fact
stringlengths
0
6.66k
type
stringclasses
10 values
imports
stringclasses
399 values
filename
stringclasses
465 values
symbolic_name
stringlengths
1
75
index_level
int64
0
7.85k
{A} (f : A -> A) p a : pos_iter f (pos_succ p) a = f (pos_iter f p a). Proof. unfold pos_iter. by rewrite pos_peano_rec_beta_pos_succ. Qed.
Lemma
Require Import Basics.Overture Basics.Tactics. Require Import Pos.Core.
Spaces\Pos\Spec.v
pos_iter_succ_l
6,600
{A} (f : A -> A) p a : pos_iter f (pos_succ p) a = pos_iter f p (f a). Proof. revert p f a. srapply pos_peano_ind. 1: hnf; intros; trivial. hnf; intros p q f a. refine (_ @ _ @ _^). 1,3: unfold pos_iter; by rewrite pos_peano_rec_beta_pos_succ. apply ap. apply q. Qed.
Lemma
Require Import Basics.Overture Basics.Tactics. Require Import Pos.Core.
Spaces\Pos\Spec.v
pos_iter_succ_r
6,601
p q : p * q~0 = (p * q)~0. Proof. induction p; simpl; f_ap; f_ap; trivial. Qed.
Lemma
Require Import Basics.Overture Basics.Tactics. Require Import Pos.Core.
Spaces\Pos\Spec.v
mul_xO_r
6,602
p q : p * q~1 = p + (p * q)~0. Proof. induction p; simpl; trivial; f_ap. rewrite IHp. rewrite pos_add_assoc. rewrite (pos_add_comm q p). symmetry. apply pos_add_assoc. Qed.
Lemma
Require Import Basics.Overture Basics.Tactics. Require Import Pos.Core.
Spaces\Pos\Spec.v
mul_xI_r
6,603
p q : p * q = q * p. Proof. induction q; simpl. 1: apply pos_mul_1_r. + rewrite mul_xO_r. f_ap. + rewrite mul_xI_r. f_ap; f_ap. Qed.
Lemma
Require Import Basics.Overture Basics.Tactics. Require Import Pos.Core.
Spaces\Pos\Spec.v
pos_mul_comm
6,604
p q r : p * (q + r) = p * q + p * r. Proof. induction p; cbn; [reflexivity | f_ap | ]. rewrite IHp. set (m:=(p*q)~0). set (n:=(p*r)~0). change ((p*q+p*r)~0) with (m+n). rewrite 2 pos_add_assoc; f_ap. rewrite <- 2 pos_add_assoc; f_ap. apply pos_add_comm. Qed.
Theorem
Require Import Basics.Overture Basics.Tactics. Require Import Pos.Core.
Spaces\Pos\Spec.v
pos_mul_add_distr_l
6,605
p q r : (p + q) * r = p * r + q * r. Proof. rewrite 3 (pos_mul_comm _ r); apply pos_mul_add_distr_l. Qed.
Theorem
Require Import Basics.Overture Basics.Tactics. Require Import Pos.Core.
Spaces\Pos\Spec.v
pos_mul_add_distr_r
6,606
p q r : p * (q * r) = p * q * r. Proof. induction p; simpl; rewrite ?IHp; trivial. by rewrite pos_mul_add_distr_r. Qed.
Theorem
Require Import Basics.Overture Basics.Tactics. Require Import Pos.Core.
Spaces\Pos\Spec.v
pos_mul_assoc
6,607
p q : (pos_succ p) * q = p * q + q. Proof. by rewrite <- pos_add_1_r, pos_mul_add_distr_r, pos_mul_1_l. Qed.
Lemma
Require Import Basics.Overture Basics.Tactics. Require Import Pos.Core.
Spaces\Pos\Spec.v
pos_mul_succ_l
6,608
p q : p * (pos_succ q) = p + p * q. Proof. by rewrite <- pos_add_1_l, pos_mul_add_distr_l, pos_mul_1_r. Qed.
Lemma
Require Import Basics.Overture Basics.Tactics. Require Import Pos.Core.
Spaces\Pos\Spec.v
pos_mul_succ_r
6,609
tbase = tbase.
Axiom
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
loop_a
6,610
tbase = tbase.
Axiom
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
loop_b
6,611
PathSquare loop_a loop_a loop_b loop_b.
Axiom
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
surf
6,612
(P : Torus -> Type) (pb : P tbase) (pla : DPath P loop_a pb pb) (plb : DPath P loop_b pb pb) (ps : DPathSquare P surf pla pla plb plb) (x : Torus) : P x := (match x with tbase => fun _ _ _ => pb end) pla plb ps.
Definition
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
Torus_ind
6,613
forall (P : Torus -> Type) (pb : P tbase) (pla : DPath P loop_a pb pb) (plb : DPath P loop_b pb pb) (ps : DPathSquare P surf pla pla plb plb), DPathSquare P hr (apD (Torus_ind P pb pla plb ps) (loop_a)) pla 1%dpath 1%dpath.
