get_minor(row, column)
return -1 * self.get_minor(row, column)
def minors(self):
return Matrix(
[
[self.get_minor(row, column) for column in range(self.num_columns)]
for row in range(self.num_rows)
]
)
def cofactors(self):
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns)
]
for row in range(self.minors().num_rows)
]
)
def adjugate(self):
values = [
[self.cofactors().rows[column][row] for column in range(self.num_columns)]
for row in range(self.num_rows)
]
return Matrix(values)
def inverse(self):
if not self.is_invertable():
return None
return self.adjugate() * (1 / self.determinant())
def __repr__(self):
return str(self.rows)
def __str__(self):
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(self.rows[0]) + "]]"
return (
"["
+ "\n ".join(
[
"[" + ". ".join([str(value) for value in row]) + ".]"
for row in self.rows
]
)
+ "]"
)
# MATRIX MANIPULATION
def add_row(self, row, position=None):
type_error = TypeError("Row must be a list containing all ints and/or floats")
if not isinstance(row, list):
raise type_error
for value in row:
if not isinstance(value, (int, float)):
raise type_error
if len(row) != self.num_columns:
raise ValueError(
"Row must be equal in length to the other rows in the matrix"
)
if position is None:
self.rows.append(row)
else:
self.rows = self.rows[0:position] + [row] + self.rows[position:]
def add_column(self, column, position=None):
type_error = TypeError(
"Column must be a list containing all ints and/or floats"
)
if not isinstance(column, list):
raise type_error
for value in column:
if not isinstance(value, (int, float)):
raise type_error
if len(column) != self.num_rows:
raise ValueError(
"Column must be equal in length to the other columns in the matrix"
)
if position is None:
self.rows = [self.rows[i] + [column[i]] for i in range(self.num_rows)]
else:
self.rows = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows)
]
# MATRIX OPERATIONS
def __eq__(self, other):
if not isinstance(other, Matrix):
raise TypeError("A Matrix can only be compared with another Matrix")
if self.rows == other.rows:
return True
return False
def __ne__(self, other):
if self == other:
return False
return True
def __neg__(self):
return self * -1
def __add__(self, other):
if self.order != other.order:
raise ValueError("Addition requires matrices of the same order")
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
]
)
def __sub__(self, other):
if self.order != other.order:
raise ValueError("Subtraction requires matrices of the same order")
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)]
for i in range(self.num_rows)
]
)
def __mul__(self, other):
if not isinstance(other, (int, float, Matrix)):
raise TypeError(
"A Matrix can only be multiplied by an int, float, or another matrix"
)
if type(other) in (int, float):
return Matrix([[element * other for element in row] for row in self.rows])
if type(other) is Matrix:
if self.num_columns != other.num_rows:
raise ValueError(
"The number of columns in the first matrix must be equal to the number of rows in the second"
)
return Matrix(
[
[Matrix.dot_product(row, column) for column in other.columns()]
for row in self.rows
]
)
def __pow__(self, other):
if not isinstance(other, int):
raise TypeError("A Matrix can only be raised to the power of an int")
if not self.is_square:
raise ValueError("Only square matrices can be raised to a power")
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable:
return self.inverse() ** (-other)
raise ValueError(
"Only invertable matrices can be raised to a negative power"
)
result = self
for i in range(other - 1):
result *= self
return result
@classmethod
def dot_product(cls, row, column):
return sum([row[i] * column[i] for i in range(len(row))])
if __name__ == "__main__":
import doctest
test = doctest.testmod()
print(test)
| [] | [] | [] |
archives/1098994933_python.zip | matrix/matrix_operation.py | """
