fact
stringlengths
0
6.66k
type
stringclasses
10 values
imports
stringclasses
399 values
filename
stringclasses
465 values
symbolic_name
stringlengths
1
75
index_level
int64
0
7.85k
`{P : A -> Type} `{Q : A -> Type} (g : forall a, P a <~> Q a) : (forall a, P a) <~> (forall a, Q a) := equiv_functor_forall (equiv_idmap A) g.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids
Types\Forall.v
equiv_functor_forall_id
6,800
{A B : Type} {P : A -> Type} (f : B <~> A) : (forall a, P a) <~> (forall b, P (f b)) := equiv_functor_forall' (Q := P o f) f (fun b => equiv_idmap).
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids
Types\Forall.v
equiv_functor_forall_pb
6,801
`{P : A -> Type} `{Q : B -> Type} (f : A <~> B) (g : forall a, P a <~> Q (f a)) : (forall a, P a) <~> (forall b, Q b) := (equiv_functor_forall' f (fun a => (g a)^-1%equiv))^-1.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids
Types\Forall.v
equiv_functor_forall_covariant
6,802
`{P : A -> Type} `{Q : B -> Type} `{R : C -> Type} (f0 : A <~> B) (f1 : forall a, P a <~> Q (f0 a)) (g0 : B <~> C) (g1 : forall b, Q b <~> R (g0 b)) (h : forall a, P a) : equiv_functor_forall_covariant g0 g1 (equiv_functor_forall_covariant f0 f1 h) == equiv_functor_forall_covariant (g0 oE f0) (fun a => g1 (f0 a) oE f1 a) h. Proof. apply apD10. refine ((equiv_inverse_compose (equiv_functor_forall' g0 (fun a : B => (g1 a)^-1%equiv)) (equiv_functor_forall' f0 (fun a : A => (f1 a)^-1%equiv)) h)^ @ _). revert h; apply equiv_inverse_homotopy; intros h. apply path_forall; intros c. symmetry; rapply functor_forall_compose. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids
Types\Forall.v
equiv_functor_forall_covariant_compose
6,803
{A : Type} {P Q : A -> Type} (f : forall a, P a <-> Q a) : (forall a, P a) <-> (forall a, Q a) := (functor_forall idmap (fun a => fst (f a)), functor_forall idmap (fun a => snd (f a))).
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids
Types\Forall.v
iff_functor_forall
6,804
{A : Type} {B : A -> Type} {P : forall a : A, B a -> Type} (f g : forall a b, P a b) : (forall (a : A) (b : B a), f a b = g a b) <~> f = g := (equiv_path_forall f g) oE (equiv_functor_forall_id (fun a => equiv_path_forall (f a) (g a))).
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids
Types\Forall.v
equiv_path_forall11
6,805
{A : Type} {B : A -> Type} {P : forall a : A, B a -> Type} (f g : forall a b, P a b) : (forall x y, f x y = g x y) -> f = g := equiv_path_forall11 f g.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids
Types\Forall.v
path_forall11
6,806
`{Contr A} `(P : A -> Type) : (forall a, P a) <~> P (center A). Proof. simple refine (equiv_adjointify (fun (f:forall a, P a) => f (center A)) _ _ _). - intros p a; exact (transport P (path_contr _ _) p). - intros p. refine (transport2 P (q := 1) _ p). apply path_contr. - intros f; apply path_forall; intros a. apply apD. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids
Types\Forall.v
equiv_contr_forall
6,807
`{P : A -> B -> Type} : (forall a b, P a b) -> (forall b a, P a b) := fun f b a => f a b. Arguments {A B P} f b a /. Global Instance isequiv_flip `{P : A -> B -> Type} : IsEquiv (@ _ _ P) | 0. Proof. set (flip_P := @ _ _ P). set (flip_P_inv := @ _ _ ( P)). set (flip_P_is_sect := (fun f => 1) : flip_P_inv o flip_P == idmap). set (flip_P_is_retr := (fun g => 1) : flip_P o flip_P_inv == idmap). exists flip_P_inv flip_P_is_retr flip_P_is_sect. intro g. exact 1. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids
Types\Forall.v
flip
6,808
`(P : A -> B -> Type) : (forall a b, P a b) <~> (forall b a, P a b) := Build_Equiv _ _ (@flip _ _ P) _.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids
Types\Forall.v
equiv_flip
6,809
(I : Type) (A : Type) (B : A -> Type) (i : A -> I) (j : forall x, B x -> I) : I -> Type := | iw_sup (x : A) : (forall (y : B x), I A B i j (j x y)) -> I A B i j (i x).