Axiom
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
Torus_ind_beta_loop_a
6,614
forall (P : Torus -> Type) (pb : P tbase) (pla : DPath P loop_a pb pb) (plb : DPath P loop_b pb pb) (ps : DPathSquare P surf pla pla plb plb), DPathSquare P hr (apD (Torus_ind P pb pla plb ps) (loop_b)) plb 1%dpath 1%dpath.
Axiom
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
Torus_ind_beta_loop_b
6,615
forall (P : Torus -> Type) (pb : P tbase) (pla : DPath P loop_a pb pb) (plb : DPath P loop_b pb pb) (ps : DPathSquare P surf pla pla plb plb), DPathCube P (cu_refl_lr _) (ds_apD (Torus_ind P pb pla plb ps) surf) ps (Torus_ind_beta_loop_a _ _ _ _ _) (Torus_ind_beta_loop_a _ _ _ _ _) (Torus_ind_beta_loop_b _ _ _ _ _) (Torus_ind_beta_loop_b _ _ _ _ _).
Axiom
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
Torus_ind_beta_surf
6,616
(P : Type) (pb : P) (pla plb : pb = pb) (ps : PathSquare pla pla plb plb) : Torus -> P := Torus_ind _ pb (dp_const pla) (dp_const plb) (ds_const ps).
Definition
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
Torus_rec
6,617
(P : Type) (pb : P) (pla plb : pb = pb) (ps : PathSquare pla pla plb plb) : PathSquare (ap (Torus_rec P pb pla plb ps) loop_a) pla 1 1. Proof. refine (sq_GGcc _ (eissect _ _) (ds_const'^-1 (Torus_ind_beta_loop_a _ _ _ _ _))). apply moveR_equiv_V, dp_apD_const. Defined.
Lemma
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
Torus_rec_beta_loop_a
6,618
(P : Type) (pb : P) (pla plb : pb = pb) (ps : PathSquare pla pla plb plb) : PathSquare (ap (Torus_rec P pb pla plb ps) loop_b) plb 1 1. Proof. refine (sq_GGcc _ (eissect _ _) (ds_const'^-1 (Torus_ind_beta_loop_b _ _ _ _ _))). apply moveR_equiv_V, dp_apD_const. Defined.
Lemma
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
Torus_rec_beta_loop_b
6,619
(P : Type) (pb : P) (pla plb : pb = pb) (ps : PathSquare pla pla plb plb) : PathCube (sq_ap (Torus_rec P pb pla plb ps) surf) ps (Torus_rec_beta_loop_a P pb pla plb ps) (Torus_rec_beta_loop_a P pb pla plb ps) (Torus_rec_beta_loop_b P pb pla plb ps) (Torus_rec_beta_loop_b P pb pla plb ps). Proof. Admitted. Global Instance ispointed_torus : IsPointed Torus := tbase.
Definition
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
Torus_rec_beta_surf
6,620
loop_a @ loop_b = loop_b @ loop_a := equiv_sq_path^-1 surf.
Definition
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
loops_commute_torus
6,621
(P : Type) (pb : P) (pla plb : pb = pb) (ps : PathSquare pla pla plb plb) : { ba : PathSquare (ap (Torus_rec P pb pla plb ps) loop_a) pla 1 1 & { bb : PathSquare (ap (Torus_rec P pb pla plb ps) loop_b) plb 1 1 & PathCube (sq_ap (Torus_rec P pb pla plb ps) surf) ps ba ba bb bb}}. Proof. refine (_;_;_). set (cu_cGcccc (eissect ds_const' _) (dc_const'^-1 (Torus_ind_beta_surf (fun _ => P) pb (dp_const pla) (dp_const plb) (ds_const' (sq_GGGG (eissect _ _)^ (eissect _ _)^ (eissect _ _)^ (eissect _ _)^ ps))))). Admitted. *)
Definition
Require Import Basics.Overture Basics.Equivalences Cubical.DPath
Spaces\Torus\Torus.v
Torus_rec_beta_cube
6,622
{s : PathSquare loop_a loop_a (ap (Circle_rec _ tbase loop_b) loop) (ap (Circle_rec _ tbase loop_b) loop) & PathCube s surf hr hr (sq_G1 (Circle_rec_beta_loop _ _ _)) (sq_G1 (Circle_rec_beta_loop _ _ _))}. Proof. apply cu_fill_left. Defined.
Definition
Require Import Basics Types. Require Import Cubical.DPath Cubical.PathSquare Cubical.DPathSquare Require Import Spaces.Circle Spaces.Torus.Torus.
Spaces\Torus\TorusEquivCircles.v
c2t_square_and_cube
6,623
Torus -> Circle * Circle. Proof. snrapply Torus_rec. + exact (base, base). + exact (path_prod' loop 1). + exact (path_prod' 1 loop). + exact (sq_prod (hr, vr)). Defined.
Definition
Require Import Basics Types. Require Import Cubical.DPath Cubical.PathSquare Cubical.DPathSquare Require Import Spaces.Circle Spaces.Torus.Torus.
Spaces\Torus\TorusEquivCircles.v
t2c
6,624
c2t' `{Funext} : Circle -> Circle -> Torus. Proof. snrapply Circle_rec. + snrapply Circle_rec. - exact tbase. - exact loop_b. + apply path_forall. snrapply Circle_ind. - exact loop_a. - srapply sq_dp^-1. apply (pr1 c2t_square_and_cube). Defined.