function based version of matrix operations, which are just 2D arrays
"""
def add(matrix_a, matrix_b):
if _check_not_integer(matrix_a) and _check_not_integer(matrix_b):
rows, cols = _verify_matrix_sizes(matrix_a, matrix_b)
matrix_c = []
for i in range(rows[0]):
list_1 = []
for j in range(cols[0]):
val = matrix_a[i][j] + matrix_b[i][j]
list_1.append(val)
matrix_c.append(list_1)
return matrix_c
def subtract(matrix_a, matrix_b):
if _check_not_integer(matrix_a) and _check_not_integer(matrix_b):
rows, cols = _verify_matrix_sizes(matrix_a, matrix_b)
matrix_c = []
for i in range(rows[0]):
list_1 = []
for j in range(cols[0]):
val = matrix_a[i][j] - matrix_b[i][j]
list_1.append(val)
matrix_c.append(list_1)
return matrix_c
def scalar_multiply(matrix, n):
return [[x * n for x in row] for row in matrix]
def multiply(matrix_a, matrix_b):
if _check_not_integer(matrix_a) and _check_not_integer(matrix_b):
matrix_c = []
rows, cols = _verify_matrix_sizes(matrix_a, matrix_b)
if cols[0] != rows[1]:
raise ValueError(f'Cannot multiply matrix of dimensions ({rows[0]},{cols[0]}) '
f'and ({rows[1]},{cols[1]})')
for i in range(rows[0]):
list_1 = []
for j in range(cols[1]):
val = 0
for k in range(cols[1]):
val = val + matrix_a[i][k] * matrix_b[k][j]
list_1.append(val)
matrix_c.append(list_1)
return matrix_c
def identity(n):
"""
:param n: dimension for nxn matrix
:type n: int
:return: Identity matrix of shape [n, n]
"""
n = int(n)
return [[int(row == column) for column in range(n)] for row in range(n)]
def transpose(matrix, return_map=True):
if _check_not_integer(matrix):
if return_map:
return map(list, zip(*matrix))
else:
# mt = []
# for i in range(len(matrix[0])):
# mt.append([row[i] for row in matrix])
# return mt
return [[row[i] for row in matrix] for i in range(len(matrix[0]))]
def minor(matrix, row, column):
minor = matrix[:row] + matrix[row + 1:]
minor = [row[:column] + row[column + 1:] for row in minor]
return minor
def determinant(matrix):
if len(matrix) == 1:
return matrix[0][0]
res = 0
for x in range(len(matrix)):
res += matrix[0][x] * determinant(minor(matrix, 0, x)) * (-1) ** x
return res
def inverse(matrix):
det = determinant(matrix)
if det == 0:
return None
matrix_minor = [[] for _ in range(len(matrix))]
for i in range(len(matrix)):
for j in range(len(matrix)):
matrix_minor[i].append(determinant(minor(matrix, i, j)))
cofactors = [[x * (-1) ** (row + col) for col, x in enumerate(matrix_minor[row])] for row in range(len(matrix))]
adjugate = transpose(cofactors)
return scalar_multiply(adjugate, 1/det)
def _check_not_integer(matrix):
try:
rows = len(matrix)
cols = len(matrix[0])
return True
except TypeError:
raise TypeError("Cannot input an integer value, it must be a matrix")
def _shape(matrix):
return list((len(matrix), len(matrix[0])))
def _verify_matrix_sizes(matrix_a, matrix_b):
shape = _shape(matrix_a)
shape += _shape(matrix_b)
if shape[0] != shape[2] or shape[1] != shape[3]:
raise ValueError(f"operands could not be broadcast together with shape "
f"({shape[0], shape[1]}), ({shape[2], shape[3]})")
return [shape[0], shape[2]], [shape[1], shape[3]]
def main():
matrix_a = [[12, 10], [3, 9]]
matrix_b = [[3, 4], [7, 4]]
matrix_c = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]]
matrix_d = [[3, 0, 2], [2, 0, -2], [0, 1, 1]]
print('Add Operation, %s + %s = %s \n' %(matrix_a, matrix_b, (add(matrix_a, matrix_b))))
print('Multiply Operation, %s * %s = %s \n' %(matrix_a, matrix_b, multiply(matrix_a, matrix_b)))
print('Identity: %s \n' %identity(5))
print('Minor of %s = %s \n' %(matrix_c, minor(matrix_c, 1, 2)))
print('Determinant of %s = %s \n' %(matrix_b, determinant(matrix_b)))
print('Inverse of %s = %s\n'%(matrix_d, inverse(matrix_d)))
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | matrix/nth_fibonacci_using_matrix_exponentiation.py | """
Implementation of finding nth fibonacci number using matrix exponentiation.