Inductive
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
IW
6,810
{A B I i j} {l : I} (w : IW I A B i j l) : A := match w with | iw_sup x y => x end.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
iw_label
6,811
{A B I i j} (l : I) (w : IW I A B i j l) : forall (y : B (iw_label w)), IW I A B i j (j (iw_label w) y) := match w with | iw_sup x y => y end.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
iw_arity
6,812
{A B I i j} (l : I) (w : IW I A B i j l) : i (iw_label w) = l. Proof. by destruct w. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
path_index_iw_label
6,813
{A B I i j} (l : I) (w : IW I A B i j l) : path_index_iw_label l w # iw_sup I A B i j (iw_label w) (iw_arity l w) = w. Proof. by destruct w. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
iw_eta
6,814
{A B I i j} (l : I) : IW I A B i j l -> hfiber i l. Proof. intros w. exists (iw_label w). apply path_index_iw_label. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
iw_to_hfiber_index
6,815
`{Funext} {A : Type} {B : A -> Type} (a : forall x, B x) (P : forall b, a == b -> Type) (f : P a (fun _ => 1%path)) {b : forall x, B x} (p : a == b) : P b p. Proof. refine (equiv_ind apD10 (P b) _ p). intros []. exact f. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
pointwise_paths_ind
6,816
(x : I) (w : W A B) : Type := match w with | w_sup a b => (i a = x) * (forall c, (j a c) (b c)) end.
Fixpoint
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
IsIndexedBy
6,817
IW' (x : I) := sig (IsIndexedBy x).
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
IW'
6,818
iw_sup' (x : A) (y : forall z : B x, IW' (j x z)) : IW' (i x) := (w_sup A B x (fun a => pr1 (y a)); (idpath, (fun a => pr2 (y a)))).
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
iw_sup'
6,819
(P : forall i, IW' i -> Type) (S : forall x y, (forall c, P _ (y c)) -> P _ (iw_sup' x y)) : forall x w, P x w. Proof. intros x [w r]. revert w x r. induction w as [a b k]. intros x [p IH]. destruct p. refine (S a (fun c => (b c; IH c)) _). intros c. apply k. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
IW'_ind
6,820
IW'_ind_beta_iw_sup' (P : forall i, IW' i -> Type) (S : forall x y, (forall c, P _ (y c)) -> P _ (iw_sup' x y)) x y : IW'_ind P S _ (iw_sup' x y) = S x y (fun c => IW'_ind P S _ (y c)) := idpath.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
IW'_ind_beta_iw_sup'
6,821
`{Funext} (x : I) : IW' x <~> IW I A B i j x. Proof. snrapply equiv_adjointify. { rapply (IW'_ind (fun l _ => IW I A B i j l)). intros a b c. apply iw_sup. intros y. apply c. } { rapply (IW_rect I A B i j (fun l _ => IW' l)). intros a b c. apply iw_sup'. intros y. apply c. } { rapply (IW_rect I A B i j (fun x y => IW'_ind _ _ x _ = y)). cbn; intros a b c. apply ap. funext y. apply c. } simpl. intro y. rapply (IW'_ind (fun x y => IW_rect I A B i j _ _ x _ = y)). cbn; intros a b c. apply ap. funext d. apply c. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
equiv_wtype_iwtype
6,822
(x : A') : (forall y : B' x, IWPath (j' x y)) -> IWPath (i' x). Proof. destruct x as [x [c1 c2]]. intros y. unfold IWPath. cbn; apply ap. funext l. apply y. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
iwpath_sup
6,823
(x : A) (a : forall c : B x, IW I A B i j (j x c)) : iwpath_sup (x; (a, a)) (apD10 1) = idpath. Proof. unfold iwpath_sup. rewrite path_forall_1. reflexivity. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
iwpath_sup_refl
6,824
forall l a, P (l ; (a, a)) idpath. Proof. rapply (IW_rect I A B i j (fun l a => P (l; (a, a)) idpath)). intros x a q. pose (S (x; (a, a)) _ q) as p. unfold iwpath_sup in p. refine (transport (P (i x; (iw_sup I A B i j x a, iw_sup I A B i j x a))) _ p). change (ap (iw_sup I A B i j x) (path_forall a a (apD10 idpath)) = ap (iw_sup I A B i j x) 1%path). refine (ap _ _). apply eissect. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