Definition
Require Import Basics Types. Require Import Cubical.DPath Cubical.PathSquare Cubical.DPathSquare Require Import Spaces.Circle Spaces.Torus.Torus.
Spaces\Torus\TorusEquivCircles.v
c2t'
6,625
`{Funext} : Circle * Circle -> Torus. Proof. apply uncurry, '. Defined.
Definition
Require Import Basics Types. Require Import Cubical.DPath Cubical.PathSquare Cubical.DPathSquare Require Import Spaces.Circle Spaces.Torus.Torus.
Spaces\Torus\TorusEquivCircles.v
c2t
6,626
`{Funext} : {bl1 : PathSquare (ap (fun y => c2t' base y) loop) loop_b 1 1 & {bl2 : PathSquare (ap (fun x => c2t' x base) loop) loop_a 1 1 & PathCube (sq_ap011 c2t' loop loop) surf bl2 bl2 bl1 bl1}}. Proof. nrefine (_;_;_). unfold sq_ap011. nrefine (cu_concat_lr (cu_ds (dp_apD_nat (fun y => ap_compose _ (fun f => f y) _) _)) _ (sji0:=?[X1]) (sji1:=?X1) (sj0i:=?[Y1]) (sj1i:=?Y1) (pj11:=1)). nrefine (cu_concat_lr (cu_ds (dp_apD_nat (fun x => ap_apply_l _ _ @ apD10 (ap _(Circle_rec_beta_loop _ _ _)) x) _)) _ (sji0:=?[X2]) (sji1:=?X2) (sj0i:=?[Y2]) (sj1i:=?Y2) (pj11:=1)). nrefine (cu_concat_lr (cu_ds (dp_apD_nat (ap10_path_forall _ _ _) _)) _ (sji0:=?[X3]) (sji1:=?X3) (sj0i:=?[Y3]) (sj1i:=?Y3) (pj11:=1)). nrefine (cu_concat_lr (cu_G11 (ap _ (Circle_ind_beta_loop _ _ _))) _ (sji0:=?[X4]) (sji1:=?X4) (sj0i:=?[Y4]) (sj1i:=?Y4) (pj11:=1)). nrefine (cu_concat_lr (cu_G11 (eisretr _ _)) _ (sji0:=?[X5]) (sji1:=?X5) (sj0i:=?[Y5]) (sj1i:=?Y5) (pj11:=1)). apply c2t_square_and_cube.2. Defined.
Definition
Require Import Basics Types. Require Import Cubical.DPath Cubical.PathSquare Cubical.DPathSquare Require Import Spaces.Circle Spaces.Torus.Torus.
Spaces\Torus\TorusEquivCircles.v
c2t'_beta
6,627
`{Funext} : c2t o t2c == idmap. Proof. nrefine (Torus_ind _ 1 _ _ _). apply cu_ds^-1. refine (cu_GGGGcc (eisretr _ _)^ (eisretr _ _)^ (eisretr _ _)^ (eisretr _ _)^ _). apply cu_rot_tb_fb. refine (cu_ccGGGG (eisretr _ _)^ (eisretr _ _)^ (eisretr _ _)^ (eisretr _ _)^ _). nrefine ((sq_ap_compose t2c c2t surf) @lr (cu_ap c2t (Torus_rec_beta_surf _ _ _ _ _ )) @lr (sq_ap_uncurry _ _ _) @lr (pr2 (pr2 c2t'_beta)) @lr (cu_flip_lr (sq_ap_idmap _))). Defined.
Definition
Require Import Basics Types. Require Import Cubical.DPath Cubical.PathSquare Cubical.DPathSquare Require Import Spaces.Circle Spaces.Torus.Torus.
Spaces\Torus\TorusEquivCircles.v
t2c2t
6,628
{A B C D : Type} (f : A -> B -> C) (g : C -> D) {a a' : A} (p : a = a') {b b' : B} (q : b = b') : PathCube (sq_ap011 (fun x y => g (f x y)) p q) (sq_ap g (sq_ap011 f p q)) apcs apcs apcs apcs. Proof. by destruct p, q. Defined.
Definition
Require Import Basics Types. Require Import Cubical.DPath Cubical.PathSquare Cubical.DPathSquare Require Import Spaces.Circle Spaces.Torus.Torus.
Spaces\Torus\TorusEquivCircles.v
sq_ap011_compose
6,629
`{Funext} : t2c o c2t == idmap. Proof. nrapply prod_ind. snrefine (Circle_ind _ (Circle_ind _ 1 _) _). 1: apply sq_dp^-1, sq_tr^-1; shelve. apply dp_forall_domain. intro x; apply sq_dp^-1; revert x. snrefine (Circle_ind _ _ _). 1: apply sq_tr^-1; shelve. apply dp_cu. nrefine (cu_ccGGcc _ _ _). 1,2: nrefine (ap sq_dp (Circle_ind_beta_loop _ _ _) @ eisretr _ _)^. apply cu_rot_tb_fb. nrefine (cu_ccGGGG _ _ _ _ _). 1,2,3,4: exact (eisretr _ _)^. nrefine ((sq_ap011_compose c2t' t2c loop loop) @lr (cu_ap t2c (c2t'_beta.2.2)) @lr (Torus_rec_beta_surf _ _ _ _ _) @lr (cu_flip_lr (sq_ap_idmap _)) @lr (sq_ap_uncurry _ _ _)). Defined.