Time Complexity is about O(log(n)*8), where 8 is the complexity of matrix multiplication of size 2 by 2.
And on the other hand complexity of bruteforce solution is O(n).
As we know
f[n] = f[n-1] + f[n-1]
Converting to matrix,
[f(n),f(n-1)] = [[1,1],[1,0]] * [f(n-1),f(n-2)]
-> [f(n),f(n-1)] = [[1,1],[1,0]]^2 * [f(n-2),f(n-3)]
...
...
-> [f(n),f(n-1)] = [[1,1],[1,0]]^(n-1) * [f(1),f(0)]
So we just need the n times multiplication of the matrix [1,1],[1,0]].
We can decrease the n times multiplication by following the divide and conquer approach.
"""
def multiply(matrix_a, matrix_b):
matrix_c = []
n = len(matrix_a)
for i in range(n):
list_1 = []
for j in range(n):
val = 0
for k in range(n):
val = val + matrix_a[i][k] * matrix_b[k][j]
list_1.append(val)
matrix_c.append(list_1)
return matrix_c
def identity(n):
return [[int(row == column) for column in range(n)] for row in range(n)]
def nth_fibonacci_matrix(n):
"""
>>> nth_fibonacci_matrix(100)
354224848179261915075
>>> nth_fibonacci_matrix(-100)
-100
"""
if n <= 1:
return n
res_matrix = identity(2)
fibonacci_matrix = [[1, 1], [1, 0]]
n = n - 1
while n > 0:
if n % 2 == 1:
res_matrix = multiply(res_matrix, fibonacci_matrix)
fibonacci_matrix = multiply(fibonacci_matrix, fibonacci_matrix)
n = int(n / 2)
return res_matrix[0][0]
def nth_fibonacci_bruteforce(n):
"""
>>> nth_fibonacci_bruteforce(100)
354224848179261915075
>>> nth_fibonacci_bruteforce(-100)
-100
"""
if n <= 1:
return n
fib0 = 0
fib1 = 1
for i in range(2, n + 1):
fib0, fib1 = fib1, fib0 + fib1
return fib1
def main():
fmt = "{} fibonacci number using matrix exponentiation is {} and using bruteforce is {}\n"
for ordinal in "0th 1st 2nd 3rd 10th 100th 1000th".split():
n = int("".join(c for c in ordinal if c in "0123456789")) # 1000th --> 1000
print(fmt.format(ordinal, nth_fibonacci_matrix(n), nth_fibonacci_bruteforce(n)))
# from timeit import timeit
# print(timeit("nth_fibonacci_matrix(1000000)",
# "from main import nth_fibonacci_matrix", number=5))
# print(timeit("nth_fibonacci_bruteforce(1000000)",
# "from main import nth_fibonacci_bruteforce", number=5))
# 2.3342058970001744
# 57.256506615000035
if __name__ == "__main__":
main()
| [] | [] | [] |
archives/1098994933_python.zip | matrix/rotate_matrix.py | # -*- coding: utf-8 -*-
"""
In this problem, we want to rotate the matrix elements by 90, 180, 270 (counterclockwise)
Discussion in stackoverflow:
https://stackoverflow.com/questions/42519/how-do-you-rotate-a-two-dimensional-array
"""
def make_matrix(row_size: int = 4) -> [[int]]:
"""
>>> make_matrix()
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]
>>> make_matrix(1)
[[1]]
>>> make_matrix(-2)
[[1, 2], [3, 4]]
>>> make_matrix(3)
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> make_matrix() == make_matrix(4)
True
"""
row_size = abs(row_size) or 4
return [[1 + x + y * row_size for x in range(row_size)] for y in range(row_size)]