IWPath_ind_refl
6,825
forall x p, P x p. Proof. intros [x [a b]]. unfold IWPath; cbn. destruct p. apply IWPath_ind_refl. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
IWPath_ind
6,826
(x : A') (h : forall y : B' x, IWPath (j' x y)) : IWPath_ind _ (iwpath_sup x h) = S x h (fun c => IWPath_ind _ (h c)). Proof. destruct x as [x [a b]]. cbv in h. refine (_ @ _). { refine (_ @ ap _ (eisadj (path_forall _ _) h)). refine (paths_ind _ (fun b p' => paths_ind _ (fun r p'' => P (i x ; (iw_sup I A B i j x a , r)) p'') (IWPath_ind_refl (i x) (iw_sup I A B i j x a)) _ (ap (iw_sup I A B i j x) p') = paths_rec (path_forall _ _ (apD10 p')) (fun p'' => P (_ ; (_, _)) (ap (iw_sup I A B i j x) p'')) (S (x ; (a, b)) (apD10 p') (fun c => IWPath_ind (_ ; (_, _)) (apD10 p' c))) p' (eissect apD10 p')) _ _ _). exact (transport_compose _ _ _ _)^. } by cbn; destruct (eisretr apD10 h). Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
IWPath_ind_beta_iwpath_sup
6,827
(x : I) (a b : IW I A B i j x) : IW I' A' B' i' j' (x; (a, b)) <~> a = b. Proof. change (IW I' A' B' i' j' (x; (a, b)) <~> IWPath (x; (a,b))). snrapply equiv_adjointify. { intros y. induction y as [e f g]. apply iwpath_sup. intros y. apply g. } { intros y. induction y as [e f g] using IWPath_ind. apply iw_sup. intros y. apply g. } { intros y; cbn. induction y as [a' b' IH] using IWPath_ind. rewrite IWPath_ind_beta_iwpath_sup. simpl; f_ap. funext c. apply IH. } intros y; cbn. induction y as [e f IH]. rewrite IWPath_ind_beta_iwpath_sup. f_ap; funext c. apply IH. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
equiv_path_iwtype
6,828
(l : I) (a b : IW I A B i j l) : iw_to_hfiber_index l a = iw_to_hfiber_index l b <~> hfiber i' (l; (a, b)). Proof. srapply equiv_adjointify. + apply path_iw_to_hfiber. + apply hfiber_to_path_iw. + rapply path_iw_to_hfiber_to_path_iw. + rapply hfiber_to_path_iw_to_hfiber. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
equiv_path_hfiber_index
6,829
l (a : IW I A B i j l) : forall b, Decidable (a = b). Proof. destruct a as [x c1]. intro b. transparent assert (decide_children : (forall c2, Decidable (c1 = c2))). { intros c2. destruct (liftP x (fun c => c1 c = c2 c) (fun c => _ (c1 c) (c2 c))) as [p|p]. + left; by apply path_forall. + right; intro h; by apply p, apD10. } snrefine ( match b in (IW _ _ _ _ _ l) return forall iy : l = i x, Decidable (iw_sup I A B i j x c1 = paths_rec l (IW I A B i j) b (i x) iy) with iw_sup y c2 => fun iy : i y = i x => _ end idpath). destruct (fibers_dec (i x) (x ; idpath) (y ; iy)) as [feq|fneq]. + refine ( match feq in (_ = (y ; iy)) return forall c2, Decidable (iw_sup _ _ _ _ _ x c1 = paths_rec (i y) (IW I A B i j) (iw_sup _ _ _ _ _ y c2) (i x) iy) with idpath => _ end c2). cbn; intros c3. destruct (decide_children c3) as [ceq | cneq]. - left; exact (ap _ ceq). - right; intros r; apply cneq. exact (children_eq x c1 c3 r). + right; intros r; apply fneq. exact (ap getfib r @ getfib_computes x y c2 iy). Defined.
Fixpoint
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
decide_eq
6,830
forall x, DecidablePaths (IW I A B i j x). Proof. intros x a b. apply decide_eq. Defined.
Definition
Require Import Basics. Require Import Types.Forall Types.Sigma Types.Prod Types.WType.
Types\IWType.v
decidablepaths_iwtype
6,831
{A B} (f : A -> B) (x : option A) : option B := match x with | None => None | Some a => Some (f a) end.
Definition
Require Import Basics.Overture.
Types\Option.v
functor_option
6,832
{A} {x y : A} (p : Some x = Some y) : x = y. Proof. injection p. exact idmap. Defined.
Definition
Require Import Basics.Overture.