Definition
Require Import Basics Types. Require Import Cubical.DPath Cubical.PathSquare Cubical.DPathSquare Require Import Spaces.Circle Spaces.Torus.Torus.
Spaces\Torus\TorusEquivCircles.v
c2t2c
6,630
`{Funext} : Torus <~> Circle * Circle := equiv_adjointify t2c c2t c2t2c t2c2t.
Definition
Require Import Basics Types. Require Import Cubical.DPath Cubical.PathSquare Cubical.DPathSquare Require Import Spaces.Circle Spaces.Torus.Torus.
Spaces\Torus\TorusEquivCircles.v
equiv_torus_prod_Circle
6,631
`{Funext} : T <~>* S1 * S1. Proof. srapply Build_pEquiv'. 1: apply equiv_torus_prod_Circle. reflexivity. Defined.
Lemma
Require Import Basics Types. Require Import Pointed WildCat. Require Import Modalities.ReflectiveSubuniverse Truncations.Core. Require Import Algebra.AbGroups. Require Import Homotopy.HomotopyGroup. Require Import Homotopy.PinSn. Require Import Spaces.Int Spaces.Circle. Require Import Spaces.Torus.Torus. Require Import Spaces.Torus.TorusEquivCircles.
Spaces\Torus\TorusHomotopy.v
pequiv_torus_prod_circles
6,632
`{Univalence} : GroupIsomorphism (Pi 1 T) (grp_prod abgroup_Z abgroup_Z). Proof. etransitivity. 1: exact (emap (Pi 1) pequiv_torus_prod_circles). etransitivity. 1: apply grp_iso_pi_prod. apply grp_iso_prod. 1,2: apply pi1_circle. Defined.
Theorem
Require Import Basics Types. Require Import Pointed WildCat. Require Import Modalities.ReflectiveSubuniverse Truncations.Core. Require Import Algebra.AbGroups. Require Import Homotopy.HomotopyGroup. Require Import Homotopy.PinSn. Require Import Spaces.Int Spaces.Circle. Require Import Spaces.Torus.Torus. Require Import Spaces.Torus.TorusEquivCircles.
Spaces\Torus\TorusHomotopy.v
pi1_torus
6,633
`{Univalence} : loops T <~>* Int * Int. Proof. refine (_ o*E pequiv_ptr (n:=0)). nrapply pi1_torus. Defined.
Theorem
Require Import Basics Types. Require Import Pointed WildCat. Require Import Modalities.ReflectiveSubuniverse Truncations.Core. Require Import Algebra.AbGroups. Require Import Homotopy.HomotopyGroup. Require Import Homotopy.PinSn. Require Import Spaces.Int Spaces.Circle. Require Import Spaces.Torus.Torus. Require Import Spaces.Torus.TorusEquivCircles.
Spaces\Torus\TorusHomotopy.v
loops_torus
6,634
Record
Require Import HoTT.Basics HoTT.Types. Require Import Pointed.
Spectra\Spectrum.v
Prespectrum
6,635
(E : Prespectrum) `{IsSpectrum E} : forall n, E n <~>* loops (E n.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Pointed.
Spectra\Spectrum.v
equiv_glue
6,636
Record
Require Import HoTT.Basics HoTT.Types. Require Import Pointed.
Spectra\Spectrum.v
Spectrum
6,637
`{Univalence} (k : trunc_index) (E : Spectrum) : Spectrum. Proof. simple refine (Build_Spectrum (Build_Prespectrum (fun n => pTr (trunc_index_inc k n) (E n)) _) _). - intros n. exact ((ptr_loops _ (E n.+1)) o*E (pequiv_ptr_functor _ (equiv_glue E n))). - intros n. unfold glue. srapply isequiv_compose. Defined.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Pointed.
Spectra\Spectrum.v
strunc
6,638
get_lem' {KT VT} Key {lem} `{@respects_equivalence_db KT VT Key lem} : VT := lem. Notation get_lem key := ltac:(let res := constr:(get_lem' key) in let res' := (eval unfold get_lem' in res) in exact res') (only parsing). Section const. Context {A : Type} {T : Type}. Global Instance const_respects_equivalenceL : RespectsEquivalenceL A (fun _ _ => T). Proof. refine (fun _ _ => equiv_idmap T; fun _ => _). exact idpath. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.Tactics. Require Import Types.Equiv Types.Prod Types.Forall Types.Sigma Types.Universe.
Tactics\EquivalenceInduction.v
get_lem'
6,639
RespectsEquivalenceL A (fun _ _ => Unit) := @const_respects_equivalenceL A Unit.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.Tactics. Require Import Types.Equiv Types.Prod Types.Forall Types.Sigma Types.Universe.