def rotate_90(matrix: [[]]) -> [[]]:
"""
>>> rotate_90(make_matrix())
[[4, 8, 12, 16], [3, 7, 11, 15], [2, 6, 10, 14], [1, 5, 9, 13]]
>>> rotate_90(make_matrix()) == transpose(reverse_column(make_matrix()))
True
"""
return reverse_row(transpose(matrix))
# OR.. transpose(reverse_column(matrix))
def rotate_180(matrix: [[]]) -> [[]]:
"""
>>> rotate_180(make_matrix())
[[16, 15, 14, 13], [12, 11, 10, 9], [8, 7, 6, 5], [4, 3, 2, 1]]
>>> rotate_180(make_matrix()) == reverse_column(reverse_row(make_matrix()))
True
"""
return reverse_row(reverse_column(matrix))
# OR.. reverse_column(reverse_row(matrix))
def rotate_270(matrix: [[]]) -> [[]]:
"""
>>> rotate_270(make_matrix())
[[13, 9, 5, 1], [14, 10, 6, 2], [15, 11, 7, 3], [16, 12, 8, 4]]
>>> rotate_270(make_matrix()) == transpose(reverse_row(make_matrix()))
True
"""
return reverse_column(transpose(matrix))
# OR.. transpose(reverse_row(matrix))
def transpose(matrix: [[]]) -> [[]]:
matrix[:] = [list(x) for x in zip(*matrix)]
return matrix
def reverse_row(matrix: [[]]) -> [[]]:
matrix[:] = matrix[::-1]
return matrix
def reverse_column(matrix: [[]]) -> [[]]:
matrix[:] = [x[::-1] for x in matrix]
return matrix
def print_matrix(matrix: [[]]) -> [[]]:
for i in matrix:
print(*i)
if __name__ == "__main__":
matrix = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 90 counterclockwise:\n")
print_matrix(rotate_90(matrix))
matrix = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 180:\n")
print_matrix(rotate_180(matrix))
matrix = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 270 counterclockwise:\n")
print_matrix(rotate_270(matrix))
| [
"[[]]",
"[[]]",
"[[]]",
"[[]]",
"[[]]",
"[[]]",
"[[]]"
] | [
723,
1054,
1396,
1725,
1832,
1923,
2025
] | [
727,
1058,
1400,
1729,
1836,
1927,
2029
] |
archives/1098994933_python.zip | matrix/searching_in_sorted_matrix.py | def search_in_a_sorted_matrix(mat, m, n, key):
i, j = m - 1, 0
while i >= 0 and j < n:
if key == mat[i][j]:
print('Key %s found at row- %s column- %s' % (key, i + 1, j + 1))
return
if key < mat[i][j]:
i -= 1
else:
j += 1
print('Key %s not found' % (key))
def main():
mat = [
[2, 5, 7],
[4, 8, 13],
[9, 11, 15],
[12, 17, 20]
]
x = int(input("Enter the element to be searched:"))
print(mat)
search_in_a_sorted_matrix(mat, len(mat), len(mat[0]), x)
if __name__ == '__main__':
main()
| [] | [] | [] |
archives/1098994933_python.zip | matrix/sherman_morrison.py | class Matrix:
"""
<class Matrix>
Matrix structure.
"""
def __init__(self, row: int, column: int, default_value: float = 0):
"""
<method Matrix.__init__>
Initialize matrix with given size and default value.
Example:
>>> a = Matrix(2, 3, 1)
>>> a
Matrix consist of 2 rows and 3 columns
[1, 1, 1]
[1, 1, 1]
"""
self.row, self.column = row, column
self.array = [[default_value for c in range(column)] for r in range(row)]
def __str__(self):
"""
<method Matrix.__str__>
Return string representation of this matrix.