Types\Option.v
isinj_some
6,833
{A : Type} {x1 x2 y : A} (p : x1 = x2) (q : x1 = y) : transport (fun x => x = y) p q = p^ @ q. Proof. destruct p, q; reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths_l
6,834
{A : Type} {x y1 y2 : A} (p : y1 = y2) (q : x = y1) : transport (fun y => x = y) p q = q @ p. Proof. destruct p, q; reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths_r
6,835
{A : Type} {x1 x2 : A} (p : x1 = x2) (q : x1 = x1) : transport (fun x => x = x) p q = p^ @ q @ p. Proof. destruct p; simpl. exact ((concat_1p q)^ @ (concat_p1 (1 @ q))^). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths_lr
6,836
{A B : Type} {f : A -> B} {x1 x2 : A} {y : B} (p : x1 = x2) (q : f x1 = y) : transport (fun x => f x = y) p q = (ap f p)^ @ q. Proof. destruct p, q; reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths_Fl
6,837
{A B : Type} {g : A -> B} {y1 y2 : A} {x : B} (p : y1 = y2) (q : x = g y1) : transport (fun y => x = g y) p q = q @ (ap g p). Proof. destruct p. symmetry; apply concat_p1. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths_Fr
6,838
{A B : Type} {f g : A -> B} {x1 x2 : A} (p : x1 = x2) (q : f x1 = g x1) : transport (fun x => f x = g x) p q = (ap f p)^ @ q @ (ap g p). Proof. destruct p; simpl. exact ((concat_1p q)^ @ (concat_p1 (1 @ q))^). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths_FlFr
6,839
{A : Type} {B : A -> Type} {f g : forall a, B a} {x1 x2 : A} (p : x1 = x2) (q : f x1 = g x1) : transport (fun x => f x = g x) p q = (apD f p)^ @ ap (transport B p) q @ (apD g p). Proof. destruct p; simpl. exact ((ap_idmap _)^ @ (concat_1p _)^ @ (concat_p1 _)^). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths_FlFr_D
6,840
{A B : Type} {f : A -> B} {g : B -> A} {x1 x2 : A} (p : x1 = x2) (q : g (f x1) = x1) : transport (fun x => g (f x) = x) p q = (ap g (ap f p))^ @ q @ p. Proof. destruct p; simpl. exact ((concat_1p q)^ @ (concat_p1 (1 @ q))^). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths_FFlr
6,841
{A B : Type} {f : A -> B} {g : B -> A} {x1 x2 : A} (p : x1 = x2) (q : x1 = g (f x1)) : transport (fun x => x = g (f x)) p q = p^ @ q @ (ap g (ap f p)). Proof. destruct p; simpl. exact ((concat_1p q)^ @ (concat_p1 (1 @ q))^). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths_lFFr
6,842
transport_paths_FlFr' {A B : Type} {f g : A -> B} {x1 x2 : A} (p : x1 = x2) (q : f x1 = g x1) (r : (f x2) = (g x2)) (h : (ap f p) @ r = q @ (ap g p)) : transport (fun x => f x = g x) p q = r. Proof. refine (transport_paths_FlFr _ _ @ _). refine (concat_pp_p _ _ _ @ _). apply moveR_Vp. exact h^. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths_FlFr'
6,843
transport_paths_FFlr' {A B : Type} {f : A -> B} {g : B -> A} {x1 x2 : A} (p : x1 = x2) (q : g (f x1) = x1) (r : g (f x2) = x2) (h : (ap g (ap f p)) @ r = q @ p) : transport (fun x => g (f x) = x) p q = r. Proof. refine (transport_paths_FFlr _ _ @ _). refine (concat_pp_p _ _ _ @ _). apply moveR_Vp. exact h^. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths_FFlr'
6,844
{A B X} (f : A -> X) (g : B -> X) {a1 a2 : A} {b1 b2 : B} (p : a1 = a2) (q : b1 = b2) (r : f a1 = g b1) : transport011 (fun a b => f a = g b) p q r = (ap f p)^ @ r @ ap g q. Proof. destruct p, q; cbn. symmetry. lhs nrapply concat_p1. apply concat_1p. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport011_paths
6,845