Tactics\EquivalenceInduction.v
unit_respects_equivalenceL
6,640
RespectsEquivalenceR A (fun _ _ => Unit) := @const_respects_equivalenceR A Unit. End unit. Section prod. Global Instance prod_respects_equivalenceL {A} {P Q : forall B, (A <~> B) -> Type} `{RespectsEquivalenceL A P, RespectsEquivalenceL A Q} : RespectsEquivalenceL A (fun B e => P B e * Q B e). Proof. refine ((fun B e => equiv_functor_prod' (respects_equivalenceL.1 B e) (respects_equivalenceL.1 B e)); _). exact (fun fs => transport (fun e' => _ = equiv_functor_prod' e' _) (respects_equivalenceL.2 _) (transport (fun e' => _ = equiv_functor_prod' _ e') (respects_equivalenceL.2 _) idpath)). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.Tactics. Require Import Types.Equiv Types.Prod Types.Forall Types.Sigma Types.Universe.
Tactics\EquivalenceInduction.v
unit_respects_equivalenceR
6,641
{A A'} {P : forall B, (A <~> B) -> Type} {P' : forall B, A' <~> B -> Type} (eA : A <~> A') (eP : forall B e, P B (equiv_compose' e eA) <~> P' B e) `{HP : RespectsEquivalenceL A P} : RespectsEquivalenceL A' P'. Proof. simple refine ((fun B e => _); _). { refine (equiv_compose' (eP _ _) (equiv_compose' (equiv_compose' (HP.1 _ _) (equiv_inverse (HP.1 _ _))) (equiv_inverse (eP _ _)))). } { t. } Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.Tactics. Require Import Types.Equiv Types.Prod Types.Forall Types.Sigma Types.Universe.
Tactics\EquivalenceInduction.v
respects_equivalenceL_equiv
6,642
{A A'} {P : forall B, (B <~> A) -> Type} {P' : forall B, B <~> A' -> Type} (eA : A' <~> A) (eP : forall B e, P B (equiv_compose' eA e) <~> P' B e) `{HP : RespectsEquivalenceR A P} : RespectsEquivalenceR A' P'. Proof. simple refine ((fun B e => _); _). { refine (equiv_compose' (eP _ _) (equiv_compose' (equiv_compose' (HP.1 _ _) (equiv_inverse (HP.1 _ _))) (equiv_inverse (eP _ _)))). } { t. } Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.Tactics. Require Import Types.Equiv Types.Prod Types.Forall Types.Sigma Types.Universe.
Tactics\EquivalenceInduction.v
respects_equivalenceR_equiv
6,643
respects_equivalenceL_equiv' {A} {P P' : forall B, (A <~> B) -> Type} (eP : forall B e, P B e <~> P' B e) `{HP : RespectsEquivalenceL A P} : RespectsEquivalenceL A P'. Proof. simple refine ((fun B e => _); _). { refine (equiv_compose' (eP _ _) (equiv_compose' (equiv_compose' (HP.1 _ _) (equiv_inverse (HP.1 _ _))) (equiv_inverse (eP _ _)))). } { t. } Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.Tactics. Require Import Types.Equiv Types.Prod Types.Forall Types.Sigma Types.Universe.
Tactics\EquivalenceInduction.v
respects_equivalenceL_equiv'
6,644
respects_equivalenceR_equiv' {A} {P P' : forall B, (B <~> A) -> Type} (eP : forall B e, P B e <~> P' B e) `{HP : RespectsEquivalenceR A P} : RespectsEquivalenceR A P'. Proof. simple refine ((fun B e => _); _). { refine (equiv_compose' (eP _ _) (equiv_compose' (equiv_compose' (HP.1 _ _) (equiv_inverse (HP.1 _ _))) (equiv_inverse (eP _ _)))). } { t. } Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.Tactics. Require Import Types.Equiv Types.Prod Types.Forall Types.Sigma Types.Universe.
Tactics\EquivalenceInduction.v
respects_equivalenceR_equiv'
6,645
(A:Type) := adummy : A. Ltac rewrite_refl H := match goal with | [ |- ?X ] => let dX' := eval_in ltac:(fun H' => rewrite H in H') (adummy X) in match type of dX' with | ?X' => change X' end end. Example rewrite_refl_example {A B : Type} (x : A) (f : A -> B) : ap f idpath = idpath :> (f x = f x). Proof. rewrite ap_1. reflexivity. Abort. Example rewrite_refl_example {A B : Type} (x : A) (f : A -> B) : ap f idpath = idpath :> (f x = f x). Proof. rewrite_refl @ap_1. reflexivity. Abort.
Inductive
Require Import Basics.Overture Basics.PathGroupoids.
Tactics\EvalIn.v
dummy
6,646
`{Funext} {m n : trunc_index} {A B : Type} (f : A -> B) `{IsConnMap n _ _ f} (P : B -> Type) {HP : forall b:B, IsTrunc (m +2+ n) (P b)} (d : forall a:A, P (f a)) : IsTrunc m (ExtensionAlong f P d). Proof. revert P HP d. simple_induction m m' IH; intros P HP d; simpl in *. - apply (Build_Contr _ (extension_conn_map_elim n f P d)). intros y. apply (allpath_extension_conn_map n); assumption. - apply istrunc_S. intros e e'. refine (istrunc_isequiv_istrunc _ (path_extension e e')). Defined.