"""
# Prefix
s = "Matrix consist of %d rows and %d columns\n" % (self.row, self.column)
# Make string identifier
max_element_length = 0
for row_vector in self.array:
for obj in row_vector:
max_element_length = max(max_element_length, len(str(obj)))
string_format_identifier = "%%%ds" % (max_element_length,)
# Make string and return
def single_line(row_vector):
nonlocal string_format_identifier
line = "["
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector)
line += "]"
return line
s += "\n".join(single_line(row_vector) for row_vector in self.array)
return s
def __repr__(self): return str(self)
def validateIndices(self, loc: tuple):
"""
<method Matrix.validateIndices>
Check if given indices are valid to pick element from matrix.
Example:
>>> a = Matrix(2, 6, 0)
>>> a.validateIndices((2, 7))
False
>>> a.validateIndices((0, 0))
True
"""
if not(isinstance(loc, (list, tuple)) and len(loc) == 2): return False
elif not(0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False
else: return True
def __getitem__(self, loc: tuple):
"""
<method Matrix.__getitem__>
Return array[row][column] where loc = (row, column).
Example:
>>> a = Matrix(3, 2, 7)
>>> a[1, 0]
7
"""
assert self.validateIndices(loc)
return self.array[loc[0]][loc[1]]
def __setitem__(self, loc: tuple, value: float):
"""
<method Matrix.__setitem__>
Set array[row][column] = value where loc = (row, column).
Example:
>>> a = Matrix(2, 3, 1)
>>> a[1, 2] = 51
>>> a
Matrix consist of 2 rows and 3 columns
[ 1, 1, 1]
[ 1, 1, 51]
"""
assert self.validateIndices(loc)
self.array[loc[0]][loc[1]] = value
def __add__(self, another):
"""
<method Matrix.__add__>
Return self + another.
Example:
>>> a = Matrix(2, 1, -4)
>>> b = Matrix(2, 1, 3)
>>> a+b
Matrix consist of 2 rows and 1 columns
[-1]
[-1]
"""
# Validation
assert isinstance(another, Matrix)
assert self.row == another.row and self.column == another.column
# Add
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r,c] = self[r,c] + another[r,c]
return result
def __neg__(self):
"""
<method Matrix.__neg__>
Return -self.
Example:
>>> a = Matrix(2, 2, 3)
>>> a[0, 1] = a[1, 0] = -2
>>> -a
Matrix consist of 2 rows and 2 columns
[-3, 2]
[ 2, -3]
"""
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r,c] = -self[r,c]
return result
def __sub__(self, another): return self + (-another)
def __mul__(self, another):
"""
<method Matrix.__mul__>
Return self * another.
Example:
>>> a = Matrix(2, 3, 1)
>>> a[0,2] = a[1,2] = 3
>>> a * -2
Matrix consist of 2 rows and 3 columns
[-2, -2, -6]
[-2, -2, -6]
"""
if isinstance(another, (int, float)): # Scalar multiplication
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r,c] = self[r,c] * another
return result
elif isinstance(another, Matrix): # Matrix multiplication
assert(self.column == another.row)
result = Matrix(self.row, another.column)
for r in range(self.row):
for c in range(another.column):
for i in range(self.column):
result[r,c] += self[r,i] * another[i,c]
return result
else: raise TypeError("Unsupported type given for another (%s)" % (type(another),))
def transpose(self):
"""
<method Matrix.transpose>
Return self^T.
Example:
>>> a = Matrix(2, 3)
>>> for r in range(2):
... for c in range(3):
... a[r,c] = r*c
...