{A : Type} {x y : A} (p : x = y) (q : idpath x = idpath x) : transport (fun a => idpath a = idpath a) p q = (concat_Vp p)^ @ whiskerL p^ ((concat_1p p)^ @ whiskerR q p @ concat_1p p) @ concat_Vp p. Proof. destruct p. simpl. refine (_ @ (concat_p1 _)^). refine (_ @ (concat_1p _)^). assert (H : forall (p : x = x) (q : 1 = p), (q @ (concat_p1 p)^) @ (concat_1p (p @ 1))^ = whiskerL (idpath x) (idpath 1 @ whiskerR q 1 @ idpath (p @ 1))). { intros p' q'. destruct q'. reflexivity. } transitivity (q @ (concat_p1 1)^ @ (concat_1p 1)^). { simpl; exact ((concat_p1 _)^ @ (concat_p1 _)^). } refine (H 1 q). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
transport_paths2
6,846
{A : Type} (x y : A) : (x = y) <~> (y = x) := Build_Equiv _ _ (@inverse A x y) _. Global Instance isequiv_concat_l {A : Type} `(p : x = y:>A) (z : A) : IsEquiv (@transitivity A _ _ x y z p) | 0. Proof. refine (Build_IsEquiv _ _ _ (concat p^) (concat_p_Vp p) (concat_V_pp p) _). intros q; destruct p; destruct q; reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_path_inverse
6,847
{A : Type} `(p : x = y) (z : A) : (y = z) <~> (x = z) := Build_Equiv _ _ (concat p) _. Global Instance isequiv_concat_r {A : Type} `(p : y = z) (x : A) : IsEquiv (fun q:x=y => q @ p) | 0. Proof. refine (Build_IsEquiv _ _ (fun q => q @ p) (fun q => q @ p^) (fun q => concat_pV_p q p) (fun q => concat_pp_V q p) _). intros q; destruct p; destruct q; reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_concat_l
6,848
{A : Type} `(p : y = z) (x : A) : (x = y) <~> (x = z) := Build_Equiv _ _ (fun q => q @ p) _.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_concat_r
6,849
{A : Type} {x x' y y' : A} (p : x' = x) (q : y = y') : (x = y) <~> (x' = y') := Build_Equiv _ _ (fun r:x=y => p @ r @ q) _.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_concat_lr
6,850
{A : Type} {x y : A} {p q : x = y} : p = q <~> p @ 1 = 1 @ q := equiv_concat_lr (concat_p1 p) (concat_1p q)^.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_p1_1q
6,851
{A : Type} {x y : A} {p q : x = y} : p = q <~> 1 @ p = q @ 1 := equiv_concat_lr (concat_1p p) (concat_p1 q)^. Global Instance isequiv_whiskerL {A} {x y z : A} (p : x = y) {q r : y = z} : IsEquiv (@whiskerL A x y z p q r). Proof. simple refine (isequiv_adjointify _ _ _ _). - apply cancelL. - intros k. unfold cancelL. rewrite !whiskerL_pp. refine ((_ @@ 1 @@ _) @ whiskerL_pVL p k). + destruct p, q; reflexivity. + destruct p, r; reflexivity. - intros k. unfold cancelL. refine ((_ @@ 1 @@ _) @ whiskerL_VpL p k). + destruct p, q; reflexivity. + destruct p, r; reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_1p_q1
6,852
{A} {x y z : A} (p : x = y) (q r : y = z) : (q = r) <~> (p @ q = p @ r) := Build_Equiv _ _ (whiskerL p) _.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_whiskerL
6,853
{A} {x y z : A} (p : x = y) (q r : y = z) : (p @ q = p @ r) <~> (q = r) := equiv_inverse (equiv_whiskerL p q r).
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_cancelL
6,854
{A} {x y z : A} (p : x = y) (q r : y = z) : IsEquiv (cancelL p q r). Proof. change (IsEquiv (equiv_cancelL p q r)); exact _. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
isequiv_cancelL
6,855
{A} {x y z : A} (p q : x = y) (r : y = z) : (p = q) <~> (p @ r = q @ r) := Build_Equiv _ _ (fun h => whiskerR h r) _.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_whiskerR
6,856
{A} {x y z : A} (p q : x = y) (r : y = z) : (p @ r = q @ r) <~> (p = q) := equiv_inverse (equiv_whiskerR p q r).