Lemma
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
istrunc_extension_along_conn
6,647
`{Univalence} {n : trunc_index} {A : Type} (a0:A) `{IsConnected n.+1 A} : IsConnMap n (unit_name a0). Proof. rapply (OO_cancelL_conn_map (Tr n.+1) (Tr n) (unit_name a0) (const_tt A)). apply O_lex_leq_Tr. Defined.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
conn_point_incl
6,648
`{Univalence} (n : trunc_index) {A : pType@{u}} `{IsConnected n.+1 A} (P : A -> Type@{u}) `{forall a, IsTrunc n (P a)} (p0 : P (point A)) : forall a, P a. Proof. intro a. pose proof (p := center (Tr n ((point A) = a))). strip_truncations. exact (p # p0). Defined.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
conn_point_elim
6,649
n A `{IsConnected n.+1 A} : IsConnected n A. Proof. apply isconnected_from_elim; intros C ? f. refine (isconnected_elim n.+1 C f). Defined.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
isconnected_pred
6,650
n m A `{H : IsConnected (n +2+ m) A} : IsConnected m A. Proof. induction n. 1: assumption. apply IHn. apply isconnected_pred. assumption. Defined.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
isconnected_pred_add
6,651
isconnected_pred_add' n m A `{H : IsConnected (m +2+ n) A} : IsConnected m A. Proof. apply (isconnected_pred_add n m). destruct (trunc_index_add_comm m n); assumption. Defined.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
isconnected_pred_add'
6,652
n A `{IsConnected n.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
merely_isconnected
6,653
(n : trunc_index) A `{IsConnected n.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
is0connected_isconnected
6,654
n m A B (f : A -> B) `{IsConnMap (n +2+ m) _ _ f} : IsConnMap m f. Proof. intro b. exact (isconnected_pred_add n m _). Defined.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
isconnmap_pred_add
6,655
`{Univalence} (A : Type) `{IsConnected 0 A} (x y : A) : merely (x = y). Proof. rapply center. Defined.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
merely_path_is0connected
6,656
`{Univalence} (A : Type) `{merely A} (p : forall (x y:A), merely (x = y)) : IsConnected 0 A. Proof. strip_truncations. apply contr_inhabited_hprop. - apply hprop_allpath; intros z w. strip_truncations. exact (equiv_path_Tr z w (p z w)). - apply tr; assumption. Defined.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
is0connected_merely_allpath
6,657
{X : Type} {x : X} (z1 z2 : { z : X & merely (z = x) }) : merely (z1 = z2). Proof. destruct z1 as [z1 p1], z2 as [z2 p2]. strip_truncations. apply tr. apply path_sigma_hprop; cbn. exact (p1 @ p2^). Defined.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
merely_path_component
6,658
{X : Type} (x : X) : { z : X & merely (z = x) } <~> image (Tr (-1)) (unit_name x). Proof. unfold image; simpl. apply equiv_functor_sigma_id; intros z; simpl. apply Trunc_functor_equiv; unfold hfiber. refine ((equiv_contr_sigma _)^-1 oE _). apply equiv_path_inverse. Defined.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
equiv_component_image_unit
6,659
{ f : forall a b, P a b & { e_a0 : forall b, f a0 b = f_a0 b & { e_b0 : forall a, f a b0 = f_b0 a & e_b0 a0 = (e_a0 b0) @ f_a0b0 }}}. Proof. assert (goal_as_extension : ExtensionAlong (unit_name a0) (fun a => ExtensionAlong (unit_name b0) (P a) (unit_name (f_b0 a))) (unit_name (f_a0 ; (unit_name f_a0b0)))). - apply (extension_conn_map_elim m). + apply (conn_point_incl a0). + intros a. apply (istrunc_extension_along_conn (n := n)). * apply (conn_point_incl b0). * apply HP. - destruct goal_as_extension as [f_eb name_ea_eab]. assert (ea_eab := name_ea_eab tt); clear name_ea_eab. exists (fun a => pr1 (f_eb a)). exists (fun b => apD10 (ea_eab ..1) b). exists (fun a => pr2 (f_eb a) tt). apply moveL_Mp. apply (concatR (apD10 (ea_eab ..2) tt)). set (ea := ea_eab ..1). generalize ea; simpl. clear ea_eab ea. intros. rewrite transport_arrow. rewrite transport_const. rewrite transport_paths_Fl. exact 1%path. Qed.