>>> a.transpose()
Matrix consist of 3 rows and 2 columns
[0, 0]
[0, 1]
[0, 2]
"""
result = Matrix(self.column, self.row)
for r in range(self.row):
for c in range(self.column):
result[c,r] = self[r,c]
return result
def ShermanMorrison(self, u, v):
"""
<method Matrix.ShermanMorrison>
Apply Sherman-Morrison formula in O(n^2).
To learn this formula, please look this: https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
This method returns (A + uv^T)^(-1) where A^(-1) is self. Returns None if it's impossible to calculate.
Warning: This method doesn't check if self is invertible.
Make sure self is invertible before execute this method.
Example:
>>> ainv = Matrix(3, 3, 0)
>>> for i in range(3): ainv[i,i] = 1
...
>>> u = Matrix(3, 1, 0)
>>> u[0,0], u[1,0], u[2,0] = 1, 2, -3
>>> v = Matrix(3, 1, 0)
>>> v[0,0], v[1,0], v[2,0] = 4, -2, 5
>>> ainv.ShermanMorrison(u, v)
Matrix consist of 3 rows and 3 columns
[ 1.2857142857142856, -0.14285714285714285, 0.3571428571428571]
[ 0.5714285714285714, 0.7142857142857143, 0.7142857142857142]
[ -0.8571428571428571, 0.42857142857142855, -0.0714285714285714]
"""
# Size validation
assert isinstance(u, Matrix) and isinstance(v, Matrix)
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
vT = v.transpose()
numerator_factor = (vT * self * u)[0, 0] + 1
if numerator_factor == 0: return None # It's not invertable
return self - ((self * u) * (vT * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def test1():
# a^(-1)
ainv = Matrix(3, 3, 0)
for i in range(3): ainv[i,i] = 1
print("a^(-1) is %s" % (ainv,))
# u, v
u = Matrix(3, 1, 0)
u[0,0], u[1,0], u[2,0] = 1, 2, -3
v = Matrix(3, 1, 0)
v[0,0], v[1,0], v[2,0] = 4, -2, 5
print("u is %s" % (u,))
print("v is %s" % (v,))
print("uv^T is %s" % (u * v.transpose()))
# Sherman Morrison
print("(a + uv^T)^(-1) is %s" % (ainv.ShermanMorrison(u, v),))
def test2():
import doctest
doctest.testmod()
test2() | [
"int",
"int",
"tuple",
"tuple",
"tuple",
"float"
] | [
100,
113,
1509,
2026,
2350,
2364
] | [
103,
116,
1514,
2031,
2355,
2369
] |
archives/1098994933_python.zip | matrix/spiral_print.py | """
This program print the matix in spiral form.
This problem has been solved through recursive way.
Matrix must satisfy below conditions
i) matrix should be only one or two dimensional
ii)column of all the row should be equal
"""
def checkMatrix(a):
# must be
if type(a) == list and len(a) > 0:
if type(a[0]) == list:
prevLen = 0
for i in a:
if prevLen == 0:
prevLen = len(i)
result = True
elif prevLen == len(i):
result = True
else:
result = False
else:
result = True
else:
result = False
return result
def spiralPrint(a):
if checkMatrix(a) and len(a) > 0:
matRow = len(a)
if type(a[0]) == list:
matCol = len(a[0])
else:
for dat in a:
print(dat),
return
# horizotal printing increasing
for i in range(0, matCol):
print(a[0][i]),
# vertical printing down
for i in range(1, matRow):
print(a[i][matCol - 1]),
# horizotal printing decreasing
if matRow > 1:
for i in range(matCol - 2, -1, -1):
print(a[matRow - 1][i]),
# vertical printing up
for i in range(matRow - 2, 0, -1):
print(a[i][0]),
remainMat = [row[1:matCol - 1] for row in a[1:matRow - 1]]
if len(remainMat) > 0:
spiralPrint(remainMat)
else:
return
else:
print("Not a valid matrix")
return
# driver code
a = [[1 , 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]]
spiralPrint(a)
| [] | [] | [] |