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_cancelR
6,857
{A} {x y z : A} (p q : x = y) (r : y = z) : IsEquiv (cancelR p q r). Proof. change (IsEquiv (equiv_cancelR p q r)); exact _. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
isequiv_cancelR
6,858
{A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : (p = r^ @ q) <~> (r @ p = q) := Build_Equiv _ _ (moveR_Mp p q r) _. Global Instance isequiv_moveR_pM {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : IsEquiv (moveR_pM p q r). Proof. destruct p. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveR_Mp
6,859
{A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : (r = q @ p^) <~> (r @ p = q) := Build_Equiv _ _ (moveR_pM p q r) _. Global Instance isequiv_moveR_Vp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) : IsEquiv (moveR_Vp p q r). Proof. destruct r. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveR_pM
6,860
{A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) : (p = r @ q) <~> (r^ @ p = q) := Build_Equiv _ _ (moveR_Vp p q r) _. Global Instance isequiv_moveR_pV {A : Type} {x y z : A} (p : z = x) (q : y = z) (r : y = x) : IsEquiv (moveR_pV p q r). Proof. destruct p. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveR_Vp
6,861
{A : Type} {x y z : A} (p : z = x) (q : y = z) (r : y = x) : (r = q @ p) <~> (r @ p^ = q) := Build_Equiv _ _ (moveR_pV p q r) _. Global Instance isequiv_moveL_Mp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : IsEquiv (moveL_Mp p q r). Proof. destruct r. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveR_pV
6,862
{A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : (r^ @ q = p) <~> (q = r @ p) := Build_Equiv _ _ (moveL_Mp p q r) _.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveL_Mp
6,863
{A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : IsEquiv (moveL_pM p q r). Proof. destruct p. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
isequiv_moveL_pM
6,864
{A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : q @ p^ = r <~> q = r @ p := Build_Equiv _ _ _ (isequiv_moveL_pM p q r). Global Instance isequiv_moveL_Vp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) : IsEquiv (moveL_Vp p q r). Proof. destruct r. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveL_pM
6,865
{A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) : r @ q = p <~> q = r^ @ p := Build_Equiv _ _ (moveL_Vp p q r) _. Global Instance isequiv_moveL_pV {A : Type} {x y z : A} (p : z = x) (q : y = z) (r : y = x) : IsEquiv (moveL_pV p q r). Proof. destruct p. apply (isequiv_compose' _ (isequiv_concat_l _ _) _ (isequiv_concat_r _ _)). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveL_Vp
6,866
{A : Type} {x y z : A} (p : z = x) (q : y = z) (r : y = x) : q @ p = r <~> q = r @ p^ := Build_Equiv _ _ (moveL_pV p q r) _.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveL_pV
6,867
{A : Type} {x y : A} (p q : x = y) : IsEquiv (moveL_1M p q). Proof. destruct q. apply isequiv_concat_l. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
isequiv_moveL_1M
6,868
{A : Type} {x y : A} (p q : x = y) : IsEquiv (moveL_M1 p q). Proof. destruct q. apply isequiv_concat_l. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
isequiv_moveL_M1
6,869
{A : Type} {x y : A} (p : x = y) (q : y = x) : IsEquiv (moveL_1V p q). Proof. destruct q. apply isequiv_concat_l. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
isequiv_moveL_1V
6,870
{A : Type} {x y : A} (p : x = y) (q : y = x) : IsEquiv (moveL_V1 p q). Proof. destruct q. apply isequiv_concat_l. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
isequiv_moveL_V1
6,871
{A : Type} {x y : A} (p q : x = y) : IsEquiv (moveR_M1 p q). Proof. destruct p. apply isequiv_concat_r. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
isequiv_moveR_M1
6,872
{A : Type} {x y : A} (p q : x = y) : (1 = q @ p^) <~> (p = q) := Build_Equiv _ _ (moveR_1M p q) _.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveR_1M
6,873
{A : Type} {x y : A} (p : x = y) (q : y = x) : IsEquiv (moveR_1V p q). Proof. destruct p. apply isequiv_concat_r. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
isequiv_moveR_1V
6,874