Corollary
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
isconn_wedge_incl
6,660
forall a b, P a b := isconn_wedge_incl.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
wedge_incl_elim
6,661
forall b, wedge_incl_elim a0 b = f_a0 b := isconn_wedge_incl.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
wedge_incl_comp1
6,662
forall a, wedge_incl_elim a b0 = f_b0 a := isconn_wedge_incl.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
wedge_incl_comp2
6,663
wedge_incl_comp2 a0 = (wedge_incl_comp1 b0) @ f_a0b0 := isconn_wedge_incl.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
wedge_incl_comp3
6,664
`{Univalence} {m n : trunc_index} {A : Type} (a0 : A) `{IsConnected m.+1 A} {B : Type} (b0 : B) `{IsConnected n.+1 B} (P : A -> B -> Type) {HP : forall a b, IsTrunc (m +2+ n) (P a b)} (fs : {f_a0 : forall b:B, P a0 b & { f_b0 : forall a:A, P a b0 & f_a0 b0 = f_b0 a0 }}) : forall (a : A) (b : B), P a b. Proof. destruct fs as [f_a0 [f_b0 f_a0b0]]. refine (wedge_incl_elim _ _ _ _ _ f_a0b0). Defined.
Definition
Require Import Basics. Require Import Types. Require Import Extensions. Require Import Factorization. Require Import Modalities.Descent. Require Import Truncations.Core Truncations.SeparatedTrunc.
Truncations\Connectedness.v
wedge_incl_elim_uncurried
6,665
n (A : Type) : Type := | tr : A -> n A | istrunc_truncation : forall (f : Sphere n.
Inductive
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
Trunc
6,666
{n A} (P : Trunc n A -> Type) {Pt : forall aa, IsTrunc n (P aa)} : (forall a, P (tr a)) -> (forall aa, P aa) := fun f aa => match aa with tr a => fun _ => f a end Pt.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
Trunc_ind
6,667
{n A X} `{IsTrunc n X} : (A -> X) -> (Trunc n A -> X) := Trunc_ind (fun _ => X).
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
Trunc_rec
6,668
n {A : Type} : Trunc_rec (A:=A) (tr (n:=n)) == idmap := Trunc_ind _ (fun a => idpath).
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
Trunc_rec_tr
6,669
(n : trunc_index) : Modality. Proof. srapply (Build_Modality (fun A => IsTrunc n A)); cbn. - intros A B ? f ?; rapply (istrunc_isequiv_istrunc A f). - exact (Trunc n). - intros; apply istrunc_truncation. - intros A; apply tr. - intros A B ? f oa; cbn in *. exact (Trunc_ind B f oa). - intros; reflexivity. - exact (@istrunc_paths' n). Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
Tr
6,670
(A : Type) : IsTrunc n A <-> IsEquiv (@tr n A) := inO_iff_isequiv_to_O (Tr n) A.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
trunc_iff_isequiv_truncation
6,671
(A : Type) `{IsTrunc n A} : A <~> Tr n A := Build_Equiv _ _ (@tr n A) _.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
equiv_tr
6,672
{A : Type} `{IsTrunc n A} : Tr n A -> A := (@tr n A)^-1.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
untrunc_istrunc
6,673
Trunc_functor@{i j k | i <= k, j <= k} {X : Type@{i}} {Y : Type@{j}} (f : X -> Y) : Tr@{i} n X -> Tr@{j} n Y := O_functor@{k k k} (Tr n) f.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
Trunc_functor@
6,674
{X Y : Type} (f : X <~> Y) : Tr n X <~> Tr n Y := equiv_O_functor (Tr n) f.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
Trunc_functor_equiv
6,675
{X Y Z} (f : X -> Y) (g : Y -> Z) : Trunc_functor (g o f) == Trunc_functor g o Trunc_functor f := O_functor_compose (Tr n) f g.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
Trunc_functor_compose
6,676
(X : Type) : @Trunc_functor X X idmap == idmap := O_functor_idmap (Tr n) X.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
Trunc_functor_idmap
6,677
{X Y} : Tr n (X * Y) <~> Tr n X * Tr n Y := equiv_O_prod_cmp (Tr n) X Y. Global Instance is1functor_Tr : Is1Functor (Tr n). Proof. apply Build_Is1Functor. - apply @O_functor_homotopy. - apply @Trunc_functor_idmap. - apply @Trunc_functor_compose. Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
equiv_Trunc_prod_cmp
6,678
{n : trunc_index} (A : Type) `{In (Tr n) A} : IsTrunc n A. Proof. assumption. Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
istrunc_inO_tr
6,679
{n : trunc_index} {A B : Type} (f : A -> B) `{MapIn (Tr n) _ _ f} : IsTruncMap n f. Proof. assumption. Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
istruncmap_mapinO_tr
6,680
(A : Type@{i}) : HProp@{i} := Build_HProp (Tr (-1) A).
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
merely
6,681
{X} (P : X -> Type) : HProp := merely (sig P).
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
hexists
6,682
(P Q : Type) : HProp := merely (P + Q).
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
hor
6,683
{X Y} (f : X -> Y) := image (Tr (-1)) f.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
himage
6,684
{A} `{IsHProp A} (ma : merely A) : Contr A. Proof. refine (@contr_trunc_conn (Tr (-1)) A _ _); try assumption. refine (contr_inhabited_hprop _ ma). Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
contr_inhab_prop
6,685
{A} {A_stable : Stable A} : Tr (-1) A <-> A. Proof. refine (_, tr). intro ma. apply stable; intro na. revert ma; rapply Trunc_ind; exact na. Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
merely_inhabited_iff_inhabited_stable
6,686
{A B} (f : A -> B) : (forall b, merely (hfiber f b)) -> IsSurjection f. Proof. intros H b; refine (contr_inhabited_hprop _ _). apply H. Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
BuildIsSurjection
6,687
{X : Type} (P : X -> Type) : (forall x, merely (P x)) <-> IsSurjection (pr1 : {x : X & P x} -> X). Proof. refine (iff_compose _ (iff_forall_inO_mapinO_pr1 (Conn _) P)). apply iff_functor_forall; intro a. symmetry; apply (iff_contr_hprop (Tr (-1) (P a))). Defined.