{A : Type} {x y : A} (p : x = y) (q : y = x) : IsEquiv (moveR_V1 p q). Proof. destruct p. apply isequiv_concat_r. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
isequiv_moveR_V1
6,875
{A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) (v : P y) (q : transport P p u = v) : moveR_transport_p P p u v (moveL_transport_V P p u v q) = q. Proof. destruct p; reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
moveR_moveL_transport_V
6,876
{A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) (v : P y) (q : u = transport P p^ v) : moveL_transport_V P p u v (moveR_transport_p P p u v q) = q. Proof. destruct p; reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
moveL_moveR_transport_p
6,877
{A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) (v : P y) : u = transport P p^ v <~> transport P p u = v := Build_Equiv _ _ (moveR_transport_p P p u v) _.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveR_transport_p
6,878
{A : Type} (P : A -> Type) {x y : A} (p : y = x) (u : P x) (v : P y) (q : transport P p^ u = v) : moveR_transport_V P p u v (moveL_transport_p P p u v q) = q. Proof. destruct p; reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
moveR_moveL_transport_p
6,879
{A : Type} (P : A -> Type) {x y : A} (p : y = x) (u : P x) (v : P y) (q : u = transport P p v) : moveL_transport_p P p u v (moveR_transport_V P p u v q) = q. Proof. destruct p; reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
moveL_moveR_transport_V
6,880
{A : Type} (P : A -> Type) {x y : A} (p : y = x) (u : P x) (v : P y) : u = transport P p v <~> transport P p^ u = v := Build_Equiv _ _ (moveR_transport_V P p u v) _. Global Instance isequiv_moveL_transport_V {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) (v : P y) : IsEquiv (moveL_transport_V P p u v). Proof. srapply isequiv_adjointify. - apply moveR_transport_p. - intro q; apply moveL_moveR_transport_p. - intro q; apply moveR_moveL_transport_V. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveR_transport_V
6,881
{A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) (v : P y) : transport P p u = v <~> u = transport P p^ v := Build_Equiv _ _ (moveL_transport_V P p u v) _. Global Instance isequiv_moveL_transport_p {A : Type} (P : A -> Type) {x y : A} (p : y = x) (u : P x) (v : P y) : IsEquiv (moveL_transport_p P p u v). Proof. srapply isequiv_adjointify. - apply moveR_transport_V. - intro q; apply moveL_moveR_transport_V. - intro q; apply moveR_moveL_transport_p. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveL_transport_V
6,882
{A : Type} (P : A -> Type) {x y : A} (p : y = x) (u : P x) (v : P y) : transport P p^ u = v <~> u = transport P p v := Build_Equiv _ _ (moveL_transport_p P p u v) _. Global Instance isequiv_moveR_equiv_M `{IsEquiv A B f} (x : A) (y : B) : IsEquiv (@moveR_equiv_M A B f _ x y). Proof. unfold moveR_equiv_M. refine (@isequiv_compose _ _ (ap f) _ _ (fun q => q @ eisretr f y) _). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveL_transport_p
6,883
`{IsEquiv A B f} (x : A) (y : B) : (x = f^-1 y) <~> (f x = y) := Build_Equiv _ _ (@moveR_equiv_M A B f _ x y) _. Global Instance isequiv_moveR_equiv_V `{IsEquiv A B f} (x : B) (y : A) : IsEquiv (@moveR_equiv_V A B f _ x y). Proof. unfold moveR_equiv_V. refine (@isequiv_compose _ _ (ap f^-1) _ _ (fun q => q @ eissect f y) _). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveR_equiv_M
6,884
`{IsEquiv A B f} (x : B) (y : A) : (x = f y) <~> (f^-1 x = y) := Build_Equiv _ _ (@moveR_equiv_V A B f _ x y) _. Global Instance isequiv_moveL_equiv_M `{IsEquiv A B f} (x : A) (y : B) : IsEquiv (@moveL_equiv_M A B f _ x y). Proof. unfold moveL_equiv_M. refine (@isequiv_compose _ _ (ap f) _ _ (fun q => (eisretr f y)^ @ q) _). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveR_equiv_V
6,885
`{IsEquiv A B f} (x : A) (y : B) : (f^-1 y = x) <~> (y = f x) := Build_Equiv _ _ (@moveL_equiv_M A B f _ x y) _. Global Instance isequiv_moveL_equiv_V `{IsEquiv A B f} (x : B) (y : A) : IsEquiv (@moveL_equiv_V A B f _ x y). Proof. unfold moveL_equiv_V. refine (@isequiv_compose _ _ (ap f^-1) _ _ (fun q => (eissect f y)^ @ q) _). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveL_equiv_M
6,886
`{IsEquiv A B f} (x : B) (y : A) : (f y = x) <~> (y = f^-1 x) := Build_Equiv _ _ (@moveL_equiv_V A B f _ x y) _.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_moveL_equiv_V
6,887
{A : Type} {x1 x2 y : A} (p : x1 = x2) (q : x1 = y) (r : x2 = y) : q = p @ r <~> transport (fun x => x = y) p q = r. Proof. destruct p; simpl. exact (equiv_concat_r (concat_1p r) q). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
dpath_path_l
6,888
{A : Type} {x y1 y2 : A} (p : y1 = y2) (q : x = y1) (r : x = y2) : q @ p = r <~> transport (fun y => x = y) p q = r. Proof. destruct p; simpl. exact (equiv_concat_l (concat_p1 q)^ r). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
dpath_path_r
6,889
{A : Type} {x1 x2 : A} (p : x1 = x2) (q : x1 = x1) (r : x2 = x2) : q @ p = p @ r <~> transport (fun x => x = x) p q = r. Proof. destruct p; simpl. transitivity (q @ 1 = r). - exact (equiv_concat_r (concat_1p r) (q @ 1)). - exact (equiv_concat_l (concat_p1 q)^ r). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
dpath_path_lr
6,890
{A B : Type} {f : A -> B} {x1 x2 : A} {y : B} (p : x1 = x2) (q : f x1 = y) (r : f x2 = y) : q = ap f p @ r <~> transport (fun x => f x = y) p q = r. Proof. destruct p; simpl. exact (equiv_concat_r (concat_1p r) q). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
dpath_path_Fl
6,891
{A B : Type} {g : A -> B} {x : B} {y1 y2 : A} (p : y1 = y2) (q : x = g y1) (r : x = g y2) : q @ ap g p = r <~> transport (fun y => x = g y) p q = r. Proof. destruct p; simpl. exact (equiv_concat_l (concat_p1 q)^ r). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
dpath_path_Fr
6,892
{A B : Type} {f g : A -> B} {x1 x2 : A} (p : x1 = x2) (q : f x1 = g x1) (r : f x2 = g x2) : q @ ap g p = ap f p @ r <~> transport (fun x => f x = g x) p q = r. Proof. destruct p; simpl. transitivity (q @ 1 = r). - exact (equiv_concat_r (concat_1p r) (q @ 1)). - exact (equiv_concat_l (concat_p1 q)^ r). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
dpath_path_FlFr
6,893
{A B : Type} {f : A -> B} {g : B -> A} {x1 x2 : A} (p : x1 = x2) (q : g (f x1) = x1) (r : g (f x2) = x2) : q @ p = ap g (ap f p) @ r <~> transport (fun x => g (f x) = x) p q = r. Proof. destruct p; simpl. transitivity (q @ 1 = r). - exact (equiv_concat_r (concat_1p r) (q @ 1)). - exact (equiv_concat_l (concat_p1 q)^ r). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
dpath_path_FFlr
6,894
{A B : Type} {f : A -> B} {g : B -> A} {x1 x2 : A} (p : x1 = x2) (q : x1 = g (f x1)) (r : x2 = g (f x2)) : q @ ap g (ap f p) = p @ r <~> transport (fun x => x = g (f x)) p q = r. Proof. destruct p; simpl. transitivity (q @ 1 = r). - exact (equiv_concat_r (concat_1p r) (q @ 1)). - exact (equiv_concat_l (concat_p1 q)^ r). Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
dpath_path_lFFr
6,895
{A : Type} {x y : A} (p : x = y) (q : idpath x = idpath x) (r : idpath y = idpath y) : (concat_1p p)^ @ whiskerR q p @ concat_1p p = (concat_p1 p)^ @ whiskerL p r @ concat_p1 p <~> transport (fun a => idpath a = idpath a) p q = r. Proof. destruct p. simpl. refine (_ oE (equiv_whiskerR _ _ 1)^-1). refine (_ oE (equiv_whiskerL 1 _ _)^-1). refine (equiv_concat_lr _ _). - symmetry; apply whiskerR_p1_1. - apply whiskerL_1p_1. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
dpath_paths2
6,896
`{Funext} {A : Type} (a : A) (P : forall x, (a = x) -> Type) : P a 1 <~> forall x p, P x p := Build_Equiv _ _ (paths_ind a P) _. Global Instance isequiv_paths_ind_r `{Funext} {A : Type} (a : A) (P : forall x, (x = a) -> Type) : IsEquiv (paths_ind_r a P) | 0. Proof. refine (isequiv_adjointify (paths_ind_r a P) (fun f => f a 1) _ _). - intros f. apply path_forall; intros x. apply path_forall; intros p. destruct p; reflexivity. - intros u. reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_paths_ind
6,897
`{Funext} {A : Type} (a : A) (P : forall x, (x = a) -> Type) : P a 1 <~> forall x p, P x p := Build_Equiv _ _ (paths_ind_r a P) _.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Basics.Tactics.
Types\Paths.v
equiv_paths_ind_r
6,898
`{P : A * B -> Type} (u : A * B) : P (fst u, snd u) -> P u := idmap.
Definition
Require Import Basics.Overture Basics.Equivalences Basics.PathGroupoids Require Import Types.Empty.
Types\Prod.v
unpack_prod
6,899