Lemma
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
iff_merely_issurjection
6,688
`{Funext} {X : Type} (P : X -> Type) : (forall x, merely (P x)) <~> IsSurjection (pr1 : {x : X & P x} -> X). Proof. exact (equiv_iff_hprop_uncurried (iff_merely_issurjection P)). Defined.
Lemma
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
equiv_merely_issurjection
6,689
{A B C : Type} (f : A -> B) (g : B -> C) (isconn : IsSurjection (g o f)) : IsSurjection g. Proof. intro c. rapply contr_inhabited_hprop. rapply (Trunc_functor _ (X:= (hfiber (g o f) c))). - intros [a p]. exact (f a; p). - apply center, isconn. Defined.
Lemma
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
cancelR_issurjection
6,690
{X Y : Type} {r : X -> Y} (s : Y -> X) (h : forall y:Y, r (s y) = y) : IsSurjection r. Proof. intro y. rapply contr_inhabited_hprop. exact (tr (s y; h y)). Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
issurj_retr
6,691
{A B} (f : A -> B) `{IsSurjection f} `{IsEmbedding f} : IsEquiv f. Proof. apply (@isequiv_conn_ino_map (Tr (-1))); assumption. Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
isequiv_surj_emb
6,692
{X Y Z : Type} {f : X -> Y} (i : Y -> Z) `{IsEmbedding i} `{!IsEquiv (i o f)} : IsEquiv f. Proof. rapply (cancelL_isequiv i). refine (isequiv_surj_emb i). rapply (cancelR_issurjection f). Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
isequiv_isequiv_compose_embedding
6,693
`{Funext} {X Y Z : Type} `{IsHSet X} (f : Y -> Z) `{IsSurjection f} : IsEmbedding (fun phi : Z -> X => phi o f). Proof. intros phi; apply istrunc_S. intros g0 g1; cbn. rapply contr_inhabited_hprop. apply path_sigma_hprop, equiv_path_arrow. rapply conn_map_elim; intro y. exact (ap10 (g0.2 @ g1.2^) y). Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
isembedding_precompose_surjection_hset
6,694
`{Univalence} {X : Type} (x1 x2 : X) : paths x1 = paths x2 -> x1 = x2. Proof. refine (_ o @equiv_ap10 _ X Type (paths x1) (paths x2)). refine (_ o equiv_functor_forall_id (fun y => equiv_equiv_path (x1 = y) (x2 = y))). refine (_ o functor_forall_id (fun y => @equiv_fun (x1 = y) (x2 = y))). refine (_ o (equiv_paths_ind x1 (fun y p => x2 = y))^-1%equiv). exact (equiv_path_inverse x2 x1). Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
ap_paths_inverse
6,695
`{Univalence} {X : Type@{u}} : IsEmbedding (@paths X). Proof. snrapply isembedding_isequiv_ap. intros x1 x2. snrapply (isequiv_isequiv_compose_embedding (ap_paths_inverse x1 x2)). - unfold ap_paths_inverse. nrefine (mapinO_compose (O:=Tr (-1)) _ (equiv_path_inverse x2 x1 oE _)). 2: exact _. nrefine (mapinO_compose _ (functor_forall_id _)). 1: exact _. rapply mapinO_functor_forall_id. intro y. apply isembedding_equiv_fun. - simpl. srapply (isequiv_homotopic idmap). intros []. reflexivity. Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
isembedding_paths
6,696
{n m : trunc_index} (Hmn : m <= n) : O_leq (Tr m) (Tr n). Proof. intros A; rapply istrunc_leq. Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
O_leq_Tr_leq
6,697
n m X : Tr (trunc_index_min n m) X <~> Tr n (Tr m X). Proof. destruct (trunc_index_min_path n m) as [p|q]. + assert (l := trunc_index_min_leq_right n m). destruct p^; clear p. snrapply (Build_Equiv _ _ (Trunc_functor _ tr)). nrapply O_inverts_conn_map. rapply (conn_map_O_leq _ (Tr m)). rapply O_leq_Tr_leq. + assert (l := trunc_index_min_leq_left n m). destruct q^; clear q. srapply equiv_tr. srapply istrunc_leq. Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
Trunc_min
6,698
n m X : Tr n (Tr m X) <~> Tr m (Tr n X). Proof. refine (Trunc_min m n _ oE equiv_transport (fun k => Tr k _) _ oE (Trunc_min n m _)^-1). apply trunc_index_min_swap. Defined.
Definition
Require Import Basics Types WildCat.Core WildCat.Universe HFiber. Require Import Modalities.Modality.
Truncations\Core.v
Trunc_swap
6,699